
NASM: Neural Anisotropic Surface Meshing
HONGBO LI,Wayne State University, USA
HAIKUAN ZHU,Wayne State University, USA
SIKAI ZHONG,Wayne State University, USA
NINGNA WANG, The University of Texas at Dallas, USA
CHENG LIN, The University of Hong Kong, China
XIAOHU GUO, The University of Texas at Dallas, USA
SHIQING XIN, Shandong University, China
WENPING WANG, Texas A&M University, USA
JING HUA,Wayne State University, USA
ZICHUN ZHONG∗,Wayne State University, USA

Fig. 1. A gallery of anisotropic surface meshes generated by our NASM method. These results are selected from our testing models in Thingi10K dataset,
including complicated organic surfaces, and surfaces with sharp and weak features as well as varying anisotropic metrics.

This paper introduces a new learning-based method, NASM, for anisotropic
surface meshing. Our key idea is to propose a graph neural network to embed
an input mesh into a high-dimensional (high-d) Euclidean embedding space
to preserve curvature-based anisotropic metric by using a dot product loss
between high-d edge vectors. This can dramatically reduce the computational
time and increase the scalability. Then, we propose a novel feature-sensitive
remeshing on the generated high-d embedding to automatically capture
sharp geometric features. We define a high-d normal metric, and then derive
an automatic differentiation on a high-d centroidal Voronoi tessellation
(CVT) optimization with the normal metric to simultaneously preserve

∗Corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1131-2/24/12.
https://doi.org/10.1145/3680528.3687700

geometric features and curvature anisotropy that exhibit in the original
3D shapes. To our knowledge, this is the first time that a deep learning
framework and a large dataset are proposed to construct a high-d Euclidean
embedding space for 3D anisotropic surface meshing. Experimental results
are evaluated and compared with the state-of-the-art in anisotropic surface
meshing on a large number of surface models from Thingi10K dataset as
well as tested on extensive unseen 3D shapes from Multi-Garment Network
dataset and FAUST human dataset.

CCS Concepts: • Mathematics of computing → Mesh generation; •
Computing methodologies→ Neural networks.

Additional Key Words and Phrases: Anisotropic surface mesh, graph neural
network, high-d Euclidean embedding, feature-sensitive meshing

ACM Reference Format:
Hongbo Li, Haikuan Zhu, Sikai Zhong, Ningna Wang, Cheng Lin, Xiaohu
Guo, Shiqing Xin, WenpingWang, Jing Hua, and Zichun Zhong. 2024. NASM:
Neural Anisotropic Surface Meshing. In SIGGRAPH Asia 2024 Conference
Papers (SA Conference Papers ’24), December 3–6, 2024, Tokyo, Japan. ACM,
New York, NY, USA, 21 pages. https://doi.org/10.1145/3680528.3687700

1

ar
X

iv
:2

41
0.

23
10

9v
2

 [c
s.C

V
]

31
 O

ct
 2

02
4

https://doi.org/10.1145/3680528.3687700
https://doi.org/10.1145/3680528.3687700

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan Li, Zhu, Zhong, Wang, Lin, Guo, Xin, Wang, Hua, and Zhong

1 INTRODUCTION
In geometric modeling, physical simulation, and mechanical engi-
neering fields, anisotropic meshes are crucial for performing better
shape approximations [Simpson 1994] and achieving higher accu-
racy in numerical simulations [Alauzet and Loseille 2010; Narain
et al. 2012]. Anisotropic surface meshes are triangulations with ele-
ments elongated along prescribed directions and stretchings. One
of the fundamental geometric merits is that, with a given number
of mesh elements (i.e., vertices or triangles), the 𝐿2 optimal approx-
imation to a smooth surface is achieved when the anisotropy of
triangles conforms to the eigenvalues and eigenvectors of the cur-
vature tensors [Heckbert and Garland 1999; Simpson 1994]. This
improves the simulation’s fidelity, stability, and efficiency. They are
vital for high-fidelity structural analysis, such as in the study of
turbine blades, aircraft wings, or biomedical implants. Due to the
difficulty in anisotropic meshing, recently some researchers [Zhong
et al. 2013, 2018] proposed a computational method to map the com-
plicated anisotropic 3D space onto a higher dimensional Euclidean
space, which can make the anisotropic mesh generation computa-
tion simpler. This research line is inspired by Nash Embedding The-
ory [Kuiper 1955; Nash 1954]. However, the major bottleneck of the
high-dimensional (high-d) embedding method is time-consuming
in the computation. Some other high-d embedding-based methods
can only use specific embeddings, such as normal-based embedding,
which cannot consider arbitrary input metrics [Dassi et al. 2014,
2015; Lévy and Bonneel 2013].

Besides that, most existing anisotropic meshing methods [Alliez
et al. 2003; Boissonnat et al. 2015a; Bossen and Heckbert 1996; Du
and Wang 2005; Fu et al. 2014; Valette et al. 2008; Zhong et al. 2013,
2018] need to have a given metric as input to control the element
stretching ratio and orientation, which is tedious and unrobust.
Furthermore, in order to handle geometric sharp or weak features,
users need to identify these feature edges and corners in the input
reference mesh at first, and then constrain the mesh vertex position
and connectivity along the feature edges or fix the feature corners
during optimization. [Lévy and Liu 2010] and [Xu et al. 2024] extend
the CVT objective function by a metric term, which can automati-
cally attract the site point onto the feature lines in 3D space so as
to naturally recover the features. However, it can only handle with
isotropic meshing. To our knowledge, there is no method which
can generate anisotropic mesh to preserve both metric field as well
as sharp / weak features. Moreover, all the existing methods for
anisotropic meshing are model-based approaches, which are not
scalable to generate a large number of anisotropic meshes from a
variety of shape geometries and typologies.

In this work, we address the above-mentioned challenges in
anisotropic mesh generation. It includes main twofold: (1) how
to develop a learning-based method to efficiently and robustly com-
pute a high-d embedding without providing a pre-computed metric
field; (2) how to generate high-fidelity and high-quality anisotropic
surface meshes with automatical feature preserving. The main con-
tributions are as follows:

• Develop a scalable computational paradigm to generate high-
quality anisotropic surfacemeshes from arbitrary inputmeshes
only (no curvature metric is needed);

• Design an efficient GNN-based method with high-d dot prod-
uct loss to embed an input mesh into a high-d Euclidean
embedding space to preserve curvature-based anisotropic
metric (a speedup of about 1, 500× times);

• Define a high-d normal metric CVT optimization with an
automatic differentiation to compute the feature-sensitive
anisotropic surface meshes (without any user’s input on tag-
ging features);

• Construct a large dataset for anisotropic surface meshing and
processing (more than 800+ mesh models from Thingi10K,
Multi-Garment Network, and FAUST datasets).

The overview pipeline of the proposed neural anisotropic surface
meshing (NASM) approach is shown in Fig. 2.

2 RELATED WORKS
In this section, we review the related literature on anisotropic trian-
gle meshing approaches and neural geometric learning on meshes.

2.1 Anisotropic Triangle Meshing
In terms of meshing a surface, anisotropic is related to optimal ap-
proximation of a discretization of the surface function with a given
number of element count [Alliez et al. 2003]. Anisotropic triangu-
lar meshing has been extensively studied over decades, both on
flat, 2D regions [Bossen and Heckbert 1996], and the Euclidean 3D
surface [Shimada et al. 1997]. [Shapiro et al. 1996] introduces the
Adaptive Smoothed Particle Hydrodynamics (ASPH) which uses
inter-particle Gaussian kernels with an anisotropic metric tensor.
[Zhong et al. 2013] further extends the formulation of the energy
between particles to a higher embedding space which leads to en-
hanced flexibility and accuracy when confronted with either mild
or significant variations in the metric.

2.1.1 Anisotropic Centroidal Voronoi Tessellation. [Du and Wang
2005] further generalizes the concept of CVT to the anisotropic
centroidal Voronoi tessellation (ACVT) by integrating the given
Riemannian metric into the calculation. However, the Riemannian
metric needs to be constructed in each Lloyd [Lloyd 1982] itera-
tion, which is not efficient. [Valette et al. 2008] provides a discrete
approximation of ACVT to accelerate the computation speed with
the cost of degraded mesh quality. [Zhong et al. 2014] computes
the CVT on an 2D parametric domain where the metric surface
can be conformally mapping to. [Lévy and Bonneel 2013] lever-
ages the embedding theory [Nash 1954] and formulates a 6D space
where the surface mesh can be embedded in, followed with the CVT
isotropic remeshing within this extended dimensionality. The final
results reveal the distinctive anisotropic characteristics, albeit not
distributed across the entire surface. [Zhong et al. 2018] introduces
a variational approach to compute the higher dimensional space
through aligning the Jacobian of transformation and the gradient
of deformation between the 3D space and the high-d space where
the surface is embedded. This approach considers the metric space
defined over the surface which leads the result with anisotropic
properties regarding to the given metric. However, the computation
is involved in solving a linear systemw.r.t. the input mesh resolution,
which demands a significant investment of time.

2

NASM: Neural Anisotropic Surface Meshing SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan

Dual

High-D Euclidean Embedding High-D Normal
Metric CVT

Feature-Sensitive
Anisotropic Mesh

Neural High-D
Embedding Network

Input Mesh

Fig. 2. The overview pipeline of the proposed neural anisotropic surface meshing (NASM) approach. Our method includes two main components: neural high-d
Euclidean embedding and high-d normal metric CVT for feature-sensitive anisotropic meshing. The training data for neural high-d Euclidean embedding is
generated based on SIFHDE2 [Zhong et al. 2018]. More details are given in Section A of Supplemental Document.

2.1.2 Anisotropic Delaunay Triangulation. Many works have ex-
tended the Delaunay triangulation to the anisotropic case, both
through the refinement-based approaches [Dobrzynski and Frey
2008; Frey and Borouchaki 1999] and the variational approaches [Chen
et al. 2007; Chen and Xu 2004]. [Boissonnat et al. 2015a,b] leverages
a Delaunay refinement scheme that progressively inserts vertices to
reach the final anisotropic meshes. [Rouxel-Labbé et al. 2016] imple-
ments an algorithm for the computation of the discrete approxima-
tions to Riemannian Voronoi diagrams on 2-manifolds employing
numerical methods for calculating the geodesic distances. [Fu et al.
2014] presents a Locally Convex Triangulation (LCT) method to
integrate anisotropic into optimal Delaunay triangulation, which
constructs convex functions that locally match the predefined Rie-
maninain metric. [Budninskiy et al. 2016] introduces a variational
method to lift the points onto a convex function, and minimize the
error between the lifted function and the constructed mesh. The
utilization of the convex function instead of commonly used pa-
raboloid integrates the anisotropy in final result. However, their
limitation is only applicable to a small class of anisotropies that can
be represented by convex functions.

2.1.3 Mesh Processing on High Dimensional Space. As every smooth
Riemannian manifold can be isometrically embedded into some Eu-
clidean space [Nash 1954], several mesh processing tasks related to
Riemannian manifold have been studied in 3D or higher dimensions.
[Panozzo et al. 2014] computes a 3D embedding via surface deforma-
tion to obtain anisotropic meshing results. [Dassi et al. 2014] follows
the 6D configurations the same as in [Lévy and Bonneel 2013] and
proposed local mesh operations to better preserve important geo-
metric features on CAD models. [Dassi et al. 2015] configures the
extended dimensions with a smooth function or the solution of a
partial differential equation, whereas they consider only the case
in the 2D space. [Zhong et al. 2018] recently proposes to directly
calculate the high dimension counterpart and use the coordinates
of original dimension as the first three dimensions to achieve a
self-intersection free high-d embedding mesh.

