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Abstract

Gaussian Mixture Models (GMMs) have been recently proposed for approximating actors
in actor-critic reinforcement learning algorithms. Such GMM-based actors are commonly
optimized using stochastic policy gradients along with an entropy maximization objective.
In contrast to previous work, we deĄne and study deterministic policy gradients for optimiz-
ing GMM-based actors. Similar to stochastic gradient approaches, our proposed method,
denoted Gaussian Mixture Deterministic Policy Gradient (Gamid-PG), encourages policy
entropy maximization. To this end, we deĄne the GMM entropy gradient using Varia-
tional Approximation of the KL-divergence between the GMMŠs component Gaussians. We
compare Gamid-PG with common stochastic policy gradient methods on benchmark dense-
reward MuJoCo tasks and sparse-reward Fetch tasks. We observe that Gamid-PG outper-
forms stochastic gradient-based methods in 3/6 MuJoCo tasks while performing similarly on
the remaining 3 tasks. In the Fetch tasks, Gamid-PG outperforms single-actor determinis-
tic gradient-based methods while performing worse than stochastic policy gradient methods.
Consequently, we conclude that GMMs optimized using deterministic policy gradients (1)
should be favorably considered over stochastic gradients in dense-reward continuous control
tasks, and (2) improve upon single-actor deterministic gradients.

1 Introduction

This study presents a comparison between deterministic and stochastic policy gradients for optimizing policies
represented as Gaussian Mixture Models (GMMs) in model-free deep reinforcement learning (RL). Model-
free RL was successfully demonstrated in various control domains. Examples include video games (Mnih
et al., 2015; Wurman et al., 2022), robotic control (Elguea-Aguinaco et al., 2023; Dey et al., 2021; 2024; Kober
et al., 2013), traffic applications (Ault & Sharon, 2021; Sharon, 2021), and medical procedures (Zhou et al.,
2021; Coronato et al., 2020). SpeciĄcally, actor-critic methods (Lillicrap et al., 2015; Fujimoto et al., 2018;
Haarnoja et al., 2018; Schulman et al., 2017) have proven to be effective for RL in continuous control domains.
These methods were shown to be most effective when coupled with high-capacity function approximators
such as neural networks for approximating both the actor and the critic.

Prior work on actor approximation can be broadly divided into two categories; (1) deterministic (Silver et al.,
2014), where the policy approximator maps states to actions, and (2) soft (Haarnoja et al., 2018), where the
policy approximator maps states to a distribution deĄned over the action space. Each of these two classes has
known beneĄts and limitations. In particular, deterministic actors are unable to represent complex policies
that capture several modes of optimal behavior while soft actors commonly assume a speciĄc parametric
distribution (often oversimpliĄed) for which a closed-form gradient, with respect to the action distribution
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parameters (e.g., mean and variance of a Gaussian), is well-deĄned. A line of publications (Ren et al., 2021;
Peng et al., 2020; Akrour et al., 2021; Baram et al., 2021) attempted to address this gap by deĄning a closed-
form gradient for general distributions within soft-actor optimization algorithms. These methods attempt
to Ąt the soft actorŠs action distribution to the criticŠs action-value distribution. Empirically (on benchmark
MuJuCo domains), such approaches present no, or marginal, beneĄts over a single-Gaussian variant (Baram
et al., 2021).

To overcome the limitations associated with single Gaussian actors, Baram et al. (2021) proposed using a
Gaussian Mixture Model (GMM) as the policy approximator in a maximum entropy (MaxEnt) framework.
GMMs are known to be universal approximators of densities (Alspach & Sorenson, 1972) and result in a
general soft actor. The proposed approach was implemented and evaluated within the Soft Actor-Critic
(SAC) (Haarnoja et al., 2018) algorithm. The authors did not Ąnd clear empirical evidence supporting the
use of GMMs over a single Gaussian. They attribute this Ąnding to two reasons: ŞFirst, benchmarked tasks
are unimodal in nature, so a unimodal policy should do. Second, the mixture policy collapses to a mean
policy in the presence of equal mixing weights.Ť In contrast to previous work, we propose training the GMM-
based soft actor using a deep deterministic policy gradient (DDPG) approach (Lillicrap et al., 2015; Fujimoto
et al., 2018). Unlike soft actor-critic methods, DDPG does not attempt to capture an underlying action-value
distribution but attempts to converge on a (deterministic) local optimal action. When coupled with a GMM,
such deterministic policy gradient algorithms converge on a set of local optima under common convergence
conditions. However, as previously reported (Baram et al., 2021), GMM-based actors might suffer from
situations where Şthe mixture policy collapses to a mean policyŤ. Addressing this issue, we demonstrate how
maximum entropy RL principles (Aghasadeghi & Bretl, 2011; Toussaint, 2009; Rawlik et al., 2012; Haarnoja
et al., 2018; Fox et al., 2016) can be incorporated into the deterministic actorŠs gradient using Variational
Approximation (Hershey & Olsen, 2007) of the KL-divergence between the GMM actor and a single Gaussian.
We term our proposed approach Gaussian Mixture Deterministic Policy Gradient (Gamid-PG).

We conclude our study with four sets of experiments: (1) we present illustrative results on a simpliĄed
domain to showcase Gamid-PGŠs capability to capture multimodal behavior; (2) we conduct an empirical
investigation to determine the conditions under which Gamid-PG outperforms stochastic policy gradients,
and vice versa; (3) we undertake a comparative evaluation by benchmarking Gamid-PG against established
deterministic and stochastic gradient-based methods in challenging continuous control environments with
high-dimensional action spaces; and (4) we test the sensitivity of GamidŠs hyperparameters on its performance
on a representative domain.

The reported results suggest that for dense-reward control tasks with continuous action spaces, the determin-
istic gradient approach (Gamid-PG) can be more effective than stochastic gradient approaches to optimize
GMMs and should be considered by researchers and practitioners. While, for sparse-reward tasks, stochastic
gradient approaches are observed to be more effective than deterministic gradient approaches. Nevertheless,
Gamid-PG is shown to improve upon single-actor deterministic gradient approaches across all the benchmark
domains.

2 Preliminaries

2.1 Reinforcement learning (RL)

In RL, a policy (actuation function) is optimized over an underlying Markov decision process (MDP) which
is a tuple ¶S, A, P, R, γ, I0♢. S is the state space; A is the action space; P(s, a, s′) is the transition
probability of the form P : S × A× S → [0, 1], representing the probability of transitioning from state s to
state s′ after taking action a; R(s, a) is the reward function of the form R : S × A → R, representing the
immediate utility gained from being in state s and taking action a; γ is the discount factor, representing the
factor of lost utility in future rewards; Ąnally, I0 is a distribution over the initial state.

