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Abstract

We study the problem of learning under arbitrary distribution shift, where the
learner is trained on a labeled set from one distribution but evaluated on a different,
potentially adversarially generated test distribution. We focus on two frameworks:
PQ learning [GKKM20], allowing abstention on adversarially generated parts of
the test distribution, and TDS learning [KSV24b], permitting abstention on the
entire test distribution if distribution shift is detected. All prior known algorithms
either rely on learning primitives that are computationally hard even for simple
function classes, or end up abstaining entirely even in the presence of a tiny amount
of distribution shift.
We address both these challenges for natural function classes, including intersec-
tions of halfspaces and decision trees, and standard training distributions, including
Gaussians. For PQ learning, we give efficient learning algorithms, while for TDS
learning, our algorithms can tolerate moderate amounts of distribution shift. At
the core of our approach is an improved analysis of spectral outlier-removal tech-
niques from learning with nasty noise. Our analysis can (1) handle arbitrarily large
fraction of outliers, which is crucial for handling arbitrary distribution shifts, and
(2) obtain stronger bounds on polynomial moments of the distribution after outlier
removal, yielding new insights into polynomial regression under distribution shifts.
Lastly, our techniques lead to novel results for tolerant testable learning [RV23],
and learning with nasty noise.

1 Introduction

Despite the tremendous progress of machine learning, real-world deployment and use of machine
learning models has proven challenging. A major reason for this is distribution shift, which occurs
when the model is trained on one distributionDtrain overX×{±1}, while the data during deployment
comes from a different distributionDtest. In such scenarios, a model can unexpectedly make incorrect
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predictions, leading to loss of reliability, as well as erosion of trust in the machine learning system
itself. Among many other critical applications, distribution shift continues to be a major challenge in
healthcare applications [ZBL+18, SS20, WOD+21, TCK+22].

Handling distribution shift whenDtrain andDtest are allowed to be arbitrary is known to be impossible
[DLLP10]. To circumvent this impossibility, recent works [GKKM20, KK21, KSV24b, GHMS24,
KSV24a] allow the machine learning model to additionally abstain (not make a prediction) on some
or all of the inputs. These frameworks generalize standard PAC learning, requiring the algorithm to
abstain from making predictions rather than giving incorrect predictions. In this work, we focus on
two such frameworks for binary classification:

PQ learning [GKKM20, KK21], requiring the learning algorithm to output a selective classifier f̂ ,
which is allowed to abstain on some inputs and simultaneously satisfy: (i) ϵ-accuracy: the probability
that f̂ does not abstain and incorrectly classifies an input x from the test distribution Dtest is at
most ϵ, and (ii) ϵ-rejection rate: the probability that f̂ abstains on an input x from the original
distribution Dtrain is at most ϵ. In particular, this implies that f̂ abstains on Dtest with probability at
most dTV(Dtrain,Dtest) + ϵ, i.e. the probability of abstention deteriorates only in proportion to the
amount of distribution shift.

Testable Distribution Shift (TDS) [KSV24b], allowing the classifier to abstain on the entire distri-
bution Dtest if any distribution shift is detected. If there is no distribution shift, then the classifier is
ϵ-accurate on Dtest.

Prior known algorithms for both these settings have strong inherent limitations, making them imprac-
tical for real-world scenarios. For PQ learning, all known algorithms require access to oracles that
are computationally inefficient even for the most basic concept classes and training distributions. For
example, even for the most basic class of halfspaces (linear separators) over Rd under the Gaussian
training distribution, no PQ learning algorithm has run-time better than 2d

Ω(1)

. On the other hand,
TDS learning algorithms, while being computationally efficient, reject entire test sets even when the
test set has a tiny amount of distribution shift. For example, the algorithms of [KSV24b], use the
low-degree moment-matching approach, which can reject distributions Dtest ̸= Dtrain even when
dTV(Dtrain,Dtest) = o(ϵ).

1.1 Our results

In this work, we overcome both these limitations using a unified approach: spectral outlier removal
[DKS18] in tandem with strong polynomial approximation results in terms of L2-sandwiching
[KSV24b]. For PQ learning, we give the first dimension-efficient learning algorithms. For TDS
learning, we give the first tolerant TDS learners that accept test sets with moderate amount of
distribution shift in TV distance, dTV(Dtrain,Dtest) = O(ϵ). We summarize our results in Table 1.

Concept class F Dtrain
X PQ runtime TDS runtime

Halfspaces (realizable) N (0, I) dO(log 1/ϵ) dO(log 1/ϵ)

Halfspaces N (0, I), U
(
{±1}d

)
dÕ(1/ϵ4) dÕ(1/ϵ2)

Intersections of ℓ halfspaces N (0, I), U
(
{±1}d

)
dÕ(ℓ6/ϵ4) dÕ(ℓ6/ϵ2)

Size-s decision trees U
(
{±1}d

)
dO(log(s/ϵ)) dO(log(s/ϵ))

Size-s depth-ℓ formulas U
(
{±1}d

)
dO(

√
s(log(s/ϵ))5ℓ/2) dO(

√
s(log(s/ϵ))5ℓ/2)

Table 1: Summary of our results for PQ learning and tolerant TDS learning. Except for the first row,
all results are for the agnostic noise model.

Application: Testable Agnostic Learning. Our techniques give new learning algorithms in the
testable agnostic learning framework of [RV23]. Testable learning does not address distribution shift,
as it assumes that the training and testing distributions are the same. Similarly to the TDS learning
algorithms of [KSV24b], all known testable agnostic learning algorithms are based either entirely
[RV23, GKK23] or partially [GKSV23, DKK+23, GKSV24] on low-degree moment matching4, and

4In fact, [GKSV24], is partially based on a slightly more general hypercontractivity tester by [KS17].
However, this tester will reject some distributions Dtest ̸= Dtrain for which dTV(Dtrain,Dtest) = o(ϵ).
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are subsequently not tolerant to small amounts of violations of the testing assumption in TV distance.
We give the first tolerant testable learning algorithms for a number of function classes, including
Halfspaces and low-depth formulas (see Table 2 in Appendix D for details).

Application: Learning with Nasty Noise. As a corollary of our tolerant agnostic learning algorithms
we obtain algorithms that withstand an Ω(ϵ) amount of nasty noise corruption, and produce classifiers
with an error at most ϵ. (In this setting Ω(ϵ) fraction of both labels and examples given to the
algorithm are corrupted). The error bound of ϵ compares favorably with the bound of [KKM18] under
Ω(ϵ) nasty noise, which is

√
ϵ. Compared with the results of [DKS18] in the nasty noise setting, our

results are incomparable (see relevant discussion in Section 3, Appendix D.2 for more information).

1.2 Our Techniques

To explain our technical approach, we focus of the PQ learning setting (in TDS learning setting and
testable agnostic learning setting, our approach is analogous). If the TV distance between Dtest

and the training distribution Dtrain is at most dTV(Dtrain,Dtest), then we think of the dataset as
consisting of 1−dTV(Dtrain,Dtest) fraction of inliers and an dTV(Dtrain,Dtest) fraction of outliers.
In order to accomplish PQ learning, we aim to remove a portion of the test set while (i) ensuring that
a learning algorithm based on low-degree polynomial regression [KOS08] works on the remaining
data (ii) not removing more than ϵ fraction of the inliers5.

It was known from [KSV24b] that the degree-k polynomial regression performs correctly if the
dataset satisfies the degree-k moment-matching test. Despite its power, the low-degree moment test
can reject distributions even ϵ/dO(k)-close to the reference distribution. However (i) it is not clear how
to efficiently prune the dataset, so the remaining datapoints satisfy the moment-matching condition
(ii) even if one could do this efficiently, this can require one remove a constant fraction of inliers. To
overcome this issue, we introduce the notion of low-degree spectral boundedness, which requires
that for every degree-k polynomial p the expectation Ex∼D[p(x)

2] does not exceed the analogous
expectation with respect to the reference distribution by more than a desired factor. Our first key
insight is that by using the notion of L2-sandwiching polynomials [KSV24b], for many settings the
low-degree moment matching test can be replaced by this low-degree spectral boundedness test.

If our dataset does not satisfy low-degree spectral boundedness, our second key insight is to make
it do so by removing outliers. As in many other algorithms based on outlier removal6 (see e.g.
[DKK+19, LRV16, HLZ20, Ste18, DK19, DV04] and references therein), our outlier-removal algo-
rithm repeatedly finds regions in Rd, such that at least 1− ϵ fraction of points in them are outliers.
This way, as we remove all the points in such outlier-rich regions, we will not remove too many
inliers. Finally, we find such outlier-rich regions efficiently using a spectral approach. Specifically, if
the dataset S does not satisfy the low-degree spectral boundedness, then there is some polynomial
p for which Ex∼S [p(x)

2] is much greater than the corresponding expectation over the reference
distribution. We infer that, for an appropriate value of τ , at least 1− ϵ fraction of points in the region
{x : p(x)2 > τ} are outliers.

1.3 Related work

Domain Adaptation. During the last two decades, there has been a long line of works in domain
adaptation literature (see, e.g., [BDBCP06, BDBC+10, MMR09, BCK+07, DLLP10, RMH+20,
KZZ24] and references therein), aiming to provide generalization bounds for the error on the test
distribution, after training using only labeled examples from the training distribution. However,
the generalization bounds provided involve distances between the training and test marginals that
typically involve enumerations over the whole concept class and no efficient algorithms for estimating
or even testing such distances directy are available.

PQ Learning. The PQ learning framework was defined by [GKKM20], which showed that a PQ
learner can be efficiently implemented using an oracle to a distribution-free agnostic learner. In
follow-up work by [KK21], it was shown that distribution-free PQ learning is actually equivalent to
distribution-free agnostic reliable learning, which is a learning primitive known to be hard even for

5Precisely, we aim to avoid removing more than ϵN outliers, where N is the size of the test dataset.
6Our notion of outlier removal is connected to the notion of sampling correctors from [CGR16]. We note

that over Rd the algorithms of [CGR16] run in time 2Ω(d), while ours are dimension-efficient.
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the fundamental class of halfspaces (exp(Ω(
√
d)) time is believed to be necessary). Here, we show

how to take advantage of standard assumptions on the training marginal (e.g., Gaussianity) in order
to obtain the first dimension-efficient results for PQ learning of several fundamental concept classes.

TDS Learning. Testable learning with distribution shift was defined recently by [KSV24b], where
dimension-efficient algorithms for several concept classes including halfspaces, halfspace intersec-
tions, decision trees and boolean formulas were provided. In this work, we give similar results for
each of these classes in the tolerant TDS learning framework. Further work by [KSV24a] provided
improved guarantees for TDS learning halfspace intersections in the realizable case. We believe that
our techniques can likely be used to provide similar improvements for tolerant TDS learning, but, for
ease of exposition, we do not include such results in this work.

Tolerant Distribution Testing: The notion of tolerance in property testing was introduced in
[PRR06] and has been the focus of many works including [FF05, VV11, BCE+19, RV20, CJKL22,
CFG+22, BH18, CP23]. However, over Rd all existing tolerant distribution testing algorithms (such
as [VV11]) have run-times and sample complexities of 2Ω(d), which greatly exceeds our run-times.

2 Preliminaries

Notation. For details on the notation, see Appendix A. We denote with x⊗k the vector of monomials
of degree k of x ∈ Rd, i.e., x⊗k is a vector of length dk with elements of the form xr =

∏d
i=1 x

ri ,
where

∑
i∈[d] ri ≤ k, ri ∈ N, r = (r1, . . . , rd) and k is the degree of xr. A polynomial p over Rd is

a function p(x) =
∑

r∈Nd prx
r = p⊤x⊗d, where we abuse the notation to denote with p the vector

of coefficients of the corresponding polynomial. A polynomial p over {±1}d is defined similarly, but
all of the coefficients corresponding to monomials xr where ri > 1 for some i are zero.

Learning Setting. We consider distributionD over X andDtrain,Dtest distributions over X ×{±1}
such that the marginal on X of Dtrain is D and the marginal of Dtest is Dtest

X . We also consider some
concept class F ⊆ {X → {±1}}. The learner is given access to labeled examples from Dtrain as
well as unlabeled examples from Dtest

X and the goal is to produce some hypothesis with low error
on Dtest, but is also allowed to abstain from predicting either on specific points (for PQ learning,
Def. 4.1) or even the entire distribution (for TDS learning, Def. 5.1) if distribution shift is detected.

In the realizable setting, the labels of both the training distribution and the test distribution are
generated according to some concept f∗ ∈ F and the training examples are of the form (x, f∗(x)),
where x ∼ D. The target test error is ϵ for some arbitrarily chosen ϵ ∈ (0, 1). In the agnostic setting,
the distributions Dtrain and Dtest can be arbitrary, except from the assumption that the marginal of
Dtrain is Dtrain

X = D. To quantify the target error, we use parameter λ = λ(F ;Dtrain,Dtest) =
minf∈F (err(f ;Dtrain) + err(f ;Dtest)), where err(f ;Dtrain) = P(x,y)∼Dtrain [y ̸= f(x)] (and
similarly for err(f ;Dtest)). The error guarantee we can hope for is some function of λ, because λ
encodes the (unknown) relationship between the training and test distributions, in that λ is small
when there is a concept in the class F that has low error on both training and test distributions. Error
bounds in terms of λ are standard (and necessary) in the domain adaptation literature (see, e.g.,
[BDBCP06, BDBC+10]) as well as TDS learning (see [KSV24b]).

Properties of Distributions. We make standard assumptions about training marginal D. We denote
with Nd the standard Gaussian distribution over Rd and with Unif({±1}d) the uniform distribution
over the hypercube {±1}d. A distribution D over X is k-tame if for every degree-k polynomial
p over X with Ex∼D[(p(x))

2] ≤ 1 and every B greater than ek we have Px∼D
[
(p(x))2 > B

]
≤

e−Ω(B1/(2k)). And note that the Gaussian distribution, all isotropic log-concave distributions over Rd,
as well as the uniform distribution over {±1}d are k-tame for all k ∈ N (see Appendix A.4).