2.2 Neural Geometric Learning on Meshes
2.2.1 Non-Graph-Based Neural Network. Recent advances in deep
learning facilitate the use of learnable components in 3D modeling
applications. One way of applying learnable methods is to treat
3D geometry models using regular data structures, whereupon the

established learning paradigms in the 2D image domain can be seam-
lessly extended, providing a straightforward mean of processing
and analyzing. For instance, geometry models can be described with
3D grids of values and 3D Convolutional Neural Network (CNN) can
be applied [Chen et al. 2021; Mescheder et al. 2019; Wang et al. 2017,
2018a]. The other way is to directly handle the irregular inherence
of the geometry structure. An earlier work [Ivrissimtzis et al. 2004]
proposes a learning algorithm for surface reconstruction by sim-
ulating an incrementally expanding neural network which learns
a point cloud through a learning process. Recently, PointNet [Qi
et al. 2017a] and PointNet++ [Qi et al. 2017b] stand as pioneering
methods in this direction. Nevertheless, lack of explicit connectivity
information acquires intensive computational demands and limited
representational capacity for the point structure. Surface mesh, as
a conventional widely adopted structure, has been used for neu-
ral geometric learning and manifest favorable prospects. Recent
surveys [Bronstein et al. 2017; Xiao et al. 2020] can be referred.

2.2.2 Graph-Based Neural Network. A common representation for
irregular data is the graph structure. As mesh data being a special
type of graph structure, several works have advanced to leverage
graph-based neural networks (GNNs) [Hamilton et al. 2018; Kipf
and Welling 2017] and their spectral variants [Bruna et al. 2014;
Defferrard et al. 2016; Kostrikov et al. 2018] on classic discrete mesh
problem. [Sharp et al. 2022; Smirnov and Solomon 2021] extend
the Laplacian operator to apply learning on the graph. [Hu et al.
2022] introduces a uniform downsampling scheme into the learning
pipeline. [Pfaff et al. 2020] leverages the GNN on simulation tasks.
[Hanocka et al. 2019] constructs an edge-based graph and defines
convolution on it. [Wang et al. 2018b] generates 3D shape from 2D
by updating a coarse mesh through GNN. [Potamias et al. 2022]
leverages GNN to predict the connectivity in mesh simplification.
The closest application to our work is [Pang et al. 2023], which ex-
ploits the neural network to map the meshes to high-d embedding
and calculate the geodesic on the surface. However, their method
is not designed for learning Riemannian metric and their loss func-
tion is not effective on anisotropic mesh generation. We conduct
experiments to show that the loss functions as they proposed, e.g.,
L1 or L2 loss, present inferior quality in our meshing results.

3 NEURAL HIGH-D EUCLIDEAN EMBEDDING
As illustrated in Fig. 2, our method takes a triangle surface mesh
as input and computes the mapping that isometrically embeds the

3

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan Li, Zhu, Zhong, Wang, Lin, Guo, Xin, Wang, Hua, and Zhong

mesh vertices to a high dimensional (high-d) Euclidean space. The
outputs are the vertex-wise coordinates of this high-d space. In the
following subsections, we discuss the main technical components
of our neural high-d Euclidean embedding method in detail: high-d
Euclidean embedding loss and the network architecture. Due to the
page limit, data generation for embedding and meshing is given in
Section A of Supplemental Document.

3.1 High-D Euclidean Embedding Loss
Anisotropy represents how distances and angles are distorted, which
can bemeasured by the dot product in geometry. For ametric defined
over the surface domain Ω,𝑀 (.) ∈ R3, at a given point x ∈ Ω, the
dot product between two vectors a and b that starting from x is
denoted by ⟨a, b⟩𝑀 (x) , which is defined over the tangent space of
the surface: ⟨a, b⟩𝑀 (x) = a𝑡M(x)b.

Our goal is to construct a high-d space R𝑚 , in which the surface
can be embedded with Euclidean metric. Inspired by [Nash 1956],
considering the high-d corresponding vectors a and b, the dot prod-
uct between a and b should introduce the same meaning of the dot
product between a and b under the given metric, namely:

⟨a, b⟩ = ⟨a, b⟩𝑀 (x) . (1)

Equation (1) can be proved by the pullback metric. Considering
the smooth mapping 𝜙 between R3 and R𝑚 at the point x, the
transformation between the vector in R3 and its correspondence in
R𝑚 can be defined by the Jacobian matrix J(x) of 𝜙 , in essence, a =

J(x)a and b = J(x)b. Therefore, ⟨a, b⟩ = a𝑡 J(x)𝑡 J(x)b = ⟨a, b⟩𝑀 (x) ,
whereM(x) = J(x)𝑡 J(x).

Our designed loss for neural Eu-
clidean embedding leverages the advan-
tage that the dot product between the
vertices in R𝑚 has already contained
their metrics in R3. Additionally, con-
sidering the discrete nature of mesh, a
metric can be interpreted as influencing
a piecewise linear region and distorted
the dot product defined within the region. We can view those re-
gions as the simplices that constitute the entire manifold surface.
Therefore, we define our loss on the dot product between two edge
vectors defined on an internal face angle via Mean Squared Error:

L𝑑𝑜𝑡 =
1

3|F|
∑︁
F∈F

⟨𝜉 (e𝑖 𝑗), 𝜉 (e𝑖𝑘)⟩ − ⟨e𝑖 𝑗 , e𝑖𝑘 ⟩
2

+
⟨𝜉 (e𝑗𝑘), 𝜉 (e𝑗𝑖)⟩ − ⟨e𝑗𝑘 , e𝑗𝑖 ⟩

2
+
⟨𝜉 (e𝑘𝑖), 𝜉 (e𝑘 𝑗)⟩ − ⟨e𝑘𝑖 , e𝑘 𝑗 ⟩

2, (2)
where 𝜉 (e𝑖 𝑗) = 𝑓 (v𝑗) − 𝑓 (v𝑖), 𝑓 (v𝑖) and 𝑓 (v𝑗) are predicted high-d
edge vector and vertex coordinates, which are learned from the
input 3D coordinates; e𝑖 𝑗 = v𝑗 − v𝑖 , v𝑖 and v𝑗 are the ground truth
high-d edge vector and vertex coordinates. The ground truth data is
geneated based on SIFHDE2 [Zhong et al. 2018] (refer Section A of
Supplemental Document for details). Similar definitions are made
for other edge vectors and vertices. So, each triangle face F has
three dot product loss terms.
The dot product loss can well align the metric distortion of the

learned Euclidean embedding surface with the ground truth, but

neural network tends to overfit the local distortion. To solve this
problem, we add a Laplacian loss term as regularization:

L𝑙𝑎𝑝 =
∑︁
𝑖∈V

𝑗∈𝑁 (𝑖) (𝑓 (v𝑖) − 𝑓 (v𝑗))
|𝑁 (𝑖) | −


𝑗∈𝑁 (𝑖) (v𝑖 − v𝑗)

|𝑁 (𝑖) |

2
2
,

(3)

where 𝑁 (𝑖) is the set of one-ring neighbors of vertex 𝑖 .
Thus, our total loss is defined as the weighted sum of two losses:

L = L𝑑𝑜𝑡 +𝑤𝑙𝑎𝑝L𝑙𝑎𝑝 , (4)

where𝑤𝑙𝑎𝑝 = 0.1 is based on extensive experiments. The analysis
of𝑤𝑙𝑎𝑝 is discussed in Section F.2 of Supplemental Document.

3.2 High-D Euclidean Embedding Network
In order to take advantage of the connectivity of mesh, we utilize
the graph neural network (GNN) to learn the high-d embedding.
Specifically, given an surface mesh Ω ∈ R3, its verticesV and edges
E naturally define an undirected graph. We introduce the details
about our network design in this section.

3.2.1 Graph Convolution. The main purpose of graph convolution
layer is to learn how to aggregate feature information from a node’s
local neighborhood and how to update its own feature. We employ
the updating scheme based on [Hamilton et al. 2018] for our high-d
embedding task. The convolution layer in our network follows:

𝑓 𝑘+1𝑖 = W𝑘+1
0


𝑓 𝑘𝑖 , max

𝑗∈N(𝑖)
W𝑘+1

1 A

𝑓 𝑘𝑖 , 𝑓

𝑘
𝑗

 
, (5)

whereW0 andW1 are learnable parameters. 𝑓 𝑘+1 and 𝑓 𝑘 are the
feature vectors on vertex 𝑖 before and after the convolution. N(𝑖)
is the set of one-ring neighbors of vertex 𝑖 . A is a differentiable
function to process feature information through the edge between
vertex 𝑖 and 𝑗 .

In pursuit of tailoring the convolution layer for learning high-d
embedding, we want the learned extended coordinates to compen-
sate the distortion / deformation followed by the metric. Therefore,
we explicitly incorporate the direction and distance between each
vertex and its neighbors into the aggregated feature information.A
is accordingly defined as:

A

𝑓 𝑘𝑖 , 𝑓

𝑘
𝑗


=


𝑓 𝑘𝑗 , 𝑓

𝑘
𝑗 − 𝑓 𝑘𝑖 ,

𝑓 𝑘𝑗 − 𝑓 𝑘𝑖

2


. (6)

3.2.2 Network Architecture. We construct a Graph U-Net [Gao and
Ji 2019] with our tailored message passing paradigm. The network
takes a 3D surface mesh as input, and embeds each vertex into
the high-d space. The output keeps the same mesh connectivity
as input. Fig. 3 illustrates the architecture of the proposed high-d
Euclidean embedding network. We build our residual blocks by
two layers of graph convolution with skip connection followed
by a batch normalization [Ioffe and Szegedy 2015] and a Leaky
ReLU activation [Maas et al. 2013]. Each down-sampling block is
constituted by a residual block and one layer of Top-K pooling [Gao
and Ji 2019]. Each up-sampling block is constituted by a residual
block and one layer of interpolation.We employ five down-sampling
blocks and five up-sampling layers. The network input is composed
with six channels for each vertices, including vertex coordinates
and normals. The output has five channels, and we concatenate

4

NASM: Neural Anisotropic Surface Meshing SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan

Input

Output

Convolution

Residual Block + Pooling

Residual Block + Unpooling

Concatenate

6
256 256

256

256

256

256 256

256

256

256

256 5
8

Fig. 3. The architecture of the proposed high-d Euclidean embedding net-
work. Each residual block combines two graph convolution layers with
skip-connection. Each convolution layer is followed by a normalization layer
and an activation layer except the output layer. The numbers represent the
feature dimensions of each network layer. The graph convolution computa-
tion and neighboring feature aggregation are illustrated in detail.

the original 3D coordinates in front of the output to form a self-
intersection free 8D embedding coordinates as in [Zhong et al. 2018].

3.2.3 Training Data Augmentation. The diversity in shape meshes
within our training set introduces biases in various aspects, particu-
larly in the stretching direction and the distribution of stretching
ratio across different parts of the mesh. To mitigate these issues and
ensure a more robust and generalized model performance, we aug-
ment the training data by rotation (by 𝜋/2 around three Euclidean
axes), and mirroring (according to 𝑥𝑦, 𝑥𝑧, and 𝑦𝑧 planes). These
two augmentation types reorient the stretching direction and redis-
tribute the stretching ratio according to vertex coordinates which
ensure the anisotropy property is represented more uniformly.

4 FEATURE-SENSITIVE ANISOTROPIC MESHING
Remeshing 3D surfaces with features is a challenging problem, not
to mention anisotropic remeshing. Existing anisotropic remeshing
approaches [Fu et al. 2014; Zhong et al. 2018] let the user specify
which edges correspond to features, and use constrained optimiza-
tion to sample them properly. This is tedious in practical for 3D
surface shapes with different features. In this work, after mapping
the surface Ω ∈ R3 into the neural high-d Euclidean space, the
follow-up task is to isotropically remesh this high-d embedded sur-
face Ω ∈ R𝑚 . Inspired by [Lévy and Liu 2010], we re-design the
normal metric from 3D to high-d space, and then formulate a new
optimization energy function for high-d CVT (𝑑 = 8 in our case)
with quadratic normal metric to automatically preserve features
and anisotropy that exhibit in the original 3D shapes.

