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Abstract

Applications for risk diversification strategies in addressing conservation problems commonly
ignore upper limits in returns, which may not reflect that these economic returns are often
beyond the scope of what conservation assets can produce given constraints on species, sites, or
activities. The objective of this research is to identify the consequences of failing to account for
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upper limits on returns from conservation in a modern portfolio theory (MPT) framework. We
find that the amount of risk reduction conservation organizations can achieve with the same level
of compromise in the expected return on investment is higher when returns are constrained.
Short Description

The paper investigates how ignoring upper limits in returns affects conservation investments in
Modern Portfolio Theory, finding that acknowledging these limits significantly improves risk
management without diminishing expected investment returns.
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Introduction

With persistent uncertainty related to the effectiveness of conservation investments,
the design and planning of such investments based purely on historical data may yield
misleading results (Cho et al., 2018; Newbold, 2018; Snill et al., 2021). Modern Portfolio
Theory (MPT), a quantified version of “Do not put all your eggs in one basket”, developed by
Markowitz (1952) and published in the financial literature, has been applied in recent years to
help diversify risk in conservation investments (Shipway, 2009). This tool accounts for
heterogeneities in climate and market uncertainty to minimize risk associated with investment
portfolios that focus on conservation-related assets such as species, sites, and activities (Ando
and Mallory, 2012; Eaton et al., 2019).

Despite the merits of MPT, applications to conservation investment have not
accounted for upper limits in returns that arise from physical limitations. In a species
conservation context, return on conservation investment is clearly bounded by the total
amount of species habitat available (e.g., the forested area that can be protected for a given
site). A conservation organization will also face an upper limit in return to conservation if
individual values for species conservation do not scale with the number of species protected.
For example, surrogate bidding in nonmarket valuation studies may indicate that the
willingness to pay to protect 100 animals is no different than the willingness to pay to protect
1,000 animals (Kahneman and Knetsch 1992). Economic returns generated from ignoring
such upper limits are not reflective of what the conservation assets can actually produce given
constraints on species, sites, or activities and can lead conservation organizations to
inefficiently focus investment toward certain high-return assets. In other words, conservation
organizations may not be able to “put all their eggs in one basket” if the basket is not large

enough to hold every egg.
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This limitation of MPT comes from its original application to financial investments,
where the asset market is perfectly competitive and no single investor is capable of
influencing the returns of an asset, and thus does not face an upper limit constraint. Early
applications of MPT to conservation problems did not consider potential constraints to each
asset, and most subsequent studies continue to overlook this issue (e.g., Figge, 2004; Ando
and Mallory, 2012). For example, none of the 26 species-habitat MPT case studies
summarized by Ando et al. (2018) considered an upper limit constraint in returns.

A limited number of recent studies have sought to improve conservation related MPT
applications by indirectly limiting returns due to physical constraints (Jin et al., 2016;
Runting et al., 2018). For example, Jin et al. (2016) applied MPT to the implementation of an
ecosystem-based fishery management approach in different geographic regions. The authors
considered the limited stock of each fish species available to harvest in their MPT application
by constraining the maximum weight applied to each species’ harvest. Similarly, Runting et
al. (2018) reformulated an integer quadratic programming MPT approach with a binary
decision variable representing whether each site is selected for wetland protection. By using a
binary decision variable, the authors indirectly accounted for limited returns based on each
site’s limited availability, along with other physical considerations such as connectivity
necessary for the landward migration of wetlands. However, it remains unclear how the
benefits of risk diversification are impacted by physical constraints.

The objective of this research is to identify the impacts of failing to account for upper
limits on returns from conservation investment in an MPT framework and to understand the
implications of accounting for these limits. To achieve the objective, we develop a MPT
framework with and without upper limit constraints (referred to as ‘constrained MPT’ and
‘naive MPT’, respectively) using county-level return on investments (ROIs) for conservation

of forest biodiversity in the central and southern Appalachian region of the United States (see
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Figure 1). Then, we conceptually illustrate the impacts of upper limits on MPT outcomes
using two hypothetical counties with different expected ROI and associated risk levels. Next,
We compare MPT outcomes between the two approaches using two metrics measuring the
effectiveness of risk diversification: the slope of the efficient frontier representing risk-
reward trade-offs and the vertical distance between the simple diversification point and the
efficient frontier representing the difference in potential expected ROI gained by the different
MPT frameworks, given the same risk level.

