Published in Transactions on Machine Learning Research (12/2024)

Comparing Deterministic and Soft Policy Gradients for
Optimizing Gaussian Mixture Actors

Sheelabhadra Dey sheelabhadra@gmail.com
Department of Computer Science and Engineering
Texas AEM University

Guni Sharon guni@tamu.edu
Department of Computer Science and Engineering
Texas AEM University

Reviewed on OpenReview: https: //openreview. net/ forum? id=qS9pPu80Dt

Abstract

Gaussian Mixture Models (GMMs) have been recently proposed for approximating actors
in actor-critic reinforcement learning algorithms. Such GMM-based actors are commonly
optimized using stochastic policy gradients along with an entropy maximization objective.
In contrast to previous work, we define and study deterministic policy gradients for optimiz-
ing GMM-based actors. Similar to stochastic gradient approaches, our proposed method,
denoted Gaussian Mizture Deterministic Policy Gradient (Gamid-PG), encourages policy
entropy maximization. To this end, we define the GMM entropy gradient using Varia-
tional Approximation of the K L-divergence between the GMM’s component Gaussians. We
compare Gamid-PG with common stochastic policy gradient methods on benchmark dense-
reward MuJoCo tasks and sparse-reward Fetch tasks. We observe that Gamid-PG outper-
forms stochastic gradient-based methods in 3/6 MuJoCo tasks while performing similarly on
the remaining 3 tasks. In the Fetch tasks, Gamid-PG outperforms single-actor determinis-
tic gradient-based methods while performing worse than stochastic policy gradient methods.
Consequently, we conclude that GMMs optimized using deterministic policy gradients (1)
should be favorably considered over stochastic gradients in dense-reward continuous control
tasks, and (2) improve upon single-actor deterministic gradients.

1 Introduction

This study presents a comparison between deterministic and stochastic policy gradients for optimizing policies
represented as Gaussian Mixture Models (GMMs) in model-free deep reinforcement learning (RL). Model-
free RL was successfully demonstrated in various control domains. Examples include video games (Mnih
et al., 2015; Wurman et al., 2022), robotic control (Elguea-Aguinaco et al., 2023; Dey et al., 2021; 2024; Kober
et al., 2013), traffic applications (Ault & Sharon, 2021; Sharon, 2021), and medical procedures (Zhou et al.,
2021; Coronato et al., 2020). Specifically, actor-critic methods (Lillicrap et al., 2015; Fujimoto et al., 2018;
Haarnoja et al., 2018; Schulman et al., 2017) have proven to be effective for RL in continuous control domains.
These methods were shown to be most effective when coupled with high-capacity function approximators
such as neural networks for approximating both the actor and the critic.

Prior work on actor approximation can be broadly divided into two categories; (1) deterministic (Silver et al.,
2014), where the policy approximator maps states to actions, and (2) soft (Haarnoja et al., 2018), where the
policy approximator maps states to a distribution defined over the action space. Each of these two classes has
known benefits and limitations. In particular, deterministic actors are unable to represent complex policies
that capture several modes of optimal behavior while soft actors commonly assume a specific parametric
distribution (often oversimplified) for which a closed-form gradient, with respect to the action distribution

Published in Transactions on Machine Learning Research (12/2024)

parameters (e.g., mean and variance of a Gaussian), is well-defined. A line of publications (Ren et al., 2021;
Peng et al., 2020; Akrour et al., 2021; Baram et al., 2021) attempted to address this gap by defining a closed-
form gradient for general distributions within soft-actor optimization algorithms. These methods attempt
to fit the soft actor’s action distribution to the critic’s action-value distribution. Empirically (on benchmark
MuJuCo domains), such approaches present no, or marginal, benefits over a single-Gaussian variant (Baram
et al., 2021).

To overcome the limitations associated with single Gaussian actors, Baram et al. (2021) proposed using a
Gaussian Mixture Model (GMM) as the policy approximator in a maximum entropy (MaxEnt) framework.
GMMs are known to be universal approximators of densities (Alspach & Sorenson, 1972) and result in a
general soft actor. The proposed approach was implemented and evaluated within the Soft Actor-Critic
(SAC) (Haarnoja et al., 2018) algorithm. The authors did not find clear empirical evidence supporting the
use of GMMs over a single Gaussian. They attribute this finding to two reasons: “First, benchmarked tasks
are unimodal in nature, so a unimodal policy should do. Second, the mixture policy collapses to a mean
policy in the presence of equal mixing weights.” In contrast to previous work, we propose training the GMM-
based soft actor using a deep deterministic policy gradient (DDPG) approach (Lillicrap et al., 2015; Fujimoto
et al., 2018). Unlike soft actor-critic methods, DDPG does not attempt to capture an underlying action-value
distribution but attempts to converge on a (deterministic) local optimal action. When coupled with a GMM,
such deterministic policy gradient algorithms converge on a set of local optima under common convergence
conditions. However, as previously reported (Baram et al., 2021), GMM-based actors might suffer from
situations where “the mixture policy collapses to a mean policy”. Addressing this issue, we demonstrate how
maximum entropy RL principles (Aghasadeghi & Bretl, 2011; Toussaint, 2009; Rawlik et al., 2012; Haarnoja
et al., 2018; Fox et al., 2016) can be incorporated into the deterministic actor’s gradient using Variational
Approzimation (Hershey & Olsen, 2007) of the KL-divergence between the GMM actor and a single Gaussian.
We term our proposed approach Gaussian Mixture Deterministic Policy Gradient (Gamid-PG).

We conclude our study with four sets of experiments: (1) we present illustrative results on a simplified
domain to showcase Gamid-PG’s capability to capture multimodal behavior; (2) we conduct an empirical
investigation to determine the conditions under which Gamid-PG outperforms stochastic policy gradients,
and vice versa; (3) we undertake a comparative evaluation by benchmarking Gamid-PG against established
deterministic and stochastic gradient-based methods in challenging continuous control environments with
high-dimensional action spaces; and (4) we test the sensitivity of Gamid’s hyperparameters on its performance
on a representative domain.

The reported results suggest that for dense-reward control tasks with continuous action spaces, the determin-
istic gradient approach (Gamid-PG) can be more effective than stochastic gradient approaches to optimize
GMDMs and should be considered by researchers and practitioners. While, for sparse-reward tasks, stochastic
gradient approaches are observed to be more effective than deterministic gradient approaches. Nevertheless,
Gamid-PG is shown to improve upon single-actor deterministic gradient approaches across all the benchmark
domains.

2 Preliminaries

2.1 Reinforcement learning (RL)

In RL, a policy (actuation function) is optimized over an underlying Markov decision process (MDP) which
is a tuple {S, A, P, R, v, Ip}. S is the state space; A is the action space; P(s,a,s’) is the transition
probability of the form P : S x A x S — [0, 1], representing the probability of transitioning from state s to
state s after taking action a; R(s,a) is the reward function of the form R : & x A — R, representing the
immediate utility gained from being in state s and taking action a; v is the discount factor, representing the
factor of lost utility in future rewards; finally, Iy is a distribution over the initial state.

An RL agent is assumed to follow an internal policy, w, which maps states to actions. m is commonly
defined either as deterministic, i.e., m: S — A, or as soft (stochastic), i.e., mapping states to a distribution
over actions. The agent’s chosen action (a:) at the current state (s;) affects the environment such that
a new state emerges (siy1) as well as some reward (r;) representing the immediate utility gained from

Published in Transactions on Machine Learning Research (12/2024)

performing action a; at state s;, given by R(s:,a;). w is used to denote a finite horizon trajectory of the
form {so,ag,ro,51,...,ar—1,77—1,S7}. The expected return or expected sum of discounted rewards for a
given policy is denoted by J(7) = Eyor >, ¥'r¢. In RL the observed return is used to tune a policy such
that J(7) is maximized. The policy argmax, [J(7)] is the optimal policy and is denoted by 7*.!

Common RL frameworks include value-based, policy-gradient, and actor-critic approaches. A value-
based approach attempts to learn the expected future utility from states (state value) or from action-state
pairs (action value or g-value). The policy returns actions that maximize the expected utility (7(s) =
argmax,[Q(s,a)]). A prominent example of a value-based approach is the model-free deep Q-learning
algorithm (DQN) (Mnih et al., 2015). In the policy-gradient approach (Williams, 1992) a policy is defined
through a parameterized differential equation, where the policy parameters are iteratively updated, following
the policy gradient, towards favorable outcomes (as experienced through the reward function). Using state or
action value approximations for defining favorable outcomes for policy-gradient updates is usually referred
to as an actor-critic approach. A prominent example of a state-of-the-art actor-critic approach is deep-
deterministic-policy-gradient (DDPG) (Lillicrap et al., 2015; Fujimoto et al., 2018).

2.2 Distributional RL

In order to capture the intrinsic uncertainty of MDPs, a line of publications proposed to extend value-
based approaches to estimate the distribution over returns. These include SPL-DQN (Luo et al., 2021),
distributional-policy-gradient (Singh et al., 2022; Song & Zhao, 2020), and distributed-distributional-DDPG
(D4PG) (Barth-Maron et al., 2018). These approaches still converge on a deterministic policy and, thus,
might fail to capture diverse modes of optimal behavior, i.e., while the critic (Q-network) can capture multiple
modes of optimality in the Q-value space, the (unimodal) actor is limited in its ability to do the same.

2.3 Soft policy density approximation

Another line of work suggests training a policy as a distribution over actions, i.e., a soft policy. The fit-
ted distribution is commonly parametric to allow closed-form gradient computation. For example, training
mean and variance parameters of a Gaussian. Common parametric policy distributions used in the liter-
ature include Gaussian (Schulman et al., 2015; 2017), Beta (Chou et al., 2017), and Delta (Silver et al.,
2014; Lillicrap et al., 2015; Fujimoto et al., 2018). While such parametric distributions are easy to train
(having closed-form gradients), they provide a limited representation power. Addressing this issue, Tessler
et al. (2019) proposed Generative Actor-Critic (GAC). It applies Quantile-Regression (Koenker & Hallock,
2001) over Autoregressive-Implicit-Quantile-Networks (Ostrovski et al., 2018) that can represent arbitrarily
densities. However, the reported results for GAC are not better (asymptotic performance and sample effi-
ciency) than those reported for Soft Actor-Critic (SAC) (Haarnoja et al., 2018) which uses a single Gaussian
as a soft actor policy. Another approach for capturing complex distributional properties, such as skewness,
kurtosis, multimodality, and covariance structure is the Semi-Implicit Actor (SIA) (Yue et al., 2020). This
approach adopts a semi-implicit hierarchical construction (Yin & Zhou, 2018) for fitting highly expressive
(yet not general) parametric distributions.