For a concept class F , a distribution D over X , ϵ ∈ (0, 1), we say that F has ϵ-L2 sandwiching
degree k with respect to D if for any f ∈ F , there exist polynomials pup, plow over X with degree at
most k such that (1) plow(x) ≤ f(x) ≤ pup(x) for all x ∈ X and (2) Ex∼D[(pup(x)−plow(x))2] ≤ ϵ.
If the coefficients of pup, plow are all absolutely bounded by B, we say that F has ϵ-L2 sandwiching
coefficient bound B.
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3 Outlier Removal Procedure

The key ingredient of our approach is an outlier removal procedure which is closely related to the
corresponding procedure proposed by [DKS18] in the context of learning with nasty noise, but
ours enjoys stronger error guarantees and works even when the fraction of outliers is arbitrarily
large. The last property is important because we aim to handle arbitrary covariate shifts. Our outlier
removal procedure outputs a selector g : X → {0, 1} that satisfies two main guarantees, provided
examples drawn independently from some arbitrary, unknown distribution D′: (1) for any low-degree
polynomial p, the part of the expectation of p2(x) under D′ within the selected subset of X (i.e.,
Ex∼D′ [p2(x)g(x)]), is a bounded multiple of the expectation of p2(x) under the reference distribution
D and (2) the probability of rejecting a fresh sample drawn fromD (i.e., Px∼D[g(x) = 0]) is bounded
by a multiple of the statistical distance between D and D′. Formally, we prove the following theorem.
Theorem 3.1 (Outlier Removal, see Appendix E). There exists an algorithm (Algorithm 1) that, given
sample access to an arbitrary distribution D′ over X ⊆ Rd, sample access to a k-tame probability
distribution D over X , parameters ϵ, α, δ ∈ (0, 1) and k ∈ N, runs in time poly( 1ϵ (kd)

k log 1
δ ) and

outputs a succinct poly( 1ϵ (kd)
k log 1

δ )-time-computable description of a function g : X → {0, 1}
that satisfies the following properties with probability at least 1− δ.

(a) Ex∼D′
[
(p(x))2g(x)

]
≤ 200

α Ex∼D[(p(x))
2], for any polynomial p with deg(p) ≤ k.

(b) Px∼D[g(x) = 0] ≤ α dTV(D,D′) + ϵ
2 .

Remark 3.2. In Theorem 3.1, Condition (b) also implies some bound on the rejection rate over the
distribution D′ and, in particular, Px∼D′ [g(x) = 0] ≤ (1 + α)dTV(D,D′) + ϵ/2.
Remark 3.3. Our algorithm further satisfies a strengthened form of Condition (b) (with probability
at least 1 − δ). For σ > α/2 and any distribution D′′ that is 1/σ-smooth w.r.t. D, (i.e. for any
measurable set T ⊂ Rd we have Px∼D′′ [x ∈ T ] ≤ 1

σ Px∼D[x ∈ T ]) it is the case that

P
x∼D

[g(x) = 0] ≤ α

σ
dTV(D′′,D′) +

ϵ

2
,

which in particular implies that Px∼D[g(x) = 0] ≤ ϵ/2 if D′ itself is 2/α-smooth w.r.t. D.

Algorithm 1: Outlier Removal Procedure

Input: Sets SD, SD′ , each of size N , containing points in X ⊆ Rd and parameters k, ϵ, δ, α
Output: A succinct description of a selector function g : X → {0, 1}
Let t =

(
d+k−1

k

)
, B = 4

ϵd
3k and ∆ = 200Bdk( logN

N log(1/δ))1/2

Compute monomial correlations estimate M̂ by running Algorithm 2 on inputs SD, k and δ/10.
S0 ← SD′ \ {x ∈ SD′ : there is p ∈ Rt with (p⊤x⊗k)2 > B and p⊤M̂p ≤ 1}
for i = 1, 2, . . . , N do

Let pi ∈ Rt be the solution and µi and the value of the following quadratic program.

max
p∈Rt

1

N

∑
x∈Si−1

(p⊤x⊗k)2 s.t.: p⊤M̂p ≤ 1

if µi ≤ 50
α (1 + ∆) then set imax = i− 1 and exit the loop;

else let τi be the minimum non-negative real number such that the following is true

1

N

∣∣∣{x ∈ Si−1 : (p⊤i x
⊗k)2 > τi}

∣∣∣ ≥ 10

α

(
P

x∼SD
[B ≥ (p⊤i x

⊗k)2 > τi] + ∆
)

Set Si ← Si−1 \ {x ∈ Si−1 : (p⊤i x
⊗k)2 > τi} ;

Set g(x) to be 0 if and only if either there is p ∈ Rt with (p⊤x⊗k)2 > B and p⊤M̂p ≤ 1, or
(p⊤i x

⊗k)2 > τi for some i ∈ [imax]. Otherwise, set g(x) = 1.

The outlier removal procedure of Theorem 3.1 iteratively solves a quadratic program with quadratic
constraints (which can be solved efficiently, see Appendix E.1.1) and increases the rejection region by
setting g(x) = 0 on each point x where the corresponding (maximum second moment) polynomial

5



takes large values. The procedure halts when the solution of the quadratic program has value bounded
by O(1/α) (which implies condition (a)).

Proof overview. The main idea for the analysis is that whenever the stopping criterion does not
hold, then there is a polynomial with unreasonably large second moment over the remaining part
of D′ (after the rejections). When such a polynomial p exists, there must be a threshold τ for the
squared values of p such that D′ assigns Ω(1/α) times more mass on non-rejected points x with
p2(x) > τ compared to the reference distribution D. Such points can be safely rejected, because, in
that case, the mass of points under D rejected is multiplicatively smaller (by a factor of O(α)) than
the corresponding mass under D′ (which implies condition (b)). Note that the procedure will have to
end eventually, because in each iteration, at least one example is removed.

In order to account for errors incurred by sampling (fromD andD′), it is important to provide a bound
on the number of iterations that is independent from the number of examples drawn, because the
complexity of the selector g depends on the number of iterations and we need the desired properties
of g to generalize to the actual distributions D and D′. To this end, we consider the trace of the matrix
Mi =

1
N

∑
x∈Si(x⊗k)(x⊗k)⊤ as a potential function and we show that it reduces by a multiplicative

factor in each iteration (see Claim 6 in the Appendix).

Comparison with [DKS18]. Among all outlier removal algorithms, ours is most related to the
algorithm of [DKS18], which also removes elements in regions of the form {x : (p(x))2 > τ}.
However, there are two differences. First, [DKS18] assume that the fraction of outliers is bounded,
while ours provides meaningful guarantees even in the presence of arbitrary fraction of outliers. In
particular, we can maintain low rejection rates even in the presence of large fractions of outliers
by relaxing the bound on the polynomial moments after outlier removal. This is important for
PQ learning, because we need low error guarantees even when the amount of distribution shift
is arbitrarily large. Second, even when the fraction of outliers is small, our bound on the second
moments of polynomials does not depend on the degree and the degree dependence only appears
in the runtime of the outlier removal process. This gives new insights on polynomial regression
in the presence of outliers (due to distribution shift or noise). In contrast, the moment bound of
[DKS18] scales with the degree of the corresponding polynomial and when the degree bound scales
with the target learning error, their results become vacuous. This enables us to combine the outlier
removal process with L2 sandwiching results from TDS learning to obtain, for example, the first
dimension-efficient robust learners with nasty noise of rate Ω(ϵ) that achieve error ϵ for the class
of intersections of halfspaces. While [DKS18] also provide robust learners for this class, they only
achieve error guarantees that scale as Õ(k1/12ϵ1/11), for intersections of k halfspaces. The key
difference between our analysis and that of [DKS18] is that, to bound the number of iterations, we
use an appropriate potential function, while [DKS18] ensure that the number of iterations is bounded
by making sure to remove at least some fraction of points in each step. As a result, their stopping
criterion scales with the target polynomial degree.

4 Selective Classification with Arbitrary Covariate Shift

In order to provide provable learning guarantees in the presence of distribution shift, when no test
labels are available, one reasonable approach is to enable the model to abstain on certain regions for
which the training samples do not provide sufficient information. The model should not be able to
abstain frequently on samples from the training distribution, since, otherwise the provided guarantees
would be vacuous (e.g., when the model abstains always). A formal definition of this framework
was given by [GKKM20] and, in this section, we provide the first end-to-end, dimension-efficient
algorithms for learning various fundamental classes (e.g., halfspaces) in this setting.

PQ Setting. We first consider the case where the test samples are independently drawn from some
(potentially adversarial) distribution Dtest and the goal of the learner is to achieve low error under
Dtest (on points where the learner does not abstain), without abstaining frequently on fresh training
samples, as described formally in the following definition of agnostic PQ learning.

Definition 4.1 (PQ Learning [GKKM20]). LetF be a concept class overX ⊆ Rd andD a distribution
over X . The algorithm A is a PQ-learner for F with respect to D up to error γ, rejection rate η and
probability of failure δ if, upon receiving mtrain labeled samples from a training distribution Dtrain

with X -marginal D and mtest unlabeled samples from a test distribution Dtest, algorithm A outputs,
w.p. at least 1− δ, a hypothesis h : X → {±1} and a selector g : X → {0, 1} such that:

6



(a) (accuracy) The test error is bounded as P(x,y)∼Dtest [y ̸= h(x) and g(x) = 1] ≤ γ.

(b) (rejection rate) The probability of rejection is bounded as Px∼D[g(x) = 0] ≤ η.

The error γ and the rejection rate η are, in general, functions of the parameter λ = λ(F ;Dtrain,Dtest).

Adversarial Setting. Another reasonable scenario from [GKKM20] corresponds to the case where
the test examples are not independent, but are chosen adversarially as follows. The adversary receives
N independent samples Siid from D and substitutes any number of them adversarially, forming a new
unlabeled dataset Stest which is given to the learner along with a fresh set of independent samples
from D, labeled according to some hypothesis f∗ ∈ F (realizable setting). The goal is to learn a
hypothesis h : X → {±1} and a set Sg ⊆ Stest such that Px∈Stest [h(x) ̸= f∗(x) and x ∈ Sg] ≤ γ
and |Siid ∩ (Stest \ Sg)| ≤ ηN (only a small fraction of i.i.d. points can be rejected). Note that
the adversarial setting is primarily interesting in the realizable case, since there is no underlying
test distribution and for any meaningful notion learning to be possible, there needs to be some
relationship between the training and test labels. In the rest of this section, we focus on positive
results for PQ learning, but, as we argue in Appendix C.2, all of our positive results on (realizable)
PQ learning also work analogously in the adversarial setting. This is because our outlier removal
process (Theorem 3.1) also works when the examples from the distribution D′ are in fact generated
adversarially (see Theorem E.1).

4.1 PQ Learning of Halfspaces

We now give the first dimension-efficient PQ learning algorithms for the fundamental concept class
of halfspaces, in the realizable setting and with respect to the Gaussian distribution, i.e., when both
the training and the test labels are generated by some unknown halfspace and the training marginal D
is the standard Gaussian distribution Nd.

Warm-Up: Homogeneous Halfspaces. We first focus on the class F of homogeneous halfspaces,
i.e., functions f : Rd → {±1} with f(x) = sign(w · x) for w ∈ Sd−1. Recent work by [KSV24b]
showed that there is a simple fully polynomial-time TDS learner for this problem. In fact, their
approach readily implies a PQ learner as well.

Proposition 4.2 (Implicit in [KSV24b]). For any ϵ, δ ∈ (0, 1), there is an algorithm that PQ learns
the class of homogeneous halfspaces with respect to Nd in the realizable setting, up to error and
rejection rate ϵ and probability of failure δ that runs in time poly(d, 1

ϵ ) log(1/δ).

The algorithm of [KSV24b, Proposition 5.1] rejects when the probability that a randomly chosen
example x from the test marginal falls in some particular region D in Rd (for which there is an
efficient membership oracle) is greater than Ω(ϵ). Since the training marginal is Gaussian, the ERM,
run on sufficiently many labeled training examples, outputs a hypothesis h(x) = sign(ŵ · x) such
that ∥ŵ −w∗∥2 ≤ ϵ′, where w∗ is the ground truth. Region D consists precisely of the points x for
which the ERM hypothesis h is not confident: there are two (potential ground truth) unit vectors v1

and v2 that are both ϵ′-close to ŵ and sign(v1 · x) ̸= sign(v2 · x). Crucially, the Gaussian mass of
D is known to be poly(ϵ′) ·

√
d (see, e.g., [Han14]). Therefore, for PQ learning, we may return the

classifier h along with the selector g(x) = 1{x ̸∈ D} and note that access to unlabeled test examples
is not neeeded to form h and g.

General Halfspaces. For the class of general halfspaces (i.e., functions of the form f(x) =
sign(w · x+ τ) where w ∈ Sd−1 and τ ∈ R), the labeled training samples do not always provide
sufficient information to recover the unknown parameters. This is because the bias τ∗ of the ground
truth could take arbitrarily large positive or negative values, in which case all of the training examples
will likely have the same label and (almost) no information about the ground truth w∗ is revealed.
The concern in that case is that the test marginal D′ assigns a lot of mass far from the origin in the
direction of w∗. By appropriately applying Theorem 3.1 to select a part of the test marginal D′ that
is sufficiently concentrated in every direction (hence even in the direction of w∗), we obtain the
following PQ learning result.

Theorem 4.3 (PQ Learning of Halfspaces). For any ϵ, δ ∈ (0, 1), there is an algorithm that PQ
learns the class of general halfspaces with respect to Nd in the realizable setting, up to error and
rejection rate ϵ and probability of failure δ that runs in time poly(dlog(

1
ϵ ), log(1/δ)).
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The first ingredient for Theorem 4.3 is a result from [KSV24b] regarding recovering the parameters
of an unknown general halfspace provided labeled examples from the Gaussian distribution, which
was previously used for TDS learning.

Proposition 4.4 (Halfspace Parameter Recovery, Proposition 5.5 in [KSV24b]). For ϵ, δ ∈ (0, 1) and
τ ∈ R, suppose that S consists of at least m = poly(d, 1/ϵ)eO(τ2) log(1/δ) i.i.d. samples from Nd,
labeled by some halfspace of the form f∗(x) = sign(w∗ · x+ τ∗), for some w∗ ∈ Sd−1. Then, with
probability at least 1− δ, for ŵ =

∑
(x,y)∈S xy/∥

∑
(x,y)∈S xy∥2 and τ̂ = ŵ · x for some x from

S such that P(x,y)∈S [y ̸= sign(ŵ · x+ τ̂)] is minimized, we have ∥ŵ−w∗∥2 ≤ ϵ and |τ̂ − τ∗| ≤ ϵ.

Therefore, in the case when the bias τ∗ of the unknown ground truth halfspace is not too large in
absolute value, the selector can reject all points x for which there exist two halfspaces with parameters
close to ŵ and τ̂ accordingly that disagree on x (similarly to the case of homogeneous halfspaces).
Once more, such a selector can be implemented efficiently via a convex program.

When the bias is large, in TDS learning, checking whether the first O(log(1/ϵ)) moments of the test
marginal D′ match the corresponding Gaussian moments is sufficient to ensure that the distribution
is concentrated in every direction and, therefore, even in the unknown direction of w∗. In order to
obtain a selective classifier for this case, we instead use Theorem 3.1 with k = O(log(1/ϵ)) and
ensure that the selected part of the test marginal is indeed sufficiently concentrated in every direction
as required. For more details, see Appendix C.1.1.