4.1 Normal Metric in High-D
The original normal metric MT associated with facet T in 3D is

defined as follows [Lévy and Liu 2010]:MT = (𝑠 − 1)

NT
𝑥 [NT]𝑡

NT
𝑦 [NT]𝑡

NT
𝑧 [NT]𝑡

 +
I3×3, where NT denotes the unit normal of facet T in 3D and 𝑠 is a
factor to emphasize the normal metric (𝑠 = 7 in the experiments).
In our high-d embedded surface, since we only focus on the

features that are identified in the original 3D surface, we can extend
MT by padding 1𝑠 on the diagonal ofMT and 0𝑠 otherwise to define
the normal metricMT in the high-d space R𝑚 :

M
T
=


MT 0
0 Iℎ𝑑


, (7)

where Iℎ𝑑 is an (𝑚−3)×(𝑚−3) identity matrix.MT is an orthogonal
matrix, which does not affect the Euclidean distance calculated from
the high-d space. In this way, the proposed high-d quadratic normal
metric can penalize the remeshing vertices that are far away from
the tangent plane of the high-d embedding. On a feature edge, the
combined effects of the normal metrics of both facets incident to a
feature edge tend to attract remeshing vertices onto such edge.

4.2 High-D Normal Metric CVT
Inspired [Lévy and Liu 2010] (in 3D), we define the combinatorial
structure and algebraic structure of high-d normal metric CVT. To
compute high-d CVT is to minimize the energy function 𝐸ℎ𝑑 . We
use gradient-based optimization method which needs to evaluate
𝐸ℎ𝑑 and its gradient ∇𝐸ℎ𝑑 . For each iteration, the high-d embedding
surface is first decomposed into a set of simplicial triangle facets
through a differentiable clipping algorithm (in Section B of Supple-
mental Document). By doing so, the expression of 𝐸ℎ𝑑 can be simply
evaluated. After having the combinatorial representation, the value
of 𝐸ℎ𝑑 is obtained by the closed form and ∇𝐸ℎ𝑑 can be obtained by
applying chain rule and reverse-mode differentiation (in Section C
of Supplemental Document).

The objective function of feature-sensitive high-d CVT is defined
by adding a high-d normal metricMT into CVT energy in high-d:

𝐸ℎ𝑑 (X) =
∑︁
𝑖

∫
Ω𝑖∩S

MT [y − x𝑖]
2
2
𝑑y, (8)

where x𝑖 ∈ X are the Voronoi cell sites. For RVD on the high-d
embedded surface mesh, Voronoi cells are discretized to a set of
facet triangles, denoted as T (x0,C1,C2,C3). C1,C2,C3 are three
different configurations of the vertices on these facets triangles,
which need to be treated differently in order to have the accurate
gradient. Details are given in Section B of Supplemental Document.
So Ω is the sum of the area of all the facets. A high-d CVT is a stable
and critical point of 𝐸ℎ𝑑 during the optimization.

As stated in [Lévy and Liu 2010], given the gradient of standard
CVT energy 𝐸, ∇𝐸 = 2𝑚𝑖 (x𝑖 − g𝑖), one cannot simply replace the
centroid g𝑖 and mass𝑚𝑖 with their anisotropic counterparts to get
the gradient of high-d CVT energy 𝐸ℎ𝑑 , since the anisotropy varies
between two adjacent cells. The closed form for gradient of high-d

5

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan Li, Zhu, Zhong, Wang, Lin, Guo, Xin, Wang, Hua, and Zhong

CVT with normal metric over an integration simplex T is:

𝑑𝐸T
ℎ𝑑

(x0,C1,C2,C3)

𝑑X
=
𝑑𝐸T

ℎ𝑑

𝑑x0
+

∑︁
𝑖=1,2,3

𝑑𝐸T
ℎ𝑑

𝑑C𝑖

𝑑C𝑖

𝑑X
, (9)

where X is the site point of the Voronoi cell. T (C1,C2,C3) is one
of the facet triangles that compose the restricted Voronoi cell in the
high-d embedding space.

4.3 Auto Differentiation for High-D Normal Metric CVT
Automatic differentiation is a computational technique that lever-
ages the chain rule of calculus. Instead of computing gradients from
an explicit formula, automatic differentiation computes gradient
starting from the function value, and tracing backwards along how
the function value has been computed; and leverages the chain rule
to compute the gradient.

From Equation (15), the calculation of gradient can be separated

to two parts:
𝑑𝐸T

ℎ𝑑

𝑑C𝑖
and 𝑑C𝑖

𝑑X
, and the total gradient can be assembled

from these two expressions. In this subsection, we introduce how to
calculate 𝐸T

ℎ𝑑
and C𝑖 in the forward pass in order to get the correct

gradient
𝑑𝐸T

ℎ𝑑

𝑑C𝑖
and 𝑑C𝑖

𝑑X
in the reverse pass.

For 𝐸T
ℎ𝑑

, it can be discretized onto the triangle facets that compose
the restricted Voronoi cell, and the expression for this discretization
can be shortly expressed as:

𝐸T
ℎ𝑑

= |T |𝐹 T
ℎ𝑑
, (10)

where |T | denotes the area of current triangle facet, referring Sec-
tion A in [Lévy and Liu 2010]’s Appendix for details.

It is noted that our computation is more complicated and challeng-
ing than [Lévy and Bonneel 2013], which also uses Heron’s formula
to calculate the area of triangle in 6D, but without having the metric
in their CVT energy function. So, their 6D CVT optimization does
not require to compute the gradient of Heron’s formula. Conversely,
for our high-d normal metric CVT, |T | becomes dependent regards
to 𝐸𝑇

ℎ𝑑
:

𝑑𝐸T
ℎ𝑑

𝑑C𝑖
= (

𝑑𝐹 T
ℎ𝑑

𝑑U𝑖
|T | + 𝑑 |T |

𝑑U𝑖
𝐹 T
ℎ𝑑

)MT
, (11)

where U𝑖 is defined in Equation (3) of Supplemental Document.

The detailed computations of automatic differentiation on
𝑑𝐸T

ℎ𝑑

𝑑C𝑖

and the derivative of C𝑖 are provided in Sections D.1 and D.2 of
Supplemental Document, respectively.

4.4 Restricted Voronoi Diagram and Mesh Generation
Following the optimization of the CVT in high-d space, the barycen-
tric coordinates of each site point can be utilized to back-project
the RVD from the high-d embedding space onto the original three-
dimensional space. This process results in the generation of the
final anisotropic RVD and dual mesh. We leverage the advantage
of Geogram [Lévy 2015], which computes the RVD using filtered
geometric predicates and symbolic perturbation to resolve degen-
eracies [Lévy 2016]. In general, there is a possibility that when
generating a mesh using dual mesh of RVD, i.e., the associated RDT,
inverted elements may occur upon back-projection to 3D space. Our
implementation addresses this issue by inserting additional points

using a provably terminating algorithm [Rouxel-Labbé et al. 2016]
whenever such an inverted element is detected.

5 EXPERIMENTAL RESULTS

5.1 Datasets
In this work, the evaluations and applications mainly focus on bet-
ter and faster approximating shapes by generating the anisotropic
surface meshes on a large scale.
5.1.1 Benchmark. In all of our experiments, we train our network
on the selected models from Thingi10k dataset [Zhou et al. 2016].
We select 240 meshes (after applying the data augmentation strategy
proposed in Section 3.2, there are 2,400 meshes in our experiments)
for training and 280 meshes for testing. Meshes are selected to
ensure that our neural network can effectively learn curvature-
related information. In the dataset, we only exclude surface models
predominantly composed of planar or zero mean curvature regions
where there are no anisotropic / curvature properties at all. Majority
of meshes in our current training dataset contain planar regions.
This is already sufficient for our NASM to learn how to effectively
apply isotropic distribution in high-d spaces to planar regions as
demonstrated in our results. We use the surface meshes that are
generated by TetWild [Hu et al. 2018] and normalize them to [-1, 1]
to make meshes with evenly distributed vertices and valid faces for
building the ground truth data and evaluation use.
5.1.2 Generalization. To validate the generalization ability, we fur-
ther evaluate our method on two large-scale unseen datasets with
different types of meshes. There are 154 garment mesh models se-
lected from Multi-Garment Net (MGN) [Bhatnagar et al. 2019], a
dataset of clothes with open boundary, including 96 pants and 58
tops. Another dataset is 3D human FAUST [Bogo et al. 2014] with
200 human scan models of 10 different subjects in 30 different poses.
We test these two datasets by using the same network parameters
trained on Thingi10k training set without any fine-tuning.

5.2 Implementation Details
For curvature metric generation, we first use Libigl [Jacobson et al.
2018] to calculate the curvatures and principal directions. The curva-
turemetric is designed as follows:M = [v𝑚𝑖𝑛, v𝑚𝑎𝑥 , n]𝑑𝑖𝑎𝑔(1, (𝑠2𝑠1)

2,

1) [v𝑚𝑖𝑛, v𝑚𝑎𝑥 , n]𝑡 , where v𝑚𝑖𝑛 and v𝑚𝑎𝑥 are the directions of the
principal curvatures, n is the unit surface normal. 𝑠1 and 𝑠2 are two
stretching factors along principal directions. For surface anisotorpic
task, 𝑠1 =

√︁
|𝐾𝑚𝑖𝑛 | and 𝑠2 =

√︁
|𝐾𝑚𝑎𝑥 | where 𝐾𝑚𝑖𝑛 and 𝐾𝑚𝑎𝑥 are

the principal curvatures. We set small thresholds to preserve 𝐾𝑚𝑖𝑛

and 𝐾𝑚𝑎𝑥 not vanishing. To obtain smooth stretching factors, we
compose 𝑠2

𝑠1
with the principal curvatures calculated by Libigl and

then apply weighted average over the one-ring neighborhood.
For ground truth high-d embedding generation, we implement the

process in SectionA of Supplemental Document by using Eigen [Guen-
nebaud et al. 2010] and leverageMUMPS [Amestoy et al. 2001] sparse
solver to accelerate the computation on AMD processor.
For the neural network development, we use PyTorch Geomet-

ric [Fey and Lenssen 2019] to build the network and employ AdamW
[Loshchilov and Hutter 2019] optimizer with a learning rate 0.01
for training. We train our network for 600 epochs with batch size 4,
and the learning rate is halved every 100 epochs.

6

NASM: Neural Anisotropic Surface Meshing SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan

For the high-d normal metric CVT development, we use Ge-
ogram [Lévy 2015] for restricted Voronoi diagram (RVD) calculation,
Stan Math Library [Carpenter et al. 2015] for auto differentiation
gradient computation, and L-BFGS [Liu and Nocedal 1989] for CVT
optimization. The source code of our framework and data will be
publicly released after acceptance.

5.3 Evaluation Metrics
Besides the qualitative visualization measurement, the quantitative
evaluation for anisotropic mesh result includes: surface accuracy,
mesh quality, and computational time.

5.3.1 Surface Accuracy. For the evaluation on surface mesh accu-
racy, we use Chamfer Distance (CD), F-Score (F1), normal consis-
tency (NC), and Hausdorff Distance (HD). To evaluate the ability of
preserving sharp features, following PoNQ [Maruani et al. 2024],
we use Edge Chamfer Distance (ECD) and Edge F-score (EF1).