An RL agent is assumed to follow an internal policy, π, which maps states to actions. π is commonly
deĄned either as deterministic, i.e., π : S → A, or as soft (stochastic), i.e., mapping states to a distribution
over actions. The agentŠs chosen action (at) at the current state (st) affects the environment such that
a new state emerges (st+1) as well as some reward (rt) representing the immediate utility gained from
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performing action at at state st, given by R(st, at). ω is used to denote a Ąnite horizon trajectory of the
form ¶s0, a0, r0, s1, ..., aT −1, rT −1, sT ♢. The expected return or expected sum of discounted rewards for a
given policy is denoted by J(π) = Eω∼π

∑

t γtrt. In RL the observed return is used to tune a policy such
that J(π) is maximized. The policy arg maxπ[J(π)] is the optimal policy and is denoted by π∗.1

Common RL frameworks include value-based, policy-gradient, and actor-critic approaches. A value-
based approach attempts to learn the expected future utility from states (state value) or from action-state
pairs (action value or q-value). The policy returns actions that maximize the expected utility (π(s) =
arg maxa[Q(s, a)]). A prominent example of a value-based approach is the model-free deep Q-learning
algorithm (DQN) (Mnih et al., 2015). In the policy-gradient approach (Williams, 1992) a policy is deĄned
through a parameterized differential equation, where the policy parameters are iteratively updated, following
the policy gradient, towards favorable outcomes (as experienced through the reward function). Using state or
action value approximations for deĄning favorable outcomes for policy-gradient updates is usually referred
to as an actor-critic approach. A prominent example of a state-of-the-art actor-critic approach is deep-
deterministic-policy-gradient (DDPG) (Lillicrap et al., 2015; Fujimoto et al., 2018).

2.2 Distributional RL

In order to capture the intrinsic uncertainty of MDPs, a line of publications proposed to extend value-
based approaches to estimate the distribution over returns. These include SPL-DQN (Luo et al., 2021),
distributional-policy-gradient (Singh et al., 2022; Song & Zhao, 2020), and distributed-distributional-DDPG
(D4PG) (Barth-Maron et al., 2018). These approaches still converge on a deterministic policy and, thus,
might fail to capture diverse modes of optimal behavior, i.e., while the critic (Q-network) can capture multiple
modes of optimality in the Q-value space, the (unimodal) actor is limited in its ability to do the same.

2.3 Soft policy density approximation

Another line of work suggests training a policy as a distribution over actions, i.e., a soft policy. The Ąt-
ted distribution is commonly parametric to allow closed-form gradient computation. For example, training
mean and variance parameters of a Gaussian. Common parametric policy distributions used in the liter-
ature include Gaussian (Schulman et al., 2015; 2017), Beta (Chou et al., 2017), and Delta (Silver et al.,
2014; Lillicrap et al., 2015; Fujimoto et al., 2018). While such parametric distributions are easy to train
(having closed-form gradients), they provide a limited representation power. Addressing this issue, Tessler
et al. (2019) proposed Generative Actor-Critic (GAC). It applies Quantile-Regression (Koenker & Hallock,
2001) over Autoregressive-Implicit-Quantile-Networks (Ostrovski et al., 2018) that can represent arbitrarily
densities. However, the reported results for GAC are not better (asymptotic performance and sample effi-
ciency) than those reported for Soft Actor-Critic (SAC) (Haarnoja et al., 2018) which uses a single Gaussian
as a soft actor policy. Another approach for capturing complex distributional properties, such as skewness,
kurtosis, multimodality, and covariance structure is the Semi-Implicit Actor (SIA) (Yue et al., 2020). This
approach adopts a semi-implicit hierarchical construction (Yin & Zhou, 2018) for Ątting highly expressive
(yet not general) parametric distributions.

2.4 Gaussian Mixture Model (GMM)

GMMs are probability density functions where the marginal densities of x ∈ R
d under f are f(x) =

∑

i∈N piN (x; µi, Σi), for a mixture of N Gaussians where N (x; µi, Σi) is the marginal density of x for a
single Gaussian, i ∈ N . pi are non-negative weighting coefficients with

∑

n pn = 1. GMMs are universal ap-
proximators of densities, i.e., a GMM with sufficient components can approximate any other density function
to arbitrary precision (Alspach & Sorenson, 1972).

GMMs in RL. GMMs were previously proposed as function approximators within RL frameworks. Agos-
tini & Celaya (2010) proposed using GMM as Q-function approximators. While such an approach was
shown to naturally conform to distributional RL, its overall performance (asymptotic return and sample

1In some tasks arg max
π

[J(π)] is not unique. In such cases, π
∗ may refer to any optimal policy.
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efficiency) is outperformed by deep-neural-network-based Q-approximators (Mnih et al., 2015). Another
line of work (Nematollahi et al., 2022) suggested training a GMM controller using samples obtained from a
SAC agent. However, the GMM controller was not integrated into the SAC algorithm (e.g., as the actor or
critic), but was trained using supervised learning independently from the SAC agent. Another work (Peng
et al., 2020) proposed to run multiple RL agents simultaneously with a shared reply buffer while actively
encouraging policy diversity between the agents. While each agentŠs policy can be represented with a single
Gaussian, the policy combination was not optimized as a single GMM model. Later, Baram et al. (2021)
proposed the use of GMMs as policy approximators in maximum entropy (MaxEnt) frameworks. The pro-
posed approach was implemented and evaluated within the Soft Actor-Critic (SAC) (Haarnoja et al., 2018)
algorithm. The authors did not Ąnd clear evidence supporting the use of GMMs over a single Gaussian.
They attribute this Ąnding to two reasons: ŞFirst, benchmarked tasks are unimodal in nature, so a unimodal
policy should do. Second, that the mixture policy collapses to a mean policy in the presence of equal mixing
weights.Ť In contrast to their claims, our experimental results (Presented in Section 4) suggest that training
a GMM-based actor is advantages. In contrast to Baram et al. (2021), Ren et al. (2021) reported posi-
tive results (marginally outperforming SAC and PPO with a unimodal policy) when training parameterized
mixing weights. In that work, the mixing weights are trained using a routing function as part of a Mixture-
of-Experts RL model (Jacobs et al., 1991; Peng et al., 2019; Neumann et al., 2009; Akrour et al., 2021).
Building on the partial successes of GMM-based actors in soft-actor algorithms, we extend this approach
(training GMM-based actors) to a deterministic policy gradient algorithm.

2.5 Deep Deterministic Policy Gradient (DDPG)

DDPG (Lillicrap et al., 2015) is a benchmark continuous control RL algorithm that trains both a critic, as a
differentiable Q-function approximator, Q̂ : S ×A → R, and a deterministic differentiable actor, π : S → A.

DDPG Training. Given a randomly sampled batch of transitions, each of type < s, a, r, s′ >, (1) the
critic is trained to minimize the L2 TD-error (Doya, 1995), i.e., minimize:(Q̂(s, a) − (r + γQ̂(s′, π(s′))))2;
and (2) the actor, π, is trained to maximize Q̂(s, π(s)) while assuming the Q̂ parameters constant.

DDPG Exploration. An advantage of off-policy algorithms such as DDPG is that they can treat the
problem of exploration independently from the trained policy. As such, DDPG performs random exploration
by sampling a noise value from an Ornstein-Uhlenbeck process (Uhlenbeck & Ornstein, 1930) to generate
temporally correlated noise. The authors do not mention a particular reason for this choice (applying
correlated noise). Moreover, the authors mention that other random noise processes can be used. In our
experiments with DDPG, we found that comparable results are achieved when the noise is sampled using a
(simpler) non-correlated Gaussian with mean zero and variance, Σ ∝ I.