4.2 PQ for Classes with Low Sandwiching Degree

The outlier removal process of Theorem 3.1 enables one to fully control the ratios between the second
moment of any low-degree polynomial under the selected part of the test marginal D′ and its second
moment under the reference distribution D, since the provided bound (see condition (a)) does not
depend on the degree of the polynomial, but only on the target rejection rate. Combining our outlier
removal process with ideas from TDS learning, we provide a general result on PQ learning classes
with low L2 sandwiching degree. In particular, we require the following properties for the hypothesis
class F and the training marginal D.

Definition 4.5 (Reasonable Pairs of Classes and Distributions). We say that the pair (D,F), where
D is a distribution over X ⊆ Rd and F ⊆ {X → {±1}} is (ϵ, δ, k,m)-reasonable if the following
properties hold: (1) the ϵ-L2 sandwiching degree of F under D is at most k with coefficient bound B,
(2) the distribution D is k-tame and (3) if S consists of m′ i.i.d. samples from some distribution D
over X ×{±1} with marginalD and m′ ≥ m then, with probability at least 1−δ we have that for any
degree-k polynomial p with coefficient bound B it holds |EDXY [(y−p(x))2]−ES [(y−p(x))2]| ≤ ϵ.

Property (1) corresponds to the existence of sandwiching approximators, which is known to be
important for learning in the presence of distribution shift by prior work on TDS learning [KSV24b].
Property (2) is the tameness condition Definition A.8, which is important for the outlier removal
procedure and was used in the work of [DKS18] for similar purposes. Finally, property (3) ensures
generalization for polynomial regression.

We obtain the following theorem which gives the first dimension-efficient results on PQ learning sev-
eral fundamental concept classes with respect to standard training marginals, including intersections
of halfspaces, decision trees and boolean formulas. The results work even in the agnostic setting. The
algorithm runs the outlier removal process once to form the selector and runs polynomial regression
on the training distribution to form the output hypothesis.

Theorem 4.6 (PQ Learning via Sandwiching). For ϵ, η, δ ∈ (0, 1), let X ⊆ Rd and (D,F) be an
( ϵηC , δ

C , k,m)-reasonable pair (Definition 4.5) for some sufficiently large universal constant C > 0.
Then, there is an algorithm that PQ learns F with respect to D up to error O(λη ) + ϵ, rejection rate η
and probability of failure δ with sample complexity m+poly( 1η (kd)

k log(1/δ)) and time complexity
poly(mη (kd)

k log(1/δ)).

Proof of Theorem 4.6. The algorithm forms the selector g by applying the outlier removal process
of Theorem 3.1 with parameters α, ϵ ← η

2 , δ ← δ/C and k ← k. Then, we run the following
box-constrained least squares problem, using at least m labeled examples Strain from Dtrain, where
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t = dk and B is the value specified in Definition 4.5.
min
p

E(x,y)∼Strain
[(y − p(x))2] s.t. p has degree at most k and coefficient bound B

Let p̂ be the solution. The algorithm returns the selector g and the classifier h(x) = sign(p̂(x)).
The rejection rate is bounded due to condition (b) in Theorem 3.1 while the accuracy can be
shown by applying condition (a) as follows, where f∗ ∈ F is the concept achieving λ =
minf∈F (err(f ;Dtrain) + err(f ;Dtest)) and pup, plow are the corresponding sandwiching polynomi-
als for f∗ (as per Definition 4.5). We show that P(x,y)∼Dtest [y ̸= h(x), g(x) = 1] ≤ O(λη ) + ϵ.

P
(x,y)∼Dtest

[y ̸= h(x), g(x) = 1] ≤ P
(x,y)∼Dtest

[y ̸= f∗(x)] + P
x∼D′

[f∗(x) ̸= sign(p̂(x)), g(x) = 1]

≤ λ+ Ex∼D′ [(f∗(x)− p̂(x))2g(x)]

The term Ex∼D′ [(f∗(x) − p̂(x))2g(x)] can be bounded as Ex∼D′ [(f∗(x) − p̂(x))2g(x)] ≤
2Ex∼D′ [(f∗(x)− plow(x))

2g(x)] + 2Ex∼D′ [(plow(x)− p̂(x))2g(x)] and since pup, plow sandwich
f∗, we bound Ex∼D′ [(f∗(x)− plow(x))

2g(x)] by Ex∼D′ [(pup(x)− plow(x))
2g(x)].

By applying condition (a) from Theorem 3.1, since (plow(x)− p̂(x))2 and (pup(x)− plow(x))
2 are

squares of polynomials of degree k, we have the following for some sufficiently large constant C ′.

P
Dtest

[y ̸= h(x), g(x) = 1] ≤ λ+
C ′

η
(Ex∼D[(plow(x)− p̂(x))2] + Ex∼D[(pup(x)− plow(x))

2])

The term C′

η Ex∼D[(pup(x)− plow(x))
2] is at most ϵ

3 and C′

η Ex∼D[(plow(x)− p̂(x))2] is bounded
by O(λη )+2ϵ/3, as Ex∼D[(plow(x)− p̂(x))2] ≤ 2EDtrain [(plow(x)− y)2]+ 2EDtrain [(y− p̂(x))2].
We have that EDtrain [(plow(x)− y)2] ≤ 2EDtrain [(plow(x)− f∗(x))2] + 2EDtrain [(y− f∗(x))2] ≤
ϵη
C +O(λ), due to sandwiching and the definition of λ. The term EDtrain [(y − p̂(x))2] is ϵη

C -close to
EStrain [(y − p̂(x))2] (due to Definition 4.5) and, since p̂ is the solution of the least squares program,
EStrain

[(y−p̂(x))2] ≤ EStrain
[(y−plow(x))2] ≤ EDtrain [(y−plow(x))2]+ ϵη

C = O( ϵηC )+O(λ).

Remark 4.7. In a semi-agnostic setting where λ is known, then η can be chosen to balance the error
and rejection rates in Theorem 4.6, obtaining bounds of O(

√
λ), which is known to be best-possible

in the PQ setting, even for contrived concept classes (see [GKKM20]).

By combining Theorem 4.6 with bounds on the L2 sandwiching degree of fundamental concept
classes by [KSV24b] (see Appendix A.5), we obtain the results of Table 2 for PQ learning.

5 Tolerant TDS Learning

Another approach to provide provable learning guarantees with distribution shift is to enable rejecting
the whole test distribution. The formal definition of this setting was given by [KSV24b], but the
proposed algorithms were allowed to reject even if a miniscule amount of distribution shift was
detected. We provide the first TDS learners that are guaranteed to accept whenever the test marginal
D′ is close to the training marginal D in total variation distance (see Definition A.7).
Definition 5.1 (Tolerant TDS Learning, extension of [KSV24b]). Let F be a concept class over
X ⊆ Rd and D a distribution over X . The algorithm A is a TDS-learner for F with respect to D
up to error γ (which is, in general a function of parameter λ), tolerance θ and probability of failure
δ if, upon receiving mtrain labeled samples from a training distribution Dtrain with X -marginal D
and mtest unlabeled samples from a test distribution Dtest, algorithm A either rejects or accepts and
outputs a hypothesis h : X → {±1} such that, with probability at least 1− δ, the following hold:

(a) (soundness) Upon acceptance, the test error is bounded as P(x,y)∼Dtest [y ̸= h(x)] ≤ γ.

(b) (completeness) If dTV(D,Dtest
X ) ≤ θ, then the algorithm accepts.

We first observe that tolerant TDS learning is implied by PQ learning.
Proposition 5.2 (PQ implies Tolerant TDS Learning, modification of Proposition 56 in [KSV24b]).
Suppose that there is an algorithm A that PQ learns the class F with respect to D up to error γ,
rejection rate η and failure probability δ. Then, for any ϵ, θ ∈ (0, 1) there is an algorithm that TDS
learns F with respect to D up to error γ + η + θ + ϵ, with tolerance θ and failure probability δ that
calls A once and uses O( 1

ϵ2 log(1/δ)) additional samples and evaluations of the selector given by A.
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The above result readily follows by two simple observations about the selector g and the hypothesis
h in the output of a PQ learner. In particular, we have Px∼Dtest

X
[g(x) = 0] ≤ Px∼D[g(x) = 0] +

dTV(D,Dtest
X ) ≤ η + dTV(D,Dtest

X ) and err(h;Dtest) ≤ Px∼Dtest
X

[g(x) = 0] + P(x,y)∼Dtest [y ̸=
h(x), g(x) = 1]. The TDS learner will reject if the empirical estimate of Px∼Dtest

X
[g(x) = 0] is

larger than η + θ +Ω(ϵ); otherwise it will output h.

Proposition 5.2 allows us to conclude that the realizable tolerant TDS learning algorithm in Table 1
follows from the PQ learning algorithm of Theorem 4.3.

In the agnostic setting, however, the error rate of PQ learning is known to be necessarily high (i.e.,
Ω(
√
λ)) even for very simple classes (see Remark 4.7). Therefore, the corresponding TDS learning

results implied by Proposition 5.2 do not achieve the optimum error rate for the case of TDS learning
(i.e. Θ(λ)). Nevertheless, we are able to use, once more, our outlier removal process directly and
obtain the following analogue of Theorem 4.6 for tolerant TDS learning.

Theorem 5.3 (Tolerant TDS Learning via Sandwiching). For ϵ, θ, δ ∈ (0, 1), let X ⊆ Rd and (D,F)
be an ( ϵ

C , δ
C , k,m)-reasonable pair (Definition 4.5) for some sufficiently large universal constant

C > 0. Then, there is an TDS learner F with respect to D up to error O(λ) + 2θ + ϵ, tolerance θ
and probability of failure δ with sample and time complexity poly(mϵ (kd)

k log(1/δ)).

Furthermore, (via Remark 3.3) we show that our tolerant TDS learning algorithm will with high
probability be guaranteed to accept a distribution D′ that is 1/2-smooth with respect to D.

For the full proof, see Appendix C.3. As a corollary of Theorem 5.3, we obtain the results of Table 2
for tolerant TDS learning.

Limitations, Broader Impacts, and Future Work. Our current results hold only for a limited class
of training marginal distributions (e.g., standard Gaussian or uniform over the hypercube). We leave
it as an interesting open question to relax these distributional assumptions, as well as expand the
completeness criterion for our tolerant TDS learning algorithms to accept when the test marginal is
close to any distribution among the members of some wide class of well-behaved distributions (i.e.,
satisfy the universality condition as defined by [GKSV23]). Additionally, we would like to point
out that rejecting to predict on certain distributions may lead to unfair or biased predictions if the
distributions overlap significantly with the minority groups.
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feedback. We thank Adam Klivans for insightful conversations and helpful references. K.S. thanks
Aravind Gollakota for useful discussions regarding PQ learning of homogeneous halfspaces and the
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A Extended Preliminaries

A.1 Notation

We use x,w,v to denote vectors in the d-dimensional Euclidean space Rd. For some distribution D
and a function f , we denote with Ex∼D[f(x)] the expectation of the random variable f(x) when x is
drawn from D. For a set of points X , we use a similar notation for the empirical expectations over
X , i.e., Ex∼X [f(x)] = 1

|X|
∑

x∈X f(x). In our paper, X ⊆ Rd will either be Rd or the hypercube
{±1}d. We denote with N the set of natural numbers N = {0, 1, 2, . . . }. The expression x ·w or
x⊤w denotes the inner product between two vectors, i.e., x ·w =

∑d
i=1 xiwi (where xi is the value

of the i-th coordinate of x).

A.2 Polynomials

Throughout this work, we will refer to polynomials whose degree is at most k as “degree-k polyno-
mials” for brevity. We will identify every degree-k polynomial p with the vector of its coefficients.
Furthermore, for a vector x in Rd we will denote x⊗k the vector whose entries correspond to the
values of all monomials of degree at most k evaluated on x. Both the vector corresponding to a
degree-k polynomial and the vector x⊗k have dimension m, where m is the number of distinct
monomials on Rd of degree at most k. Note that m ≤ dk and that with this notation in hand we have
p(x) = p · (x⊗k) = p⊤x⊗k.

A.3 Learning theory

We will usually consider function classes over Rd taking values in {±1} or in {0, 1}. Consider the
following definitions:
Definition A.1. A halfspace over Rd is a function mapping x in Rd to sign(w · x+ θ) for some w
in Sd−1 and θ in R.
Definition A.2. A degree-k polynomial threshold function (PTF) over Rd is a function mapping x in
Rd to sign(p(x)) for some degree-k polynomial p.
Definition A.3. The OR of a collection of function classes F1 ∨ · · · ∨Fm, is defined as the collection
of functions f defined as f(x) = f1(x) ∨ · · · ∨ fm(x) for each fi belonging to Fi respectively.
Analogously, the AND of the collection of function classes F1∧ · · ·∧Fm, is defined as the collection
of functions f defined as f(x) = f1(x) ∧ · · · ∧ fm(x) for each fi belonging to Fi respectively.

The following facts about VC dimensions of various classes are standard:
Fact A.4. The VC dimension of halfspaces over Rd is at most d + 1, and the VC dimensions of
degree-k polynomial threshold functions is at most dk + 1.
Fact A.5 (e.g. [VDVW09] and references therein.). Let {F1, · · · ,Fm} be a collection of function
classes each of which has a VC dimension of V . Then, the VC dimension of F1 ∨ · · · ∨ Fm and
F1 ∧ · · · ∧ Fm are at most O(V m logm).

We will also need the standard uniform convergence bound for function classes of bounded VC
dimension.
Fact A.6. Let F be a function class over Rd taking values in {±1} with VC dimension at most V ,
let D be a distribution over Rd × {±1}, and let S ⊂ Rd × {±1} be composed of N i.i.d. examples
from D. Then, with probability at least 1− δ we have

sup
f∈F

∣∣∣∣∣∣ 1N
∑

(x,y)∈S

[|f(x)− y|]− E
(x,y)∼D

[|f(x)− y|]

∣∣∣∣∣∣
 ≤√V logN

N
log

1

δ
.

The same statement also true if F is taking values in {0, 1} and D be a distribution over Rd×{0, 1}.

A.4 Properties of Distributions

We denote with D,D′ distributions over X ⊆ Rd. For two distributions D,D′, the total variation
distance between them is defined as follows.
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Definition A.7. Let D,D′ be distributions over X ⊆ Rd (for some σ-algebra B ⊆ Pow(Rd)). Then,
the total variation distance between D and D′ is

dTV(D,D′) = sup
A∈B

∣∣∣ P
x∼D

[x ∈ A]− P
x∼D′

[x ∈ A]
∣∣∣

We define the family of tame distributions as follows.
Definition A.8. A distribution D over X is k-tame if for every degree-k polynomial p over X with

Ex∼D[(p(x))
2] ≤ 1 and every B greater than e2k we have Px∼D[(p(x))

2 > B] ≤ e−Ω(B
1
2k ).