We choose to frame the models at the county level since counties (1) provide a
relevant spatial grain when deciding how to allocate conservation budgets, (2) are a relevant
administrative and political unit for regional and local land-use planning in the United States,
and (3) are the level of units our socio-economic variables are available (Le Bouille,
Fargione, and Armsworth, 2023).

Because of the covariance in returns between counties, reducing risk implies forgoing
expected return (i.e., spreading ones bets on conservation). The extent of risk reduction
conservation organizations can attain with the same level of compromise in expected return is
hypothesized to be different for the two MPT approaches. Restrictions on portfolio weights
with constrained MPT impose a degree of “bet spreading” while naive MPT does not.
Therefore, the constrained MPT is useful for conservation investment when a regulatory cap
on budget allocation for each site is present. Many conservation partnership programs are
limited by regulatory constraints imposed by partnership funds. These kind of regulatory
constraints would imply that upper limits on returns would diminish the value added from
using MPT. However, if the constraints force conservation organizations to bet spread
anyway, then it is wise to use MPT to allocate the bet spread in the best way possible. Our

constrained MPT approach is designed to serve this very purpose.
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Methods
Naive MPT framework
Suppose a conservation organization wishes to allocate optimal portfolio weights
across the counties. By modifying the framework developed by Runting et al. (2018) where
risk minimization and expected return maximization are combined in a single framework, we
develop a naive MPT approach formatted as a quadratic programming problem without upper

limit constraints as:

(1) Miny, AWTEW — W™
subject to
) o<wc<li (3)
wir=1

where A is a weight for risk minimization which represents relative emphasis on risk
mitigation from zero to infinity, WTEW is the weighted sum of the variance of counties
representing the portfolio’s variance (or risk) where W7 is a vector transpose of W, an X 1
vector of efficient portfolio weights across n counties as the decision variable, and X is an

n X n variance-covariance matrix of ROIs across n counties. The variance-covariance matrix
between county 7 and county j is calculated as E[(ROI; — E[ROI;])(ROI; — E(ROIJ-)], where
ROI; (or ROI;) is the ROI for county i (or j) under s uncertainty scenarios. Misann X 1
vector of expected ROIs, which are calculated as expected values of ROIs for n counties:
E[ROI;] = Y. p X ROI;; where p is the probability of uncertainty scenario s occurring,

which is equal to i by assuming a uniform probability distribution among s scenarios, and

ROl is the ROI for county i under specific uncertainty scenario s. WTM is the expected ROI

of the portfolio calculated by the weighted average of M with efficient portfolio weight W.
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The objective function in equation (1) maximizes expected ROI (i.e., WTM) or
minimizes the portfolio’s variance (i.e., WTEW) at a certain weight for risk minimization (1).
Equation (2) represents the minimum and maximum constraint on portfolio weights, and 0
and I are n X 1 vectors whose elements are equal to 0 and 1, respectively. The sum of all

portfolio weights is always equal to 1 for any given risk level.

Constrained MPT framework

For constrained MPT, we consider two layers of constraints—physical limitations and
total budget constraints under the assumption that a conservation organization wishes to
allocate optimal portfolio weights across the counties. To account for both constraints, we
replace the decision variable of efficient portfolio weights shown in equation (1) with a

decision variable for efficient budget allocation across counties X shown in equation (4)

below:

4) Miny, AXTEX — X™™
subject to

(5) 0<X<cC

(6) X'I=8B

where X7 is a vector transpose of X, an X 1 vector of efficient budget allocation in dollars
across n counties as the decision variable, C is an n X 1 vector of county-level physical
constraints, whose elements are specified as the product of the size of eligible forestland (i.e.,
unprotected private forestland) as a physical constraint and unit opportunity cost for
conservation as a cost constraint across n counties, and B is a hypothetical total budget
amount for the entire region.