3 Gaussian Mixture Deterministic Policy Gradient

We propose a variant of the DDPG approach termed Gaussian Mixture Deterministic Policy Gradient
(GAMID-PG), or Gamid for short, where we (1) deĄne the actor as a mixture of N Gaussians (instead
of a single Gaussian in DDPG), (2) deĄne the actorŠs policy through GMM sampling, and (3) include a
GMM diversiĄcation objective as part of the actorŠs gradient. The main motivation for the proposed al-
gorithm is to enable deterministic policy gradients for general densities. This is justiĄed by (1) the fact
that speciĄc types of density functions e.g., a single Gaussian, are sometimes incapable of converging to an
optimal policy (Tessler et al., 2019), and (2) beneĄts reported for training such general-density actors in
soft-actor-critic optimization (with non-deterministic policy gradients) (Ren et al., 2021). Similar to DDPG,
Gamid assumes MDPs with a continuous action space as the underlying environment. Our Gamid approach
is detailed in Algorithm 1 available in the form of pseudocode. The hyper(meta)-parameters include (1) the
number of Gaussians for the GMM policy, N , (2) a shared variance for all Gaussians as a scaled identity
matrix, Σ, (3) a policy divergence temperature (possibly decaying), τ , and, (4) the target network update
rate, α.
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Algorithm 1: Gaussian Mixture Deterministic Policy Gradient (Gamid)

hyperparameters: (1) number of Gaussians, N ; (2) shared variance, Σ ∝ I; (3) policy divergence
temperature, τ (possibly decaying); (4) target update rate, α

init : (1) policy parameters (for N Gaussians), θ =
⋃N−1

i=0 θ[i]; (2) Q-function
parameters, ϕ; (3) empty replay buffer, D; (4) initial state, s ∼ I0

1 Set target parameters as main parameters, θtarg ← θ, ϕtarg ← ϕ;
2 while not converged do
3 Sample a Gaussian (out of N), n← SampleGaussian(N,P), where P =

⋃

i∈N pi is a distribution
over N outcomes (e.g., uniform i.e., ∀i, pi = 1/N) ;

4 Sample an action, a← Clip (µ(s; θ[n]) + ϵ, aLow, aHigh), where ϵ ∼ N ([0, ..., 0]⊤, Σ);
5 Execute a in the environment, observe next state s′, reward r, and done signal d indicating whether

s′ is terminal;
6 Store (s, a, r, s′, d) in the reply buffer, D;
7 Advance the environment, s← s′;
8 if d is TRUE, then reset the environment, s ∼ I0;
9 Randomly sample a batch of transitions, B = ¶(s, a, r, s′, d)♢ from D;

10 Compute Q targets:
y(r, s′, d) = r + γ(1− d) max

i

[

Qφtarg
(s′, µ(s′; θ[i]))

]

Update Q-function with one-step gradient descent using

∇φ

1

♣B♣

∑

(s,a,r,s′,d)∈B

(Qφ(s, a)− y(r, s′, d))
2

for i ∈ [0, ..., N − 1] do
11 Update mean for Gaussian i, i.e., µ(s; θ[i]), with one-step gradient ascent while considering other

Gaussians (j ̸= i) constant, using

∇θ[i]
1

♣B♣



∑

s∈B

Qφ(s, µ(s; θ[i])) + τDKL(i∥N \ i))

]

where
DKL(i∥(N \ i)) ≈ − log

∑

j ̸=i

exp(−♣♣µ(s; θ[i])− µ(s; θ[j])♣♣2)

12 end
13 Update target parameters, θtarg ← αθtarg + (1− α)θ, and ϕtarg ← αϕtarg + (1− α)ϕ;
14 end

At this point, one might wonder Şare GMMs still considered universal density approximators when using
a single shared variance?Ť. The answer is ŚYesŠ. Calcaterra (2008) showed that linear combinations of
Gaussians with a single variance are, indeed, a universal density approximator. However, considering a
single variance commonly requires combining more Gaussian in order to reach similar approximation accu-
racy levels. Nonetheless, we observed (empirically) that optimal performance for Gamid is achieved when
the number of Gaussians is fairly low (2Ű5). Moreover, setting a constant variance allows for a practical
approximation of an entropy gradient term, as described later in Section 3.2.

Given the shared variance, the GMM policy is deĄned solely by N means. These means are approximated
per Gaussian, i ∈ [0, . . . , N − 1], with a differential function approximator, µi : S × θ[i] → R, where θ[i]
are the approximatorŠs tunable parameters. θ =

⋃

i θ[i] is initialized randomly. Similarly, the Q-function
approximatorŠs parameters, ϕ, are also initialized randomly.
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3.1 GMM policy sampling

Sampling an action for a given state, s, from the N Gaussians GMM is performed in two stages. First,
(Line 3), we sample one Gaussian, n, from a distribution deĄned by the GMM weighting coefficients, P .
Next, (Line 4), we sample an action from n. P can be set in many ways, e.g., as a uniform distribution,
∀i, pi = 1/N . We observed (empirically) that setting the coefficients using an ϵ-greedy approach (Mnih
et al., 2015) is beneĄcial. That is, set pi = 1 − ϵ + ϵ/N for arg maxi Q(s, µ(s; θ[i])) and ∀j ̸= i, pj = ϵ/N .
This approach, however, introduces an extra hyperparameter, ϵ, which requires meta tuning. We also
experimented with existing approaches for tuning P to be proportional to the Q-values Ren et al. (2021).
However, such an approach was not observed to perform better compared to the simpler ϵ-greedy approach.

3.2 GMM training

Known techniques for training GMM approximators from samples are mostly applicable for supervised
learning, i.e., when the target GMM distribution is known (Figueiredo et al., 1999) or can be sampled (Arenz
et al., 2020). Since, in our case, π∗ is not known a priori and is not available for sampling, we apply
a deterministic-policy-gradient approach for training the GMM (as the actor in Gamid). The proposed
gradient is deĄned with respect to one Gaussian (i ∈ [0, . . . , N − 1]) and one state, s. Similar to the original
DDPG algorithm, since we consider Σi to be constant, the gradient is deĄned only with respect to the mean,
µ(s; θ[i]). It is based on two (possibly conĆicting) optimization objectives.

1. Maximize the expected return for a policy that follows Gaussian i, i.e., maxθ[i][Q(s; θ[i])].

2. Maximize the cross-entropy between Gaussian i and the GMM excluding Gaussian i, i.e.,
maxθ[i][

∫

N (x; µ(s; θ[i]), Σ) log GMMN\i(x; µ(s; θ)dx]

Optimization objective #1 follows the original DDPG actor training procedure. Optimization objective #2
is inspired by MaxEnt frameworks, which complement the standard maximum reward objective (Objective
#1) with an entropy maximization term (Aghasadeghi & Bretl, 2011; Toussaint, 2009; Rawlik et al., 2012;
Haarnoja et al., 2018; Fox et al., 2016). These two optimization objectives are presented in Line 11 of
Algorithm 1 where policy i is updated in the direction that increases the approximated Q value AND
increases the Kullback-Leibler (KL) Divergence (Kullback, 1997) from a GMM distribution which includes
all the other Gaussians (other than i). At this point, the reader might wonder ŞWhy maximize the KL-
divergence and not the cross entropy as stated above?Ť. There are two reasons for this choice: (1) in
Gamid, KL-divergence and cross entropy are equivalent with respect to the resulting gradients; (2) it allows
utilization of state-of-the-art KL-divergence approximation techniques for GMMs (Hershey & Olsen, 2007).

From cross-entropy to KL-divergence. Cross-entropy (H) is similar to KL-Divergence (DKL) with the
addition of an entropy term. More speciĄcally, the cross-entropy of a distribution f relative to a distribution
g is deĄned as H(f, g) = DKL(f∥g) + H(f).

Proposition 1. In Gamid, cross-entropy and KL-divergence result in the same gradients with respect to a
single Gaussian, i, and the GMM excluding i, denoted GMMN\i.