It is known that the standard Gaussian distribution, any log-concave distribution, as well as the
uniform distribution over the hypercube {±1}d are tame (see [DKS18] and references therein).
Fact A.9. Let D be either the standard Gaussian distribution N or the uniform distribution over
{±1}d, then, then D is k-tame for any k ∈ N.

Fact A.10. Let D be a log-concave distribution over Rd, then D is k-tame for any k ∈ N.

A.5 Sandwiching Polynomials

We provide a formal definition of the L2 sandwiching property which is key in order to be able to
apply our outlier removal process many of for our main learning applications.
Definition A.11 (L2 Sandwiching). For a concept classF , a distributionD over X , ϵ ∈ (0, 1), we say
that F has ϵ-L2 sandwiching degree k with respect to D if for any f ∈ F , there exist polynomials
pup, plow over X with degree at most k such that (1) plow(x) ≤ f(x) ≤ pup(x) for all x ∈ X and
(2) Ex∼D[(pup(x)− plow(x))

2] ≤ ϵ. If the coefficients of pup, plow are all absolutely bounded by B,
we say that F has ϵ-L2 sandwiching coefficient bound B.

In order to obtain our learning results, in addition to L2 sandwiching, we use some further properties
of the marginal distribution (see Definition 4.5). The following proposition from [KSV24b] shows
that these properties are true for the Gaussian distribution as well as the uniform distribution over the
hypercube {±1}d.

Proposition A.12 (Appendix D in [KSV24b]). Let D be either Nd or Unif({±1}d) and let F be
some concept class with ϵ-L2 sandwiching degree k with respect to D. Then, F ϵ-L2 sandwiching
coefficient bound B = dO(k) and (D,F) is (ϵ, δ, k,m)-reasonable, where m = O( 1δ )(dk)

O(k).

Finally, we list a number of fundamental concept classes that are known to admit low-degree L2

sandwiching approximators.
Lemma A.13 (Decision Trees, Lemma 34 in [KSV24b]). Let D be the uniform distribution over
the hypercube X = {±1}d. For s ∈ N, let F be the class of Decision Trees of size s. Then, for any
ϵ > 0 the ϵ-L2 sandwiching degree of F is at most k = O(log(s/ϵ)).
Lemma A.14 (Boolean Formulas, Theorem 6 in [OS03] and Lemma 35 in [KSV24b]). Let D be the
uniform distribution over the hypercube X = {±1}d. For s, ℓ ∈ N, let F be the class of Boolean
formulas of size at most s, depth at most ℓ. Then, for any ϵ > 0 the ϵ-L2 sandwiching degree of F is
at most k = (C log(s/ϵ))5ℓ/2

√
s, for some sufficiently large universal constant C > 0.

Lemma A.15 (Intersections and Decision Trees of Halfspaces, Lemma 37 in [KSV24b]). Let D be
either the uniform distribution over the hypercube X = {±1}d or the Gaussian Nd over X = Rd.
For ℓ ∈ N, let also F be the class of intersections of ℓ halfspaces on X . Then, for any ϵ > 0 the ϵ-L2

sandwiching degree of F is at most k = Õ( ℓ
6

ϵ2 ). For Decision Trees of halfspaces of size s and depth
ℓ, the bound is k = Õ( s

2ℓ6

ϵ2 ).

A.6 Other Learning Settings

Our approach provides new results even for standard learning scenarios (without distribution shift).
In particular, we provide the first tolerant testable learning algorithms. In the testable learning setting,
there is no distribution shift, but rather, the learner receives labeled examples from some distribution
DXY over X × {±1} and is asked to either reject, or accept and output a hypothesis with low error
on DXY . The target error is opt+ ϵ, where opt = minf∈F err(f ;DXY). In order to obtain efficient
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learners, we allow for the algorithm to reject if it detects that the marginal distribution D′ of DXY on
X is not equal to some given target distribution D which is known to be well-behaved. The tester
is, once more, allowed to reject even when D′ and D differ by a tiny amount. We are interested in
tolerant testable learning, where the tester-learner is required to accept when D′ is moderately close
to D and provide the first upper bounds for the problem.
Definition A.16 (Tolerant Testable Learning, extension of [RV23]). Let F be a concept class over
X ⊆ Rd and D a distribution over X . The algorithm A is a tester-learner for F with respect to D
up to error γ, tolerance θ and probability of failure δ if, upon receiving m labeled samples from a
distribution DXY with X -marginal D′, algorithm A either rejects or accepts and outputs a hypothesis
h : X → {±1} such that, w.p. at least 1− δ, the following hold:

(a) (soundness) Upon acceptance, the error is bounded as P(x,y)∼DXY [y ̸= h(x)] ≤ opt+ γ.

(b) (completeness) If dTV(D,D′) ≤ θ, then the algorithm accepts.

The optimum error opt is defined as opt = minf∈F P(x,y)∼DXY [y ̸= f(x)].

Finally, we give a definition for the model of learning with nasty noise (proposed by [BEK02]).
Definition A.17 (Learning with Nasty Noise [BEK02]). Let F be a concept class over X ⊆ Rd and
D a distribution over X . The algorithm A is a learner for F with respect to D, robust under nasty
noise with rate η ∈ (0, 1), up to error γ and probability of failure δ if the following hold. If the
algorithmA receives a set of N labeled samples S that are formed by some adversary who first draws
N i.i.d. labeled samples Siid from D, labeled by some concept f∗ ∈ F and then corrupts at most ηN
(arbitrarily chosen) elements of Siid and substitutes them by ηN arbitrary points of X × {±1}, then
A outputs w.p. at least 1− δ some hypothesis h : X → {±1} such that Px∼D[f

∗(x) ̸= h(x)] ≤ γ.

The error γ is a function of the noise rate η.

B Additional Tools

B.1 Miscellaneous lemmas

In this section we present two technical lemmas used for the design and analysis of our filtering algo-
rithm. The following lemma allows one to efficiently estimate the moments of a k-tame distribution
and is used for the algorithms of Theorem E.1 and Theorem E.2.

Algorithm 2: Monomial Correlations Matrix Estimation

Input: Set S of size N , containing points in X ⊆ Rd, parameter δ and parameter k ∈ N
Output: A matrix M̂

Partition SD into
√
N parts (S(i)

D )i∈[
√
N ], each of size

√
N .

Compute the matrix M̂i = E
x∼S

(i)
D
[(x⊗k)(x⊗k)⊤] for each i ∈ [

√
N ].

Let M̂ = M̂i for some i such that the number of indices j ∈ [
√
N ] for which the following

condition holds

0.99 · p⊤M̂jp ≤ p⊤M̂ip ≤ 1.01 · p⊤M̂jp , for all degree k polynomials p

is at least 0.8
√
N , if such an index i ∈ [

√
N ] exists.

Otherwise, let M̂ = M̂1.

Lemma B.1. For some sufficiently large absolute constant C, the following holds. There is
an algorithm (Algorithm 2) that takes a parameter δ in (0, 1), a positive integer k and N ≥
C
(
(kd)k log 1/δ

)C
i.i.d. examples from a k-tame distribution D over Rd. The algorithm runs in

time poly(N) and with probability at least 1−δ the outputs an m×m symmetric positive-semidefinite
matrix M̂ that for every degree-k polynomial p satisfies

9

10
E

x∼D
[(p(x))2] ≤ p⊤M̂p ≤ 11

10
E

x∼D
[(p(x))2].
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Proof. The run-time bound of poly(N) is immediate. We now argue that the algorithm succeeds
with probability at least 1 − δ when the absolute constant C is large enough. The matrix M̂ is
symmetric positive-semidefinite because each matrix Mi = Ex∼Si

[
(x⊗k)(x⊗k)⊤

]
is symmetric

positive-semidefinite by construction.

Let M denote the matrix Ex∼D
[
(x⊗k)(x⊗k)⊤

]
. Clearly ESi [Mi] = M , and we will use the

second moment method to bound the deviation, but first we observe that with probability 1 for every
polynomial p in the nullspace of M we also have p⊤ ESi [Mi]p = 0. Indeed, this is the case because
p⊤Mp = Ex∼D(p(x))

2 means that p(x)2 = 0 almost surely for x ∼ D. Thus, with probability 1
this holds for a collection of basis elements for the nullspace of M , and consequently for the entire
nullspace of M .

Now, we bound the deviation between M and Mi for polynomials p for which p⊤Mp > 0. Let m′

be such that m−m′ is the dimension of the nullspace of M . Then there is a collection {r1, · · · , rm′}
of degree-k polynomials that satisfy

E
x∼D

[rj(x)rj′(x)] =

{
1 if j = j′

0 otherwise.

(Such collection necessarily exists via the Gram-Schmidt process.) Overall, for any polynomial p

p⊤Mp = E
x∼D

[(p(x))2] =
∑
j

(
E

x∼D
[p(x)rj(x)]

)2
Therefore, denoting {e1, · · · , em} the m basis vectors in Rm we have

M1/2p =



Ex∼D[p(x)r1(x)]
Ex∼D[p(x)r2(x)]

...
Ex∼D[p(x)rm′(x)]

0
· · ·
0


M−1/2

 m′∑
i=1

ciei

 =

m′∑
i=1

ciri (B.1)

(Where M−1/2p is defined to be the Moore-Penrose pseudo-inverse of M1/2 if M is singular). We
now bound the expected Frobenius norm:

E
Si

[∥∥∥I −M−1/2MiM
−1/2

∥∥∥2
F

]
= E

Si

 ∑
j,j′∈{1,··· ,m}

(
e⊤j

(
I −M−1/2MiM

−1/2
)
ej′
)2 =

= E
Si

 ∑
j,j′∈{1,··· ,m}

(
1j=j′ − r⊤j Mirj′

)2 = E
Si

 ∑
j,j′∈{1,··· ,m}

(
E

x∼D
[rj(x)rj′(x)]− r⊤j Mirj′

)2 =

=
∑
j,j′

E
Si

(
E

x∼D
[rj(x)rj′(x)]− E

x∼Si

[rj(x)rj′(x)]

)2

=
1√
N

∑
j1,j2∈{1,··· ,m′}

Varx∼D(rj(x)rj′(x))

(B.2)

From the k-tameness of distribution D, and the fact that Ex∼D[(rj(x))
2] = 1 we see that

Varx∼D(rj(x)rj′(x)) ≤ E
x∼D

[
(rj(x)rj′(x))

2
]
=

∫ ∞

0

P
[
rj(x)rj′(x))

2 > B2
]
2B dB ≤

2e4k +

∫ ∞

e2k
e−Ω(B1/(2k))2B dB = O(kO(k)). (B.3)

Thus, combining Equation B.2 and Equation B.3 and recalling that M is an m ×m matrix with
m ≤ dk we get a bound for the expected spectral norm of M −Mi:

E
Si

[∥∥∥I −M−1/2MiM
−1/2

∥∥∥
2

]
≤ E

Si

[∥∥∥I −M−1/2MiM
−1/2

∥∥∥
F

]
≤√

E
Si

[∥∥I −M−1/2MiM−1/2
∥∥2
F

]
≤ 1

N1/4
mO(kO(k)) ≤ 1

N1/4
(dk)O(k)
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Recalling that N ≥ C
(
(kd)k log 1/δ

)C
, we see that for a sufficiently large absolute constant

C we can use the Chebyshev’s inequality to conclude that with probability at least 0.9 we have∥∥I −M−1/2MiM
−1/2

∥∥
2
≤ 10−3, which implies that for any p of degree at most k we have

p⊤Mip = p⊤Mp+ p⊤(Mi −M)p = p⊤Mp+ p⊤M1/2(M−1/2MiM
−1/2 − I)M1/2p

∈ [(1− 10−3)p⊤Mp, (1 + 10−3)p⊤Mp]

Recalling that i is in {1, · · · ,
√
N} and using the standard Hoeffding’s inequality, we see that when

C is sufficiently large, with probability at least 1 − δ, the above holds for at least 0.95 fraction of
indices i. Call such indices good. For any pair of values i1, i2 of good indices we hence have

(1− 10−2)p⊤Mi2p ≤ p⊤Mi1p ≤ (1 + 10−2)p⊤Mi2p , for all p

For any given indices, the above property can be checked by computing the maximum singular value
of the matrix M

−1/2
i2

Mi1M
−1/2
i2

(where we take the Moore-Penrose pseudoinverse) and comparing
the nullspaces of Mi1 and Mi2 . Therefore, the output i1 = i∗ satisfies the above property for at least
0.8 fraction of the values of i2, according to Algorithm 2. Moreover, i∗ satisfies the above property
for at least one good index i2 = ig (the fraction of good indices is 0.95 and the property is satisfied
for at least a 0.8 fraction). Overall, we have that for all polynomials p

0.9p⊤Mp ≤ 0.99p⊤Migp ≤ p⊤Mi∗p ≤ 1.01p⊤Migp ≤ 1.1p⊤Mp

which implies the correctness of the algorithm.

The following lemma allows one to show that as long as a distribution D′ is filtered using a low-VC-
dimension function f , the moments of the resulting filtered dataset approximate well the moments of
the distribution one obtains by filtering the distribution D′ using f .
Lemma B.2. Let D be a probability distribution over Rd and let F be a function class over Rd

taking values in {0, 1} with VC dimension V , such that for every f in F we have f(x) = 0 for all
x such that max

p: Ex∼D(p(x))2≤1
(p(x))2 > B. Let D′ be a probability distribution over Rd and S be

collection of N i.i.d. samples from D′, then with probability at least 1− δ we have

sup
f∈F , p s.t: deg(p)≤k,

Ex∼D(p(x))2≤1

∣∣∣ 1
N

∑
x∼S

[
f(x)(p(x))2

]
− E

x∼D′

[
f(x)(p(x))2

]∣∣∣ ≤ O
(
B

1
2

(
V d2k

logN

N
log

1

δ

) 1
4
)

Proof. Let p be a polynomial of degree k s.t: Ex∼D(p(x))
2 ≤ 1 and let f be a function in F . We

recall that whenever f(x) ̸= 0 we have max
p: Ex∼D(p(x))2≤1

(p(x))2 ≤ B and we let ∆ be a positive real

number, to be chosen later. We then have via the triangle inequality∣∣∣ E
x∼S

[
f(x)(p(x))2

]
− E

x∼D′

[
f(x)(p(x))2

]∣∣∣ ≤
B/∆∑
j=0

∣∣∣ E
x∼S

[
f(x)(p(x))21j∆≤(p(x))2<(j+1)∆

]
− E

x∼D′

[
f(x)(p(x))21j∆≤(p(x))2<(j+1)∆

]∣∣∣ ≤
B/∆∑
j=0

∣∣∣ E
x∼S

[
f(x)j∆1j∆≤(p(x))2<(j+1)∆

]
− E

x∼D′

[
f(x)j∆1j∆≤(p(x))2<(j+1)∆

]∣∣∣+
+∆

B/∆∑
j=0

Ex∼S

[
f(x)1j∆≤(p(x))2<(j+1)∆

]
+ Ex∼D′

[
f(x)1j∆≤(p(x))2<(j+1)∆

] ≤
2∆ +B

B/∆∑
j=0

∣∣∣∣ P
x∼S

[
(f(x) = 1) ∧

(
p(x)2 ∈

(
j∆, (j + 1)∆

])]
−

− P
x∼D′

[
(f(x) = 1) ∧

(
p(x)2 ∈

(
j∆, (j + 1)∆

])] ∣∣∣∣ (B.4)

18



The function that maps x to 1 if and only if f(x) = 1 and p(x)2 ∈ (j∆, (j + 1)∆] is a logical AND
of a function in F and two polynomial threshold functions of degree at most 2k. Thus, by Fact A.5
the VC dimension of these functions is at most O(d2k + V ) ≤ O(d2k · V ). Therefore, we can use
Fact A.6 together with the inequality above to conclude that with probability at least 1− δ

sup
f∈F , p of degree k s.t:

Ex∼D(p(x))2≤1

∣∣∣ E
x∼S

[
f(x)(p(x))2

]
− E

x∼D′

[
f(x)(p(x))2

]∣∣∣ ≤ 2∆+O
(B
∆

√
V d2k logN

N
log

1

δ

)
.