5.3.2 MeshQuality. To measure the anisotropic mesh quality, for
each triangle △𝑎𝑏𝑐 in the final mesh, we use its approximated met-
ric Q(△𝑎𝑏𝑐) = (Q(x𝑎) + Q(x𝑏) + Q(x𝑐))/3, where Q(·) =

√︁
M(·),

to affine-transform it from the original anisotropic space into the
Euclidean space. After that, we employ the isotropic triangular crite-
ria [Frey and Borouchaki 1999], to evaluate the quality of generated
anisotropic triangular mesh, as suggested by [Fu et al. 2014; Zhong
et al. 2013]. The quality of a triangle is measured by 𝐺 = 2

√
3 𝑆
𝑝ℎ

,
where 𝑆 is the triangle area, 𝑝 is its half-perimeter, andℎ is the length
of its longest edge. 𝐺𝑎𝑣𝑔 is the average qualities of all triangles.

5.3.3 Timing. One of our main advantages is the efficiency of com-
puting the high-d embedding. In Tab. 1, we report the inference
time 𝑇𝑒𝑚 of the neural high-d embedding and computational time
of mesh 𝑇𝑚𝑒 on high-d normal metric CVT or high-d CVT, for the
Thingi10k testing set. Furthermore, we report the inference time of
our method with respect to the number of input mesh vertices for
all three testing datasets in Section F.1 of Supplemental Document.
The timings of our method and SIFHDE2 [Zhong et al. 2018] are
collected from 3.8 GHz AMD Ryzen 3960x processor and an NVIDIA
GeForce RTX 3090 GPU with 24GB GDDR6X.

5.4 Results on Surfaces without Sharp Features
We first evaluate our NASMmethod on the testing set with 280 mesh
models selected from Thingi10k as shown in Fig. 4, and compare
the result to SIFHDE2 [Zhong et al. 2018]. The original version of
SIFHDE2 heavily relies on the smoothness of input metric field, and
we conduct the comparison experiments on our improved version (in
Section A of Supplemental Document), for both the surface accuracy
and anisotropic mesh quality measurement. The improved version
of SIFHDE2 takes surface mesh and its corresponding metric field
as input. We use the same process to generate high-d embedding for
our dataset preparation (in Section 5.1). In their paper [Zhong et al.
2018], they used high-d version of particle-based method [Zhong
et al. 2013]. However, the definition for inter-particle energy and
force are defined on Euclidean distance, not on the surface mani-
fold. For this reason, we leverage the high-d CVT from the meshing
process, which uses RVD during the optimization. It can better

Table 1. Quantitative comparison with our NASM, NASM w/o high-d nor-
mal metric CVT, and SIFHDE2 method [Zhong et al. 2018] on 80 models
selected from Thingi10k dataset, including surfaces without and with sharp
and weak features. All the evaluation metrics are average values of all mod-
els from the dataset. The best results are highlighted in bold per different
#𝑉𝑜𝑢𝑡 . Note: #𝑉𝑖𝑛 and #𝑉𝑜𝑢𝑡 are the average numbers of vertices of all input
and output meshes, ‘Stretch’ is the average anisotropic stretching ratios of
all models, CD (×105), HD (×102), ECD (×102),𝑇𝑒𝑚 (s),𝑇𝑚𝑒 (s).

Method #𝑉𝑖𝑛 #𝑉𝑜𝑢𝑡 Stretch CD ↓ F1 ↑ NC ↑ HD ↓ ECD ↓ EF1 ↑ 𝑇𝑒𝑚 ↓ 𝐺𝑎𝑣𝑔 ↑ 𝑇𝑚𝑒 ↓
NASM 5,982 5,982 12.736 0.709 0.978 0.993 0.725 0.066 0.897 0.029 0.745 14.022

5,982 3,590 12.736 0.720 0.978 0.991 0.779 0.086 0.850 0.029 0.748 7.366
5,982 1,202 12.736 0.882 0.967 0.984 1.127 0.148 0.676 0.029 0.744 3.499
5,982 608 12.736 1.538 0.928 0.974 1.774 0.207 0.501 0.029 0.732 2.092

NASM 5,982 5,982 12.736 0.779 0.972 0.989 0.882 0.137 0.687 0.029 0.758 3.780
w/o NM CVT 5,982 3,590 12.736 0.875 0.963 0.987 1.055 0.155 0.571 0.029 0.764 3.354
(w/ CVT) 5,982 1,202 12.736 1.684 0.905 0.975 1.613 0.215 0.290 0.029 0.776 3.127

5,982 608 12.736 3.692 0.779 0.962 2.352 0.267 0.170 0.029 0.779 2.922

SIFHDE2 5,982 5,982 12.736 0.808 0.969 0.988 0.949 0.146 0.612 49.25 0.729 3.718
5,982 3,590 12.736 0.928 0.959 0.985 1.145 0.166 0.487 49.25 0.732 3.441
5,982 1,202 12.736 1.878 0.893 0.975 1.848 0.222 0.249 49.25 0.734 3.005
5,982 608 12.736 4.144 0.766 0.963 2.674 0.270 0.157 49.25 0.730 2.935

Table 2. Quantitative comparison with our NASM and LCTmethod [Fu et al.
2014] on Fertility and Rocker Armmodels. The best results are highlighted in
bold. Note: CD (×105) and HD (×102). Note: *Due to lacking their curvature
metrics, LCT’s𝐺𝑎𝑣𝑔 values are copied from their original paper.

Model Method #𝑉𝑜𝑢𝑡 CD ↓ F1 ↑ NC↑ HD ↓ 𝐺𝑎𝑣𝑔 ↑
Rocker Arm LCT 5,550 0.625 0.995 0.994 0.597 0.86*

NASM 5,547 0.600 0.996 0.996 0.576 0.722
Fertility LCT 12,480 0.584 0.996 0.996 0.603 0.89*

NASM 12,475 0.578 0.996 0.996 0.596 0.712

to approximate the geodesic distance. The quantitative results be-
tween our method and SIFHDE2 are reported in Tab. 1. Our method
outperforms SIFHDE2 in both surface accuracy, anisotropic mesh
quality, as well as computational time with about 1,500× speedup.
Fig. 5 shows the qualitative comparison with SIFHDE2 method. Our
method can better represent the local geometry changes, such as
the zoom-in regions for selected models from Thingi10k dataset.

We show further comparative analysis and experiments with an-
other state-of-the-art anisotropic surface meshing approach, Locally
Convex Triangulation (LCT) [Fu et al. 2014] on Fertility and Rocker
Arm models. From Fig. 6, in highlighted regions, it is clear to see
that our method can capture the local curvatures more accurately.
However, the stretching ratios of the mesh elements in LCT result
are either too big or too small on some regions, since their method
highly depends on the specific input curvature metric. The curva-
ture metric computation is not stable and variant due to the different
mesh discretizations. In Tab. 2, it shows that our method has better
surface accuracy on CD, F1, NC, HD metrics. LCT is a bit better than
ours on mesh quality 𝐺𝑎𝑣𝑔 . Due to lacking their curvature metrics,
LCT’s 𝐺𝑎𝑣𝑔 values are copied from the original paper.

5.5 Results on Surfaces with Sharp Features
Another advantage of our NASM method is to automatically keep
sharp features from the input mesh without any user’s intervention
as shown in Fig. 4. To show the robustness of our ability of feature
preserving, we conduct the experiments on different level of resolu-
tions for output meshes and compare the results with SIFHDE2. We
use 100%, 60%, 20%, and 10% of vertex count from input meshes and
make the quantitative report in Tab. 1 (a full version is included in
Section E.1 of Supplemental Document). Our NASM outperforms

7

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan Li, Zhu, Zhong, Wang, Lin, Guo, Xin, Wang, Hua, and Zhong

1.3

14.1

1.0

16.3

1.0

16.6

3.7

15.3

1.0

14.9

1.2

18.4

1.0

11.7

1.0

15.3

1.0

15.6

1.7

19.0

1.0

12.4

1.5

15.5

1.0

12.0

1.0

17.1

Fig. 4. Our anisotropic surface meshing results on smooth surfaces (top three rows) and surfaces with sharp or weak features (bottom four rows). (left to right:
curvature tensors with corresponding stretching ratios denoted in colors, anisotropic meshing, and a zoom-in illustration). The files’ IDs are provided from
Thingi10k dataset. Left column: 133077, 76778, 46461, 741525, 81589, 87688, 51015; Right column: 72870, 68380, 61258, 39086, 40992, 107910, 75989.

8

NASM: Neural Anisotropic Surface Meshing SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan

Ours SIFHDE2

Fig. 5. Comparison between our method and SIFHDE2 [Zhong et al. 2018] on models from Thingi10k dataset with the same number of vertices.

Ours LCT
Fig. 6. Comparison between our method and LCT method [Fu et al. 2014] on Rocker Arm and Fertility models with the same number of vertices.

SIFHDE2 at all levels of resolution. It obtains better surface accuracy
and anisotropic quality than SIFHDE2. Fig. 7 shows one example on
different resolutions for anisotropic meshes. This can be applied in
the curvature-induced mesh simplifications.
Furthermore, we do an ablation study on normal metric CVT

for our NASM by using a general CVT to generate the anisotropic
mesh. The result is reported in Tab. 1. We observe an increasing
of anisotropic mesh quality when using CVT for meshing. Based
on our analysis, it is actually a trade-off between anisotropy mesh
quality and surface accuracy (feature preserving). Normal metric
CVT can push the vertices towards sharp feature, which may distort
the anisotropic metric direction and stretching ratio. So that the
mesh quality evaluation may become lower.

The qualitative comparison with NASM method, NASM without
high-d normal metric CVT (with CVT), and SIFHDE2 method is pro-
vided in Fig. 2 of Supplemental Document. Fig. 8 shows anisotropic
RVD results on some complicated surfaces from the Thingi10k
dataset, which are computed by our high-d normal metric CVT
optimization. Some additional RVD results are shown in Fig. 2 of
Supplemental Document due to the page limit.

5.6 Results on Unseen Datasets
To further demonstrate the robustness and extensibility of our
method, we train our neural high-d embedding on Thingi10k dataset,
and directly test it on 154 models (including 96 pants and 58 tops)
from MGN dataset without fine-tuning the network parameters. It
is noted that MGNmodels are quite different from the training mesh
models. Fig. 9 shows that our results can well capture open bound-
aries, detailed anisotropies and features around cloth wrinkles and
folds from pants models. More visualization results and quantitative
evaluations are provided in Section E.2 of Supplemental Document.

We also test our method on part of FAUST dataset with 200 human
scan models of 10 different subjects in 30 different poses without

Table 3. Ablation study on the losses of our dot product, L2, Cos, and
without data augmentation on 80 models from Thingi10k dataset. All the
evaluation metrics are average values from the dataset. The best results are
highlighted in bold. Note: CD (×105), HD (×102), ECD (×102).

Loss / Method #𝑉𝑖𝑛 #𝑉𝑜𝑢𝑡 ↓ CD ↓ F1 ↑ NC↑ HD ↓ ECD ↓ EF1 ↑ 𝐺𝑎𝑣𝑔 ↑
Dot prod 5,982 5,982 0.709 0.978 0.993 0.725 0.066 0.897 0.745
L2 5,982 39,543 7.97×106 0.951 0.977 578.65 0.267 0.765 0.625
Cos 5,982 6,143 0.725 0.977 0.991 0.703 0.092 0.813 0.654
w/o aug 5,982 6,143 0.738 0.976 0.991 0.703 0.077 0.862 0.656

fine-tuning the network parameters. Each scan is a high-resolution
and non-watertight triangular mesh. We use QEM [Garland and
Heckbert 1997] to reduce the mesh resolution to feed into the neural
network. Both qualitative and quantitative evaluations are provided
in Section E.3 of Supplemental Document. Our results show promis-
ing results to capture geometric anisotropies and features around
hands, arms, legs, and thin clothes wrinkles on 3D human models.