Proof. The Shannon entropy of a single Gaussian, f = N (µ, Σ), is H(f) = 0.5 ln det(2πeΣ) (Huber et al.,
2008) (note that π refers to the mathematical constant and not a policy here). Since H(f) is not a function
of µ, we get ∇µH(f) = 0. As a result, for any other density g (e.g., a GMM), we have ∇µH(f, g) =
∇µDKL(f ∥ g). Note that ∇ΣH(f, g) is not needed for Gamid because it assumes a constant Σ.

Approximating DKL. For two distributions f and g, DKL(f∥g) returns the expected log probability
ratio between the two distributions, f(x)

g(x) , when x is sampled from f . Formally, DKL(f∥g) := Ex∼f log f(x)
g(x) =

∫

x
f(x) log f(x)

g(x) dx. For k-dimensional Gaussians f and g the KL-divergence has a closed form expression,

(1)DKL(f∥g) =
1

2



log
♣Σg♣

♣Σf ♣
+ Tr[Σ−1

g Σf ]− k + (µf − µg)⊤Σ−1
g (µf − µg)


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However, no closed-form expression is known for two GMMs. As a result, one might wonder Şhow can we
compute DKL in Gamid (Line 11)?Ť.

Assume that f and g are GMMs with the following marginal densities:

f(x) =
∑

a

paN (x; µa, Σa)

g(x) =
∑

b

pbN (x; µb, Σb)

A commonly used (closed form) approximation to DKL(f∥g) for such cases is the Variational Approxima-
tion (Hershey & Olsen, 2007) which is deĄned as follows

Dvar(f∥g) =
∑

a

pa log

∑

a′ pa′ exp(−DKL(fa∥fa′))
∑

b pb exp(−DKL(fa∥gb))
(2)

In Gamid, f represents a single Gaussian (out of N). As such, we get a simpliĄed Dvar expression, speciĄcally:

Dvar(f∥g) = − log
∑

b

pb exp(−DKL(f∥gb)) (3)

In Gamid all Gaussians comprising the GMM have a shared Σ. When setting Σ = I, i.e., the identity matrix,
Equation 1 is simpliĄed to ♣♣µf − µg♣♣

2, and consequently, Equation 3 can be further simpliĄed to

Dvar(f∥g) = − log
∑

b

pb exp(−♣♣µf − µb♣♣
2) (4)

As we seek to diversify the GMM policy overall composing Gaussians, we consider uniform weights (∀b, pb =
1/N) when setting Dvar in Line 11 of Gamid. As this is a constant scalar value, it is simply omitted and
can be viewed as a component of the temperature scalar (τ).

Finally, it is important to note, that Gamid is compatible with various DDPG variants. As such, when seeking
state-of-the-art performance, one should implement it within the most effective DDPG variant. Indeed, in
our experimental section, we report results for a Gamid implementation extending the Twin Delayed DDPG
(TD3) variant (Fujimoto et al., 2018).

3.3 Convergence of Gamid

When setting the number of Gaussian to one (N = 1), Gamid is effectively the same as DDPG and shares
similar convergence guarantees. However, when considering a mixture of N > 1 Gaussians, the objective
function per Gaussian differs from that of DDPG following the MaxEnt sub-objective. As such, DDPG and
Gamid might converge on a different local optimum. This issue can easily be addressed by decaying the
policy divergence temperature (τ). Nonetheless, matching the convergence guarantees of DDPG provides
minor value as no such guarantees are provided for the general case. SpeciĄcally, Lillicrap et al. (2015) state,
ŞAs with Q learning, introducing non-linear function approximators means that convergence is no longer
guaranteed. However, such approximators appear essential in order to learn and generalize on large state
spacesŤ.

4 Experiments

The goals of the reported experimental study are fourfold: (G1) to illustrate the beneĄts of a GMM-based
actor over a single Gaussian policy in the context of Gamid when attempting to capture multiple modes of
optimality, (G2) to compare deterministic policy gradients versus stochastic policy gradients for optimizing
a GMM-based actor, (G3) to compare Gamid against contemporary RL algorithms for continuous control
tasks, and (G4) to demonstrate the performance sensitivity for GamidŠs hyperparameters. Full descriptions
for all the domains (state and action space, reward function) are provided in Appendix A.
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(a) Step# 0 (b) Step# 2000 (c) Step# 4000 (d) Step# 9000

Figure 1: Policy distribution at different training steps in the 1-D continuous bandit problem with the
reward function shown in green. x-axis represents the action space and y-axis the scaled PDF (probability
density function). Unlike single Gaussian policy-based methods such as SAC and TD3/DDPG, and GMM
policy-based SACM (shaded in blue), Gamid (shaded in red) converges on the optimal action.

4.1 (G1) Capturing Multiple Modes of Optimality

To illustrate the beneĄts of Gamid over a single Gaussian policy, as commonly used in SAC and DDPG/TD3,
in terms of escaping the local optima and Ąnding the optimal solution, we consider a toy continuous bandit
problem with a 1-D action space. We adopt this problem from Huang et al. (2023). It has a multi-
modal (2 modes) deterministic reward function deĄned over the action space in a bandit setting. The exact
experimental settings follow those presented in Huang et al. (2023). For completeness, these settings are
provided in Appendix A.

Figure 1 showcases the performance of Gamid against a single Gaussian policy with a parameterized mean
(as in both SAC and DDPG) and standard deviation (as in SAC). The Gaussians for both SAC and DDPG
are initialized with means around 0 (Figure 1a). We observe that both the single Gaussian actor variants
move toward the suboptimal action (Figures 1b and 1c) and converge on it by the end of the training
phase (Figure 1d). Similarly, Gamid Ąnds the suboptimal action during the initial learning stages but, in
contrast to the single Gaussian variants, it gradually spreads out and converges on the optimal action by the
end of the training phase. These results suggest that a GMM-based actor can be helpful in escaping local
(sub)-optimum as opposed to a single Gaussian actor. However, when examining the performance of SACM
(with 5 Gaussians), we notice that it also converges on the suboptimal action, despite training a GMM actor.
While SACM uses a GMM-based actor, similar to Gamid, it trains it using stochastic gradients, in contrast
to Gamid. These results suggest that when training a GMM actor, deterministic gradients can be more
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effective in escaping local optimum when compared to stochastic gradients. The inability of a stochastic
gradient approach (SAC, SACM) to capture the optimal mode is identiĄed in prior work [2] from which we
adopted the 1-D continuous bandit environment. They provide the following explanation: ŞThe Gaussian
policy, initialized at 0 with a large standard deviation, can cover the whole solution space. However, the
gradient with respect to µ is positive, which means the action probability density will be pushed towards
the right, as the expected return on the right side is larger than the left side, although the left side contains
a higher extreme value. As a result, the policy will move right and get stuck at the local optimum with a
low chance of jumping outŤ. We agree with the intuition provided in this explanation which highlights the
limitations of stochastic gradient-based actor optimization in escaping local optimum.