The precise knowledge of C in the future by the conservation organization is not

possible as the size of eligible forestland and unit opportunity cost vary under s uncertainty

5
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scenarios. Given the unknown probability distribution of uncertainty scenarios, we use its
average value across the scenarios for each county for the model. By doing so, we implicitly
assume that € is normally distributed, and thus its mean value is a meaningful representation
of C. For the sensitivity analysis, we estimate the model using the upper limits on both (high
and low) ends of 95% confidence interval of their probability density distributions since
upper limits at the mean may not encompass the entire spectrum of potential outcomes of
constrained MPT. By performing the sensitivity analysis, we partially encompass infrequent
occurrences that can exert significant influence on the size of eligible forestland and unit
opportunity cost.

The objective function in equation (4) maximizes the weighted sum of expected ROIs
(XTM) and minimizes the portfolio’s variance (i.e., XT£X). Equation (5) specifies the
county’s physical constraint C across n counties, and equation (6) constrains the hypothetical
total budget B. The physical constraints are fixed for counties by uncertainty scenario, while
hypothetical total budget constraints may change depending on the budget available for the
entire region. The physical and budget constraints are specified by equations (5) and (6),
respectively, as the total budget is spread from one county to another after meeting each
county’s physical constraint C as each county’s expected ROI goes to 0 (represented as a step
function) until exhausting total budget B.

We calculate efficient portfolio weight W for constrained MPT by dividing efficient
budget allocation X by total budget B to derive the efficient portfolio’s expected ROI and
corresponding variance as the weighted sum of expected ROIs (W' M) and the variance of
counties (WTEW) for the risk measure. In doing so, we derive efficient frontiers for naive
and constrained MPT under various levels of risk minimization weight A by connecting
points of expected ROIs and corresponding standard deviations for both MPT approaches.

Because ideal funding amount for the forest conservation for biodiversity of the study area is

6
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unknown, we compare outcomes of the hypothesis found in the conceptual framework related
to the impact of hypothetical total budget amounts on degree of deviation between naive and
constrained MPT. Specifically, we compare outcomes based on the two approaches under
three hypothetical total budget constraints: low, moderate, and high total budget (i.e., $3
million, $50 million, and $1 billion).

Given the various ranges of expected ROI and standard deviation for each approach
that are reflected in various lengths of the frontiers, we normalize risk level as the percent
above minimum risk (referred to as ‘risk tolerance level’) to compare outcomes based on
naive and constrained MPT at the same degree of risk that conservation organizations can
tolerate. If the feasible risk levels were different between the approaches, our comparisons
would be limited. For example, if minimum risk levels were 0 and 3 for naive and
constrained MPT, respectively, we could not compare the efficient portfolios at a risk level of
3, which is not the minimum risk level associated with naive MPT. By drawing the efficient
frontiers where the x-axis represents risk tolerance level normalized as stated above, efficient
frontiers are comparable at every risk tolerance level and show expected ROIs attainable at

any risk tolerance level across different MPT specifications.

Conceptual illustration

Suppose a conservation organization wishes to allocate optimal portfolio weights
between counties A and B based on naive and constrained MPT. County A has a higher
expected ROI with higher risk than county B (ROI, > ROIg). The positively sloping
diagonal line in the upper graph of Figure 2 shows the allocation of efficient portfolio
weights between the two counties at different risk levels based on naive and constrained
MPT. The lines indicated by w”and 1 — w™ represent the upper limits on weights assigned
to counties A and B as the total weight between the two cannot exceed the full capacity of

7
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available resources. The lower graph of the figure illustrates different areas portrayed by
changes in expected ROI, wROI, + (1 — w)ROIg, corresponding to portfolio weights
between the two counties based on naive and constrained MPT shown in the upper graph.

Based on the naive MPT outcome, a conservation organization with maximum risk
level ry protects all conservation assets in county A (w =1 in the upper graph of Figure 2),
with the corresponding expected ROI being area afho in the lower graph. By comparison,
consider the case where the constraint is binding in county A. Constrained MPT allocates
weight wM to county A with the remaining weight, 1 — w™, distributed to county B at the
maximum risk level of 7, corresponding to w = w™. The resulting expected ROI is shown
by area af’h'o for county A and area g'ghh’ for county B. These results suggest that
constrained MPT mitigates maximum risk relative to naive MPT by r; — r, but corrects
expected ROI by area f’fgg’ compared to naive MPT.