2.4 Gaussian Mixture Model (GMM)

GMMs are probability density functions where the marginal densities of * € R? under f are f(z) =
> ien PiN (x5 pi, 3;), for a mixture of N Gaussians where N (x; 15, ;) is the marginal density of = for a
single Gaussian, ¢ € N. p; are non-negative weighting coefficients with > p, = 1. GMMs are universal ap-
proximators of densities, i.e., a GMM with sufficient components can approximate any other density function
to arbitrary precision (Alspach & Sorenson, 1972).

GMDMs in RL. GMNMs were previously proposed as function approximators within RL frameworks. Agos-
tini & Celaya (2010) proposed using GMM as Q-function approximators. While such an approach was
shown to naturally conform to distributional RL, its overall performance (asymptotic return and sample

n some tasks arg max, [J(7)] is not unique. In such cases, 7* may refer to any optimal policy.

Published in Transactions on Machine Learning Research (12/2024)

efficiency) is outperformed by deep-neural-network-based @Q-approximators (Mnih et al., 2015). Another
line of work (Nematollahi et al., 2022) suggested training a GMM controller using samples obtained from a
SAC agent. However, the GMM controller was not integrated into the SAC algorithm (e.g., as the actor or
critic), but was trained using supervised learning independently from the SAC agent. Another work (Peng
et al., 2020) proposed to run multiple RL agents simultaneously with a shared reply buffer while actively
encouraging policy diversity between the agents. While each agent’s policy can be represented with a single
Gaussian, the policy combination was not optimized as a single GMM model. Later, Baram et al. (2021)
proposed the use of GMMs as policy approximators in maximum entropy (MaxEnt) frameworks. The pro-
posed approach was implemented and evaluated within the Soft Actor-Critic (SAC) (Haarnoja et al., 2018)
algorithm. The authors did not find clear evidence supporting the use of GMMs over a single Gaussian.
They attribute this finding to two reasons: “First, benchmarked tasks are unimodal in nature, so a unimodal
policy should do. Second, that the mixture policy collapses to a mean policy in the presence of equal mixing
weights.” In contrast to their claims, our experimental results (Presented in Section 4) suggest that training
a GMM-based actor is advantages. In contrast to Baram et al. (2021), Ren et al. (2021) reported posi-
tive results (marginally outperforming SAC and PPO with a unimodal policy) when training parameterized
mixing weights. In that work, the mixing weights are trained using a routing function as part of a Mixture-
of-Experts RL model (Jacobs et al., 1991; Peng et al., 2019; Neumann et al., 2009; Akrour et al., 2021).
Building on the partial successes of GMM-based actors in soft-actor algorithms, we extend this approach
(training GMM-based actors) to a deterministic policy gradient algorithm.

2.5 Deep Deterministic Policy Gradient (DDPG)

DDPG (Lillicrap et al., 2015) is a benchmark continuous control RL algorithm that trains both a critic, as a
differentiable @Q-function approximator, @ : S x A — R, and a deterministic differentiable actor, 7 : S — A.

DDPG Training. Given a randomly sampled batch of transitions, each of type < s,a,r,s’ >, (1) the
critic is trained to minimize the L2 TD-error (Doya, 1995), i.e., minimize:(Q(s,a) — (r + YQ(s', m(s))))%
and (2) the actor, m, is trained to maximize Q(s,7(s)) while assuming the () parameters constant.

DDPG Exploration. An advantage of off-policy algorithms such as DDPG is that they can treat the
problem of exploration independently from the trained policy. As such, DDPG performs random exploration
by sampling a noise value from an Ornstein-Uhlenbeck process (Uhlenbeck & Ornstein, 1930) to generate
temporally correlated noise. The authors do not mention a particular reason for this choice (applying
correlated noise). Moreover, the authors mention that other random noise processes can be used. In our
experiments with DDPG, we found that comparable results are achieved when the noise is sampled using a
(simpler) non-correlated Gaussian with mean zero and variance, X o 1.

3 Gaussian Mixture Deterministic Policy Gradient

We propose a variant of the DDPG approach termed Gaussian Mixture Deterministic Policy Gradient
(GAMID-PG), or Gamid for short, where we (1) define the actor as a mixture of N Gaussians (instead
of a single Gaussian in DDPG), (2) define the actor’s policy through GMM sampling, and (3) include a
GMM diversification objective as part of the actor’s gradient. The main motivation for the proposed al-
gorithm is to enable deterministic policy gradients for general densities. This is justified by (1) the fact
that specific types of density functions e.g., a single Gaussian, are sometimes incapable of converging to an
optimal policy (Tessler et al., 2019), and (2) benefits reported for training such general-density actors in
soft-actor-critic optimization (with non-deterministic policy gradients) (Ren et al., 2021). Similar to DDPG,
Gamid assumes MDPs with a continuous action space as the underlying environment. Our Gamid approach
is detailed in Algorithm 1 available in the form of pseudocode. The hyper(meta)-parameters include (1) the
number of Gaussians for the GMM policy, N, (2) a shared variance for all Gaussians as a scaled identity
matrix, X, (3) a policy divergence temperature (possibly decaying), 7, and, (4) the target network update
rate, a.

w N =

© 0w N o

10

11

12
13
14

Published in Transactions on Machine Learning Research (12/2024)

Algorithm 1: Gaussian Mixture Deterministic Policy Gradient (Gamid)

hyperparameters: (1) number of Gaussians, N; (2) shared variance, ¥ o I; (3) policy divergence
temperature, 7 (possibly decaying); (4) target update rate, a
init : (1) policy parameters (for N Gaussians), 6 = vazgl 0[i]; (2) Q-function

parameters, ¢; (3) empty replay buffer, D; (4) initial state, s ~ I

Set target parameters as main parameters, 0iorg < 0, Prarg < ¢;

while not converged do

Sample a Gaussian (out of N), n < SampleGaussian(N,P), where P = (J,.y p; is a distribution
over N outcomes (e.g., uniform i.e., Vi, p, = 1/N) ;

Sample an action, a < Clip (u(s;0[n]) + €, arow, amign), where € ~ N([0,...,0] T, X);

Execute a in the environment, observe next state s’, reward r, and done signal d indicating whether
s’ is terminal;

Store (s,a,r,s’,d) in the reply buffer, D;

Advance the environment, s < s’;

if d is TRUE, then reset the environment, s ~ I;

Randomly sample a batch of transitions, B = {(s,a,r,s’,d)} from D;

Compute @ targets:

y(r, s’ d) =+ (1 = d)max [Q,,,, (s, u(s"; 0i]))]

Update Q-function with one-step gradient descent using

Vot S (Qulsa) - y(n)

|B‘ (s,a,r,s’,d)EB

for i€ [0,...,N —1] do
Update mean for Gaussian 14, i.e., u(s;0[i]), with one-step gradient ascent while considering other
Gaussians (j # 1) constant, using

Va[i]% S Quls. (s 8[i])) + 7DV \)
seB

where
DxL(ill(N\ i) = —log > exp(—||u(s; 0[i]) — pu(s; 0[5])]*)

J#i

end
Update target parameters, 0iqrg < 00iarg + (1 —)0, and ¢iarg ¢ @drarg + (1 —)
end

At this point, one might wonder “are GMMs still considered universal density approximators when using
a single shared variance?”. The answer is ‘Yes. Calcaterra (2008) showed that linear combinations of
Gaussians with a single variance are, indeed, a universal density approximator. However, considering a
single variance commonly requires combining more Gaussian in order to reach similar approximation accu-
racy levels. Nonetheless, we observed (empirically) that optimal performance for Gamid is achieved when
the number of Gaussians is fairly low (2-5). Moreover, setting a constant variance allows for a practical
approximation of an entropy gradient term, as described later in Section 3.2.

Given the shared variance, the GMM policy is defined solely by N means. These means are approximated
per Gaussian, i € [0,..., N — 1], with a differential function approximator, u; : S x 0[i] — R, where 6][i]
are the approximator’s tunable parameters. 6 = J,; 0[¢] is initialized randomly. Similarly, the @Q-function
approximator’s parameters, ¢, are also initialized randomly.

Published in Transactions on Machine Learning Research (12/2024)

3.1 GMM policy sampling

Sampling an action for a given state, s, from the N Gaussians GMM is performed in two stages. First,
(Line 3), we sample one Gaussian, n, from a distribution defined by the GMM weighting coefficients, P.
Next, (Line 4), we sample an action from n. P can be set in many ways, e.g., as a uniform distribution,
Vi, p; = 1/N. We observed (empirically) that setting the coefficients using an e-greedy approach (Mnih
et al., 2015) is beneficial. That is, set p; = 1 — € + ¢/ N for argmax; Q(s, nu(s; 0[i])) and Vj # i, p; = ¢/N.
This approach, however, introduces an extra hyperparameter, €, which requires meta tuning. We also
experimented with existing approaches for tuning P to be proportional to the @Q-values Ren et al. (2021).
However, such an approach was not observed to perform better compared to the simpler e-greedy approach.

3.2 GMM training

Known techniques for training GMM approximators from samples are mostly applicable for supervised
learning, i.e., when the target GMM distribution is known (Figueiredo et al., 1999) or can be sampled (Arenz
et al., 2020). Since, in our case, 7* is not known a priori and is not available for sampling, we apply
a deterministic-policy-gradient approach for training the GMM (as the actor in Gamid). The proposed
gradient is defined with respect to one Gaussian (i € [0,..., N — 1]) and one state, s. Similar to the original
DDPG algorithm, since we consider 3; to be constant, the gradient is defined only with respect to the mean,
w(s;0[i]). Tt is based on two (possibly conflicting) optimization objectives.