4.1.1 GMM Actor Divergence

We analyze the diversity between the Gaussians in Gamid captured by the approximated KL-divergence.
SpeciĄcally, we utilize Equation (4) for approximating the sum of KL-divergence over all Gaussians with
respect to the GMM. That is, we deĄne ΣDvar =

∑N
i=1 DKL(i∥(N \ i)) (see deĄnition from Line 11 in

Algorithm 1). Figure 2 contains plots of ΣDvar at each training step on three representative MuJoCo
tasks (Todorov et al., 2012), ŚHopper-v3Š, ŚHalfCheetah-v3Š, and ŚWalker2d-v3Š with increasing order of
action dimensionality. We provide results for two extreme τ values (0 and 10) to highlight their effect on
ΣDvar. We expect ΣDvar to be relatively higher for higher values of τ since a higher value of τ maximizes
ΣDvar (Line 11 in Algorithm 1). The ΣDvar curves for all the tasks in Figure 2 follow the expected trend
as the curve corresponding to τ = 10 is consistently higher than the one corresponding to τ = 0. For
comparison, we also include curves for the tuned τ values (τ = opt.) as listed in Table 5 which we observe to
be between the curves corresponding to τ = 0 and τ = 10. These curves are closer to τ = 0 since the tuned
values are closer to zero at (0.01 Ű 0.3). We further visualize the evolution of the GMM Gaussian component
means in Gamid during different steps of the training stage. See Appendix D.1 for full details and results.

(a) Hopper-v3 (b) HalfCheetah-v3 (c) Walker2d-v3

Figure 2: Sum of the Dvar over N Gaussian components (ΣDvar) at each training step for 3 different settings
of τ on 3 representative MuJoCo tasks. Curves have been smoothed (100,000 steps moving window) for visual
clarity.

4.2 (G2) Deterministic vs Stochastic Policy Gradients

To analyze when deterministic policy gradients can be more effective than stochastic policy we consider 2
domains. The Ąrst domain is a 2-D maze navigation grid-world environment, denoted ŚMazeGridŠ, with a
sparse reward function adopted from Huang et al. (2023). The agent starts at the center of the grid and
its objective is to reach the optimal goal. The other domain is the ŚHalfCheetah-v3Š environment from
MuJoCo (Todorov et al., 2012). Full details regarding the domains are provided in Appendix A.

In Figure 3, we observe that SACM outperforms Gamid in terms of sample efficiency by more than 1
standard deviation in ŚMazeGridŠ. Prior work has shown single Gaussian-based actors using MaxEnt-based
policy optimization to be more effective in challenging exploration (sparse reward) tasks as compared to
deterministic policies (Dawood et al., 2023; Singh et al., 2019) which might explain these trends.
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Figure 3: Training curves on MazeGrid. Solid curves present the average over Ąve runs while the shaded
region represents two standard deviations.

On the other hand, in Figure 4b we observe that Gamid outperforms SACM in terms of sample efficiency
in ŚHalfCheetah-v3Š. Compared to stochastic policies, deterministic policies have been shown to be more
effective in tasks requiring precise control (as is common in robotics domains) (Montenegro et al., 2024). We
speculate that Gamid builds on these properties and uses the diversiĄed actors to speed up exploration during
the initial stages of learning. This suggests that a GMM optimized using deterministic policy gradients can
be effective in dense reward robotics tasks when compared to using stochastic gradients.

4.3 (G3) Comparative Evaluation on Benchmark Tasks

For the comparative evaluation, we compare Gamid against common RL algorithms for continuous control
tasks using benchmark MuJoCo (Todorov et al., 2012) and Fetch (Plappert et al., 2018) domains. The
MuJoCo tasks utilize dense reward functions to learn locomotion tasks. The Fetch domains consist of a
7-DoF robotic arm Ątted with a gripper relying on sparse reward functions to learn to solve goal-reaching
tasks.

We consider the following baseline RL algorithms for continuous control tasks:

1. Soft Actor-Critic (SAC) (Haarnoja et al., 2018) (Off-Policy) Ű a MaxEnt actor-critic algorithm
where the policy is trained to maximize a weighted combination of expected return and policy
entropy.

2. Soft Actor-Critic Mixture (SACM) (Baram et al., 2021) (Off-Policy) Ű a soft-actor optimization
approach that uses a GMM as the policy approximator. This approach was reported to not improve
performance over a single Gaussian policy (SAC).

3. Probabilistic Mixture-of-Experts SAC (PMOE) (Ren et al., 2021) (Off-Policy) Ű a soft-actor
optimization approach that uses a mixture of critics. This approach was shown to outperform other
MOE approaches, speciĄcally: MOE with gating operation (Jacobs et al., 1991), Double Option
Actor-Critic (DAC) option framework (Zhang & Whiteson, 2019), the Multiplicative Compositional
Policies (MCP) (Peng et al., 2019), and PMOE with Gumbel-Softmax (Maddison et al., 2016).

4. Proximal-Policy-Optimization (PPO) (Schulman et al., 2017) (On-Policy) Ű a trust region
policy optimization variant (Schulman et al., 2015) using clipped gradients to restrict the policy
change between policy updates.

5. Twin Delayed DDPG (TD3) (Fujimoto et al., 2018) (Off-Policy) Ű an extension of the original
DDPG algorithm which introduces three enhancements, namely, (1) Clipped Double-Q Learning,
(2) Delayed Policy Updates, and (3) Target Policy Smoothing.

For Baselines 1, 4, and 5 we used the implementations provided in Stable-baselines3 (Raffin et al., 2021).
For Baseline 2, since there was no official implementation provided by the authors, we implemented it
following the pseudocode provided in the paper. For Baseline 3, we used the implementation provided
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(a) Swimmer-v3 (b) HalfCheetah-v3 (c) Hopper-v3

(d) Ant-v3 (e) Walker2d-v3 (f) Humanoid-v3

(g) FetchPush-v1 (h) FetchSlide-v1 (i) FetchPickAndPlace-v1

Figure 4: Training curves on continuous control benchmarks. Solid curves present the mean over Ąve runs
while the shaded region represents the tolerance interval with α = 0.05 and β = 0.7 (Patterson et al., 2023).
Curves have been smoothed (100 steps moving window) for visual clarity. Gamid (Blue curve) consistently
performs on par or better compared to existing baseline methods.

by the authors. The hyperparameter values for each algorithm were set as the recommended values. For
completeness, these values are provided in Appendix B. The codebase for these experiments is available at
https://github.com/Pi-Star-Lab/gamid-pg. None of the baselines results in meaningful learning in the
Fetch tasks due to sparse rewards. Consequently, we follow prior work (Ibarz et al., 2021; Raffin et al., 2021;
Bajaj et al., 2023) and combine them with Hindsight Experience Replay (HER) (Andrychowicz et al., 2017).
Note that PPO and PMOE are not straightforward to combine with HER and are thus omitted for these
tasks. 2

Post-training performance. Table 1 presents the post-training performance of Gamid and the baseline
algorithms at the end of the training stage (2M training steps for ŚHumanoid-v3Š and 1M for the rest) on
the MuJoCo and Fetch tasks. Results reported in the table and trends in Figure 5 suggest that Gamid
performs on par with the baseline methods on tasks with lower degrees of freedom, as in ŚSwimmer-v3Š
(Figure 4a), and ŚHopper-v3Š (Figure 4c). It outperforms them on tasks with higher degrees of freedom
(Figures 4b, 4e, 4f). We hypothesize these trends stem from increased modes of optimality present in high-

2No prior work combined PPO or PMOE with HER to the best of our knowledge.
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Table 1: Mean performance and the 1-standard deviation on continuous control benchmarks. The best-
performing RL algorithms have been highlighted in bold.