Conservation investment would be divided between the two counties at lower risk
than risk level r; based on naive MPT. With weight assignments of w, and 1 —w,, for
counties A and B, respectively, the minimum risk level of 0 is reached. As a result, expected
ROI at the minimum risk level for naive MPT is shown as the sum of area aceo for county A
and area dghe for county B. By comparison, consider the case where the constraint is binding
in county B, where w™" and 1 — w™’ represent upper limits on weights assigned to counties
A and B. Constrained MPT would allocate weight, 1 — w™’, to county B and the remaining
weight, wM’, would be distributed to county A at the minimum risk level of r3. Expected
ROIs are shown by area ac'e’o for county A and area d'ghe’ for county B. These results
suggest that constrained MPT sacrifices the minimum risk level by r; but increases expected
ROI by area cc'd'd relative to naive MPT because of the added weight to the higher ROI

county (i.e., county A) based on constrained MPT. Other cases could include a situation
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where county B provides both lower expected ROI and higher risk. In this case, budget
constraints on county A could both lower the expected ROI and increase the risk of investing.

At the maximum risk level, naive MPT maximizes risk and expected ROI by
allocating a weight above the feasibility of county A (w=I in the upper graph) while at the
minimum risk level, naive MPT minimizes risk by allocating a weight above the feasibility of
county B (w=wyg in the upper graph). However, constrained MPT prevents the over-allocation
of weights to counties A and B, respectively, at maximum and minimum risk levels. By doing
so, the optimal portfolio based on constrained MPT suggests high risk but high expected ROI
at the minimum risk level, whereas it compromises expected ROI at the low risk level in
comparison with the optimal portfolio generated based on naive MPT.

Other cases are also possible. For example, in a situation where county B provides
both lower expected ROI and higher risk, any upper limit constraint on the weight that can be
assigned to county A will both lower the expected ROI and increase the associated risk. More
generally, we can then see that adding upper limit constraints on how much investment can
be directed to each asset is ambiguous in terms of whether it will increase or decrease
expected ROI and associated risk.

The overall budget to be invested in conservation also matters. If the overall budget is
small relative to the level of investment each asset can receive, accounting for upper limits on
how much investment is possible for each asset is irrelevant. In contrast, when the overall
program budget is large enough that the constraints may be binding, accounting for this in the
optimization approach becomes more important. Risk and expected ROI corrections made by
constrained MPT, relative to naive MPT, intensify with a greater hypothetical total budget
because the share of the budget assigned to each county, constrained by its upper limit,

decreases with a higher hypothetical total budget. Thus, we hypothesize that the total budget
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available to a conservation organization influences the degree of deviation of risk level and
corresponding expected ROI between the two approaches.

Before developing a fuller empirical application, we first consider a simple two-
county case as an example to illustrate the effects of risk level and expected ROI on naive
and constrained MPT. While these comparisons are sufficient to build intuition for changes in
return and risk, the notion of upper limits on return is grounded in the assumption of a linear
relationship between risk and return, implying a clear and consistent trade-off between the
two. However, real-world dynamics render the risk-return relationship more intricate, subject
to fluctuations over time and diverse scenarios. Notably, factors like the physical constraints
for conservation could also be influenced by climate and market uncertainties. Besides, we do
not consider richer patterns of covariance. Accounting for covariance structure differences is
where the strength of MPT reveals itself, and we next examine this with our empirical
application. Furthermore, we assume the two counties are not perfectly correlated with each
other, and thus the risk diversification strategy used has a feasible solution for both MPT

approaches.

Ilustrative example: Forest conservation in Central and Southern Appalachia
To illustrate our framework, we apply MPT to forest conservation in a biodiversity
hotspot — central and southern Appalachia. We select the central and southern Appalachian
region as the study area because it provides critical habitat and a corridor for biodiversity
(Zhu et al., 2021), and the region is expected to experience further climate change impacts
and urban development pressure (Rogers et al., 2016). For both MPT approaches, we use
expected ROIs for biodiversity conservation in 2050, which is far enough into the future to
observe the impact of climate and market uncertainty on benefits and costs. The benefit

component for expected ROI is calculated by estimating future species ranges using species
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distribution models. The conservation cost component for expected ROI is proxied as urban
return minus forestland return (referred to as “relative opportunity cost”) under the
assumption that urban development is the dominant competing land use for forestland. This
assumption is based on evidence that urbanization is the main driver of forest loss in the

study region (Wear and Greis, 2013; Keyser et al., 2014).