1. Maximize the expected return for a policy that follows Gaussian i, i.e., maxgp;)[Q(s; 0[7])].

2. Maximize the cross-entropy between Gaussian ¢ and the GMM excluding Gaussian i, i.e.,
maxg;)[[N (2; u(s; 0[i]), £) log GMM (5 u(s; 0)d]

Optimization objective #1 follows the original DDPG actor training procedure. Optimization objective #2
is inspired by MaxEnt frameworks, which complement the standard maximum reward objective (Objective
#1) with an entropy maximization term (Aghasadeghi & Bretl, 2011; Toussaint, 2009; Rawlik et al., 2012;
Haarnoja et al., 2018; Fox et al., 2016). These two optimization objectives are presented in Line 11 of
Algorithm 1 where policy ¢ is updated in the direction that increases the approximated @ value AND
increases the Kullback-Leibler (KL) Divergence (Kullback, 1997) from a GMM distribution which includes
all the other Gaussians (other than ¢). At this point, the reader might wonder “Why maximize the KL-
divergence and not the cross entropy as stated above?”. There are two reasons for this choice: (1) in
Gamid, KL-divergence and cross entropy are equivalent with respect to the resulting gradients; (2) it allows
utilization of state-of-the-art KL-divergence approximation techniques for GMMs (Hershey & Olsen, 2007).

From cross-entropy to KL-divergence. Cross-entropy (H) is similar to KL-Divergence (Dkr,) with the
addition of an entropy term. More specifically, the cross-entropy of a distribution f relative to a distribution
g is defined as H(f, g) = Dxv(flg) + H(f).

Proposition 1. In Gamid, cross-entropy and KL-divergence result in the same gradients with respect to a
single Gaussian, i, and the GMM excluding i, denoted GM Mpy;.

Proof. The Shannon entropy of a single Gaussian, f = N (u,X), is H(f) = 0.5Indet(27eX) (Huber et al.,
2008) (note that 7 refers to the mathematical constant and not a policy here). Since H(f) is not a function
of p, we get V,H(f) = 0. As a result, for any other density g (e.g., a GMM), we have V,H(f, g) =
V.Dkr(f || g). Note that Vs H(f, g) is not needed for Gamid because it assumes a constant 3. O

Approximating Dky,. For two distributions f and g, Dkr(f||g) returns the expected log probability

ratio between the two distributions, E ; , when z is sampled from f. Formally, Dy, (f|g) := Eg~y log Ei; =

f f(z)log ch g; dx. For k-dimensional Gaussians f and g the KL-divergence has a closed form expression,

Dk (fllg) = 5 |log :Eg| +Tr[S; ' Sp] =k + (np — pg) " S5 (g — 1) (1)

Published in Transactions on Machine Learning Research (12/2024)

However, no closed-form expression is known for two GMMs. As a result, one might wonder “how can we
compute Dk, in Gamid (Line 11)?”.

Assume that f and g are GMMs with the following marginal densities:

f(‘T) = Zpaj\f(x; Ha, Ea)

g(x) =Y PN (s, o)
b
A commonly used (closed form) approximation to Dk, (f||g) for such cases is the Variational Approzima-

tion (Hershey & Olsen, 2007) which is defined as follows

Za/ Pa’ eXp(*DKL (fa ”fa’))
>y o exp(—Dxkr(fallgs))

Dyar(fllg) = palog (2)

In Gamid, f represents a single Gaussian (out of N). As such, we get a simplified D, expression, specifically:

Duar(fllg) = —log Y _ pyexp(—Dku (£l gs)) (3)
b

In Gamid all Gaussians comprising the GMM have a shared . When setting ¥ = I, i.e., the identity matrix,
Equation 1 is simplified to ||y — ug||2, and consequently, Equation 3 can be further simplified to

Dyar(fllg) = —1og Y pyexp(—|lis — mll?) (4)
b

As we seek to diversify the GMM policy overall composing Gaussians, we consider uniform weights (Vb, p, =
1/N) when setting D, in Line 11 of Gamid. As this is a constant scalar value, it is simply omitted and
can be viewed as a component of the temperature scalar (7).

Finally, it is important to note, that Gamid is compatible with various DDPG variants. As such, when seeking
state-of-the-art performance, one should implement it within the most effective DDPG variant. Indeed, in
our experimental section, we report results for a Gamid implementation extending the Twin Delayed DDPG
(TD3) variant (Fujimoto et al., 2018).

3.3 Convergence of Gamid

When setting the number of Gaussian to one (N = 1), Gamid is effectively the same as DDPG and shares
similar convergence guarantees. However, when considering a mixture of N > 1 Gaussians, the objective
function per Gaussian differs from that of DDPG following the MaxEnt sub-objective. As such, DDPG and
Gamid might converge on a different local optimum. This issue can easily be addressed by decaying the
policy divergence temperature (7). Nonetheless, matching the convergence guarantees of DDPG provides
minor value as no such guarantees are provided for the general case. Specifically, Lillicrap et al. (2015) state,
“As with @ learning, introducing non-linear function approximators means that convergence is no longer
guaranteed. However, such approximators appear essential in order to learn and generalize on large state
spaces”.

4 Experiments

The goals of the reported experimental study are fourfold: (G1) to illustrate the benefits of a GMM-based
actor over a single Gaussian policy in the context of Gamid when attempting to capture multiple modes of
optimality, (G2) to compare deterministic policy gradients versus stochastic policy gradients for optimizing
a GMM-based actor, (G3) to compare Gamid against contemporary RL algorithms for continuous control
tasks, and (G4) to demonstrate the performance sensitivity for Gamid’s hyperparameters. Full descriptions
for all the domains (state and action space, reward function) are provided in Appendix A.

Published in Transactions on Machine Learning Research (12/2024)

SAC SAC SAC SAC
1.0 1.0 1.0
0.5 0.5 0.5
N = — oo T o.o= 1 0.01 Sa
-1 o 1 -1 o0 1 = 0 1 -1 0 1
TD3/DDPG TD3/DDPG TD3/DDPG TD3/DDPG
1.0
0.0 /i
-1 0 1
Gamid Gamid Gamid Gamid
1.0 1.0 1.0 1.0
0.5 0.5 0.5 0.5
0.0 /e 0.0 I 0.0—VB A 0.0 =21
-1 0 1 -1 0 1 -1 0 1 -1 0 1
SACM SACM SACM SACM
1.0 1.0 1.0
0.5 0.5 0.5
0.0t= oy 0.0= o 0.0= ——
-1 o0 1 -1 o0 1 -1 0 i
(a) Step# 0 (b) Step# 2000 (c) Step# 4000 (d) Step# 9000

Figure 1: Policy distribution at different training steps in the 1-D continuous bandit problem with the
reward function shown in green. x-axis represents the action space and y-axis the scaled PDF (probability
density function). Unlike single Gaussian policy-based methods such as SAC and TD3/DDPG, and GMM
policy-based SACM (shaded in blue), Gamid (shaded in red) converges on the optimal action.

4.1 (G1) Capturing Multiple Modes of Optimality

To illustrate the benefits of Gamid over a single Gaussian policy, as commonly used in SAC and DDPG/TD3,
in terms of escaping the local optima and finding the optimal solution, we consider a toy continuous bandit
problem with a 1-D action space. We adopt this problem from Huang et al. (2023). It has a multi-
modal (2 modes) deterministic reward function defined over the action space in a bandit setting. The exact
experimental settings follow those presented in Huang et al. (2023). For completeness, these settings are
provided in Appendix A.

Figure 1 showcases the performance of Gamid against a single Gaussian policy with a parameterized mean
(as in both SAC and DDPG) and standard deviation (as in SAC). The Gaussians for both SAC and DDPG
are initialized with means around 0 (Figure la). We observe that both the single Gaussian actor variants
move toward the suboptimal action (Figures 1b and 1c) and converge on it by the end of the training
phase (Figure 1d). Similarly, Gamid finds the suboptimal action during the initial learning stages but, in
contrast to the single Gaussian variants, it gradually spreads out and converges on the optimal action by the
end of the training phase. These results suggest that a GMM-based actor can be helpful in escaping local
(sub)-optimum as opposed to a single Gaussian actor. However, when examining the performance of SACM
(with 5 Gaussians), we notice that it also converges on the suboptimal action, despite training a GMM actor.
While SACM uses a GMM-based actor, similar to Gamid, it trains it using stochastic gradients, in contrast
to Gamid. These results suggest that when training a GMM actor, deterministic gradients can be more

Published in Transactions on Machine Learning Research (12/2024)

effective in escaping local optimum when compared to stochastic gradients. The inability of a stochastic
gradient approach (SAC, SACM) to capture the optimal mode is identified in prior work [2] from which we
adopted the 1-D continuous bandit environment. They provide the following explanation: “The Gaussian
policy, initialized at 0 with a large standard deviation, can cover the whole solution space. However, the
gradient with respect to p is positive, which means the action probability density will be pushed towards
the right, as the expected return on the right side is larger than the left side, although the left side contains
a higher extreme value. As a result, the policy will move right and get stuck at the local optimum with a
low chance of jumping out”. We agree with the intuition provided in this explanation which highlights the
limitations of stochastic gradient-based actor optimization in escaping local optimum.

4.1.1 GMM Actor Divergence

We analyze the diversity between the Gaussians in Gamid captured by the approximated K L-divergence.
Specifically, we utilize Equation (4) for approximating the sum of K L-divergence over all Gaussians with
respect to the GMM. That is, we define ¥D,q, = Zfil Dgr(i]|(N \) (see definition from Line 11 in
Algorithm 1). Figure 2 contains plots of XD, at each training step on three representative MuJoCo
tasks (Todorov et al., 2012), ‘Hopper-v3’, ‘HalfCheetah-v3’, and ‘Walker2d-v3’ with increasing order of
action dimensionality. We provide results for two extreme 7 values (0 and 10) to highlight their effect on
Y. Dyar. We expect XD, to be relatively higher for higher values of 7 since a higher value of 7 maximizes
Y Dyar (Line 11 in Algorithm 1). The XD, curves for all the tasks in Figure 2 follow the expected trend
as the curve corresponding to 7 = 10 is consistently higher than the one corresponding to 7 = 0. For
comparison, we also include curves for the tuned 7 values (7 = opt.) as listed in Table 5 which we observe to
be between the curves corresponding to 7 = 0 and 7 = 10. These curves are closer to 7 = 0 since the tuned
values are closer to zero at (0.01 — 0.3). We further visualize the evolution of the GMM Gaussian component
means in Gamid during different steps of the training stage. See Appendix D.1 for full details and results.