TD3 SAC SACM PMOE PPO Gamid

MuJoCo (v3)

Swimmer 263 ± 139 318 ± 43 336 ± 1.4 50 ± 3.82 318 ± 22.1 344 ± 4.1

HalfCheetah 9,578 ± 648 10,427 ± 206 9,599 ± 357 7,934 ± 1,072 5,251 ± 907 11,063 ± 300

Hopper 3,392 ± 125 3,027 ± 664 2,848 ± 677 2900 ± 461 918 ± 156 3,301 ± 209

Ant 4,264 ± 1,671 3,613 ± 1,365 4,159 ± 512 1,874 ± 491 2,204 ± 781 4,998 ± 828

Walker2d 4,153 ± 429 4237 ± 429 4187 ± 245 4,046 ± 530 3,023 ± 1,543 4,835 ± 187

Humanoid 5,727 ± 411 5,949 ± 560 5,498 ± 770 5,039 ± 394 812 ± 136 6,141 ± 629

Fetch (v1)

Push 0.34 ± 0.43 0.99 ± 0.02 0.99 ± 0.02 Ů Ů 0.95 ± 0.05

Slide 0.13 ± 0.18 0.76 ± 0.26 0.75 ± 0.27 Ů Ů 0.45 ± 0.31

PickAndPlace 0.03 ± 0.04 0.99 ± 0.01 0.99 ± 0.01 Ů Ů 0.66 ± 0.24

dimensional control tasks and GamidŠs superior ability to capture such complex behavior patterns. Results
in all the Fetch tasks (Figures 4g, 4h, and 4i) show that Gamid consistently outperforms TD3 in terms of
post-training performance. However, SAC and SACM outperform both Gamid and TD3. These results align
with Figure 3 where we observe that stochastic gradient-based approaches are relatively more effective in
sparse reward tasks than deterministic gradient-based approaches.

Sample efficiency. We observe that Gamid has a better sample efficiency than the baselines in
ŚHalfCheetah-v3Š (Figure 4b) and ŚWalker2d-v3Š (Figure 4e). In the rest of the domains, we do not see
any speciĄc trend for Gamid as compared to the baselines. In all Fetch domains, Gamid has better sample
efficiency than TD3 but has worse sample efficiency than SAC and SACM.

Performance consistency. In terms of the post-training performance, we observe that Gamid consistently
performs at least as well as TD3 on both dense-reward (MuJoCo) and sparse-reward (Fetch) tasks. In
terms of the average performance, Gamid outperforms TD3 on 8/9 tasks (see Table 1). We also report
an independent two-sample t-test (Cressie & Whitford, 1986) with the p-value signiĄcance level set to 0.05
comparing Gamid and TD3. The results indicate that the advantage of Gamid over TD3 is statistically
signiĄcant in 4/9 tasks (ŚHalfCheetah-v3Š, ŚWalker2d-v3Š, ŚFetchPush-v1Š, and ŚFetchPickAndPlace-v1Š). For
the rest of the domains, the performance difference is not statistically signiĄcant. These results suggest
that, while training with deterministic gradients, utilizing a GMM-based actor (as in Gamid) is consistently
advantageous with respect to returns when compared to utilizing a single-Gaussian actor (as in TD3).

4.4 (G4) Sensitivity Analysis of Gamid

We examine the sensitivity of GamidŠs performance with respect to its hyperparameters. The reported
results exclude the hyperparameters that are shared with the original DDPG algorithm since an ablation
study for those was presented in previous publications (Lillicrap et al., 2015; Fujimoto et al., 2018). The
results are reported for a single domain (ŚWalker2dŠ) where Gamid performs signiĄcantly better than ex-
isting approaches. Nonetheless, for completeness, ablation results for the other domains are reported in
Appendix D.

Number of Gaussians, N . We start by examining the impact of varying the number of Gaussians used
by Gamid (the N hyperparameter). Figure 5a presents learning curves for Ąve N values: 1 (original TD3),
2, . . . , 5. The other hyperparameters were kept constant with values as reported in the comparative study.
We observe that increasing the number of Gaussians up to N = 3 improves both the sample efficiency and
post-training performance when compared to a single Gaussian. N = 3 provides the best exploration balance
while the marginal beneĄt from adding more Gaussians diminishes and stagnates at about four. This is a
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(a) Number of Gaussians (N) (b) Policy divergence temperature (τ) (c) GMM weights

Figure 5: Ablation curves for the ŚWalker2DŠ domain. These results suggest that (1) adding more Gaussians
to the GMM-based actor is beneĄcial, (2) setting a decaying policy divergence parameter is beneĄcial, and
(3) using an ϵ-greedy approach with a low (yet not zero) ϵ value is beneĄcial.

reasonable result as, with sufficient Gaussians, the GMM becomes expressive enough to represent any target
policy, so the addition of more Gaussians is not helpful.

Policy divergence temperature, τ . Next, we examine the impact of varying the policy divergence
temperature hyperparameter (τ). Figure 5b presents learning curves for three static τ values (0.01, 0.1, 0.5)
and a decaying τ version (linear decay from 0.1 to 0.01 in 30% of the total training steps). We observe that
a decaying τ value performs best. This outcome (favoring entropy temperature decay) is in line with similar
results reported by Schulman et al. (2017) and Haarnoja et al. (2018).

GMM weights, ϵ. Finally, we examine the impact of varying the GMM weights setting from Line 3
(denoted P ). Figure 5c presents learning curves for four P ϵ-greedy assignments: ϵ = 0 (greedy), ϵ = 1/(10N)
(low epsilon), ϵ = 1/(2N) (high epsilon), ϵ = 1/N (uniform). The results suggest that a low (yet not zero)
epsilon performs best. This result is in line with ϵ-greedy trends reported in prior work (Mnih et al., 2015).

5 Discussion

While prior works have compared deterministic and stochastic policy gradients they did so for single Gaussian
actors. These studies found that stochastic gradients outperform deterministic gradients on common bench-
mark domains (Haarnoja et al., 2018). Our experimental study suggests that this trend (stochastic gradients
outperform deterministic gradients) does not necessarily apply to GMM-based actors. We observe that in
5 out of 6 dense-reward MuJoCo domains, optimizing such actors with deterministic gradients (Gamid)
performed better compared to stochastic gradients (SACM). Gamid also leads to improvements over (single
Gaussian) SAC in 3/6 MuJoCo tasks while consistently performing similar or better than TD3 in all the
MuJoCo tasks. In the 3 sparse-reward Fetch tasks, we observe that stochastic gradient-based actors (SAC,
SACM) outperform deterministic gradient-based actors (GMM). In stochastic gradient-based algorithms, the
entropy of the policy, derived from a learned standard deviation as opposed to a Ąxed standard deviation in
deterministic gradient-based algorithms, is generally high during the initial learning stages in sparse-reward
tasks. During this stage, the agent receives close to zero non-zero rewards that result in high policy stan-
dard deviation and hence a close-to-random exploration which is key in such scenarios. We speculate that
such a property makes SAC and SACM more effective as compared to Gamid and TD3 in the Fetch tasks.
Nonetheless, Gamid outperforms TD3 in all the Fetch tasks, suggesting that using stochastic gradients to
train a GMM actor can be more effective than doing the same over a single Gaussian actor. We observe that
GMM-based actors optimized using deterministic gradients as presented in Gamid do not adversely affect
the post-training performance of TD3 in the MuJoCo tasks. These results stand in contrast with Ąndings
reported in Baram et al. (2021) that did not Ąnd any signiĄcant advantage for using GMM-based actors.
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It should be noted that Gamid adds additional hyperparameters on top of DDPG/TD3 which may raise
concerns about its practicality in real-world settings, given the need for required hyperparameter tuning.
We emphasize that Gamid, in its current form, is an effort to spark interest within the scientiĄc community
on the effectiveness of deterministic policy gradients when coupled with GMMs. Future work will focus on
developing practical variants of Gamid by Ąxing or automating hyperparameter values.