5.7 Ablation Study
We provide quantitative and qualitative ablation studies in Tab. 3
and Fig. 9 of Supplemental Document on different loss functions,
and data augmentation. The ablation study is performed on the
Thingi10k dataset. Compared with L2 loss and Cosine loss, our pro-
posed dot product loss is most effective on the anisotropic surface
meshing. Our loss outperforms other losses on all the surface ac-
curacy and mesh quality metrics. Visually, it is noted that the dot
product loss can better recover the curvature metrics as well as
better capture the geometric features.

6 CONCLUSION
In this article, we develop a novel scalable anisotropic surface mesh
generation method. To our knowledge, this is the first deep learning-
based method capable of generating a large number of high-quality

9

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan Li, Zhu, Zhong, Wang, Lin, Guo, Xin, Wang, Hua, and Zhong

10% 20% 40% 100%80%60%

Fig. 7. Anisotropic surface meshing results of our NASMmethod on different number of output vertices (from 10% to 100% of the user specified vertex numbers,
i.e., 555, 1103, 2207, 3311, 4415, 5518). It is clear to see that even 10% of vertices, our method can still well capture both the curvature metrics and features.

Fig. 8. Anisotropic RVD results on some complicated surfaces from the Thingi10k dataset, which are computed by our high-d normal metric CVT optimization.
The files’ IDs are provided from Thingi10k dataset from left to right: 46461, 51015, 87688, 61258.

Fig. 9. Anisotropic surface meshing results of our NASM method on an unseen testing dataset, e.g., MGN dataset. The examples of our results can well capture
the open boundaries and detailed cloth wrinkles and folds from tops and pants models.

and high-fidelity anisotropic surface meshes. There are several ad-
vantages of this method compared with traditional methods: (1)
there is no curvature metric needed as input for our mesh genera-
tion. It can relieve the issues coming from the curvature estimation;
(2) the high-d embedding computational time has been dramatically
reduced to real time with the help of the designed learning-based
method; (3) the developed high-d normal metric CVT formulation
can generate feature-sensitive anisotropic meshes, which well cap-
ture both sharp and weak features; (4) this method is robust to
generate a large number of anisotropic surface meshes from com-
plicated geometric shapes.

7 LIMITATIONS AND FUTURE WORK
For some CAD-like models with very sparse input vertices and flat
planes only, NASM may fail, since the high-quality embeddings are
very challenging to be computed / predicted in such cases, which
have been shown in Section F.3 of Supplemental Document. Another
limitation is about the generalization to other anisotropic metrics
fields. This requires the preparation of such training datasets for
those particular applications. In the future, we will extend the cur-
rent framework to deal with large-scale 3D scene mesh generation.

It is also promising to explore how to effectively integrate the high-d
normal metric CVT computation into the neural network computing
framework. Since curvature-induced anisotropic meshes are essen-
tial for enhancing accuracy, efficiency, and stability in simulations
involving complex geometries across various fields, we will apply
our method in fluid dynamics, computer animation, and medical
simulations, etc.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions. Hongbo Li, Haikuan Zhu,
Sikai Zhong, Jing Hua, and Zichun Zhong were partially supported
by National Science Foundation (OAC-1845962, OAC-1910469, and
OAC-2311245). Ningna Wang and Xiaohu Guo were partially sup-
ported by National Science Foundation (OAC-2007661). Shiqing Xin
was partially supported by National Key R&D Program of China
(2021YFB1715900).

REFERENCES
Frédéric Alauzet and Adrien Loseille. 2010. High-Order Sonic Boom Modeling Based

on Adaptive Methods. J. Comput. Phys. 229, 3 (2010), 561–593.

10

NASM: Neural Anisotropic Surface Meshing SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan

Pierre Alliez, David Cohen-Steiner, Olivier Devillers, Bruno Lévy, and Mathieu Desbrun.
2003. Anisotropic Polygonal Remeshing. ACM Transactions on Graphics 22, 3 (2003),
485–493.

Patrick R Amestoy, Iain S Duff, Jean-Yves L’Excellent, and Jacko Koster. 2001. A fully
asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J.
Matrix Anal. Appl. 23, 1 (2001), 15–41.

Bharat Lal Bhatnagar, Garvita Tiwari, Christian Theobalt, and Gerard Pons-Moll. 2019.
Multi-Garment Net: Learning to Dress 3D People from Images. In IEEE International
Conference on Computer Vision.

Federica Bogo, Javier Romero, Matthew Loper, and Michael J Black. 2014. FAUST:
Dataset and Evaluation for 3D Mesh Registration. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. 3794–3801.

Jean-Daniel Boissonnat, Kan-Le Shi, Jane Tournois, and Mariette Yvinec. 2015a.
Anisotropic Delaunay Meshes of Surfaces. ACM Transactions on Graphics 34, 2
(2015).

Jean-Daniel Boissonnat, Camille Wormser, and Mariette Yvinec. 2015b. Anisotropic
Delaunay Mesh Generation. SIAM J. Comput. 44, 2 (2015), 467–512.

Frank J Bossen and Paul S Heckbert. 1996. A Pliant Method for Anisotropic Mesh
Generation. 63 (1996), 76.

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-
dergheynst. 2017. Geometric Deep Learning: Going beyond Euclidean data. IEEE
Signal Processing Magazine 34, 4 (July 2017), 18–42.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Lecun. 2014. Spectral Networks
and Locally Connected Networks on Graphs. (2014).

Max Budninskiy, Beibei Liu, Fernando De Goes, Yiying Tong, Pierre Alliez, and Mathieu
Desbrun. 2016. Optimal Voronoi tessellations with Hessian-based anisotropy. ACM
Transactions on Graphics 35, 6 (2016), 1–12.

Bob Carpenter,MatthewD.Hoffman,Marcus Brubaker, Daniel Lee, Peter Li, andMichael
Betancourt. 2015. The Stan Math Library: Reverse-Mode Automatic Differentiation
in C++. arXiv:1509.07164

Long Chen, Pengtao Sun, and Jinchao Xu. 2007. Optimal Anisotropic Meshes for
Minimizing Interpolation Errors in Lp-norm. Math. Comp. 76, 257 (2007), 179–204.

Long Chen and Jin-chao Xu. 2004. Optimal Delaunay Triangulations. Journal of
Computational Mathematics (2004), 299–308.

Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. 2021. Learning Mesh Representa-
tions via Binary Space Partitioning Tree Networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2021), 1–1.

Franco Dassi, Andrea Mola, and Hang Si. 2014. Curvature-Adapted Remeshing of CAD
Surfaces. Procedia Engineering 82 (2014), 253–265.

Franco Dassi, Hang Si, Simona Perotto, and Timo Streckenbach. 2015. Anisotropic
Finite Element Mesh Adaptation via Higher Dimensional Embedding. Procedia
Engineering 124 (2015), 265–277.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional
Neural Networks on Graphs with Fast Localized Spectral Filtering. (2016).

Cécile Dobrzynski and Pascal Frey. 2008. Anisotropic Delaunay Mesh Adaptation for
Unsteady Simulations. In Proceedings of the 17th International Meshing Roundtable.
177–194.

Qiang Du and Desheng Wang. 2005. Anisotropic Centroidal Voronoi Tessellations and
Their Applications. SIAM Journal on Scientific Computing 26, 3 (2005), 737–761.

Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with
PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds.

Pascal J Frey and Houman Borouchaki. 1999. Surface Mesh Quality Evaluation. Inter-
national journal for numerical methods in engineering 45, 1 (1999), 101–118.

Xiao-Ming Fu, Yang Liu, John Snyder, and Baining Guo. 2014. Anisotropic Simplicial
Meshing Using Local Convex Functions. ACM Transactions on Graphics 33, 6 (2014),
1–11.

Hongyang Gao and Shuiwang Ji. 2019. Graph u-nets. In international conference on
machine learning. PMLR, 2083–2092.

Michael Garland and Paul S Heckbert. 1997. Surface Simplification Using Quadric
Error Metrics. In Proceedings of the Annual Conference on Computer Graphics and
Interactive Techniques. 209–216.

Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.
William L. Hamilton, Rex Ying, and Jure Leskovec. 2018. Inductive Representation

Learning on Large Graphs.
Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel

Cohen-Or. 2019. MeshCNN: A Network with an Edge. ACM Transactions on Graphics
38, 4 (2019), 90:1–90:12.

Paul S Heckbert and Michael Garland. 1999. Optimal Triangulation and Quadric-Based
Surface Simplification. Computational Geometry 14, 1–3 (1999), 49–65.

Shi-Min Hu, Zheng-Ning Liu, Meng-Hao Guo, Junxiong Cai, Jiahui Huang, Tai-Jiang
Mu, and Ralph R. Martin. 2022. Subdivision-based Mesh Convolution Networks.
ACM Transactions on Graphics (2022).

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.
2018. Tetrahedral Meshing in the Wild. ACM Transactions on Graphics 37, 4 (2018),
60:1–60:14.

Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International conference on
machine learning. 448–456.

Ioannis Ivrissimtzis, Won-Ki Jeong, Seungyong Lee, Yunjin Lee, and Hans-Peter Seidel.
2004. Neural Meshes: Surface Reconstruction with a Learning Algorithm. (2004).

Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing
library. https://libigl.github.io/.

Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph
Convolutional Networks.

Ilya Kostrikov, Zhongshi Jiang, Daniele Panozzo, Denis Zorin, and Burna Joan. 2018.
Surface Networks. (2018).

Nicolaas H Kuiper. 1955. On𝐶1-isometric embeddings I. In Proc. Nederl. Akad. Wetensch.
Ser. A. 545–556.

Bruno Lévy. 2015. Geogram. GitHub Repository. URL: https://github.
com/BrunoLevy/geogram (2015).

Bruno Lévy. 2016. Robustness and Efficiency of Geometric Programs The Predicate
Construction Kit (PCK). Computer-Aided Design 72 (2016), 3–12.

Bruno Lévy and Nicolas Bonneel. 2013. Variational Anisotropic Surface Meshing with
Voronoi Parallel Linear Enumeration. In Proceedings of the 21st International Meshing
Roundtable. 349–366.

Bruno Lévy and Yang Liu. 2010. Lp Centroidal Voronoi Tessellation and Its Applications.
ACM Transactions on Graphics 29, 4 (2010).

Dong C Liu and Jorge Nocedal. 1989. On the limited memory BFGS method for large
scale optimization. Mathematical programming 45, 1 (1989), 503–528.

Stuart Lloyd. 1982. Least Squares Quantization in PCM. IEEE Transactions on Information
Theory 28, 2 (1982), 129–137.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization. In
International Conference on Learning Representations.

Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. 2013. Rectifier Nonlinearities
Improve Neural Network Acoustic Models. In Proc. icml, Vol. 30. 3.

Nissim Maruani, Maks Ovsjanikov, Pierre Alliez, and Mathieu Desbrun. 2024. PoNQ: a
Neural QEM-based Mesh Representation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 3647–3657.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas
Geiger. 2019. Occupancy Networks: Learning 3D Reconstruction in Function Space.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
4460–4470.

Rahul Narain, Armin Samii, and James F O’brien. 2012. Adaptive Anisotropic Remeshing
for Cloth Simulation. ACM Transactions on Graphics 31, 6 (2012), 147:1–147:10.

John Nash. 1954. 𝐶1-Isometric Embeddings. Annals of Mathematics 60, 3 (1954), 383–
396.

John Nash. 1956. The Imbedding Problem for Riemannian Manifolds. Annals of
mathematics 63, 1 (1956), 20–63.