189 30 22

/ W A
16 20
14 2> 18
L12 —— T=opt .20 _16
S —_— T = S 314
S 10 T 0 415 Q 1
8 — 1t=10 W W
6 10 10
al 8
2 > R 6 :K-m__
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Step 1e6 Step 1e6 Step le6
(a) Hopper-v3 (b) HalfCheetah-v3 (c) Walker2d-v3

Figure 2: Sum of the D, over N Gaussian components (XD,,,) at each training step for 3 different settings
of 7 on 3 representative MuJoCo tasks. Curves have been smoothed (100,000 steps moving window) for visual
clarity.

4.2 (G2) Deterministic vs Stochastic Policy Gradients

To analyze when deterministic policy gradients can be more effective than stochastic policy we consider 2
domains. The first domain is a 2-D maze navigation grid-world environment, denoted ‘MazeGrid’, with a
sparse reward function adopted from Huang et al. (2023). The agent starts at the center of the grid and
its objective is to reach the optimal goal. The other domain is the ‘HalfCheetah-v3’ environment from
MuJoCo (Todorov et al., 2012). Full details regarding the domains are provided in Appendix A.

In Figure 3, we observe that SACM outperforms Gamid in terms of sample efficiency by more than 1
standard deviation in ‘MazeGrid’. Prior work has shown single Gaussian-based actors using MaxEnt-based
policy optimization to be more effective in challenging exploration (sparse reward) tasks as compared to
deterministic policies (Dawood et al., 2023; Singh et al., 2019) which might explain these trends.

Published in Transactions on Machine Learning Research (12/2024)

= Gamid SACM SAC

TIT]
+2 E L7
L | _ 214
| i | 11

I I 08
+0.2 g 0.6

I 1] z 0.3

0.3
0.0 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0
Steps (1e4)

Figure 3: Training curves on MazeGrid. Solid curves present the average over five runs while the shaded
region represents two standard deviations.

On the other hand, in Figure 4b we observe that Gamid outperforms SACM in terms of sample efficiency
in ‘HalfCheetah-v3’. Compared to stochastic policies, deterministic policies have been shown to be more
effective in tasks requiring precise control (as is common in robotics domains) (Montenegro et al., 2024). We
speculate that Gamid builds on these properties and uses the diversified actors to speed up exploration during
the initial stages of learning. This suggests that a GMM optimized using deterministic policy gradients can
be effective in dense reward robotics tasks when compared to using stochastic gradients.

4.3 (G3) Comparative Evaluation on Benchmark Tasks

For the comparative evaluation, we compare Gamid against common RL algorithms for continuous control
tasks using benchmark MuJoCo (Todorov et al., 2012) and Fetch (Plappert et al., 2018) domains. The
MuJoCo tasks utilize dense reward functions to learn locomotion tasks. The Fetch domains consist of a
7-DoF robotic arm fitted with a gripper relying on sparse reward functions to learn to solve goal-reaching
tasks.

We consider the following baseline RL algorithms for continuous control tasks:

1. Soft Actor-Critic (SAC) (Haarnoja et al., 2018) (Off-Policy) — a MaxEnt actor-critic algorithm
where the policy is trained to maximize a weighted combination of expected return and policy
entropy.

2. Soft Actor-Critic Mixture (SACM) (Baram et al., 2021) (Off-Policy) — a soft-actor optimization
approach that uses a GMM as the policy approximator. This approach was reported to not improve
performance over a single Gaussian policy (SAC).

3. Probabilistic Mixture-of-Experts SAC (PMOE) (Ren et al., 2021) (Off-Policy) — a soft-actor
optimization approach that uses a mixture of critics. This approach was shown to outperform other
MOE approaches, specifically: MOE with gating operation (Jacobs et al., 1991), Double Option
Actor-Critic (DAC) option framework (Zhang & Whiteson, 2019), the Multiplicative Compositional
Policies (MCP) (Peng et al., 2019), and PMOE with Gumbel-Softmax (Maddison et al., 2016).

4. Proximal-Policy-Optimization (PPO) (Schulman et al., 2017) (On-Policy) — a trust region
policy optimization variant (Schulman et al., 2015) using clipped gradients to restrict the policy
change between policy updates.

5. Twin Delayed DDPG (TD3) (Fujimoto et al., 2018) (Off-Policy) — an extension of the original
DDPG algorithm which introduces three enhancements, namely, (1) Clipped Double-Q Learning,
(2) Delayed Policy Updates, and (3) Target Policy Smoothing.

For Baselines 1, 4, and 5 we used the implementations provided in Stable-baselines3 (Raffin et al., 2021).
For Baseline 2, since there was no official implementation provided by the authors, we implemented it
following the pseudocode provided in the paper. For Baseline 3, we used the implementation provided

10

Published in Transactions on Machine Learning Research (12/2024)

e Gamid PMOE-SAC SACM SAC TD3 PPO
350 3500
10000 —
c 300 c . c 3000
2250 2 8000 22500
& & &
> 200 o 6000 o 2000
e € 4000 £1500
2100 2 000 21000
50 : 500
0 0 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Steps (1e6) Steps (1e6) Steps (1e6)
(a) Swimmer-v3 (b) HalfCheetah-v3 (c) Hopper-v3
7000
6000
£
3 5000
& 4000
(V]
3000
£ 2000
1000
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.2 05 0.8 1.0 1.2 15 1.8
Steps (1e6) Steps (1e6) Steps (1e6)
(d) Ant-v3 (e) Walker2d-v3 (f) Humanoid-v3
1.0 E— 1.0 1.0 S
c0.8 /fw c0.8 | cos
2 2 2
20.6 20.6 20.6
o o o
i i -1 i
© 0.4 © 0.4 © 0.4
<0.2 <0.2 <0.2
0.0 0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Steps (1e6) Steps (1e6) Steps (1e6)
(g) FetchPush-v1 (h) FetchSlide-v1 (i) FetchPickAndPlace-v1

Figure 4: Training curves on continuous control benchmarks. Solid curves present the mean over five runs
while the shaded region represents the tolerance interval with @ = 0.05 and 8 = 0.7 (Patterson et al., 2023).
Curves have been smoothed (100 steps moving window) for visual clarity. Gamid (Blue curve) consistently
performs on par or better compared to existing baseline methods.

by the authors. The hyperparameter values for each algorithm were set as the recommended values. For
completeness, these values are provided in Appendix B. The codebase for these experiments is available at
https://github.com/Pi-Star-Lab/gamid-pg. None of the baselines results in meaningful learning in the
Fetch tasks due to sparse rewards. Consequently, we follow prior work (Ibarz et al., 2021; Raffin et al., 2021;
Bajaj et al., 2023) and combine them with Hindsight Experience Replay (HER) (Andrychowicz et al., 2017).
Note that PPO and PMOE are not straightforward to combine with HER and are thus omitted for these
tasks. 2

Post-training performance. Table 1 presents the post-training performance of Gamid and the baseline
algorithms at the end of the training stage (2M training steps for ‘Humanoid-v3’ and 1M for the rest) on
the MuJoCo and Fetch tasks. Results reported in the table and trends in Figure 5 suggest that Gamid
performs on par with the baseline methods on tasks with lower degrees of freedom, as in ‘Swimmer-v3’
(Figure 4a), and ‘Hopper-v3’ (Figure 4c). It outperforms them on tasks with higher degrees of freedom
(Figures 4b, 4e, 4f). We hypothesize these trends stem from increased modes of optimality present in high-

2No prior work combined PPO or PMOE with HER to the best of our knowledge.

11

Published in Transactions on Machine Learning Research (12/2024)

Table 1: Mean performance and the 1-standard deviation on continuous control benchmarks. The best-
performing RL algorithms have been highlighted in bold.

TD3 SAC SACM PMOE PPO Gamid
MuJoCo (v3)

Swimmer 263 = 139 318 + 43 336 £ 1.4 50 £ 3.82 318 + 221 344 + 4.1
HalfCheetah 9,578 £ 648 10,427 £ 206 9,599 + 357 7,934 £ 1,072 5251 + 907 11,063 + 300
Hopper 3,392 + 125 3,027 £ 664 2,848 £ 677 2900 £ 461 918 £ 156 3,301 £ 209
Ant 4,264 £ 1,671 3,613 £ 1,365 4,159 £ 512 1,874 £ 491 2,204 £ 781 4,998 + 828
‘Walker2d 4,153 £ 429 4237 £ 429 4187 £ 245 4,046 £ 530 3,023 £ 1,543 4,835 + 187
Humanoid 5,727 £ 411 5949 £ 560 5,498 £ 770 5,039 £ 394 812 £ 136 6,141 + 629
Fetch (v1)
Push 0.34 £ 0.43 0.99 + 0.02 0.99 + 0.02 — — 0.95 £ 0.05
Slide 0.13 +£ 0.18 0.76 = 0.26 0.75 = 0.27 — — 0.45 + 0.31
PickAndPlace 0.03 £ 0.04 0.99 £+ 0.01 0.99 + 0.01 — — 0.66 = 0.24

dimensional control tasks and Gamid’s superior ability to capture such complex behavior patterns. Results
in all the Fetch tasks (Figures 4g, 4h, and 4i) show that Gamid consistently outperforms TD3 in terms of
post-training performance. However, SAC and SACM outperform both Gamid and TD3. These results align
with Figure 3 where we observe that stochastic gradient-based approaches are relatively more effective in
sparse reward tasks than deterministic gradient-based approaches.