6 Summary

In this paper, we presented a comparison between stochastic and deterministic policy gradients to optimize
Gaussian mixture model (GMM)-based policies. We introduced a novel approach, denoted Gamid, for
training a GMM using deterministic gradients. Similar to the maximization of entropy in stochastic actors,
Gamid incorporates a diversiĄcation objective that encourages the actors to spread out aiding the exploration
capabilities of the policy. Empirical studies on benchmark MuJuCo tasks show that, in terms of sample
efficiency and post-training performance, Gamid improves over the single Gaussian stochastic variant (SAC)
in 3/6 domains. It consistently performs on par or better than the single Gaussian deterministic variant
(TD3) in all the MuJoCo and Fetch tasks. These results suggest that deterministic gradient approaches can
be more effective for training GMM actors as compared to stochastic gradient approaches for dense-reward
control tasks. Empirical results on sparse-reward Fetch tasks show that stochastic gradient approaches are
more effective than Gamid. Nevertheless, Gamid improves over the single Gaussian deterministic variant
in 3/3 Fetch domains. Consequently, we hope this work will seed research on training soft actors using
deterministic gradient approaches.
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A Domain descriptions

1-D Continuous Bandit: A bandit problem with a continuous 1-dimensional action space as shown in
Figure 6. It has a 1-D action space and a non-convex reward landscape with 2 modes of optimality; a global
and a local.

Figure 6: 1-D Continuous Bandit environment

MazeGrid: A 2D maze navigation task as shown in Figure 7. The maze consists of 5×5 grids. Each of
them is connected with neighbors with a narrow passage. The agent starts in the center grid and can move
in four directions. The action space is its position change in two directions (∆x, ∆y).

Figure 7: MazeGrid environment

MuJoCo: A comprehensive domain description for all the MuJoCo (v3) tasks along with installation
and exact instructions can be found through: https://gymnasium.farama.org/environments/mujoco/.
Table 2 provides a summary of the state (observation) and action spaces dimensionality along with the
guiding reward function deĄnition per task.

B Hyperparameters

We adapted the 1-D continuous bandit environment introduced in prior work (Huang et al., 2023) and
used the recommended hyperparameters for REINFORCE for setting up a lightweight version of SAC (no
critic and no replay buffer). We also use a similar lightweight version of DDPG/TD3 (no critic and no
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Table 2: (a) Action space degrees-of-freedom (Action dim.), (b) Observation space dimensionality (Obs.
dim.), (c) reward function (Reward), per domain.

Domain Action dim. Obs. dim. Reward

Swim. 2 8 forward_reward - ctrl_cost
HalfCh. 6 17 forward_reward - ctrl_cost
Hopper. 3 11 healthy_reward + forward_reward - ctrl_cost
Ant. 8 27 healthy_reward + forward_reward - ctrl_cost - contact_cost
Walker. 6 17 healthy_reward + forward_reward - ctrl_cost
Human. 17 376 healthy_reward + forward_reward - ctrl_cost - contact_cost
Push. 4 25 sparse; block Ąnal target position reached = 0/not reached = -1
Slide. 4 25 sparse; puck Ąnal target position reached = 0/not reached = -1
Pick. 4 25 sparse; block Ąnal target position reached = 0/not reached = -1

replay buffer). For the noise in DDPG, we used a Gaussian distribution with a mean of 0 and a Ąxed
standard deviation of 0.1, the recommended setting for MuJoCo tasks in RL Baselines3 Zoo library (https:

//github.com/DLR-RM/rl-baselines3-zoo/tree/v1.6.2/hyperparams).

Tables 8Ű9 present the default hyperparameters values used in our experiments on the MuJoCo and Fetch
tasks. To allow for easy reproduction of the results, the presented hyperparam names follow the variable
names in the Stable-baselines3 (v1.6.2) (Raffin et al., 2021) open-source codebase. We used the tuned
hyperparameter values for SAC, TD3, and PPO that have been provided in RL Baselines3 Zoo which is
built on top of Stable-baselines3. For SACM and PMOE we used hyperparameters recommended in (Baram
et al., 2021) and (Ren et al., 2021) respectively for the MuJoCo tasks. For the Fetch tasks, we tuned the
hyperparameters of SACM using Optuna (Akiba et al., 2019).

Table 3: Shared TD3 hyperparameters (MuJoCo)

Hyperparam. Swimmer-v3 HalfCheetah-v3 Hopper-v3 Ant-v3 Walker2d-v3 Humanoid-v3

n_timesteps 1000000 1000000 1000000 1000000 1000000 2000000
learning_rate 0.001 0.001 0.0003 0.001 0.001 0.0003
learning_starts 10000 10000 10000 10000 10000 10000
batch_size 100 100 256 100 100 256
gamma 0.9999 0.99 0.99 0.99 0.99 0.99
train_freq 1 (1, episode) 1 (1, episode) (1, episode) 1
gradient_steps 1 −1 1 −1 −1 1
noise_type ŚnormalŠ ŚnormalŠ ŚnormalŠ ŚnormalŠ ŚnormalŠ ŞnormalŤ
noise_std 0.1 0.1 0.1 0.1 0.1 0.1
net_arch [256, 256] [256, 256] [256, 256] [256, 256] [256, 256] [256, 256]
activation_fn nn.ReLU nn.ReLU nn.ReLU nn.ReLU nn.ReLU nn.ReLU

C Compute

All reported experiments were distributed between 2 machines; (1) a machine with 64 32-core AMD Ryzen
Threadripper PRO 5975WX CPUs, each clocked at 4.3 GHz with 250 GB RAM with 2 NVIDIA GeForce
RTX 3090 24 GB GPUs (2) a machine with 16 8-core Intel(R) Core(TM) i7-9800X CPUs, each clocked at
3.8 GHz with 16 GB RAM and an NVIDIA GeForce RTX 20280 Ti 12 GB GPU.

D Additional experiments

D.1 Gaussian Spread

Figures 8 and 9 (Appendix D.1) show the spread of the GMM Gaussian means at different steps in the
training stage. Since the action dimensionality in all of the MuJoCo environments is greater than two, we
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Table 4: Shared TD3 hyperparameters (Fetch)

Hyperparam. FetchPush-v1 FetchSlide-v1 FetchPickAndPlace-v1

n_timesteps 1000000 1000000 1000000
learning_rate 0.001 0.001 0.001
learning_starts 1000 1000 1000
batch_size 2048 2048 1024
gamma 0.95 0.95 0.95
noise_type ŚnormalŠ ŚnormalŠ ŚnormalŠ
noise_std 0.1 0.1 0.1
net_arch [512, 512, 512] [512, 512, 512] [512, 512, 512]
activation_fn nn.ReLU nn.ReLU nn.ReLU
replay_buffer_class HerReplayBuffer HerReplayBuffer HerReplayBuffer

replay_buffer_kwargs Śdict(online_sampling=True, goal_selection_strategy=ŚfutureŠ, n_sampled_goal=4)Š

Table 5: Gamid-speciĄc hyperparameters

Hyperparam. Swim. HalfCh. Hopper. Ant. Walker. Human. Push. Slide. Pick.