Finally, taking ∆ to minimize the expression above, we recover our proposition.

C Certified Learning with Distribution Shift, Omitted Details

C.1 PQ Setting

C.1.1 General Halfspaces

We now prove Theorem 4.3, which is restated here for convenience.
Theorem C.1 (PQ Learning of Halfspaces). For any ϵ, δ ∈ (0, 1), there is an algorithm that PQ
learns the class of general halfspaces with respect to Nd in the realizable setting, up to error and
rejection rate ϵ and probability of failure δ that runs in time poly(dlog(

1
ϵ ), log(1/δ)).

Proof. The algorithm does the following for sufficiently large universal constants C1, C2, C3 ≥ 1.

1. Compute the values P(x,y)∼Strain
[y = 1] and P(x,y)∼Strain

[y = −1].

2. If either of these values is at most ϵC2/C1, then let g be the selector of Theorem 3.1 with
inputs ϵ, k = C3 log(1/ϵ), α = ϵ/2 and access to samples fromD andD′ and h the constant
hypothesis for the value in {−1, 1} with which the labels are most frequently consistent.

3. Otherwise, let ŵ and τ̂ be as in Proposition 4.4 from some sufficiently large labeled
sample from the training distribution. Let h(x) = sign(ŵ · x+ τ̂) and forW = {(w, τ) :
∥w−ŵ∥2 ≤ (ϵ/d)C2/C1, |τ−τ̂ | ≤ (ϵ/d)C2/C1}, let g(x) (where g : Rd → {0, 1}) be 0 if
and only if there are (w1, τ1), (w2, τ2) ∈ W such that sign(w1 ·x+τ1) ̸= sign(w2 ·x+τ2)
(which can be implemented via a linear program with quadratic constraints).

4. Return (g, h).

Note that when step 3 is activated, then, with high probability, we have that the bias τ∗ of the
ground truth is τ∗ = O(

√
log(1/ϵ)) and, therefore, the samples required to apply Proposition 4.4 is

polynomial in 1/ϵ. From Lemma 5.7 in [KSV24b], we then have that the selector g has Gaussian
rejection rate ϵ, as desired. The accuracy guarantee for the case of step 3 is given by the guarantee of
Proposition 4.4 combined with the fact that, with high probability, h agrees with the ground truth
anywhere outside the disagreement region (i.e., for all x such that g(x) = 1).

When step 2 is activated, then the rejection rate is bounded by Theorem 3.1 and the accuracy guarantee
is implied by the fact that τ∗ ≥

√
C2 log(1/ϵ)/C (for some universal constant C ≥ 1) and the

following reasoning, where we suppose, without loss of generality that h(x) = 1.

P
x∼Dtest

X

[h(x) ̸= sign(w∗ · x+ τ∗), g(x) = 1] ≤ P
x∼Dtest

X

[1 ̸= sign(w∗ · x+ τ∗), g(x) = 1]

≤ P
x∼Dtest

X

[|w∗ · x| > |τ∗|, g(x) = 1]

≤
Ex∼Dtest

X
[(w∗ · x)2kg(x)]
(τ∗)2k

≤ 400

ϵ

(2C3 log(1/ϵ))
k

(C2 log(1/ϵ)/C)k
,

where we used Markov’s inequality and the guarantee from Theorem 3.1. Suppose that C2 is
sufficiently larger than C3 and C3 is sufficiently large. Then we have that (2C3 log(1/ϵ))k

(C2 log(1/ϵ)/C)k
≤
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(1/2)k ≤ ϵC3 , which gives that Px∼Dtest
X

[h(x) ̸= sign(w∗ · x+ τ∗), g(x) = 1] ≤ 400ϵC3/ϵ ≤ ϵ for
sufficiently large C3.

In the proof of Theorem 4.3, we use Proposition 4.4. However, the original version of Proposition 4.4
worked for constant probability of failure. We show the following general lemma which can be used
to amplify the probability of success in logarithmic number of rounds.
Lemma C.2 (Parameter Recovery Success Probability Amplification). Let X be a vector space
and ∥ · ∥ some norm. For some w∗ ∈ X and ϵ ∈ (0, 1), suppose that an algorithm A outputs with
probability at least 0.9 some w ∈ X with ∥w∗ − w∥ ≤ ϵ. Then, for any δ ∈ (0, 1), if we run A
for T = O(log(1/δ)) independent rounds receiving outputs W = {w1,w2, . . . ,w⊤}, and take
ŵ = argminw∈W

∑
w′∈W ∥w−w′∥, then we have ∥ŵ−w∗∥ ≤ 5ϵ, with probability at least 1− δ.

Proof. Let WG be the subset of W corresponding to w such that ∥w−w∗∥ ≤ ϵ, let WB = W \WG

and note that due to a standard Hoeffding bound, |WG| ≥ 3T
4 , with probability at least 1 − δ, for

T = C log(1/δ), where C is a sufficiently large universal constant.

Say that ∥ŵ−w∗∥ = α. Then, by the triangle inequality, ∥ŵ−w′∥ ≥ ∥ŵ−w∗∥−∥w∗−w′∥ ≥ α−ϵ
for any w′ ∈WG and we have the following

Â :=
∑

w′∈W

∥ŵ −w′∥ =
∑

w′∈WG

∥ŵ −w′∥+
∑

w′∈WB

∥ŵ −w′∥

≥ |WG|(α− ϵ) +
∑

w′∈WB

∥ŵ −w′∥

Let w ∈WG. We have ∥w−w′∥ ≤ ∥w−ŵ∥+∥ŵ−w′∥ ≤ ∥w−w∗∥+∥w∗−ŵ∥+∥ŵ−w′∥ ≤
ϵ+ α+ ∥ŵ −w′∥, for any w ∈W . Therefore, in total, we have

A :=
∑

w′∈W

∥w −w′∥ =
∑

w′∈WG

∥w −w′∥+
∑

w′∈WB

∥w −w′∥

≤ 2ϵ|WG|+ (ϵ+ α)|WB |+
∑

w′∈WB

∥ŵ −w′∥

By the definition of ŵ, we have that Â−A ≤ 0. With probability at least 1− δ, we have

0 ≥ Â−A ≥ |WG|(α− 3ϵ)− (α+ ϵ)(T − |WG|)

≥ 3T

4
(α− 3ϵ)− (α+ ϵ)

T

4

≥ T (
α

2
− 5ϵ

2
)

Therefore, α ≤ 5ϵ, which concludes the proof.

C.2 Adversarial Setting

Our results on realizable PQ learning extend to the following related model, where the evaluation set
is formed by some adversary. In the following definition, we consider each element of the considered
sets to be a separate object (even if the corresponding value is the same with some other element of
the set).
Definition C.3 (Tranductive Learning [GKKM20]). Let F be a concept class over X ⊆ Rd and D a
distribution over X . The algorithm A is a transductive learner for F with respect to D, up to error γ,
rejection rate η and probability of failure δ if the following hold. If the algorithm A has access to
labeled examples from the distribution D labeled by some concept f∗ ∈ F and receives N unlabeled
samples S that are formed by some adversary who first draws N i.i.d. unlabeled samples Siid from
D and then corrupts any number of elements of Siid and substitutes them by the same number of
arbitrary points of X , then A outputs w.p. at least 1− δ some set Sfilt and h : X → {±1} such that:

(a) (accuracy) The error after filtering is bounded as
∑

(x,y)∈Sfilt
1{y ̸= h(x)} ≤ γN .
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(b) (rejection rate) The rejection rate of i.i.d. examples is #{x : x ∈ Siid ∩ (S \ Sfilt)} ≤ ηN .

In particular, we have #{x : x ∈ S \ Sfilt} ≤ 2ηN .

Our proofs of Theorems 4.3 and 4.6 generalize in this setting exactly analogously, with the only
difference being the use of Theorem E.1 in place of Theorem 3.1 for the outlier removal process. The
learning phase is not different, since the learner has sample access to clean examples from the labeled
training distribution.

For the proof of Theorem 4.3, we either run the outlier removal process to filter the evaluation dataset
in order to ensure that it is concentrated in every direction (in the case when almost all the training
examples have the same label) or, if the training examples are indeed informative, we reject only the
examples that fall inside the disagreement region. The arguments hold analogously.

For the proof of Theorem 4.6, we filter the evaluation dataset by using degree k outlier removal (see
Theorem E.1) and run polynomial regression on the training distribution to find a hypothesis that has
low error on the remaining points of the evaluation dataset. Once more, the analysis is analogous to
the one for PQ learning.

C.3 Tolerant TDS Learning

We now prove Theorem 5.3, which we restate for convenience.

Theorem C.4 (Tolerant TDS Learning via Sandwiching). For ϵ, θ, δ ∈ (0, 1), let X ⊆ Rd and (D,F)
be an ( ϵ

C , δ
C , k,m)-reasonable pair (Definition 4.5) for some sufficiently large universal constant

C > 0. Then, there is an TDS learner F with respect to D up to error O(λ) + 2θ + ϵ, tolerance θ
and probability of failure δ with sample complexity m+poly( 1ϵ (kd)

k log(1/δ)) and time complexity
poly(mϵ (kd)

k log(1/δ)).

Note that the notion of tolerance in property testing was introduced in [PRR06] and has been the
focus of many works including [FF05, VV11, BCE+19, RV20, CJKL22, CFG+22, BH18, CP23].
However, over Rd all existing tolerant distribution testing algorithms (such as [VV11]) have run-times
and sample complexities of 2Ω(d), which greatly exceeds our run-times.

Proof of Theorem 5.3. The algorithm first runs the outlier removal process of Theorem 3.1 with
parameters α ← 1, ϵ ← ϵ/C, δ ← δ/C and k ← k, to receive the selector g : X → {0, 1}.
Using a large enough sample from the test marginal Dtest

X , the algorithm estimates the quantity
Px∼Dtest

X
[g(x) = 0] and rejects if the estimated value is larger than 2θ + 2ϵ

C . Otherwise, it runs the
following box-constrained least squares problem, using at least m labeled examples Strain from
Dtrain, where t = dk and B is the value specified in Definition 4.5.

min
p

E(x,y)∼Strain
[(y − p(x))2]

s.t. p has degree at most k and coefficient bound B

Let p̂ be the minimizer of the above program. The algorithm accepts and returns classifier h(x) =
sign(p̂(x)).

Soundness follows from the observation that P(x,y)∼Dtest [y ̸= h(x)] ≤ Px∼Dtest
X

[g(x) = 0] +

P(x,y)∼Dtest [y ̸= h(x), g(x) = 1] and the properties of g according to Theorem 3.1, via an analysis
which is analogous to the one used for Theorem 4.6, but with the difference that, since the parameter
α of the outlier removal process was chosen to be 1, the value P(x,y)∼Dtest [y ̸= h(x), g(x) = 1] is
bounded by O(λ+ ϵ

C ) (instead of O(λη )). The term Px∼Dtest
X

[g(x) = 0], when the test has accepted,
is bounded by 2θ + ϵ/2.

For completeness, we assume that dTV(D,Dtest
X ) ≤ θ and observe that due to condition (b),

Px∼Dtest
X

[g(x) = 0] ≤ Px∼D[g(x) = 0] + dTV(D,Dtest
X ) ≤ 2dTV(D,Dtest

X ) + ϵ
C ≤ 2θ + ϵ

C .
Therefore, the tester will accept with high probability. Furthermore, via Remark 3.3 our tolerant TDS
learning algorithm will also with high probability accept any distribution D′ that is 1/2-smooth with
respect to D.
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D Applications to Other Learning Settings

Our techniques provide new results in other classical settings as well. In particular, we discuss
applications on tolerant testable learning as well as robust learning. In total, our results for polynomial
regression can be summarized in Table 2.

Concept class F Training Marginal D Run-time

1 Intersections of ℓ halfspaces
Standard Gaussian
Uniform on {±1}d dÕ(ℓ6/σ2)

2 Functions of ℓ halfspaces
Standard Gaussian
Uniform on {±1}d dÕ(4ℓℓ6/σ2)

3 Decision trees of size s Uniform on {±1}d dO(log(s/σ))

4 Formulas of size s, depth ℓ Uniform on {±1}d d
√
s·O(log(s/σ))

5ℓ
2

Table 2: Our learning results parameterized by σ, which captures the required precision of the
L2-sandwiching approximators in each of the settings: (1) agnostic PQ learning with error O(λη ) + ϵ

and rejection rate η, where σ = ϵη, (2) agnostic θ-tolerant TDS learning with error O(λ) + 2θ + ϵ,
where σ = ϵ, (3) θ-tolerant testable learning with excess error 2θ + ϵ, where σ = ϵ2 and (4) robust
learning with nasty noise of rate η up to error 4η + ϵ, where σ = ϵ2. The probability of failure in
each of the cases is some considered constant and η, θ, ϵ ∈ (0, 1).

D.1 Classical Testable learning

The following theorem gives the first dimension-efficient algorithms for tolerant testable learning
(see Definition A.16) for various important concept classes.

Theorem D.1 (Tolerant Testable Learning via Sandwiching). For ϵ, θ, δ ∈ (0, 1), let X ⊆ Rd and
(D,F) be an ( ϵ

2

C , δ
C , k,m)-reasonable pair (Definition 4.5) for some sufficiently large universal

constant C > 0. Then, there is a tester-learner for F with respect to D up to error opt + 2θ + ϵ,
tolerance θ and probability of failure δ with sample complexity m+poly( 1ϵ (kd)

k log(1/δ)) and time
complexity poly(mϵ (kd)

k log(1/δ)), where opt = minf∈F err(f).