Sample efficiency. We observe that Gamid has a better sample efficiency than the baselines in
‘HalfCheetah-v3’ (Figure 4b) and ‘Walker2d-v3’ (Figure 4e). In the rest of the domains, we do not see
any specific trend for Gamid as compared to the baselines. In all Fetch domains, Gamid has better sample
efficiency than TD3 but has worse sample efficiency than SAC and SACM.

Performance consistency. In terms of the post-training performance, we observe that Gamid consistently
performs at least as well as TD3 on both dense-reward (MuJoCo) and sparse-reward (Fetch) tasks. In
terms of the average performance, Gamid outperforms TD3 on 8/9 tasks (see Table 1). We also report
an independent two-sample ¢-test (Cressie & Whitford, 1986) with the p-value significance level set to 0.05
comparing Gamid and TD3. The results indicate that the advantage of Gamid over TD3 is statistically
significant in 4/9 tasks (‘HalfCheetah-v3’, ‘Walker2d-v3’, ‘FetchPush-v1’, and ‘FetchPickAndPlace-v1’). For
the rest of the domains, the performance difference is not statistically significant. These results suggest
that, while training with deterministic gradients, utilizing a GMM-based actor (as in Gamid) is consistently
advantageous with respect to returns when compared to utilizing a single-Gaussian actor (as in TD3).

4.4 (G4) Sensitivity Analysis of Gamid

We examine the sensitivity of Gamid’s performance with respect to its hyperparameters. The reported
results exclude the hyperparameters that are shared with the original DDPG algorithm since an ablation
study for those was presented in previous publications (Lillicrap et al., 2015; Fujimoto et al., 2018). The
results are reported for a single domain (‘Walker2d’) where Gamid performs significantly better than ex-
isting approaches. Nonetheless, for completeness, ablation results for the other domains are reported in
Appendix D.

Number of Gaussians, N. We start by examining the impact of varying the number of Gaussians used
by Gamid (the N hyperparameter). Figure 5a presents learning curves for five N values: 1 (original TD3),
2,...,5. The other hyperparameters were kept constant with values as reported in the comparative study.
We observe that increasing the number of Gaussians up to N = 3 improves both the sample efficiency and
post-training performance when compared to a single Gaussian. N = 3 provides the best exploration balance
while the marginal benefit from adding more Gaussians diminishes and stagnates at about four. This is a

12

Published in Transactions on Machine Learning Research (12/2024)

5000 5000 5000
£ £ £
5 4000 5 4000 5 4000
2 2 2
¢ ¢ &
o 3000 — N=5 ;3000 © 3000
8 N=4 g 7=0.01 8 greedy (€=0)
2000 — N=3 92000 — 71=0.1 2000 7 —— low e (e=1/10N)
< n=2 < 7=0.5 . / —— med. € (=1/2N)
1000 = 1000 =U, 1000 / 1€€.
¢ N=1 £ — 1=0.1-0.01 , high € (e=1/N)
00.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Steps (1e6) Steps (1e6) Steps (1e6)
(a) Number of Gaussians (N) (b) Policy divergence temperature (7) (¢) GMM weights

Figure 5: Ablation curves for the ‘Walker2D’ domain. These results suggest that (1) adding more Gaussians
to the GMM-based actor is beneficial, (2) setting a decaying policy divergence parameter is beneficial, and
(3) using an e-greedy approach with a low (yet not zero) e value is beneficial.

reasonable result as, with sufficient Gaussians, the GMM becomes expressive enough to represent any target
policy, so the addition of more Gaussians is not helpful.

Policy divergence temperature, 7. Next, we examine the impact of varying the policy divergence
temperature hyperparameter (7). Figure 5b presents learning curves for three static 7 values (0.01, 0.1, 0.5)
and a decaying 7 version (linear decay from 0.1 to 0.01 in 30% of the total training steps). We observe that
a decaying 7 value performs best. This outcome (favoring entropy temperature decay) is in line with similar
results reported by Schulman et al. (2017) and Haarnoja et al. (2018).

GMM weights, €. Finally, we examine the impact of varying the GMM weights setting from Line 3
(denoted P). Figure 5c presents learning curves for four P e-greedy assignments: € = 0 (greedy), e = 1/(10N)
(low epsilon), e = 1/(2N) (high epsilon), e = 1/N (uniform). The results suggest that a low (yet not zero)
epsilon performs best. This result is in line with e-greedy trends reported in prior work (Mnih et al., 2015).

5 Discussion

While prior works have compared deterministic and stochastic policy gradients they did so for single Gaussian
actors. These studies found that stochastic gradients outperform deterministic gradients on common bench-
mark domains (Haarnoja et al., 2018). Our experimental study suggests that this trend (stochastic gradients
outperform deterministic gradients) does not necessarily apply to GMM-based actors. We observe that in
5 out of 6 dense-reward MuJoCo domains, optimizing such actors with deterministic gradients (Gamid)
performed better compared to stochastic gradients (SACM). Gamid also leads to improvements over (single
Gaussian) SAC in 3/6 MuJoCo tasks while consistently performing similar or better than TD3 in all the
MuJoCo tasks. In the 3 sparse-reward Fetch tasks, we observe that stochastic gradient-based actors (SAC,
SACM) outperform deterministic gradient-based actors (GMM). In stochastic gradient-based algorithms, the
entropy of the policy, derived from a learned standard deviation as opposed to a fixed standard deviation in
deterministic gradient-based algorithms, is generally high during the initial learning stages in sparse-reward
tasks. During this stage, the agent receives close to zero non-zero rewards that result in high policy stan-
dard deviation and hence a close-to-random exploration which is key in such scenarios. We speculate that
such a property makes SAC and SACM more effective as compared to Gamid and TD3 in the Fetch tasks.
Nonetheless, Gamid outperforms TD3 in all the Fetch tasks, suggesting that using stochastic gradients to
train a GMM actor can be more effective than doing the same over a single Gaussian actor. We observe that
GMM-based actors optimized using deterministic gradients as presented in Gamid do not adversely affect
the post-training performance of TD3 in the MuJoCo tasks. These results stand in contrast with findings
reported in Baram et al. (2021) that did not find any significant advantage for using GMM-based actors.

13

Published in Transactions on Machine Learning Research (12/2024)

It should be noted that Gamid adds additional hyperparameters on top of DDPG/TD3 which may raise
concerns about its practicality in real-world settings, given the need for required hyperparameter tuning.
We emphasize that Gamid, in its current form, is an effort to spark interest within the scientific community
on the effectiveness of deterministic policy gradients when coupled with GMMs. Future work will focus on
developing practical variants of Gamid by fixing or automating hyperparameter values.

6 Summary

In this paper, we presented a comparison between stochastic and deterministic policy gradients to optimize
Gaussian mixture model (GMM)-based policies. We introduced a novel approach, denoted Gamid, for
training a GMM using deterministic gradients. Similar to the maximization of entropy in stochastic actors,
Gamid incorporates a diversification objective that encourages the actors to spread out aiding the exploration
capabilities of the policy. Empirical studies on benchmark MuJuCo tasks show that, in terms of sample
efficiency and post-training performance, Gamid improves over the single Gaussian stochastic variant (SAC)
in 3/6 domains. It consistently performs on par or better than the single Gaussian deterministic variant
(TD3) in all the MuJoCo and Fetch tasks. These results suggest that deterministic gradient approaches can
be more effective for training GMM actors as compared to stochastic gradient approaches for dense-reward
control tasks. Empirical results on sparse-reward Fetch tasks show that stochastic gradient approaches are
more effective than Gamid. Nevertheless, Gamid improves over the single Gaussian deterministic variant
in 3/3 Fetch domains. Consequently, we hope this work will seed research on training soft actors using
deterministic gradient approaches.

References

Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley interdisciplinary reviews: compu-
tational statistics, 2(4):433-459, 2010.

Navid Aghasadeghi and Timothy Bretl. Maximum entropy inverse reinforcement learning in continuous
state spaces with path integrals. In 2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 1561-1566. IEEE, 2011.

Alejandro Agostini and Enric Celaya. Reinforcement learning with a gaussian mixture model. In The 2010
International Joint Conference on Neural Networks (IJCNN), pp. 1-8. IEEE, 2010.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-
generation hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD interna-
tional conference on knowledge discovery € data mining, pp. 2623-2631, 2019.

Riad Akrour, Davide Tateo, and Jan Peters. Continuous action reinforcement learning from a mixture of
interpretable experts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(10):6795—
6806, 2021.

D. Alspach and H. Sorenson. Nonlinear bayesian estimation using gaussian sum approximations. IEEFE
Transactions on Automatic Control, 17(4):439-448, 1972. doi: 10.1109/TAC.1972.1100034.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob McGrew,
Josh Tobin, OpenAl Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. Advances in
neural information processing systems, 30, 2017.

Oleg Arenz, Mingjun Zhong, and Gerhard Neumann. Trust-region variational inference with gaussian mixture
models. The Journal of Machine Learning Research, 21(1):6534-6593, 2020.

James Ault and Guni Sharon. Reinforcement learning benchmarks for traffic signal control. In Proceedings

of the 35th Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks,
December 2021.

14

Published in Transactions on Machine Learning Research (12/2024)

Vaibhav Bajaj, Guni Sharon, and Peter Stone. Task phasing: automated curriculum learning from demon-
strations. pp. 542-550, 2023. doi: 10.1609/icaps.v33i1.27235. URL https://doi.org/10.1609/icaps.
v33i1.27235.

Nir Baram, Guy Tennenholtz, and Shie Mannor. Maximum entropy reinforcement learning with mixture
policies. arXiv preprint arXiw:2103.10176, 2021.

Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva Tb, Alistair
Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional deterministic policy gradients.
arXiv preprint arXiv:1804.08617, 2018.

Craig Calcaterra. Linear combinations of gaussians with a single variance are dense in 12. In Proceedings of
the World Congress on Engineering, volume 2, 2008.

Po-Wei Chou, Daniel Maturana, and Sebastian Scherer. Improving stochastic policy gradients in continuous
control with deep reinforcement learning using the beta distribution. In International conference on
machine learning, pp. 834-843. PMLR, 2017.

Antonio Coronato, Muddasar Naeem, Giuseppe De Pietro, and Giovanni Paragliola. Reinforcement learning
for intelligent healthcare applications: A survey. Artificial Intelligence in Medicine, 109:101964, 2020.