n_actors (N) 3 5 2 2 3 4 4 8 8
temperature_initial (τ) 0.1 0.1 0.1 0.1 0.1 0.3 0.3 0.3 0.3
temperature_Ąnal (τ) 0.1 0.1 0.01 0.1 0.1 0.1 0.1 0.1 0.1
temperature_fraction 1.0 1.0 1.0 1.0 1.0 0.3 1.0 1.0 1.0
epsilon_initial (ϵ) 0.3 0.2 0.1 0.1 0.3 0.3 0.1 0.1 0.1
epsilon_Ąnal (ϵ) 0.03 0.02 0.1 0.1 0.03 0.1 0.01 0.01 0.01
epsilon_fraction 0.5 0.5 1.0 1.0 1.0 0.3 1.0 1.0 1.0

perform a principal component analysis (PCA) (Abdi & Williams, 2010) on the Gaussian means and plot
the top two PCA components. Comparing the top and middle rows of Figures 8 corresponding to τ = 0 and
τ = 10 in ŚHopper-v3Š respectively, we observe that the Gaussian means have a higher spread for τ = 10. A
similar observation can also be made when comparing the top and middle rows of Figures 9 corresponding to
τ = 0 and τ = 10 in ŚHalfCheetah-v3Š respectively. The trend in bottom rows Figures 8 and 9 corresponding
to τ = opt. is less clear which we speculate could be attributed to noisy weight updates due to mini-batch
gradient descent during training.

D.2 Sensitivity analysis for MuJoCo tasks

Following Haarnoja et al. (2018), we include the sensitivity analysis for all the MuJoCo tasks (beyond the
representative, single task, results presented in the main text).

Figures 10Ű15 present training curves similar to those presented in the ablation study from the main text
albeit on all the MuJoCo tasks. These results generally support the conclusions provided in the main text
(1) adding more Gaussians to the GMM-based actor has a positive impact up to a certain threshold, beyond
which, performance stagnates or even deteriorates, (2) setting a decaying policy divergence parameter is
beneĄcial, and (3) using an ϵ-greedy approach with a low (yet not zero) ϵ value is beneĄcial.
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Table 6: SAC hyperparameters (MuJoCo)

Hyperparam. Swimmer-v3 HalfCheetah-v3 Hopper-v3 Ant-v3 Walker2d-v3 Humanoid-v3

n_timesteps 1000000 1000000 1000000 1000000 1000000 2000000
learning_rate 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
learning_starts 10000 10000 10000 10000 10000 10000
gradient_steps 1 1 1 1 1 1
gamma 0.9999 0.99 0.99 0.99 0.99 0.99
tau 0.05 0.05 0.05 0.05 0.05 0.05
net_arch [256, 256] [256, 256] [256, 256] [256, 256] [256, 256] [256, 256]
activation_fn nn.ReLU nn.ReLU nn.ReLU nn.ReLU nn.ReLU nn.ReLU

Table 7: SACM hyperparameters (MuJoCo)

Hyperparam. Swimmer-v3 HalfCheetah-v3 Hopper-v3 Ant-v3 Walker2d-v3 Humanoid-v3

n_components 3 3 3 3 3 3
learning_rate 0.0006 0.0003 0.0003 0.0003 0.0003 0.0003
learning_starts 10000 10000 10000 10000 10000 10000
gradient_steps 1 −1 1 −1 −1 1
tau 0.05 0.05 0.05 0.05 0.05 0.05
net_arch [256, 256] [256, 256] [256, 256] [256, 256] [256, 256] [256, 256]
activation_fn nn.ReLU nn.ReLU nn.ReLU nn.ReLU nn.ReLU nn.ReLU

Table 8: SAC and SACM hyperparameters (Fetch)

Hyperparam. FetchPush-v1 FetchSlide-v1 FetchPickAndPlace-v1

n_timesteps 1000000 1000000 1000000
learning_rate 0.001 0.001 0.001
learning_starts 1000 1000 1000
batch_size 2048 2048 1024
gamma 0.95 0.95 0.95
ent_coef ŚautoŠ ŚautoŠ ŚautoŠ
net_arch [512, 512, 512] [512, 512, 512] [512, 512, 512]
activation_fn nn.ReLU nn.ReLU nn.ReLU
n_components (SACM) 3 3 3
replay_buffer_class HerReplayBuffer HerReplayBuffer HerReplayBuffer

replay_buffer_kwargs Śdict(online_sampling=True, goal_selection_strategy=ŚfutureŠ, n_sampled_goal=4)Š
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Table 9: PPO hyperparameters (MuJoCo)

Hyperparam. Swimmer-v3 HalfCheetah-v3 Hopper-v3 Ant-v3 Walker2d-v3 Humanoid-v3

normalize True True True True True True
gamma 0.9999 0.98 0.999 0.99 0.99 0.95
n_steps 1024 512 512 2048 512 512
batch_size 256 64 32 64 32 256
learning_rate 0.0006 9.8e−5 3e − 4 0.0001 5.05e − 5 3.56e − 5
ent_coef 4.02e4 4e−4 0.0022 0.0 5.8e − 4 0.0024
clip_range 0.9999 0.1 0.2 0.2 0.2 0.3
n_epochs 20 20 5 10 20 5
gae_lambda 0.98 0.92 0.99 0.95 0.95 0.9
max_grad_norm 0.8 0.8 0.7 0.5 1 2
vf_coef 4.02e4 0.58 0.83 0.5 0.87 0.43
net_arch [256, 256] [256, 256] [256, 256] [256, 256] [256, 256] [256, 256]
activation_fn nn.ReLU nn.ReLU nn.ReLU nn.ReLU nn.ReLU nn.ReLU
log_std_init 0.0 −2 −2 0.0 0.0 −2
ortho_init True False False True True False
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τ = 0

τ = 10

τ = opt.

(a) Step# 250,000 (b) Step# 500,000 (c) Step# 750,000 (d) Step# 1,000,000

Figure 8: Principal component analysis (PCA) visualization of Gamid Gaussian means in ŚHopper-v3Š with
τ = 0 (top row), τ = 10 (middle row) and τ set to the tuned value (bottom row). The legend represents the
ID of each Gaussian.
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τ = 0

τ = 10

τ = opt.

(a) Step# 250,000 (b) Step# 500,000 (c) Step# 750,000 (d) Step# 1,000,000

Figure 9: Principal component analysis (PCA) visualization of Gamid Gaussian means in ŚHalfCheetah-v3Š
with τ = 0 (top row), τ = 10 (middle row) and τ set to the tuned value (bottom row). The legend represents
the ID of each Gaussian.

(a) Number of Gaussians (N) (b) Policy divergence temperature (τ) (c) GMM weights

Figure 10: Ablation curves for the ŚSwimmer-v3Š domain
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(a) Number of Gaussians (N) (b) Policy divergence temperature (τ) (c) GMM weights

Figure 11: Ablation curves for the ŚHalfCheetah-v3Š domain

(a) Number of Gaussians (N) (b) Policy divergence temperature (τ) (c) GMM weights

Figure 12: Ablation curves for the ŚHopper-v3Š domain

(a) Number of Gaussians (N) (b) Policy divergence temperature (τ) (c) GMM weights

Figure 13: Ablation curves for the ŚAnt-v3Š domain

(a) Number of Gaussians (N) (b) Policy divergence temperature (τ) (c) GMM weights

Figure 14: Ablation curves for the ŚWalker2d-v3Š domain
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(a) Number of Gaussians (N) (b) Policy divergence temperature (τ) (c) GMM weights

Figure 15: Ablation curves for the ŚHumanoid-v3Š domain
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