Bo Pang, Zhongtian Zheng, Guoping Wang, and Peng-Shuai Wang. 2023. Learning the
Geodesic Embedding with Graph Neural Networks. ACM Transactions on Graphics
42, 6 (Dec. 2023), 1–12.

Daniele Panozzo, Enrico Puppo, Marco Tarini, and Olga Sorkine-Hornung. 2014. Frame
Fields: Anisotropic and Non-Orthogonal Cross Fields. ACM Transactions on Graphics
33, 4 (2014), 134:1–134:11.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W. Battaglia. 2020.
Learning Mesh-Based Simulation with Graph Networks. CoRR abs/2010.03409
(2020).

Rolandos Alexandros Potamias, Stylianos Ploumpis, and Stefanos Zafeiriou. 2022. Neu-
ral Mesh Simplification. (2022), 18562–18571.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2017a. PointNet: Deep
Learning on Point Sets for 3D Classification and Segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 652–660.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. 2017b. PointNet++: Deep
Hierarchical Feature Learning on Point Sets in a Metric Space. In Advances in Neural
Information Processing Systems, I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran Associates, Inc.

Mael Rouxel-Labbé, Mathijs Wintraecken, and J-D Boissonnat. 2016. Discretized Rie-
mannian Delaunay Triangulations. Procedia engineering 163 (2016), 97–109.

Paul R Shapiro, Hugo Martel, Jens V Villumsen, and J Michael Owen. 1996. Adaptive
Smoothed Particle Hydrodynamics, with Application to Cosmology: Methodology.
Astrophysical Journal Supplement v. 103, p. 269 103 (1996), 269.

Nicholas Sharp, Souhaib Attaiki, Keenan Crane, and Maks Ovsjanikov. 2022. Diffusion-
Net: Discretization Agnostic Learning on Surfaces. ACM Transactions on Graphics
(2022).

Kenji Shimada, Atsushi Yamada, Takayuki Itoh, et al. 1997. Anisotropic Triangular
Meshing of Parametric Surfaces via Close Packing of Ellipsoidal Bubbles. In 6th
International Meshing Roundtable, Vol. 375. 390.

R Bruce Simpson. 1994. Anisotropic Mesh Transformations and Optimal Error Control.
Applied Numerical Mathematics 14, 1–3 (1994), 183–198.

Dmitriy Smirnov and Justin Solomon. 2021. HodgeNet: Learning Spectral Geometry on
Triangle Meshes. ACM Transactions on Graphics, Article 166 (jul 2021), 11 pages.

11

https://arxiv.org/abs/1509.07164

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan Li, Zhu, Zhong, Wang, Lin, Guo, Xin, Wang, Hua, and Zhong

Robert W Sumner and Jovan Popović. 2004. Deformation Transfer for Triangle Meshes.
ACM Transactions on Graphics 23, 3 (2004), 399–405.

Ivan E. Sutherland and Gary W. Hodgman. 1974. Reentrant polygon clipping. Commun.
ACM 17, 1 (jan 1974), 32–42. https://doi.org/10.1145/360767.360802

Sébastien Valette, Jean Marc Chassery, and Rémy Prost. 2008. Generic Remeshing of
3D Triangular Meshes with Metric-Dependent Discrete Voronoi Diagrams. IEEE
Transactions on Visualization and Computer Graphics 14, 2 (2008), 369–381.

Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang Jiang.
2018b. Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images. CoRR
abs/1804.01654 (2018).

Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. 2017. O-
CNN: Octree-based convolutional neural networks for 3D shape analysis. ACM
Transactions On Graphics 36, 4 (2017), 1–11.

Peng-Shuai Wang, Chun-Yu Sun, Yang Liu, and Xin Tong. 2018a. Adaptive O-CNN: A
patch-based deep representation of 3D shapes. ACM Transactions on Graphics 37, 6
(2018), 1–11.

Yun-Peng Xiao, Yu-Kun Lai, Fang-Lue Zhang, Chunpeng Li, and Lin Gao. 2020. A Survey
on Deep Geometry Learning: from a Representation Perspective. Computational
Visual Media 6 (2020), 113–133.

Rui Xu, Longdu Liu, Ningna Wang, Shuangmin Chen, Shiqing Xin, Xiaohu Guo, Zichun
Zhong, Taku Komura, Wenping Wang, and Changhe Tu. 2024. CWF: Consolidating
Weak Features in High-quality Mesh Simplification. ACM Transactions on Graphics
43, 4 (2024), 1–14.

Dong-Ming Yan, Bruno Lévy, Yang Liu, Feng Sun, and Wenping Wang. 2009. Isotropic
Remeshing with Fast and Exact Computation of Restricted Voronoi Diagram. Com-
puter Graphics Forum 28, 5 (2009), 1445–1454.

Zichun Zhong, Xiaohu Guo, Wenping Wang, Bruno Lévy, Feng Sun, Yang Liu, and
Weihua Mao. 2013. Particle-Based Anisotropic Surface Meshing. ACM Transactions
on Graphics 32, 4 (2013).

Zichun Zhong, Liang Shuai, Miao Jin, and Xiaohu Guo. 2014. Anisotropic Surface
Meshing with Conformal Embedding. Graphical models 76, 5 (2014), 468–483.

Zichun Zhong, Wenping Wang, Bruno Lévy, Jing Hua, and Xiaohu Guo. 2018. Comput-
ing a High-Dimensional Euclidean Embedding from an Arbitrary Smooth Riemann-
ian Metric. ACM Transactions on Graphics 37, 4 (2018).

Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. 2016. Mesh Arrange-
ments for Solid Geometry. ACM Transactions on Graphics 35, 4 (2016).

12

https://doi.org/10.1145/360767.360802

NASM: Neural Anisotropic Surface Meshing:
Supplemental Document
A DATA GENERATION FOR EMBEDDING AND

MESHING
High-D Euclidean Embedding Computation. For an arbitrarymetric

fieldM defined on a 3D surface domain Ω ⊂ R3, there exists a high-d
Euclidean embedded surface Ω ⊂ R𝑚 [Zhong et al. 2018; ?], where
the mapping Ω → Ω can be considered as a high-d transformation.
Our computation process depends on the faithful high-d coordinates
of the training meshes. To obtain that, we first follow the core idea
of SIFHDE2 [Zhong et al. 2018] for the surface mesh case, which
constructs the corresponding simplices in the target high-d space
by deforming the tangent basis of each triangle in the mesh. The
main advantages of this high-d embedding method are that we can
automatically preserve the original 3D shape geometric features
(such as sharp feature edges and corners) as well as avoid embedded
self-intersections by using the strategy of keeping the original 3D
coordinates, and only embedding additionally higher dimensions,
i.e., “anisotropic metric is traded as additional dimensions”.
For a triangle F ∈ R3, let {v𝑖 , v𝑗 , v𝑘 } denote its vertices. The

basis of its tangent space WF can be given by its edge vectors,
WF = [v𝑗 − v𝑖 , v𝑘 − v𝑖]. The corresponding simplex in high-d
space is F ∈ R𝑚 where𝑚 ≥ 3 (as suggested in [Zhong et al. 2018],
𝑚 = 8), and the basis of tangent space for F can be denoted by
WF = [v𝑗 − v𝑖 , v𝑘 − v𝑖]. Their relation can be represented as:

WF = JFWF, (12)

where JF is the Jacobian transformation matrix of triangle F , and
J𝑡FJF = MF .
However, this process could produce incorrect anisotropic di-

rection on some part of the mesh surface, which makes the whole
mesh object unstable for training. The main reason is because WF
is not a square matrix (3 × 2 as formed above), which cannot fully
determine the deformation since the direction perpendicular to the
triangle is not established as shown in Fig. 10. To address this is-
sue, inspired by [Sumner and Popović 2004], we construct a fourth
vertex hypothetically on each triangle F in the direction perpen-
dicular to the triangle as v𝑙 =

(v𝑗−v𝑖)×(v𝑘−v𝑖)√
| | (v𝑗−v𝑖)×(v𝑘−v𝑖) | |

, and result in

a new basis of tangent plane W′
F = [v𝑗 − v𝑖 , v𝑘 − v𝑖 , v𝑙 − v𝑖]. As

for the high-d corresponding basis, we can discard the new vertex
from the deformation result and keep the same notation WF as
above, since we only consider the surface case. Through the above
computations, the ground truth data for training our neural high-d
Euclidean embedding is generated.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1131-2/24/12.
https://doi.org/10.1145/3680528.3687700

1.09 9.61

Fig. 10. Illustration of adding a fourth vertex on the direction perpendicular
to a triangle.

Anisotropic Surface Mesh Generation. After obtaining the high-
d embedded coordinates WF , we can efficiently compute high-d
isotropic restricted Voronoi diagrams (RVD) of object Ω using the
particle optimization technique [Zhong et al. 2018] or centroidal
Voronoi tessellation (CVT) method [Lévy and Bonneel 2013] in high-
d space. Finally, the generated RVD and its dual restricted Delaunay
triangulation can bemapped from the high-d embedding space to the
original 3D space, where RVD and dual mesh can exhibit the desired
anisotropy. In practice, we only need to get rid of the additional
dimensions to get the back-mapped results since the embedding
computation is based on the strategy of keeping the original 3D
coordinates. Now, we can conduct the comparison experiments
between the improved version of SIFHDE2 and our NASM w.r.t. the
surface accuracy and anisotropic mesh quality measurement.

B COMBINATORIAL STRUCTURE OF HIGH-D NORMAL
METRIC CVT

We consider a domain Ω ∈ R𝑚 , where Ω is a surface embedded in
R𝑚 . The combinatorial structure of 𝐸ℎ𝑑 is determined by the high-d
restricted Voronoi diagram (RVD), i.e., the intersection between the
high-d Voronoi cells and the high-d embedded surface S. The RVD
is first computed by an exact algorithm based on [Yan et al. 2009].
Then, each restricted Voronoi cellΩx0∩S is decomposed into a set of
triangles called facets. The vertices of these facet triangles can have
three different configurations and need to be treated differently
in order to have the correct gradient when doing reverse-mode
differentiation as follows:

• C1: V is a vertex of the original high-d embedded surface S;
• C2: V is the intersection between an edge of the original high-
d embedded surface S and a bisector of two Voronoi cell sites
x𝑖 , x𝑗 ;

• C3: V is the intersection between a triangle of the original
high-d embedded surface S and two sets of bisectors x𝑖 , x𝑗
and x𝑖 , x𝑘 .

1

https://doi.org/10.1145/3680528.3687700

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan Li, Zhu, Zhong, Wang, Lin, Guo, Xin, Wang, Hua, and Zhong

C ALGEBRAIC STRUCTURE OF HIGH-D NORMAL
METRIC CVT

The objective function of feature-sensitive high-d CVT is defined by
adding a high-d normal metric MT into the CVT energy in high-d:

𝐸ℎ𝑑 (X) =
∑︁
𝑖

∫
Ω𝑖∩S

MT [y − x𝑖]
2
2
𝑑y, (13)

=
|T |
𝑛 + 𝑝
𝑛

 ∑︁
𝛼+𝛽+𝛾=𝑝

U𝛼
1 ∗ U𝛽

2 ∗ U𝛾3 , (14)

where :


U𝑖 = M

T (C𝑖 − x0)
V1 ∗ V2 = [𝑥1𝑥2, 𝑦1𝑦2, 𝑧1𝑧2]𝑡

V
𝛼

= V ∗ V ∗ · · · ∗ V (𝛼 times)
V = 𝑥 + 𝑦 + 𝑧

.

For RVD on the high-d embedded surface mesh, Voronoi cells are
discretized to a set of facet triangles, denoted as T (x0,C1,C2,C3).
So the Ω is the sum of the area of all the facets. A high-d CVT is a
stable critical point of 𝐸ℎ𝑑 during the optimization.