NAC Cressie and HJ Whitford. How to use the two sample t-test. Biometrical Journal, 28(2):131-148, 1986.

Murad Dawood, Nils Dengler, Jorge de Heuvel, and Maren Bennewitz. Handling sparse rewards in reinforce-
ment learning using model predictive control. In 2023 IEEE International Conference on Robotics and
Automation (ICRA), pp. 879-885. IEEE, 2023.

Sheelabhadra Dey, Sumedh Pendurkar, Guni Sharon, and Josiah P. Hanna. A joint imitation-reinforcement
learning framework for reduced baseline regret. In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 3485-3491. IEEE Press, 2021. doi: 10.1109/IR0OS51168.2021.9636294.
URL https://doi.org/10.1109/IR0S51168.2021.9636294.

Sheelabhadra Dey, James Ault, and Guni Sharon. Continual optimistic initialization for value-based re-
inforcement learning. In Proceedings of the 23rd International Conference on Autonomous Agents and
Multiagent Systems, pp. 453—462, 2024.

Kenji Doya. Temporal difference learning in continuous time and space. Advances in neural information
processing systems, 8, 1995.

Ihigo Elguea-Aguinaco, Antonio Serrano-Muifioz, Dimitrios Chrysostomou, Ibai Inziarte-Hidalgo, Simon
Bggh, and Nestor Arana-Arexolaleiba. A review on reinforcement learning for contact-rich robotic manip-
ulation tasks. Robotics and Computer-Integrated Manufacturing, 81:102517, 2023.

Malrio AT Figueiredo, Jose MN Leitao, and Anil K Jain. On fitting mixture models. In Energy Minimization
Methods in Computer Vision and Pattern Recognition: Second International Workshop, EMMCVPR’99
York, UK, July 26-29, 1999 Proceedings 2, pp. 54-69. Springer, 1999.

Roy Fox, Ari Pakman, and Naftali Tishby. Taming the noise in reinforcement learning via soft updates.
Conference on Uncertainty in Artificial Intelligence (UAI), 2016.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-critic
methods. In International conference on machine learning, pp. 1587-1596. PMLR, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum

entropy deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pp. 1861-1870. PMLR, 2018.

John R. Hershey and Peder A. Olsen. Approximating the kullback leibler divergence between gaussian
mixture models. In 2007 IEEFE International Conference on Acoustics, Speech and Signal Processing -
ICASSP 07, volume 4, pp. IV-317-TV-320, 2007. doi: 10.1109/TCASSP.2007.366913.

15

Published in Transactions on Machine Learning Research (12/2024)

Zhiao Huang, Litian Liang, Zhan Ling, Xuanlin Li, Chuang Gan, and Hao Su. Reparameterized policy
learning for multimodal trajectory optimization. In International Conference on Machine Learning, pp.
13957-13975. PMLR, 2023.

Marco F Huber, Tim Bailey, Hugh Durrant-Whyte, and Uwe D Hanebeck. On entropy approximation for
gaussian mixture random vectors. In 2008 IEEE International Conference on Multisensor Fusion and
Integration for Intelligent Systems, pp. 181-188. IEEE, 2008.

Julian Ibarz, Jie Tan, Chelsea Finn, Mrinal Kalakrishnan, Peter Pastor, and Sergey Levine. How to train your
robot with deep reinforcement learning: lessons we have learned. The International Journal of Robotics

Research, 40(4-5):698-721, 2021.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of local
experts. Neural computation, 3(1):79-87, 1991.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The Interna-
tional Journal of Robotics Research, 32(11):1238-1274, 2013.

Roger Koenker and Kevin F Hallock. Quantile regression. Journal of economic perspectives, 15(4):143-156,
2001.

Solomon Kullback. Information theory and statistics. Courier Corporation, 1997.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Yudong Luo, Guiliang Liu, Haonan Duan, Oliver Schulte, and Pascal Poupart. Distributional reinforcement
learning with monotonic splines. In International Conference on Learning Representations, 2021.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relaxation of
discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. nature, 518(7540):529-533, 2015.

Alessandro Montenegro, Marco Mussi, Alberto Maria Metelli, and Matteo Papini. Learning optimal deter-
ministic policies with stochastic policy gradients. arXiv preprint arXiv:2405.02235, 2024.

Iman Nematollahi, Erick Rosete-Beas, Adrian Rofer, Tim Welschehold, Abhinav Valada, and Wolfram Bur-
gard. Robot skill adaptation via soft actor-critic gaussian mixture models. In 2022 International Confer-
ence on Robotics and Automation (ICRA), pp. 8651-8657. IEEE, 2022.

Gerhard Neumann, Wolfgang Maass, and Jan Peters. Learning complex motions by sequencing simpler
motion templates. In Proceedings of the 26th Annual International Conference on Machine Learning, pp.
753-760, 2009.

Georg Ostrovski, Will Dabney, and Rémi Munos. Autoregressive quantile networks for generative modeling.
In International Conference on Machine Learning, pp. 3936-3945. PMLR, 2018.

Andrew Patterson, Samuel Neumann, Martha White, and Adam White. Empirical design in reinforcement
learning. arXiv preprint arXiv:2304.01315, 2023.

Xue Bin Peng, Michael Chang, Grace Zhang, Pieter Abbeel, and Sergey Levine. MCP: Learning composable
hierarchical control with multiplicative compositional policies. Advances in Neural Information Processing
Systems, 32, 2019.

Zhenghao Peng, Hao Sun, and Bolei Zhou. Non-local policy optimization via diversity-regularized collabo-
rative exploration. arXiw preprint arXiv:2006.07781, 2020.

16

Published in Transactions on Machine Learning Research (12/2024)

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Powell, Jonas
Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, Vikash Kumar, and Wojciech Zaremba. Multi-
goal reinforcement learning: Challenging robotics environments and request for research, 2018.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dormann.
Stable-baselines3: Reliable reinforcement learning implementations. The Journal of Machine Learning
Research, 22(1):12348-12355, 2021.

Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. On stochastic optimal control and reinforcement
learning by approximate inference. Proceedings of Robotics: Science and Systems VIII, 2012.

Jie Ren, Yewen Li, Zihan Ding, Wei Pan, and Hao Dong. Probabilistic mixture-of-experts for efficient deep
reinforcement learning, 2021.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy
optimization. In International conference on machine learning, pp. 1889-1897. PMLR, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

Guni Sharon. Alleviating road traffic congestion with artificial intelligence. In Zhi-Hua Zhou (ed.), Proceed-
ings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pp. 4965—4969. In-
ternational Joint Conferences on Artificial Intelligence Organization, 8 2021. doi: 10.24963/ijcai.2021/704.
URL https://doi.org/10.24963/ijcai.2021/704. Early Career.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deter-
ministic policy gradient algorithms. In International conference on machine learning, pp. 387-395. Pmlr,
2014.

Avi Singh, Larry Yang, Kristian Hartikainen, Chelsea Finn, and Sergey Levine. End-to-end robotic rein-
forcement learning without reward engineering. arXiv preprint arXiv:1904.07854, 2019.

Rahul Singh, Keuntaek Lee, and Yongxin Chen. Sample-based distributional policy gradient. In Learning
for Dynamics and Control Conference, pp. 676-688. PMLR, 2022.

Jun Song and Chaoyue Zhao. Optimistic distributionally robust policy optimization. arXiv preprint
arXiw:2006.07815, 2020.

Chen Tessler, Guy Tennenholtz, and Shie Mannor. Distributional policy optimization: An alternative ap-
proach for continuous control. Advances in Neural Information Processing Systems, 32, 2019.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026-5033. IEEE, 2012. doi:
10.1109/IR0S.2012.6386109.

Marc Toussaint. Robot trajectory optimization using approximate inference. In Proceedings of the 26th
annual international conference on machine learning, pp. 1049-1056, 2009.

George E Uhlenbeck and Leonard S Ornstein. On the theory of the brownian motion. Physical review, 36
(5):823, 1930.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine learning, 8(3-4):229-256, 1992.

Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian, Thomas J
Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, et al. Outracing champion
gran turismo drivers with deep reinforcement learning. Nature, 602(7896):223-228, 2022.

Mingzhang Yin and Mingyuan Zhou. Semi-implicit variational inference. In International Conference on
Machine Learning, pp. 5660-5669. PMLR, 2018.

17

Published in Transactions on Machine Learning Research (12/2024)

Yuguang Yue, Zhendong Wang, and Mingyuan Zhou. Implicit distributional reinforcement learning. Advances
in Neural Information Processing Systems, 33:7135-7147, 2020.

Shangtong Zhang and Shimon Whiteson. Dac: The double actor-critic architecture for learning options.
Advances in Neural Information Processing Systems, 32, 2019.

S Kevin Zhou, Hoang Ngan Le, Khoa Luu, Hien V Nguyen, and Nicholas Ayache. Deep reinforcement
learning in medical imaging: A literature review. Medical image analysis, 73:102193, 2021.

A Domain descriptions

1-D Continuous Bandit: A bandit problem with a continuous 1-dimensional action space as shown in
Figure 6. It has a 1-D action space and a non-convex reward landscape with 2 modes of optimality; a global
and a local.

bandit reward

1.0+

0.5+

0.0

-1 0 1
Figure 6: 1-D Continuous Bandit environment
MazeGrid: A 2D maze navigation task as shown in Figure 7. The maze consists of 5x5 grids. Each of

them is connected with neighbors with a narrow passage. The agent starts in the center grid and can move
in four directions. The action space is its position change in two directions (Az, Ay).

Figure 7: MazeGrid environment

MuJoCo: A comprehensive domain description for all the MuJoCo (v3) tasks along with installation
and exact instructions can be found through: https://gymnasium.farama.org/environments/mujoco/.
Table 2 provides a summary of the state (observation) and action spaces dimensionality along with the
guiding reward function definition per task.