Estimating scenario specific ROl

Scenario-specific expected ROIs are structured by combining predicted future benefit
scenarios and relative opportunity cost scenarios at the county level for 193 of 246 total
counties in our study area. Fifty-three counties are not considered in our analysis since they
are either consolidated city-counties or counties where urbanization is not a primary concern
(see Figure 1). Scenarios for predicting future biodiversity benefits are only related to climate
change, and multiple climate scenarios are considered. In comparison, relative opportunity
costs are projected under various climate and market scenarios associated with different
climate, land use, and market conditions.

Multiple sources of uncertainty associated with benefits and costs derived from
climate and market scenarios may have (i) different forms of variability and covariance
structures (i1) different patterns of covariance structure across county within each type of
uncertainty, and (iii) different patterns of covariance structure between each type of benefit
and cost uncertainty. Due to these covariance structure differences, efforts to diversify
market-induced risk may undermine or complement efforts to diversify climate-induced risk.

The benefit component for biodiversity ROI was taken from Zhu et al. (2021) which
estimated species distributions for 258 forest-dependent vertebrates of policy concern as
determined by US Fish and Wildlife Service (2020) and Landscape Conservation

Cooperative Network (2020). Future species distributions in 2050 were specified as the
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benefit component for biodiversity since they are direct representations of areas where
species can be found and protected (Fuentes-Castillo et al., 2019). The species distribution
model (SDM) Maxent was used to forecast future species distributions under future climate
scenarios for two representative concentration pathways (RCPs; RCP4.5 and RCP 8.5) and
six General Circulation Models (GCMs; ACCESS1-0, CanESM2, CCSM4, CNRM-CM35,
CSIRO-Mk3, and INM-CM4) (Phillips, 1956; Flato et al., 2014) using the ClimateNA
database (Wang et al., 2016).

Maxent was used to estimate probabilities of climatic suitability for species at the 1-
km? pixel level under 12 future climate scenarios (i.e., 6 GCMs, each associated with RCP
4.5 and 8.5). Then, probabilities were converted into binary variables using a 10% training
presence threshold, which allows the top 90% of predicted probabilities to be considered as
suitable habitat and the remaining 10% as unsuitable habitat (Peterson et al., 2011). Next,
pixel areas from the suitability binary variables are aggregated for all 258 species at the
county level, and these estimates were specified as the benefit component of species
distributions for all species under 12 future climate scenarios. See Zhu et al. (2021) for more
details related to the methodology used to project future species distribution.

For future urban return needed to estimate relative opportunity cost, annualized
median assessed land value was determined by broadly emulating Lubowski et al. (2006)
using the following procedure. First, land value ratios per hectare were estimated by dividing
assessed land value per hectare by total assessed value at the parcel level for sample counties
where data were available. Second, land value ratios at the parcel level were converted to the
census block group (CBQG) level by regressing land value ratio per hectare against
socioeconomic and location variables at the CBG level (see Liu et al., 2019 for more details).
Third, median housing price in 2050 under three real estate market conditions (upturn,

moderate, downturn) was projected based on recent real estate growth cycles to account for
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the effect of real estate market uncertainty on urban return. Finally, median assessed land
value per hectare was estimated by multiplying median housing price under the three real
estate market conditions by land value ratio per hectare, which was then annualized (see
Mingie and Cho, 2020 for details).

The effect of climate and market uncertainty on forestland return was considered by
projecting future harvest volume and timber price to estimate future annualized forest return
using Soil Expectation Value (SEV). County-level harvest volume projections were created
for three Special Report on Emission Scenarios (SRES; A1B, A2, and B2). State-level timber
prices were estimated based on a stochastic modeling approach using regional stumpage price
datasets from Timber Mart-South (2015) and other timber price reports. Three timber price
scenarios were estimated: high (2050 mean plus standard deviation), moderate (2050 mean),
and low (2050 mean minus standard deviation).