As stated in [Lévy and Liu 2010], given the gradient of a standard
CVT energy 𝐸, ∇𝐸 = 2𝑚𝑖 (x𝑖 − g𝑖), one cannot simply replace the
centroid g𝑖 and mass𝑚𝑖 with their anisotropic counterparts to get
the gradient of high-d CVT energy 𝐸ℎ𝑑 , since the anisotropy varies
between two adjacent cells. The closed form for gradient of high-d
CVT with normal metric over an integration simplex T is:

𝑑𝐸T
ℎ𝑑

(x0,C1,C2,C3)

𝑑X
=
𝑑𝐸T

ℎ𝑑

𝑑x0
+

∑︁
𝑖=1,2,3

𝑑𝐸T
ℎ𝑑

𝑑C𝑖

𝑑C𝑖

𝑑X
, (15)

where :
𝑑𝐸T

ℎ𝑑

𝑑x0
= −

𝑑𝐸T
ℎ𝑑

𝑑C1
−
𝑑𝐸T

ℎ𝑑

𝑑C2
−
𝑑𝐸T

ℎ𝑑

𝑑C3
, (16)

where X is the site point of the Voronoi cell. T (C1,C2,C3) is one
of the facet triangles that compose the restricted Voronoi cell in the
high-d embedding space.

D AUTO DIFFERENTIATION FOR HIGH-D NORMAL
METRIC CVT

Automatic differentiation is a computational technique that lever-
ages the chain rule of calculus. Instead of computing gradients from
explicit formula, automatic differentiation computes gradient start-
ing from the function value, and tracing backwards along how the
function value has been computed; and leverages the chain rule to
compute the gradient.

From Equation (15), the calculation of gradient can be separated

to two parts:
𝑑𝐸T

ℎ𝑑

𝑑C𝑖
and 𝑑C𝑖

𝑑X
, and the total gradient can be assembled

from these two expressions. In this subsection, we introduce how
to calculate the 𝐸T

ℎ𝑑
and C𝑖 in the forward pass in order to get the

correct gradient
𝑑𝐸T

ℎ𝑑

𝑑C𝑖
and 𝑑C𝑖

𝑑X
in the reverse pass.

For 𝐸T
ℎ𝑑
, it can be discretized onto triangle facets that compose

the restricted Voronoi cell, and the expression for this discretization

can be shortly expressed as:

𝐸T
ℎ𝑑

= |T |𝐹 T
ℎ𝑑
, (17)

where : 𝐹 T
ℎ𝑑

=
∑︁

𝛼+𝛽+𝛾=𝑝
U𝛼
1 ∗ U𝛽

2 ∗ U𝛾3 ,

where |T | denotes the area of current triangle facet, see Appendix
A in [Lévy and Liu 2010] for details.

D.1 Derivative of 𝐸T
ℎ𝑑

In [Lévy and Liu 2010], they used |T | = 1
2 ∥𝑁 ∥ to calculate the area

of |T |, where ∥𝑁 ∥ is the length of cross product between two edges
of |T |. It is fine for 3D case, and they also derive the explicit gradient
expression for 𝑑 |T |. However, this way of calculating triangle area
cannot be extended to dimension higher than 3. As we targeting on
higher dimension (e.g., 𝑑 = 8), we leverage Heron’s formula for the
area of a triangle in R𝑑 :

|T | =
√︁
𝑠 (𝑠 − 𝑎) (𝑠 − 𝑏) (𝑠 − 𝑐), (18)

where 𝑠 = 𝑎 +𝑏 +𝑐 and 𝑎, 𝑏, 𝑐 denote the length of three edges under
the normal metricMT .

It is noted that our computation is more complicated and challeng-
ing than [Lévy and Bonneel 2013], which also uses Heron’s formula
to calculate the area of triangle in 6D, but without having the metric
in their CVT energy function. So, their 6D CVT optimization does
not require to compute the gradient of Heron’s formula. Conversely,
for our high-d normal metric CVT, |T | becomes dependent regards
to 𝐸𝑇

ℎ𝑑
:

𝑑𝐸T
ℎ𝑑

𝑑C𝑖
= (

𝑑𝐹 T
ℎ𝑑

𝑑U𝑖
|T | + 𝑑 |T |

𝑑U𝑖
𝐹 T
ℎ𝑑

)MT
, (19)

where U𝑖 is defined in Equation (13).

To use automatic differentiation on
𝑑𝐸T

ℎ𝑑

𝑑C𝑖
, we first setU1,U2,U3 as

dependent variables, and 𝐹 T
ℎ𝑑

can be calculated from Equation (13).

Then
𝑑𝐹T

ℎ𝑑

𝑑U𝑖
can be derived by backpropagation. For automatic differ-

entiation on 𝑑 | T |
𝑑U𝑖

, we can reuse the U1, U2, U3 to get a = ∥U1 −U2∥,
b = ∥U2 − U3∥, c = ∥U3 − U1∥ and use Equation (18) to calculate

|T |. Then we perform backpropagation to get 𝑑 | T |
𝑑U𝑖

. Finally,
𝑑𝐸T

ℎ𝑑

𝑑C𝑖

can be obtained by assembling all the values together following
Equation (19).

The reason why we do not start the backpropagation from 𝐸T
ℎ𝑑

=

|T |𝐹 T
ℎ𝑑

to derive
𝑑𝐸T

ℎ𝑑

𝑑C𝑖
only, instead we take one step backward, is

because the gradients for each C𝑖 between these two ways could
have some differences. So, our auto differentiation for the back-
propagation makes the optimization convergence faster and more
accurate. The detailed computational procedure for the derivative
of C𝑖 is provided in the following subsection.

D.2 Derivative of C𝑖

The partial derivative of
𝑑𝐸T

ℎ𝑑
(x0,C1,C2,C3)

𝑑X
also requires the partial

gradient from vertices of facet triangles. For 3D case, every facet
triangle 𝑓 can be described by their support plane (N𝑓 , b𝑓) of an
equation N𝑓 x + b𝑓 = 0. The vertices of the facet triangles can be

2

NASM: Neural Anisotropic Surface Meshing:
Supplemental Document SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan

expressed by the intersections of bisectors and support planes ac-
cording to its configuration type (i.e., C1,C2,C3) and 𝑑C𝑖 can be
obtained by taking derivative with respect to a ternary linear system.
However, for a facet triangle embedded in the high-d space, its nor-
mal vector N𝑓 ∈ R𝑑 cannot be easily obtained. We use Sutherland-
Hodgman’s re-entrant clipping [Sutherland and Hodgman 1974].
We first recall the re-entrant clipping algorithm. Given the bisector
[x0, x1] and an edge with two endpoints A and B that intersects the
bisector, and the intersection I can be obtained by:

I = 𝜆1A + 𝜆2B, (20)

where :


𝜆1 =

𝑙1
|AB |

𝜆2 =
𝑙2

|AB |
,

where 𝑙1 is the perpendicular distance from A to bisector [x0, x1], 𝑙2
is the perpendicular distance from B to bisector [x0, x1]. To calculate
the perpendicular distance, we can calculate the distance between
two parallel planes. The bisector can be defined as 𝑑 = − 1

2 (x0 +x1) ·
−→n , and −→n is the direction of

−−−→
x0x1. The plane that passes through

endpoint A and is parallel to the bisector is 𝑑1 = −A · −→n . 𝑙1 and 𝑙2
can be obtained by:

𝑙𝑖 = |𝑑𝑖 − 𝑑 |. (21)

For three types of configurations for C𝑖 , where 𝑖 = 1, 2, 3, we should
use the re-entrant clipping in different ways to ensure the gradient
achieved from backpropagation is correct. For configuration C1, i.e.,
the original vertex of the surface 𝑆 , it yields no derivative for site
points x𝑖 . For configuration C2, it can be seen as an original edge
from the surface 𝑆 intersects with a bisector [x0, x1], which is simply
one pass of re-entrant clipping. We set x0 and x1 as dependent vari-
ables, two endpoints of the edges 𝑒1 and 𝑒2 as independent variables
to get the intersection C2. Then, we can apply backpropagation
from C2, and have the gradients of 𝑑C2

𝑑x0
and 𝑑C2

𝑑x1
.

For configuration C3, the edges to be clipped with are not the
original edges from surface 𝑆 . The facet triangle is clipped by two
bisectors b1 = [x0, x1] and b2 = [x0, x2]. Each bisector intersects
with a facet triangle at its two edges, and the intersections are
labeled as I𝑏11 , I𝑏12 and I𝑏21 , I𝑏22 . The intersection between [I𝑏11 , I

𝑏1
2]

and [I𝑏21 , I
𝑏2
2] coincides with C3. We can treat the process as re-

entrant clipping that the bisector b1 = [x0, x1] intersects with edge
[I𝑏21 , I

𝑏2
2], and the gradient of (𝑑C3

𝑑x0
)𝑏1 and 𝑑C3

𝑑x1
can be obtained by

backpropagation starting from C3. The same process should be
applied to bisector b2 = [x0, x2] and edge [I𝑏11 , I

𝑏1
2], and we can

obtain the gradient of (𝑑C3
𝑑x0

)𝑏2 and 𝑑C3
𝑑x2

. The final gradients for x0,

x1, and x2 are (𝑑C3
𝑑x0

)𝑏1 + (𝑑C3
𝑑x0

)𝑏2 , 𝑑C3
𝑑x1

, and 𝑑C3
𝑑x2

, respectively.

E ADDITIONAL RESULTS

E.1 Thingi10k Dataset
Tab. 4 shows a full version of quantitative comparison with our
NASM method, NASM without high-d normal metric CVT, and
SIFHDE2 method [Zhong et al. 2018]. We use 100%, 80%, 60%, 40%,
20%, and 10% of vertex count from input meshes and make the
quantitative report. Our full NASM framework outperforms other

cases / methods at all levels of the resolution. One of the main
advantages of NASM (w/ or w/o NM CVT) over SIFHDE2 method is:
our results indicate that as long as most of the metrics in the dataset
are accurate, NASM performs well during the inference. In contrast,
SIFHDE2 method is highly dependent on the quality of the metric
for each individual model, which is more sensitive to inaccuracies of
metrics. It is noted that the neural network can find a more general,
accurate, and robust embedding than SIFHDE2.
We also observe an increase of anisotropic mesh quality when

using CVT for meshing, instead of using high-d normal metric CVT.
Based on our analysis, it is actually a trade-off between anisotropic
mesh quality and surface accuracy (feature preserving). Normal
metric CVT can push the vertices towards sharp feature, which
may distort the anisotropic metric direction and stretching ratio. So
that the mesh quality evaluation may become lower. Fig. 11 shows
the qualitative comparison on NASM method, NASM without high-
d normal metric CVT (with CVT), and SIFHDE2 method [Zhong
et al. 2018]. Meanwhile, the neural high-d embedding computation
is much faster (about 1,500× speedup) than traditional SIFHDE2
method. The normal metric CVT computation takes slightly more
time than the general CVT computation.
Fig. 12 shows the additional anisotropic triangular meshes and

their corresponding anisotropic RVD results of our NASM on some
complicated surfaces from the Thingi10k dataset. The restricted
Voronoi cells can well capture the sharp features and curvature
anisotropies.

E.2 MGN Dataset
Tab. 5 shows the quantitative evaluation on Multi-Garment Net
(MGN) dataset [Bhatnagar et al. 2019] with 154 cloth models (includ-
ing 96 pants and 58 tops). Fig. 13 shows the additional anisotropic
surface meshing results of our NASM method on MGN dataset. The
examples of our results can well capture the open boundaries, and
detailed cloth wrinkles and folds from tops and pants models.