B Hyperparameters
We adapted the 1-D continuous bandit environment introduced in prior work (Huang et al., 2023) and

used the recommended hyperparameters for REINFORCE for setting up a lightweight version of SAC (no
critic and no replay buffer). We also use a similar lightweight version of DDPG/TD3 (no critic and no

18

Published in Transactions on Machine Learning Research (12/2024)

Table 2: (a) Action space degrees-of-freedom (Action dim.), (b) Observation space dimensionality (Obs.
dim.), (c) reward function (Reward), per domain.

Domain Action dim. Obs. dim. Reward

Swim. 2 8 forward_reward - ctrl cost

HalfCh. 6 17 forward_reward - ctrl cost

Hopper. 3 11 healthy_ reward + forward_reward - ctrl_ cost

Ant. 8 27 healthy_reward + forward_ reward - ctrl_cost - contact__cost
Walker. 6 17 healthy reward + forward_reward - ctrl_ cost

Human. 17 376 healthy_reward + forward_reward - ctrl_cost - contact__cost
Push. 4 25 sparse; block final target position reached = 0/not reached = -1
Slide. 4 25 sparse; puck final target position reached = 0/not reached = -1
Pick. 4 25 sparse; block final target position reached = 0/not reached = -1

replay buffer). For the noise in DDPG, we used a Gaussian distribution with a mean of 0 and a fixed
standard deviation of 0.1, the recommended setting for MuJoCo tasks in RL Baselines3 Zoo library (https:
//github.com/DLR-RM/rl-baselines3-zoo/tree/vl.6.2/hyperparams).

Tables 8-9 present the default hyperparameters values used in our experiments on the MuJoCo and Fetch
tasks. To allow for easy reproduction of the results, the presented hyperparam names follow the variable
names in the Stable-baselines3 (v1.6.2) (Raffin et al., 2021) open-source codebase. We used the tuned
hyperparameter values for SAC, TD3, and PPO that have been provided in RL Baselines3 Zoo which is
built on top of Stable-baseliness. For SACM and PMOE we used hyperparameters recommended in (Baram
et al., 2021) and (Ren et al., 2021) respectively for the MuJoCo tasks. For the Fetch tasks, we tuned the
hyperparameters of SACM using Optuna (Akiba et al., 2019).

Table 3: Shared TD3 hyperparameters (MuJoCo)

Hyperparam. Swimmer-v3 HalfCheetah-v3 Hopper-v3 Ant-v8 Walker2d-v8 Humanoid-v3
n_ timesteps 1000000 1000000 1000000 1000000 1000000 2000000
learning_ rate 0.001 0.001 0.0003 0.001 0.001 0.0003
learning_ starts 10000 10000 10000 10000 10000 10000
batch__size 100 100 256 100 100 256
gamma 0.9999 0.99 0.99 0.99 0.99 0.99
train_ freq 1 (1, episode) 1 (1, episode) (1, episode) 1
gradient__steps 1 -1 1 -1 -1 1
noise_type ‘normal’ ‘normal’ ‘normal’ ‘normal’ ‘normal’ “normal”
noise__std 0.1 0.1 0.1 0.1 0.1 0.1
net_arch (256, 256] [256,256] [256,256] (256, 256] [256, 256] 256, 256]
activation fn nn.ReLLU nn.ReLLU nn.ReLLU nn.ReLLU nn.ReLU nn.ReLLU
C Compute

All reported experiments were distributed between 2 machines; (1) a machine with 64 32-core AMD Ryzen
Threadripper PRO 5975WX CPUs, each clocked at 4.3 GHz with 250 GB RAM with 2 NVIDIA GeForce
RTX 3090 24 GB GPUs (2) a machine with 16 8-core Intel(R) Core(TM) i7-9800X CPUs, each clocked at
3.8 GHz with 16 GB RAM and an NVIDIA GeForce RTX 20280 Ti 12 GB GPU.

D Additional experiments

D.1 Gaussian Spread

Figures 8 and 9 (Appendix D.1) show the spread of the GMM Gaussian means at different steps in the
training stage. Since the action dimensionality in all of the MuJoCo environments is greater than two, we

19

Published in Transactions on Machine Learning Research (12/2024)

Table 4: Shared TD3 hyperparameters (Fetch)

Hyperparam. FetchPush-v1 FetchSlide-v1 FetchPickAndPlace-v1
n__timesteps 1000000 1000000 1000000
learning_ rate 0.001 0.001 0.001
learning_ starts 1000 1000 1000
batch__size 2048 2048 1024
gamma 0.95 0.95 0.95
noise__type ‘normal’ ‘normal’ ‘normal’
noise_ std 0.1 0.1 0.1
net_ arch [512,512,512] [612,512,512] [612,512,512]
activation fn nn.ReLLU nn.ReLLU nn.ReLLU
replay_ buffer_ class HerReplayBuffer HerReplayBuffer HerReplayBuffer

replay_ buffer__kwargs ‘dict(online_sampling=True, goal_selection_ strategy=*‘future’, n_sampled_ goal=4)’

Table 5: Gamid-specific hyperparameters

Hyperparam. Swim. HalfCh. Hopper. Ant. Walker. Human. Push. Slide. Pick.
n_actors (N) 3 5 2 2 3 4 4 8 8
temperature__initial (7) 0.1 0.1 0.1 0.1 0.1 0.3 0.3 0.3 0.3
temperature_final (1) 0.1 0.1 0.01 0.1 0.1 0.1 0.1 0.1 0.1
temperature_ fraction 1.0 1.0 1.0 1.0 1.0 0.3 1.0 1.0 1.0
epsilon__initial (¢) 0.3 0.2 0.1 0.1 0.3 0.3 0.1 0.1 0.1
epsilon_ final (¢) 0.03 0.02 0.1 0.1 0.03 0.1 0.01 0.01 0.01
epsilon__fraction 0.5 0.5 1.0 1.0 1.0 0.3 1.0 1.0 1.0

perform a principal component analysis (PCA) (Abdi & Williams, 2010) on the Gaussian means and plot
the top two PCA components. Comparing the top and middle rows of Figures 8 corresponding to 7 = 0 and
7 =10 in ‘Hopper-v3’ respectively, we observe that the Gaussian means have a higher spread for 7 = 10. A
similar observation can also be made when comparing the top and middle rows of Figures 9 corresponding to
7 =0 and 7 = 10 in ‘HalfCheetah-v3’ respectively. The trend in bottom rows Figures 8 and 9 corresponding
to 7 = opt. is less clear which we speculate could be attributed to noisy weight updates due to mini-batch
gradient descent during training.

D.2 Sensitivity analysis for MuJoCo tasks

Following Haarnoja et al. (2018), we include the sensitivity analysis for all the MuJoCo tasks (beyond the
representative, single task, results presented in the main text).

Figures 10-15 present training curves similar to those presented in the ablation study from the main text
albeit on all the MuJoCo tasks. These results generally support the conclusions provided in the main text
(1) adding more Gaussians to the GMM-based actor has a positive impact up to a certain threshold, beyond
which, performance stagnates or even deteriorates, (2) setting a decaying policy divergence parameter is
beneficial, and (3) using an e-greedy approach with a low (yet not zero) e value is beneficial.

20

Published in Transactions on Machine Learning Research (12/2024)

Table 6: SAC hyperparameters (MuJoCo)

Hyperparam. Swimmer-v3 HalfCheetah-v8 Hopper-v3 Ant-v3 Walker2d-v3 Humanoid-v8
n__timesteps 1000000 1000000 1000000 1000000 1000000 2000000
learning_ rate 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
learning__starts 10000 10000 10000 10000 10000 10000
gradient__steps 1 1 1 1 1 1
gamma 0.9999 0.99 0.99 0.99 0.99 0.99
tau 0.05 0.05 0.05 0.05 0.05 0.05
net_ arch [256, 256] [256, 256] [256,256] [256, 256] [256, 256] [256, 256]
activation_fn nn.ReLU nn.ReLLU nn.ReLU nn.ReLLU nn.ReLLU nn.ReLLU

Table 7: SACM hyperparameters (MuJoCo)

Hyperparam. Swimmer-v3 HalfCheetah-v3 Hopper-v3 Ant-v8 Walker2d-v8 Humanoid-v3
n__components 3 3 3 3 3 3
learning_ rate 0.0006 0.0003 0.0003 0.0003 0.0003 0.0003
learning_ starts 10000 10000 10000 10000 10000 10000
gradient__steps 1 -1 1 -1 -1 1
tau 0.05 0.05 0.05 0.05 0.05 0.05
net__arch [256, 256] [256, 256] [256,256] [256, 256] [256, 256] [256, 256]
activation fn nn.ReLU nn.ReLLU nn.ReLU nn.ReLU nn.ReLLU nn.ReLLU

Table 8: SAC and SACM hyperparameters (Fetch)

Hyperparam.