Our plan is to once more make use of the outlier removal Theorem 3.1. In this case, is suffices to run
tests on the marginal distribution that certify the existence of a low-degree polynomial approximator
for the unknown ground truth concept (achieving optimum error), due to the following classical result
from [KKMS08] (which has been used for non-tolerant testable learning in [GKK23]).

Proposition D.2 (L1 regression guarantee, [KKMS08]). Let F be a concept class over X where
X ⊆ Rd and DXY be any distribution over X × {±1} where the X -marginal of DXY is D′.
For ϵ ∈ (0, 1) and k ∈ N, suppose that for any f ∈ F there is some polynomial p over X of
degree at most k such that Ex∼D′ [|f(x)− p(x)|] ≤ ϵ. Then, there is an algorithm (L1 polynomial
regression) that, upon receiving a number of i.i.d. samples from DXY , outputs with probability at
least 1 − δ some hypothesis h : X → {±1} with P(x,y)∼DXY [y ̸= h(x)] ≤ opt + O(ϵ), where
opt = minf∈F err(f ;DXY). The algorithm uses poly(dk, 1

ϵ ) log(1/δ) time and samples.

The tester of Theorem D.1 does the following for some sufficiently large universal constant C ≥ 1.

1. Runs the outlier removal of Theorem 3.1 with parameters α ← 1, ϵ ← ϵ/C, δ ← δ/C to
receive a selector g with the guarantees specified in Theorem 3.1.

2. Estimates, using unlabeled samples form DXY , the value of Px∼D′ [g(x) = 0] and rejects if
the estimated value is greater than 2θ + 2ϵ/C.

3. Otherwise, the tester accepts and runs the algorithm of Proposition D.2 with fresh samples
from the distribution D̃XY that corresponds to the conditioning of DXY to g(x) = 1, with
parameters ϵ← ϵ/C and k ← k.
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Without loss of generality, we have that 2θ+ϵ ≤ 1/2 (otherwise, we may output a random hypothesis).
This implies that the runtime does not change asymptotically by conditioning on g(x) = 1 (which
can be done through rejection sampling).

For completeness, we observe that, by condition (b), Px∼D[g(x) = 0] ≤ dTV(D,D′)+ ϵ
C and hence

Px∼D′ [g(x) = 0] ≤ 2dTV(D,D′) + ϵ
C . By a standard Hoeffding bound, we have that the estimated

value for Px∼D′ [g(x) = 0] (obtained using unlabeled samples from the marginal D′ of DXY ) is at
most 2dTV(D,D′) + 2ϵ

C and the tester will, with high probability accept if dTV(D,D′) ≤ θ.

For soundness, we want to show that, upon acceptance, for any f ∈ F , there is a polynomial
p of degree k such that Ex∼D̃[|f(x) − p(x)|] ≤ O( ϵ

C ). Then, by Proposition D.2, we have
that the output h satisfies err(h; D̃XY) ≤ minf∈F err(f ; D̃XY) + O(ϵ/C). Moreover we would
also have err(h;DXY) ≤ Px∼D′ [g(x) = 0] + Px∼D′ [g(x) = 1]err(h; D̃XY), by the law of to-
tal probability. The second term of the sum can be bounded as Px∼D′ [g(x) = 1]err(h; D̃XY) ≤
minf∈F Px∼D′ [g(x) = 1]P(x,y)∼DXY [y ̸= h(x)|g(x) = 1] + O(ϵ/C) = opt + O(ϵ/C). Overall,
the bound on err(h;DXY) would then be opt+ 2θ + ϵ, because after acceptance, Px∼D′ [g(x) = 0]
is bounded, with high probability, by 2θ +O(ϵ/C).

It remains to show the polynomial approximation bound. Let f be some element of F and pup, plow

the corresponding ϵ2

C -L2 sandwiching polynomials. If D̃ is the X -marginal of D̃XY , we have the
following, by applying the sandwiching property, Jensen’s inequality and the definition of D̃.

(Ex∼D̃[|f(x)− plow(x)|])2 ≤ (Ex∼D̃[pup(x)− plow(x)])
2

≤ Ex∼D̃[(pup(x)− plow(x))
2]

≤ Ex∼D′ [(pup(x)− plow(x))
2g(x)]

Px∼D′ [g(x) = 1]

By applying condition (a), as well as the fact that Px∼D′ [g(x) = 1] ≥ Ω(1) (since Px∼D′ [g(x) = 0]),
we have

(Ex∼D̃[|f(x)− plow(x)|])2 ≤ O(1) · Ex∼D[(pup(x)− plow(x))
2] ≤ O(ϵ2/C)

Therefore, indeed, Ex∼D̃[|f(x)− plow(x)|] ≤ ϵ, which concludes the proof of Theorem D.1.

D.2 Robust Learning

We also provide the following result for learning with nasty noise (see Definition A.17). While
there are algorithms for learning in the nasty noise model that are more efficient than the one we
analyze here (see [DKS18]), we achieve an error bound that is close to the optimal: we only incur a
multiplicative factor of 2 from the information theoretically optimal bound of 2η, where η is the noise
rate (see Definition A.17). For intersections of halfspaces, for instance, to the best of our knowledge,
all prior known dimension-efficient algorithms incurred an error of Ω(

√
η) for learning under nasty

noise of rate η (see [KKM18, DKS18]).
Theorem D.3 (Learning with Nasty Noise via Sandwiching). For ϵ, η, δ ∈ (0, 1), let X ⊆ Rd and
(D,F) be an ( ϵ

2

C , δ
C , k,m)-reasonable pair (Definition 4.5) for some sufficiently large universal

constant C > 0. Then, there is a robust learner for F under nasty noise of rate η with respect to D
up to error 4η + ϵ and probability of failure δ with sample complexity m+ poly( 1ϵ (kd)

k log(1/δ))

and time complexity poly(mϵ (kd)
k log(1/δ)).

Proof. We follow a very similar approach as the one for Theorem D.1. The main differences are two.
First, instead of the outlier removal of Theorem 3.1, we apply the outlier removal of Theorem E.1,
which works in the adversarial setting. Second, in the nasty noise setting, we assume that the noise
rate is bounded and hence we do not need to run any tests in order to obtain the desired guarantees.

Recall that in this setting, the learner receives a sample S of size N with S = Siid∪Sadv\Srem, where
Siid is an i.i.d. labeled sample drawn from D and labeled by some f∗ ∈ F , |Sadv| = |Srem| ≤ ηN ,
where Srem is an arbitrary subset of Siid and Sadv is an arbitrary sample of size Srem (i.e., the
adversary removes the samples in Srem and substitutes them with adversarial samples Sadv).

The algorithm runs the outlier removal of Theorem E.1 on S with parameters α ← 1, ϵ ← ϵ/C,
δ ← δ/C and k ← k to receive a filtered set of samples Sfilt such that |Siid\Sfilt| ≤ |Sadv|+ϵN/C ≤
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ηN + ϵN/C and also 1
N

∑
x∈Sfilt

(p(x))2 ≤ 200Ex∼D[(p(x))
2] for any polynomial p of degree

at most k. Then, it runs polynomial regression of degree k with coefficient bound B (given by
Definition 4.5) over the set Sfilt and outputs h(x) = sign(p̂(x)) where p̂ is the output of the
polynomial regression routine (of Proposition D.2).

We aim to bound Px∼D[f
∗(x) ̸= h(x)]. By uniform convergence, we have a bound of the form

Px∼D[f
∗(x) ̸= h(x)] ≤ P(x,y)∼Siid

[y ̸= h(x)] + ϵ/C ≤ P(x,y)∼S [y ̸= h(x)] + η + ϵ/C. We
further bound the quantity P(x,y)∼S [y ̸= h(x)] ≤ P(x,y)∼S [y ̸= h(x), (x, y) ∈ Sfilt] +

|S\Sfilt|
N ≤

P(x,y)∼S [y ̸= h(x), (x, y) ∈ Sfilt] + 2η.

We may apply Proposition D.2 to show that P(x,y)∼S [y ̸= h(x), (x, y) ∈ Sfilt] ≤ η + O(ϵ/C), as
long as the following is true for some polynomial of degree at most k.

1

N

∑
(x,y)∈Sfilt

|f∗(x)− p(x)| ≤ O(ϵ/C)

Due to the sandwiching property, this is true for the sandwiching polynomial plow for f∗ (which
exists since f∗ ∈ F – see Definition 4.5). To show this, we may follow an analogous approach as the
one for Theorem D.1.

E Outlier Removal Procedure

We now give the proofs of our outlier removal theorem in the adversarial, as well as the PQ setting.

E.1 Outlier Removal in the Adversarial Setting

We present our outlier removal result in the adversarial setting:
Theorem E.1. There exists an algorithm that satisfies the following specifications for some sufficiently
large absolute constant C. The algorithm A is given parameters ϵ, α, δ in (0, 1], a positive integer k,

and a pair of size-N sets SD and SD′ of points in Rd, where N ≥ C
(

(kd)k

ϵ log 1
δ

)C
. The algorithm

A then accepts a subset Saccept ⊆ SD′ , rejects a subset Sreject = SD′ \ Saccept and runs in time
poly(N).

Let the set SD in Rd of size N be sampled i.i.d. from a k-tame probability distribution D, and let
SD′ be generated by:

1. Sampling a size-N i.i.d. set Sclean from D.

2. Adversary corrupting an arbitrary subset of elements in Sclean. Formally, SD′ = Suncorrupted∪
Sadversarial, where Suncorrupted is an adversarially chosen subset of Sclean and Sadversarial is a
set of adversarially chosen points in Rd of size N − |Suncorrupted|.

Then, with probability at least 1− δ, the algorithm A given the sets SD and SD′ will accept a set
Saccept ⊆ SD′ satisfying the following two properties:

• Degree-k spectral 200
α -boundedness: For every polynomial p of degree at most k satisfying

E
x∼D

[(p(x))2] ≤ 1,

it is the case that
1

N

∑
x∈Saccept

p(x)2 ≤ 200

α
.

• (α, ϵ/2)-validity: The set Sreject ∩ Suncorrupted has a size of at most α|Sadversarial|+ ϵ
2N .

We describe our algorithm for Theorem E.1 (restating Algorithm 1):

1. Input Sets SD′ and SD of size N in Rd, parameters ϵ, δ in (0, 1).

2. M̂ ← ESTIMATE-MOMENTS(SD, k, δ/10). (See Lemma B.1 for further info).
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3. B0 ← 4d3k

ϵ and ∆0 ← 200
√
d2k logN

N log 1
δ

4. S0
filtered ← SD′ \

{
x : max

p: p⊤M̂p≤1
(p(x))2 > B0

}
.

5. While max
p: p⊤M̂p≤1

(
1
N

∑
x∈Si

filtered
(p(x))2

)
> 50

α (1 + ∆0 ·B0).

(a) pi ← argmax
p: p⊤M̂p≤1

(
1
N

∑
x∈Si

filtered
(p(x))2

)
(b) Set τi to be the smallest value of τ subject to:

1

N

∣∣∣∣{x ∈ Si
filtered : (pi(x))

2 > τ}
∣∣∣∣ ≥ 10

α

(
P

x∼SD
[B0 ≥ (pi(x))

2 > τ ] + ∆0

)
(c) Si+1

filtered ← Si
filtered \ {x : (pi(x))

2 > τi}
(d) i← i+ 1

6. Output (Saccept, Sreject) = (Si
filtered, SD′ \ Si

filtered).

Note that the procedure ESTIMATE-MOMENTS produces a good spectral approximation for the
degree-k moment matrix of D. Formally, Lemma B.1 says that the matrix M̂ is symmetric positive-
semidefinite and with probability at least 1− δ/10 it is the case that every degree-k polynomial p
satisfies.

9

10
E

x∼D
[(p(x))2] ≤ p⊤M̂p ≤ 11

10
E

x∼D
[(p(x))2]. (E.1)

E.1.1 Efficient implementation

We now explain how to execute certain steps of our algorithm in polynomial time:

• The quantity max
p: p⊤M̂p≤1

(p(x))2 equals to the largest eigenvalue of the matrix

(M̂)−1/2
(
(x⊗d)(x⊗d)⊤

)
(M̂)−1/2,

which can be computed in polynomial time in the dimension m of the matrix. (Note that
if the matrix M̂ is not full-rank, then the above is still true if long as (M̂)−1/2 is replaced
by the Moore–Penrose pseudo-inverse of (M̂)1/2, which again can be computed efficiently.
Also note that we used the fact that the matrix M̂ is symmetric.)

• The quantity max
p: p⊤M̂p≤1

(
1
N

∑
x∈Si

filtered
(p(x))2

)
equals to the largest eigenvalue of the

matrix

(M̂)−1/2

 1

N

∑
x∈Si

filtered

(x⊗d)(x⊗d)⊤

 (M̂)−1/2,

which can be computed in polynomial time in the dimension m of the matrix. (Again, if the
matrix M̂ is not full-rank, then the above is still true if long as (M̂)−1/2 is replaced by the
Moore–Penrose pseudo-inverse of (M̂)1/2. Also note that we again used the fact that the
matrix M̂ is symmetric.)

• The polynomial pi ← argmax
p: p⊤M̂p≤1

(
1
N

∑
x∈Si

filtered
(p(x))2

)
can be computed by tak-

ing the leading eigenvector of (M̂)−1/2
(

1
N

∑
x∈Si

filtered
(x⊗d)(x⊗d)⊤

)
(M̂)−1/2 and multi-

plying this vector by (M̂)−1/2 (again, one takes the Moore–Penrose pseudo-inverse if M̂ is
not full-rank).

• The value of τi can be computed in time poly(N) by considering all the candidate values τ
of the form (pi(x))

2 for all elements x in Si
filtered, and setting τi to be the smallest candidate

that satisfies the condition in the algorithm.

Note that to prove the run-time bound of poly(N) for the algorithm as a whole we will need to bound
the total number of iterations in the main while loop, which is done in Section E.1.3.
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E.1.2 Correctness analysis

We now proceed to proving first the correctness of the algorithm in Section E.1.2. Then, in Section
E.1.3 we show the required run-time bound.

In this section we show that with probability at least 1−δ the algorithmA satisfies the two correctness
guarantees in Theorem E.1. We begin by arguing that with probability at least 1− δ the sets SD and
Sclean are well-behaved.