E.3 FAUST Dataset
Tab 6 shows the quantitative evaluation on FAUST dataset [?] with
200 human scan models of 10 different subjects in 30 different poses.
Each scan is a high-resolution and non-watertight triangular mesh.
Even though there are some issues in the original meshes, such
as feet are not complete, and some fingers are attached to each
other, etc., our NASM method can still handle these non-manifold
meshes. We use QEM [Garland and Heckbert 1997] to reduce the
mesh resolution (e.g., 5% of the original mesh elements) to feed into
the neural network. The evaluation is conducted between NASM
results and reduced-resolution meshes. Fig. 14 shows the anisotropic
surface meshing results of our NASM method on FAUST dataset.
Our results demonstrate promising results to capture geometric
anisotropies and features around hands, arms, legs, and thin clothes
wrinkles on 3D human models.

E.4 Synthetic Models
Fig. 15 shows the anisotropic surface meshing results of our NASM
method on synthetic mathematical torus models with different
stretching ratios, e.g., 1:2, 1:6, and 1:11. Our results show that the

3

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan Li, Zhu, Zhong, Wang, Lin, Guo, Xin, Wang, Hua, and Zhong

final mesh elements can well match the stretching ratios and direc-
tions of the curvature metric fields.

F ADDITIONAL ANALYSES

F.1 Timing
Fig. 16 shows the inference times of NASM embedding computation
with respect to the input number of vertices for all three testing
datasets, i.e., Thingi10k dataset (80 models), MGN dataset (154 mod-
els), and FAUST dataset (200 models). The colormap indicates the
maximum anisotropic stretching ratio of the corresponding mesh.
It is clear to see that the relationship between the inference time
and the input number of mesh vertices is consistently linear among
all three datasets.

F.2 Ablation Study
Tab. 7 shows the analysis of𝑤𝑙𝑎𝑝 value setting in high-d Euclidean
embedding loss function, i.e., Equation (4) in the main paper. We

compare with different weights of Laplacian loss, such as 0.1, 0.3, and
0.5 on Thingi10k dataset. Fig. 17 shows the qualitative comparison
with different weights of Laplacian loss𝑤𝑙𝑎𝑝 . Finally, it is clear to
see that 0.1 is the optimal setting for𝑤𝑙𝑎𝑝 in our task.
Fig. 18 shows the qualitative results of ablation study on our

NASMmethod with different loss functions, w/o data augmentation,
and w/o high-d normal metric CVT. Our proposed dot product loss
and full version of NASM demonstrate better performance than
other cases.

F.3 Failure Case
Fig. 19 shows that our NASM method may fail on a CAD-like model
with very sparse input vertices, since a high-quality curvature-based
embedding is very challenging to be predicted in such cases. Once
we increase the mesh resolution to some extent, we can obtain a
good-quality anisotropic mesh result.

4

NASM: Neural Anisotropic Surface Meshing:
Supplemental Document SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan

Table 4. Quantitative comparison with our NASM method, NASM without high-d normal metric CVT, and SIFHDE2 method [Zhong et al. 2018] on 80 models
selected from Thingi10k dataset, including smooth surfaces and surfaces with sharp and weak features. All the evaluate metrics are average values of all
models from the dataset. The best results are highlighted in bold per different #𝑉𝑜𝑢𝑡 . Note: #𝑉𝑖𝑛 is the average number of vertices of all input meshes, #𝑉𝑜𝑢𝑡 is
the average number of vertices of all output meshes, ‘Stretch’ is the average anisotropic stretching ratios of all models, CD (×105), HD (×102), ECD (×102).

Method #𝑉𝑖𝑛 #𝑉𝑜𝑢𝑡 Stretch CD ↓ F1 ↑ NC ↑ HD ↓ ECD ↓ EF1 ↑ 𝑇𝑒𝑚 (s) ↓ 𝐺𝑎𝑣𝑔 ↑ 𝑇𝑚𝑒𝑠ℎ (s) ↓
NASM 5,982 5,982 12.736 0.709 0.978 0.993 0.725 0.066 0.897 0.029 0.745 14.022

5,982 4,786 12.736 0.712 0.978 0.992 0.739 0.074 0.882 0.029 0.747 11.648
5,982 3,590 12.736 0.720 0.978 0.991 0.779 0.086 0.850 0.029 0.748 7.366
5,982 2,395 12.736 0.741 0.976 0.990 0.842 0.102 0.804 0.029 0.749 5.751
5,982 1,202 12.736 0.882 0.967 0.984 1.127 0.148 0.676 0.029 0.744 3.499
5,982 608 12.736 1.538 0.928 0.974 1.774 0.207 0.501 0.029 0.732 2.092

NASM 5,982 5,982 12.736 0.779 0.972 0.989 0.882 0.137 0.687 0.029 0.758 3.780
w/o NM CVT 5,982 4,786 12.736 0.812 0.968 0.988 0.940 0.145 0.635 0.029 0.760 3.587
(w/ CVT) 5,982 3,590 12.736 0.875 0.963 0.987 1.055 0.155 0.571 0.029 0.764 3.354

5,982 2,395 12.736 1.026 0.951 0.983 1.207 0.173 0.469 0.029 0.768 3.185
5,982 1,202 12.736 1.684 0.905 0.975 1.613 0.215 0.290 0.029 0.776 3.127
5,982 608 12.736 3.692 0.779 0.962 2.352 0.267 0.170 0.029 0.779 2.922

SIFHDE2 5,982 5,982 12.736 0.808 0.969 0.988 0.949 0.146 0.612 49.25 0.729 3.718
5,982 4,786 12.736 0.850 0.965 0.987 1.008 0.154 0.561 49.25 0.731 3.525
5,982 3,590 12.736 0.928 0.959 0.985 1.145 0.166 0.487 49.25 0.732 3.441
5,982 2,395 12.736 1.109 0.945 0.982 1.330 0.185 0.388 49.25 0.733 3.252
5,982 1,202 12.736 1.878 0.893 0.975 1.848 0.222 0.249 49.25 0.734 3.005
5,982 608 12.736 4.144 0.766 0.963 2.674 0.270 0.157 49.25 0.730 2.935

NASM:

NASM w/o NM-CVT:

SIFHDE2:

Fig. 11. Qualitative comparison with NASM method, NASM without high-d normal metric CVT (with CVT), and SIFHDE2 method [Zhong et al. 2018] (from
top row to bottom row).

5

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan Li, Zhu, Zhong, Wang, Lin, Guo, Xin, Wang, Hua, and Zhong

Fig. 12. Anisotropic triangular meshes and their corresponding anisotropic RVD results of our NASM on some complicated surfaces from Thingi10k dataset.

Table 5. Quantitative evaluation on Multi-Garment Net (MGN) dataset with 154 cloth models (including 96 pants and 58 tops). All the evaluate metrics are
average values of all models from the dataset. Note: CD (×105), HD (×102), ECD (×102).

#Meshes #𝑉𝑖𝑛 #𝑉𝑜𝑢𝑡 CD ↓ F1 ↑ NC↑ HD ↓ ECD ↓ EF1 ↑ 𝐺𝑎𝑣𝑔 ↑
154 6,033 6,020 0.549 0.993 0.993 1.216 0.098 0.788 0.725

Table 6. Quantitative evaluation on FAUST dataset with 200 human scans models of 10 different subjects in 30 different poses. All the evaluate metrics are
average values of all models from the dataset. Note: CD (×105), HD (×102), ECD (×102).

#Meshes #𝑉𝑖𝑛 #𝑉𝑜𝑢𝑡 CD ↓ F1 ↑ NC↑ HD ↓ ECD ↓ EF1 ↑
200 8,522 8,505 0.377 0.997 0.987 2.390 0.099 0.791

Table 7. Ablation study on the weight of Laplacian loss with 0.1, 0.3, and 0.5 on 80 models selected from Thingi10k dataset. All the evaluate metrics are average
values of all models from the dataset. The best results are highlighted in bold. Note: CD (×105), HD (×102), ECD (×102).

𝑤𝑙𝑎𝑝 #𝑉𝑖𝑛 #𝑉𝑜𝑢𝑡 CD ↓ F1 ↑ NC↑ HD ↓ ECD ↓ EF1 ↑ 𝐺𝑎𝑣𝑔 ↑
0.1 5,982 5,982 0.709 0.978 0.993 0.725 0.066 0.897 0.745
0.3 5,982 16,398 1.677 0.973 0.991 2.148 0.113 0.773 0.700
0.5 5,982 35,057 2.146 0.967 0.986 6.195 0.200 0.518 0.534

6

NASM: Neural Anisotropic Surface Meshing:
Supplemental Document SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan

Fig. 13. Additional anisotropic surface meshing results of our NASM method on an unseen testing dataset, e.g., MGN dataset. Several long and short sleeve
tops and pants meshes are shown to well capture the open boundaries and detailed cloth wrinkles and folds.

Fig. 14. Additional anisotropic surface meshing results of our NASM method on another unseen testing dataset, e.g., FAUST dataset. Several human subject
meshes in different poses are shown to well capture geometric anisotropies and features around hands, arms, legs, and thin clothes wrinkles on 3D human
models.

7

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan Li, Zhu, Zhong, Wang, Lin, Guo, Xin, Wang, Hua, and Zhong

Fig. 15. The qualitative results of our NASM method on synthetic torus models with different stretching ratios. From left to right, the stretching ratios are: 1:2,
1:6, and 1:11, respectively.

Fig. 16. Inference times of NASM embedding computation with respect to the number of input mesh vertices from three datasets (left to right: 80 models from
Thingi10k, 154 models from MGN, and 200 models from FAUST). The colormap indicates the maximum anisotropic stretching ratio of the corresponding mesh.

Fig. 17. The qualitative results of ablation study on our NASM method with different weights for Laplacian loss: 0.1, 0.3, and 0.5 (from left to right).

L2 w/o aug Cos Dot Product Ours
Ours w/o
NM CVT

Fig. 18. The qualitative results of ablation study on our NASM method with different loss functions, without data augmentation, and without high-d normal
metric CVT.

8

NASM: Neural Anisotropic Surface Meshing:
Supplemental Document SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan

Sparse Input Dense Input

Fig. 19. Failure case: our method cannot handle the CAD-like model with a triangulation with extremely sparse vertices, e.g., 2,406 vertices (left); while our
method can successfully handle a denser triangulation, e.g., 20,000 vertices (right).

9

	Abstract
	1 Introduction
	2 Related Works
	2.1 Anisotropic Triangle Meshing
	2.2 Neural Geometric Learning on Meshes

	3 Neural High-D Euclidean Embedding
	3.1 High-D Euclidean Embedding Loss
	3.2 High-D Euclidean Embedding Network

	4 Feature-Sensitive Anisotropic Meshing
	4.1 Normal Metric in High-D
	4.2 High-D Normal Metric CVT
	4.3 Auto Differentiation for High-D Normal Metric CVT
	4.4 Restricted Voronoi Diagram and Mesh Generation

	5 Experimental Results
	5.1 Datasets
	5.2 Implementation Details
	5.3 Evaluation Metrics
	5.4 Results on Surfaces without Sharp Features
	5.5 Results on Surfaces with Sharp Features
	5.6 Results on Unseen Datasets
	5.7 Ablation Study

	6 Conclusion
	7 Limitations and Future Work
	Acknowledgments
	References
	A Data Generation for Embedding and Meshing
	B Combinatorial Structure of High-D Normal Metric CVT
	C Algebraic Structure of High-D Normal Metric CVT
	D Auto Differentiation for High-D Normal Metric CVT
	D.1 Derivative of EThd
	D.2 Derivative of Ci

	E Additional Results
	E.1 Thingi10k Dataset
	E.2 MGN Dataset
	E.3 FAUST Dataset
	E.4 Synthetic Models

	F Additional Analyses
	F.1 Timing
	F.2 Ablation Study
	F.3 Failure Case