FetchPush-v1

FetchSlide-v1

FetchPickAndPlace-v1

n__timesteps

learning_ rate

learning_ starts

batch_ size

gamma,

ent_ coef

net arch

activation fn
n_components (SACM)
replay_ buffer_ class

1000000

0.001

1000

2048

0.95

‘auto’
[512,512,512]
nn.ReLU

3
HerReplayBuffer

1000000

0.001

1000

2048

0.95

‘auto’
[512,512,512]
nn.ReLU

3
HerReplayBuffer

1000000

0.001

1000

1024

0.95

‘auto’
[512,512,512]
nn.ReLU

3
HerReplayBuffer

replay_ buffer_ kwargs

‘dict(online_ sampling=True, goal_selection_ strategy=‘future’, n_sampled_ goal=4)’

21

Published in Transactions on Machine Learning Research (12/2024)

Table 9: PPO hyperparameters (MuJoCo)

Hyperparam. Swimmer-v3 HalfCheetah-v3 Hopper-v3 Ant-v8 Walker2d-v3 Humanoid-v3
normalize True True True True True True
gamma 0.9999 0.98 0.999 0.99 0.99 0.95
n_ steps 1024 512 512 2048 512 512
batch_ size 256 64 32 64 32 256
learning_ rate 0.0006 9.8e—5 3e—4 0.0001 5.05e — 5 3.56e — 5
ent_ coef 4.02e4 4e—4 0.0022 0.0 5.8¢ — 4 0.0024
clip_ range 0.9999 0.1 0.2 0.2 0.2 0.3
n__epochs 20 20 5 10 20 5
gae_lambda 0.98 0.92 0.99 0.95 0.95 0.9
max__grad_ norm 0.8 0.8 0.7 0.5 1 2
v coef 4.02¢* 0.58 0.83 0.5 0.87 0.43
net__arch [256, 256] [256, 256] [256,256] [256, 256] [256, 256] [256, 256]
activation_ fn nn.ReLU nn.ReLLU nn.ReLU nn.ReLLU nn.ReLLU nn.ReLU
log_std_ init 0.0 -2 -2 0.0 0.0 —2
ortho init True False False True True False

22

Published in Transactions on Machine Learning Research (12/2024)

T=0
3 3 3 3
@ ! e! o ! [I
2 2 2 2
29 L 2 L 24 L 24 L
19 1 19 14
~ ~ ~ ~
3 o e g o o N g o4 - g o |
-4 -4 |4 -4
14 -1 -1 -14
-2 4 -2 -2 -2 4
-3 T T T T T -3 T T T T T -3 T T T T T -3 T T T T T
-3 -2 -1 o 1 2 -3 -2 -1 [} 1 2 3 -3 -2 -1 0 1 2 -3 -2 -1 0 1 2 3
PCA1 PCA 1 PCA 1 PCA 1
7=10
3 3 3 3
[et o1 e @1
2 2 2 2
24 L 2 L 24 L 24 L
14 1 19 14
~ ~ ~ ~
3 0 | [] 3 o0 3 04 | [] g 0 []
& 4 & &
-14 -1 -1 -1
-2 -2 -2 -2
-3 T T T T T -3 T T T T T -3 T T T T T -3 T T T T T
-3 -2 -1 o 1 2 -3 -2 -1 o 1 2 3 -3 -2 -1 0 1 2 -3 -2 -1 0 1 2 3
PCA 1l PCA 1 PCA 1 PCA 1
T = opt.
3 3 3 3
@1 ®! o ! [
2 2 2 2
24 L 2 L 24 L 24 L
19 1 19 14
~ ~ ~ ~
g o [g o e u g o4 a g o [} |
-4 -4 |4 -4
14 -1 -1 -14
-2 -2 -2 -2
-3 T T T T T -3 T T T T T -3 T T T T T -3 T T T T T
-3 -2 -1) 1 2 -3 -2 -1 o 1 2 3 -3 -2 -1 0 1 2 =3 -2 -1 0 1 2 3
PCA1 PCA1 PCA 1 PCA1

(a) Step# 250,000

(b) Step# 500,000

(c) Step# 750,000

(d) Step# 1,000,000

Figure 8: Principal component analysis (PCA) visualization of Gamid Gaussian means in ‘Hopper-v3’ with
7 =0 (top row), 7 = 10 (middle row) and 7 set to the tuned value (bottom row). The legend represents the
ID of each Gaussian.

23

Published in Transactions on Machine Learning Research (12/2024)

T=0
3 3 3 3
®: o e °
21 m> 2 m: 2 m 2 m
4 4) 4
1 \ B 1 A 2 1 \ 2 1 v s
~ v ~ ~ ~
< < < £
g - g e % § » g LA
= [J -1 -1 -1
-2 -2 -2 -2
-3 T T -3 T T T -3 T T -3 T T T T
-3 -2 -1 0 1 2 3 -3 -2 -1 [} 1 2 3 -3 -2 -1 0 1 2 3 =3 -2 -1 0 1 2 3
PCA1 PCA1 PCA1 PCA 1
7=10
3 3 3 3
®: e e ®:
21 . 2 m 2 m: {®2
4 Y 4 4 4
1 \ B 1 A\ 2 1 \ 2 1{ ¥ 5
~ v ~ ~ ~ [}
< g < 0 < 04 < 04
g ° g . g - g -
-1] -1 -1 ¥ 14 1
-2 -2 -2 -2
-3 T T T T T -3 T -3 T -3
-3 -2 -1 0 1 2 3 -3 -2 -1 o 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
PCAl PCA 1l PCA1 PCAl
T = opt.
3 3 3 3
e e e ®
2 2 2 2
21 u 3 2 u 3 21 u 3 21 u 3
4 4) 4
1 v s 1 [v 5 1 v 5 1 v s
o o N o
§ 0 v > § [§ 0 “ § 0 v
ve
-1 . -1 -1 -1
-2 -2 -2 -2
-3 T -3 T T T T T -3 T T T T T -3 T T T T T
-3 -2 -1 0 1 2 3 -3 -2 -1 [} 1 2 3 -3 -2 -1 0 1 2 3 =3 -2 -1 0 1 2 3
PCA1 PCA1 PCA1 PCA 1
(a) Step# 250,000 (b) Step# 500,000 (c) Step# 750,000 (d) Step# 1,000,000

Figure 9: Principal component analysis (PCA) visualization of Gamid Gaussian means in ‘HalfCheetah-v3’
with 7 = 0 (top row), 7 = 10 (middle row) and 7 set to the tuned value (bottom row). The legend represents

the ID of each Gaussian.

400
350 e

c
5300
250
200
[
©150
g
2100
50

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Steps (1e6)

N
N
N
N=1
0.9

(a) Number of Gaussians (N)

350 350
300 300

E E

5250 3250

(] (]

< 200 <200

150 7=0.01 2150 greedy (e=0)

o — 1=0.1 o} —— low € (e=1/10N)

2100 z 100

7=0.5 —— med. € (€=1/2N)

w
o
w
o

—_— e ——7=0.1-0.01 = high € (e=1/N)
0 0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Steps (1e6) Steps (1e6)
(b) Policy divergence temperature (7) () GMM weights

Figure 10: Ablation curves for the ‘Swimmer-v3’ domain

24

Published in Transactions on Machine Learning Research (12/2024)

11000 11000
10000
e 10000 c c 10000
3 9000 2 8000 2 9000
< 8000 < <
S 7000 g = g o000 —————"
o © 4000 7=0.01 & 7000 greedy (€=0)
¢ 6000 g V= — t=0.1 o —— low € (€=1/10N)
< 5000 < 2000 — 1=0.5 < 6000 —— med. € (€=1/2N)
— N=1 — 1=0.1-0.01 —— high € (e=1/N
2000 0 - 5000 gh & (IN)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Steps (1e6) Steps (1e6) Steps (1e6)
(a) Number of Gaussians (N) (b) Policy divergence temperature (1) (¢) GMM weights
Figure 11: Ablation curves for the ‘HalfCheetah-v3’ domain
3500 3500 3500
£ 3000 ¢ 3000 3000
=1 =} 3
E 2500 E 2500 E’ 2500
v 2000 © 2000 o 2000
2 N 2 7=0.01 4 greedy (€=0)
o o o1
5 1500 ” g 1500 — =01] 500 —— low & (e=1/10N)
< 1000 N < 1000 =05 <1000 —— med. € (e=1/2N)
500 N 500 —— 1=0.1-0.01 500 —— high € (e=1/N)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Steps (1e6) Steps (1e6) Steps (1e6)
(a) Number of Gaussians (N) (b) Policy divergence temperature (1) (c) GMM weights
Figure 12: Ablation curves for the ‘Hopper-v3’ domain
6000 6000 6000
5000 5000 5000
£ £ £
£ 4000 24000 24000 //
-4 4 4 - —
$3000 $3000 — $3000 —~aready (£=0)
§ 2000 § 2000 — T1=0.1 E} 2000 —— low € (€=1/10N)
< < — 1=0.5 < —— med. € (€=1/2N)
1000 1000 —— 1=0.1-0.01 1000 —— high € (e=1/N)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Steps (1e6) Steps (1e6) Steps (1e6)
(a) Number of Gaussians (N) (b) Policy divergence temperature (7) (¢) GMM weights
igure 13: ation curves for the ‘Ant-v3’ domain
Fig 13: Ablat for the ‘Ant-v3’ d
5000 5000 5000
£ £ £
5 4000 S 4000 5 4000
g g g
o 3000 N © 3000 © 3000
g N g 7=0.01 ? greedy (€=0)
g 2000 N g 2000 — 1=0.1 q>) 2000 —— low € (¢=1/10N)
z z _ z L -
1000 N 1000 =0.5 1000 med. £ (e=1/2N)
N — 71=0.1-0.01 —— high € (e=1/N)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Steps (1e6) Steps (1e6) Steps (1e6)
(a) Number of Gaussians (N) (b) Policy divergence temperature (1) (¢) GMM weights

Figure 14: Ablation curves for the ‘Walker2d-v3’ domain

25

Published in Transactions on Machine Learning Research (12/2024)

6000
€
55000
Q
& 4000
[
83000
(Y
Z 2000
1000

N
N
N
N

0.2 04 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Steps (1e6)

(a) Number of Gaussians (N)

Figure 15:

6000
c
55000
9]
%4000
[—
3000 r=0.01
e — 1=0.1
<2000 — 1=05
1000 — 1=0.1-0.01

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Steps (1e6)

(b) Policy divergence temperature (1)

6000

c

55000

2

[0}

‘: 4000

83000 greedy (=0)

o —— low & (¢=1/10N)

<2000 —— med. € (e=1/2N)
1000 —— high & (e=1/N)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Steps (1e6)

(¢) GMM weights

Ablation curves for the ‘Humanoid-v3’ domain

26

	Introduction
	Preliminaries
	Reinforcement learning (RL)
	Distributional RL
	Soft policy density approximation
	Gaussian Mixture Model (GMM)
	Deep Deterministic Policy Gradient (DDPG)

	Gaussian Mixture Deterministic Policy Gradient
	GMM policy sampling
	GMM training
	Convergence of Gamid

	Experiments
	(G1) Capturing Multiple Modes of Optimality
	GMM Actor Divergence

	(G2) Deterministic vs Stochastic Policy Gradients
	(G3) Comparative Evaluation on Benchmark Tasks
	(G4) Sensitivity Analysis of Gamid

	Discussion
	Summary
	Domain descriptions
	Hyperparameters
	Compute
	Additional experiments
	Gaussian Spread
	Sensitivity analysis for MuJoCo tasks