Claim 1. Let the set S be formed of N i.i.d. samples from a k-tame distribution D, where N ≥
C
(

(kd)k

ϵ log 1
δ

)C
and C is a sufficiently large absolute constant. Also, let B0 = 4d3k

ϵ . Then with

probability at least 1− δ/10 the set S satisfies the following properties for any polynomial p over Rd

of degree at most k and any pair of values of τ1, τ2 in R :∣∣∣∣ |{x ∈ S : τ2 ≥ (p(x))2 > τ1}|
N

− P
x∼D

[τ2 ≥ (p(x))2 > τ1]

∣∣∣∣ ≤ 100

√
d2k logN

N
log

1

δ
(1)

1

N

∣∣∣∣{x ∈ S : max
p′ of degree k: Ex∼D [(p′(x))2]≤1

(p′(x))2 >
2d3k

ϵ

}∣∣∣∣ ≤ 3ϵ

4
, (2)

and if the polynomial p further satisfies Ex∼D[(p(x))
2] ≤ 1 then also

E
x∼SD

[
(p(x))2 · 1(p(x))2≤B0

]
≤ E

x∼D
[(p(x))2] + 0.01 (3)

Proof. Since (p(x))2 is a polynomial of degree at most 2k, the every function of the form
{1τ2≥(p(x))2>τ} is an AND of two degree-2k polynomial threshold functions. Since degree-2k
polynomial threshold functions have a VC dimension of at most d2k + 1, we can use Fact A.5 and
Fact A.6 to conclude that property (1) holds with probability at least 1− δ/30.

Now, we show that property (2) is likely to be satisfied. Then there is a collection {r1, · · · , rm′} of
degree-k polynomials that satisfy

E
x∼D

[rj(x)rj′(x)] =

{
1 if j = j′

0 otherwise.

(Such collection necessarily exists via the Gram-Schmidt process.) We let M denote the matrix
Ex∼D(x

⊗d)(x⊗d)⊤. Additionally, we consider a basis {g1, · · · , gm−m′} for the nullspace of M .
Now, for x sampled from D we have:

• For a specific index j, we have Ex∼D[(rj(x)
2] = 1 and therefore by Markov’s inequality

we have

P
x∼D

[
(rj(x))

2 ≤ 2dk

ϵ

]
≥ 1− ϵ

2dk

• Each gj has Ex∼D[(gj(x)
2] = 0, and therefore Px∼D[gj(x) = 0] = 1.

By union bound, all the events above take place for x sampled from D with probability at least
1 −m ϵ

2dk ≥ 1 − ϵ
2 . Via the standard Hoeffding bound, with probability at least 1 − δ the events

above take place for at least ϵ
2 +

√
20
N log 20

δ fraction of elements x in S. Since {rj} are orthonormal

with respect to M , every degree-k polynomial p′ satisfying Ex∼D[(p
′(x))2] ≤ 1 can be decomposed

as p′ =
∑m′

i=0 αiri +
∑m−m′

i=0 βigi, where each αi is in [−1, 1]. Therefore if the events above take
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place for a point x, then

max
p′ of degree k:

Ex∼D [(p′(x))2]≤1

(p′(x))2 = max
α1,··· ,αm′∈[−1,1]
β1,···βm−m′∈R


m′∑
i=0

αiri(x) +

=0︷ ︸︸ ︷
m−m′∑
i=0

βigi(x)


2

≤

 m′∑
i=0

≤
√

2dk/ϵ︷ ︸︸ ︷
|ri(x)|


2

≤ 2dk(m′)2

ϵ
≤ 2d3k

ϵ
, (E.2)

from which Property (2) follows.

Finally, we remark that Property (3) holds with probability at least 1 − δ/30 due to an argument
analogous to the proof of Lemma B.2 (where in place of f , we have the function 1p2(x)≤B0

).

We now argue that in each iteration i there is a value of τi satisfying the condition in step (5b)
Claim 2. Suppose the set SD is such that it satisfies property (3) of claim 1, i.e. for every
degree-k polynomial p satisfying Ex∼D(p(x))

2 ≤ 1 we have Ex∼SD

[
(p(x))2 · 1(p(x))2≤B0

]
≤

Ex∼D[(p(x))
2] + 0.01 and the matrix M̂ satisfies Equation E.1, i.e. for every degree-k polynomial p

we have
9

10
E

x∼D
[(p(x))2] ≤ p⊤M̂p ≤ 11

10
E

x∼D
[(p(x))2].

Suppose it is the case that 1
N

∑
x∈Si

filtered
(pi(x))

2 > 50
α (1 + ∆0 ·B0) (i.e. the while loop does not

terminate at step i). The there exists some τ for which

1

N

∣∣∣∣{x ∈ Si
filtered : (pi(x))

2 > τ}
∣∣∣∣ ≥ 10

α

(
P

x∼SD
[B0 ≥ (pi(x))

2 > τ ] + ∆0

)
.

Proof of Claim 2. For the sake of contradiction, suppose that for every τ ≥ 0 it is the case that

1

N

∣∣∣∣{x ∈ Si
filtered : (pi(x))

2 > τ}
∣∣∣∣ ≤ 10

α

(
P

x∼SD
[B0 ≥ (pi(x))

2 > τ ] + ∆0

)
. (E.3)

Since every element x of Si
filtered satisfies (pi(x))2 ≤ B0 we have

1

N

∑
x∈Si

filtered

(pi(x))
2 =

∫ ∞

τ=0

1

N

∣∣∣∣{x ∈ Si
filtered : (pi(x))

2 > τ}
∣∣∣∣ dτ =

∫ B0

τ=0

1

N

∣∣∣∣{x ∈ Si
filtered : (pi(x))

2 > τ}
∣∣∣∣ dτ. (E.4)

which combined with Equation E.3 implies

1

N

∑
x∈Si

filtered

(pi(x))
2 ≤ 10

α

(
∆0B0 +

∫ ∞

τ=0

P
x∼SD

[B0 ≥ (pi(x))
2 > τ ] dτ

)
=

10

α

(
∆0B0 + E

x∼SD

[
pi(x))

2 · 1(pi(x))2≤B0

])
(E.5)

Additionally, since SD is assumed to satisfy property (3) in Claim 1, and M̂ is assumed to satisfy
Equation E.1, we have

E
x∼SD

[
(pi(x))

2 · 1(pi(x))2≤B0

]
≤ E

x∼D
[(pi(x))

2] + 0.01 ≤ 11

10
(pi)

⊤M̂(pi) + 0.01 ≤ 111

100
. (E.6)
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Combining Equation E.5 and Equation E.6 we get

1

N

∑
x∈Si

filtered

(pi(x))
2 ≤ 10

α

(
∆0B0 +

111

100

)
.

This contradicts the premise that 1
N

∑
x∈Si

filtered
(pi(x))

2 > 50
α (1 + ∆0 ·B0), finishing the proof.

Now, we proceed to argue that if all the properties in Claim 1 and Equation E.1 hold then the algorithm
A will satisfy the (α, ϵ/2)-validity property. In other words, we show that the set Saccept ∩ Suncorrupted
has a size of at most α|Sadversarial|+ ϵ

2N . The set Saccept ∩ Suncorrupted consists of two components:

• The elements in

{
x ∈ Suncorrupted : maxp of degree k

p⊤M̂p≤1

(p(x))2 > B0

}
, whose number is upper-

bounded by 2ϵN/3 for the following reason. Equation E.1 implies that whenever p⊤M̂p
holds, we also have Ex∼D[(p(x))

2] ≤ 10/9 and since Suncorrupted is assumed to satisfy Claim
1, for at least 1 − 2ϵ/3 fraction of elements x in Suncorrupted we have (p(x))2 ≤ 10

9
2d3k

ϵ ,
which is less than B0.

• The elements in
⋃

i

(
(Si

filtered \ S
i+1
filtered) ∩ Suncorrupted

)
, the number of which is bounded by

2α
5 |Sadversarial| by the following claim.

Claim 3. Suppose the sets SD and Sclean satisfy the properties in Claim 1. Then, for each iteration i
of the main loop of the algorithm, it is the case that∣∣∣(Si

filtered \ Si+1
filtered) ∩ Suncorrupted

∣∣∣ ≤ 2α

5

∣∣∣(Si
filtered \ Si+1

filtered) ∩ Sadversarial

∣∣∣ .
Proof. Since the set Suncorrupted is a subset of the set Sclean, we have∣∣(Si

filtered \ Si+1
filtered) ∩ Suncorrupted

∣∣ ≤ ∣∣(Si
filtered \ Si+1

filtered) ∩ Sclean
∣∣ (E.7)

Also, based on how the algorithm chooses the set Si+1
filtered and the parameter τi, we have:

|Si
filtered \ S

i+1
filtered|

N
=

1

N

∣∣∣∣{x ∈ Si
filtered : (pi(x))

2 > τi}
∣∣∣∣ ≥

10

α

(
P

x∼SD
[B0 ≥ (pi(x))

2 > τi] + 200

√
d2k

logN

N
log

1

δ

)
.

but since SD and Sclean satisfy Property 1 in Claim 1, we also have

1

N

∣∣∣∣{x ∈ Sclean : B0 ≥ (pi(x))
2 > τi}

∣∣∣∣ ≤ P
x∼SD

[B0 ≥ (pi(x))
2 > τi] + 200

√
d2k

logN

N
log

1

δ
.

Combining the preceding two inequalities yields∣∣∣∣Si
filtered \ Si+1

filtered

∣∣∣∣ ≥ 10

α

∣∣∣∣{x ∈ Sclean : B0 ≥ (pi(x))
2 > τi}

∣∣∣∣.
We argue that every x in (Si

filtered \S
i+1
filtered)∩Sclean satisfies B0 ≥ (pi(x))

2 > τi. Indeed, if x belongs
to Si

filtered, it also belongs to S0
filtered and therefore (pi(x))

2 ≤ B0((pi)
⊤M̂(pi)) ≤ B0. It also has to

be that (pi(x))2 > τi because of how Si+1
filtered is defined inside the algorithm. Thus, we have∣∣∣∣Si

filtered \ Si+1
filtered

∣∣∣∣ ≥ 10

α

∣∣∣∣(Si
filtered \ Si+1

filtered) ∩ Sclean

∣∣∣∣.
Since Si

filtered\S
i+1
filtered is the disjoint union of (Si

filtered\S
i+1
filtered)∩Sclean and Si

filtered\S
i+1
filtered)∩Sadversarial

we further conclude that∣∣∣∣(Si
filtered \ Si+1

filtered) ∩ Sadversarial

∣∣∣∣ ≥ (10

α
+ 1

) ∣∣∣∣(Si
filtered \ Si+1

filtered) ∩ Sclean

∣∣∣∣.
Finally, recalling that Suncorrupted is contained in Sclean, we conclude the proposition.
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Overall, the above claim concludes the proof of (α, ϵ)-validity. Now we proceed to proving the
spectral 100

α -boundedness.

Claim 4. Suppose the algorithm terminates and produces a partition (Saccept, Sreject) and the matrix
M̂ satisfies Equation E.1. Also, suppose that C exceeds a certain absolute constant. Then, for every
polynomial p of degree at most k satisfying

E
x∼D

[(p(x))2] ≤ 1,

it is the case that
1

N

∑
x∈Saccept

p(x)2 ≤ 100

α
. (E.8)

Proof. Since the matrix M̂ satisfies Equation E.1, we have p⊤M̂p ≤ 11/10 and since the main while
loop of the algorithm has terminated, for the final value imax of i it is the case that

1

N

∑
x∈Si

filtered

(p(x))2 ≤ 11

10
· 50
α
·

(
1 + 200

√
d2k

logN

N
log

1

δ
·B0

)
.

Substituting B0 = 4d3k

ϵ and N ≥ C
(

(kd)k

ϵ log 1
δ

)C
, we see that the inequality above yields Equation

E.8 when C exceeds a large enough absolute constant.

E.1.3 Run-time analysis

We now prove the run-time bound of poly(N). Since each step of the algorithm takes time
poly(Ndk/ϵ) = poly(N) (see Section E.1.1), in order to obtain a required run-time bound, it
is enough to show that the number of iterations of the main while loop is at most N . We argue this
via the following claim:

Claim 5. Suppose the sets SD and Sclean satisfy the properties in Claim 1 and the matrix
M̂ satisfies Equation E.1. Then, for every i < imax, we have 1

N

∑
x∈Si+1

filtered
(pi(x))

2 ≤

50
α

(
1 + 200

√
d2k logN

N log 1
δ ·

4d3k

ϵ

)
Indeed, since in i-th loop of the algorithm we have

1

N

∑
x∈Si

filtered

(pi(x))
2 >

50

α

(
1 + 200

√
d2k

logN

N
log

1

δ
· 4d

3k

ϵ

)
,

the claim above implies that necessarily Si+1
filtered ̸= Si

filtered, which means that |Si+1
filtered| ≤ |Si

filtered| − 1.
Therefore the total number of iterations imax is upper-bounded by N . Now, we prove Claim 5.

Proof of Claim 5. Since every element x of Si+1
filtered satisfies (pi(x))

2 ≤ τi and the set Si+1
filtered is a

subset of Si
filtered we have

1

N

∑
x∈Si+1

filtered

(pi(x))
2 =

∫ ∞

τ=0

1

N

∣∣∣∣{x ∈ Si+1
filtered : (pi(x))

2 > τ}
∣∣∣∣ dτ =

∫ τi

τ=0

1

N

∣∣∣∣{x ∈ Si+1
filtered : (pi(x))

2 > τ}
∣∣∣∣ dτ ≤ ∫ τi

τ=0

1

N

∣∣∣∣{x ∈ Si
filtered : (pi(x))

2 > τ}
∣∣∣∣ dτ. (E.9)

Now, recall that τi is the smallest value of τ subject to:

1

N

∣∣∣∣{x ∈ Si
filtered : (pi(x))

2 > τ}
∣∣∣∣ ≥ 10

α

(
P

x∼SD
[B0 ≥ (pi(x))

2 > τ ] + 200

√
d2k

logN

N
log

1

δ

)
.
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Therefore, for all values of τ smaller than τi we have

1

N

∣∣∣∣{x ∈ Si
filtered : (pi(x))

2 > τ}
∣∣∣∣ < 10

α

(
P

x∼SD
[B0 ≥ (pi(x))

2 > τ ] + 200

√
d2k

logN

N
log

1

δ

)
,

which combined with Equation E.9 implies

1

N

∑
x∈Si+1

filtered

(pi(x))
2 ≤

10

α

((
200

√
d2k

logN

N
log

1

δ

)
τi +

∫ ∞

τ=0

P
x∼SD

[B0 ≥ (pi(x))
2 > τ ] dτ

)
=

10

α

((
200

√
d2k

logN

N
log

1

δ

)
τi + E

x∼SD

[
pi(x))

2 · 1x≤B0

])
(E.10)

Additionally, since SD is assumed to satisfy property (3) in Claim 1, and M̂ is assumed to satisfy
Equation E.1, we have

E
x∼SD

[
(pi(x))

2 · 1(p(x))2≤B0

]
≤ E

x∼D
[(pi(x))

2] + 0.01 ≤ 11

10
(pi)

⊤M̂(pi) + 0.01 ≤ 111

100
. (E.11)

Combining Equation E.10 and Equation E.11 we get

1

N

∑
x∈Si+1

filtered

(pi(x))
2 ≤ 10

α

((
200

√
d2k

logN

N
log

1

δ

)
τi +

111

100

)
.

Recall that Si+1
filtered is a subset of S0

filtered and therefore for every element x of Si+1
filtered it is the case

that (pi(x))2 ≤ B · (pi)⊤M̂(pi) ≤ B, which combinded with the definition of τi implies that
τi ≤ B = 4d3k

ϵ . Substituting this above allows us to conclude the claim.

E.2 Outlier Removal in the PQ setting

We restate Theorem 3.1:
Theorem E.2. There exists an algorithm that, given sample access to an arbitrary distribution D′

over Rd, sample access to a k-tame probability distribution D over Rd, parameters ϵ, α, δ in (0, 1),

and a positive integer k, runs in time poly
(

(kd)k

ϵ log 1
δ

)
and outputs a succinct poly

(
(kd)k

ϵ log 1
δ

)
-

time-computable description of a function g : Rd → {0, 1} that satisfies the following properties
with probability at least 1− δ:

• Degree-k spectral 200
α -boundedness: For every polynomial p of degree at most k it is the

case that
E

x∼D′

[
(p(x))2g(x)

]
≤ 200

α
E

x∼D
[(p(x))2].

• (α, ϵ)-validity: we have

P
x∼D

[g(x) = 0] ≤ α distTV(D′,D) + ϵ

2
,

which in particular implies that Px∼D′ [g(x) = 0] ≤ (1 + α)distTV(D′,D) + ϵ/2.

We also restate Algorithm 1 as follows:

1. Draw sets SD and SD′ of N = C
(

(kd)kB
ϵ log 1

δ

)C
samples from distributions D and D′

respectively, where C is a sufficiently large absolute constant.
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2. Run the algorithm of Theorem E.1 on the input SD′ . Set imax to be the number of iterations
of the main loop in the algorithm of Theorem E.1, and store the polynomials {pi}, values
{τi} computed at each iteration of the main loop, as well as the matrix M̂ .

3. Output the function g : Rd → {0, 1} that does the following given an input x in Rd:
(a) If maxp of degree k

p⊤M̂p≤1

(p(x))2 > B0, then g(x) is defined to be 0. (See Section E.1.1 to see

how to compute this quantity in time poly(N).)
(b) If for some i it is the case that (pi(x))2 is greater than τi, then g(x) is defined to be 0.
(c) Otherwise, g(x) is defined to be 1.

It is immediate from Theorem E.1 that the algorithm above runs in time poly
(

(kd)kB
ϵ log 1

δ

)
with

probability at least 1 − δ. Furthermore, we also see that the function g can be described using
poly

(
(kd)kB

ϵ log 1
δ

)
bits and can be computed using this description on a given input x in time

poly
(

(kd)kB
ϵ log 1

δ

)
.

We need the following claim bounding the number of iterations in the algorithm of Theorem E.1,
proof of which is deferred until the end of this section. We remark that for Theorem E.1 we bounded
the total number of iterations by N , but in this section we will need a bound that depends only on
d, k and ϵ and not on N .
Claim 6. If the set SD satisfies the condition of Claim 1, then the number of iterations imax of the
main while loop in the algorithm of Theorem E.1 satisfies imax = O

(
kdk log(B0d)

)
.

We now proceed to use Claim 6 to argue the spectral 200
α -boundedness and (α, ϵ/2)-validity. As the

first step, we show the following:
Observation E.3. There exists a function class G with a VC dimension of at most
O(imax d2k log(imax )), such that all possible values of the function g belong to G.

Proof. The function g is necessarily a logical AND of at most imax +1 functions, one of which is the
function indicator of a ball in Rd and the other imax are logical OR-s of pairs of degree-2k polynomial
threshold functions. Combining this with Fact A.5 and Fact A.4 yields the observation.

We start with arguing the (α, ϵ/2)-validity, as well as the stronger condition of Remark 3.3 (implied
by Equation E.13):
Claim 7. With probability at least 1− δ/2 over the choice of the sets SD and SD′ , we have

P
x∼D

[g(x) = 0] ≤ α distTV(D′,D) + ϵ

2
. (E.12)

Furthermore, for σ > α/2 and any distribution D′′ that is 1/σ-smooth w.r.t. D, (i.e. for any
measurable set T ⊂ Rd we have Px∼D′′ [x ∈ T ] ≤ 1

σ Px∼D[x ∈ T ]) it is the case that

P
x∼D

[g(x) = 0] ≤ α

σ
dTV(D′′,D′) +

ϵ

2
, (E.13)

Proof. With probability at least 1− δ/4 the set SD satisfies the condition of Claim 1. Assuming this,
we have:

P
x∼D

[g(x) = 0] ≤
imax∑
i=0

P
x∼D

[
(pi(x))

2 ≥ τi
]
≤

imax∑
i=0

P
x∼SD

[
(pi(x))

2 ≥ τi
]
+ imax

(
200

√
d2k

logN

N
log

1

δ

)
, (E.14)

where the last step used the premise that SD satisfies the condition of Claim 1. Recalling that by Obser-
vation E.3 the function g belongs to a function class with VC dimension of O(imax d

O(k) log(imax )),
and combining this with Fact A.6, we see that with probability at least 1− δ/4

P
x∼D′

[g(x) = 0] ≥ P
x∼SD′

[g(x) = 0]−O

(√
imax dO(k) log(imax ) logN

N
log

1

δ

)
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Recalling the definition of g, we see that for x in SD′ , we have g(x) = 0 when for some iteration i,
the point x is in the set {x ∈ Si

filtered : (pi(x))
2 > τi}, we conclude that

P
x∼D′

[g(x) = 0] ≥

imax∑
i=0

|{x ∈ Si
filtered : (pi(x))

2 > τi}|
N

−O

(√
imax dO(k) log(imax ) logN

N
log

1

δ

)
(E.15)

Now, we recall that for every iteration i we have:

1

N

∣∣∣∣{x ∈ Si
filtered : (pi(x))

2 > τi}
∣∣∣∣ ≥ 10

α

(
P

x∼SD
[(pi(x))

2 > τi] + 200

√
d2k

logN

N
log

1

δ

)
,

and therefore:

imax∑
i=0

P
x∼SD

[(pi(x))
2 > τi] ≤

α

10

(
imax∑
i=0

1

N

∣∣∣∣{x ∈ Si
filtered : (pi(x))

2 > τi}
∣∣∣∣
)

+ 200imax

√
d2k logN

N
log

1

δ
. (E.16)

Thus, combining Equation E.14, Equation E.15 and Equation E.16 we get:

P
x∼D

[g(x) = 0] ≤ α

10

(
P

x∼D′
[g(x) = 0]

)
︸ ︷︷ ︸

≤distTV(D′,D)+Px∼D [g(x)=0]

+O

(
imax

√
dO(k) logN

N
log

1

δ

)
. (E.17)

We now the bound on imax from Claim 6, and recall that N = C
(

(kd)kB
ϵ log 1

δ

)C
. Overall, we see

that for sufficiently large absolute constant C the error term above is upper-bounded by ϵ/10, so

P
x∼D

[g(x) = 0] ≤ α

10

(
distTV(D′,D) + P

x∼D
[g(x) = 0]

)
+

ϵ

10
(E.18)

Rearranging the inequality above and recalling that α < 1, we conclude that Equation E.12 holds.

Finally, we prodeed to argue Equation E.13. For σ > α/2 suppose that the distribution D′′ is 1/σ-
smooth w.r.t. D, (i.e. for any measurable set T ⊂ Rd we have Px∼D′′ [x ∈ T ] ≤ 1

σ Px∼D[x ∈ T ]).
Then, from Equation E.17 we have

P
x∼D

[g(x) = 0]︸ ︷︷ ︸
≤σ Px∼D′′ [g(x)=0]

by σ-smoothness

≤ α

10

(
P

x∼D′
[g(x) = 0]

)
︸ ︷︷ ︸

≤distTV(D′′,D)+Px∼D′′ [g(x)=0]

+O

(
imax

√
dO(k) logN

N
log

1

δ

)
.︸ ︷︷ ︸

≤ϵ/10
for constant C sufficiently large.

(E.19)

Rearranging the inequality above and recalling that α < 1 and σ > α/2, we conclude that Equation
E.13 holds.

Now, we argue the spectral 200
α -boundedness. Recall that with probability at least δ/20 the matrix

M̂ satisfies Equation E.1, which we will henceforth assume. Also recall that Claim 4 says that for
every polynomial p of degree at most k satisfying Ex∼D[(p(x))

2] ≤ 1, the set Saccept given by the
algorithm in Theorem E.1 satisfies 1

N

∑
x∈Saccept

p(x)2 ≤ 100
α . By inspecting the definition of the

function g, we see that for x in SD′ we have g(x) = 1 if an only if x is in Saccept. Therefore,

max
p of degree k s.t:

Ex∼D [(p(x))2]≤1

[
E

x∼SD′
[g(x)p(x)2]

]
≤ 100

α
(E.20)
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In order to conclude the spectral 200
α -boundedness condition we need to be able to conclude that the

equation above is likely to generalize, i.e. it approximately holds when one replaces the expectation
w.r.t. SD′ with the expectation w.r.t. the distribution D′. To show this, we first recall that via
Observation E.3 the function g belongs to a function class G with a VC dimension of at most
O(imax d

2k log(imax )). We also see that g(x) = 0 for all x satisfying max
p: Ex∼D [(p(x))2)]≤1

(p(x))2 >

10B0, because the matrix M̂ satisfies Equation E.1 and therefore if Ex∼D[(p(x))
2)] ≤ 1 and

(p(x))2 > 10B0, then also (
√
0.9p)⊤M(

√
0.9p) ≤ 1 and

√
0.9p(x) > B0, which implies that

g(x) = 0 by the definition of g. We show in Lemma B.2 that with probability at least 1− δ/20 such
function classes satisfy

sup
g∈G

p of degree k s.t: Ex∼D(p(x))2≤1

∣∣∣∣∣∣ 1N
∑

x∼SD′

[
f(x)(p(x))2

]
− E

x∼D′

[
f(x)(p(x))2

]∣∣∣∣∣∣ ≤
O

(√
B0

(
imax d

2k log(imax ) d
2k logN

N
log

1

δ

)1/4
)
≤ 1 ≤ 1

α
, (E.21)

where the penultimate inequality above is achieved by substituting the bound imax =

O
(
kdk logB0d

)
from Claim 6 into the expression above, substituting B0 = 4d3k

ϵ , recalling that

N = C
(

(kd)k

ϵ log 1
δ

)C
and taking C to be a sufficiently large absolute constant. Combining Equa-

tion E.21 with Equation E.20 we conclude that with probability at least 1 − δ/20 it is the case
that

max
p of degree k s.t.

Ex∼D [(p(x))2] ≤ 1

E
x∼D′

[
(p(x))2g(x)

]
≤ 101

α
,

Overall, with probability at least 1−δ the function g satisfies spectral 200
α -boundedness, (α, ϵ)-validity,

as well as the required run-time bound.

Finally, we come back to Claim 6, proving which concludes this section.

Proof of Claim 6. Let i be an iteration such that i < imax. Since the while loop did not terminate on
step i, we have ∑

x∈Si
filtered

(pi(x))
2 >

100

α
. (E.22)

At the same time, Claim 5 implies that

1

N

∑
x∈Si+1

filtered

(pi(x))
2 ≤ 20

α
(E.23)

Let m ≤ dk denote the dimension of the vector space of degree-k polynomials. For values of i
between 0 and imax and for values of j between 1 and m,let the collection of polynomials {Ri

j} and
non-negative real values {λi

j} be defined as

Ri
j = argmax

R of degree k s.t:
∀j′<j: (Ri

j′ )
⊤M̂R=0

R⊤M̂R≤1

1

N

∑
x∈Si

filtered

[
(R(x))2

]
λi
j =

1

N

∑
x∈Si

filtered

[
(Ri

j(x))
2
]

(E.24)
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In particular7, we have pi = Ri
1. We will use the quantity φi :=

∑m
j=1 λ

i
j as a potential function, for

which we have:

φi − φi+1 =

1

N

m∑
j=1

∑
x∈Si

filtered\S
i+1
filtered

(Ri
j(x))

2 ≥ 1

N

∑
x∈Si

filtered\S
i+1
filtered

(Ri
1(x))

2 =
1

N

∑
x∈Si

filtered\S
i+1
filtered

(pi(x))
2 =

=
∑

x∈Si
filtered

(pi(x))
2 −

∑
Si+1

filtered

(pi(x))
2 ≥ λi

1 −
20

α
(E.25)

Where in the end we substituted Equation E.23. Since λi
1 equals to 1

N

∑
x∈Si

filtered

[
(pi(x))

2
]

and has
a value of at least 100/α by Equation E.22, the inequality above allows us to conclude

φi+1 ≤
m∑
j=1

λi
j − 0.8λi

1 ≤
m∑
j=1

λi
j −

0.8

m

∑
j

λi
j ≤

(
1− 0.9

dk

)
φi (E.26)

We now combine the inequality above with the following two observations:

• We have
φimax−1 >

100

α
> 1,

because the algorithm did not terminate in the (imax−1)-th iteration, and therefore Equation
E.22 holds.

• We have

φ0 =
1

N

m∑
j=1

∑
x∈S0

filtered

(Ri
j(x))

2 ≤ B0m,

where the last inequality follows from the fact that every element x in S0
filtered satisfies

max
p of degree k: p⊤M̂p≤1

(p(x))2 ≤ B0.

Overall, the two bounds above, together with Equation E.26 allow us to conclude that:

imax ≤ O
(
dk log(B0m)

)
= O

(
kdk log(B0d)

)
,

where the last step follows by substituting the definitions of m and ϵ.

7Speaking precisely, there might be multiple choices for the collection of the polynomials {R⊤
j }. In this

case, still, we can choose these polynomials without loss of generality in such a way that pi = Ri
1.

34



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide theorems with complete proofs or relevant citations for all claims
made in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include a paragraph on the limitations of our work in the end of the main
paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Our theorem statements clearly state the assumptions and we provide full
proofs in the main paper or appendix. Wherever possible, we provide proof sketches in the
main paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: Our paper does not have any experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: Our paper does not have any experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: Our paper does not have any experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Our paper does not have any experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

37

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: Our paper does not have any experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We read the code of ethics in its entirety and strongly believe that our research
abides by the stated code.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We include a discussion on the broader impacts of our work at the end of the
main paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release any data and models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Our paper does not use any existing code, data, or models.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowd-sourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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