Scenarios have been represented slightly differently across climate change assessment
reports and our study draws on products that span different reports. The A1B and A2
scenarios in the SRES correspond better with the RCP8.5 scenario. Meanwhile, the B2
scenario in the SRES corresponds better with RCP4.5. The full set of scenarios we consider
in our analyses are generated by cross-factoring an emissions scenario with a GCM for
making climate predictions and an assumption about timber volume, timber price and the real
estate market. Under the more intensive emissions situation (RCP 8.5), we include 324
possible futures were developed (2 SRES * 6 GCMs * 3 timber volume scenarios * 3 timber
price scenarios * 3 real estate market scenarios). In addition, under an assumption of more
moderate future emissions (RCP4.5), we include a further 162 possible futures (1 SRES * 6
GCMs * 3 timber volume projections * 3 timber price scenarios * 3 real estate market

scenarios).
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A shared-based land use model was applied at the county level using historical land
use data from the National Land Cover Database (NLCD, 2016) and the historical relative
opportunity cost data. We forecasted forestland area in each county under diverse scenarios in
2050 using the parameters from the land use model and the forecasts of the relative
opportunity costs under different scenarios. While the land use change model predicts the
forest area that will remain in the county in 2050 with or without investment, it does not
forecast where exactly this forest area will be located within the county. The improvements in
the persistence probabilities for species resulting from protecting forestland in different
counties do not consider the proximity of counties to one another.

We also needed to make an additional assumption to convert changes in forest within
climatically suitable areas for a species into a statement about region-wide species persistence
in 2050. Following Armsworth et al. (2020), the probability of persistence function was
assumed as a linear, piecewise continuous, hockey-stick function, which allowed the
persistence probability to equal zero when no forest remained but increase linearly when
forest area in the county increased until a saturation threshold at 1 was reached. We also
considered the difference of ecological quality between protected forest and private forest,
treated as intermediate usable habitat, and differentiated the land use types by assigning two
weights (i.e., 1 or 0.25) to protected forest and private forest, respectively (see Armsworth et
al., 2020 for more details).

Based on the probability of persistence function and average opportunity cost, the
marginal benefit to cost ratio in each county was estimated, which was optimized by both
naive and constrained MPT. Finally, expected marginal ROI under each scenario was defined
as the change in species richness (i.e., number of species) by aggregating relevant
probabilities for 258 species, which was optimized by both naive and constrained MPTs

(Kang, Sims, and Cho, 2022).
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Empirical Results

Figure 3 shows four efficient frontiers indicating the expected ROI-risk tolerance
relationship for portfolios generated from naive MPT and constrained MPT with three
hypothetical total budget constraints with upper limits at the mean. The four efficient
frontiers are upward sloping implying higher return (i.e., expected ROI) with higher risk. The
four frontiers are also concave-shaped implying that risk diversification becomes more costly
(i.e., more return is sacrificed) as portfolio risk is reduced.

Figure 3 illustrates how constraints on returns impact the effectiveness of risk
mitigation in two ways. First, the constraints reduce how much expected ROI must be
foregone to achieve the same level of risk reduction (see Figure 3A). The slope of the frontier
is smaller under constrained MPT than under naive MPT especially at higher budget amounts
where constraints are binding for more counties. These findings imply that when a
conservation organization will have to spread more investment around due to a larger total
budget, it can reduce risk with less loss in expected return with constrained MPT than with
naive MPT.

Figure 3B also shows how constraints on returns could force land managers in the
Appalachian region to spread their bets by spreading the budget to a greater number of
counties. This bet spreading behavior yields an expected ROI closer to what would be
achieved if the budget was to be divided evenly among all counties (i.e., simple
diversification; point marked as an X in Figure 3B). Specifically, the difference in expected

ROI at the same risk level between the constrained efficient frontiers and the simple
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diversification point decreases as the budget increases.' Points a, b, c, and d are points on the
efficient frontier for naive MPT and constrained MPT with $3 million, $50 million, and $1
billion budgets, respectively, at the same standard deviation as point X. The vertical distances
from simple diversification portfolio X to a, b, ¢ and d represent differences in potential
expected ROI gained by the different MPT frameworks, given the same risk level. The longer
vertical distance from X to a compared to distances from X to b, ¢, and d reinforces the
notion that MPT is less efficient with constrained MPT since constraints direct more
investment to counties with a smaller ROL.

Table 1 shows optimal portfolio expected ROI for biodiversity conservation and risk,
reflected in its standard deviation, at four risk levels from naive MPT and constrained MPT
with three hypothetical total budget scenarios with upper limits at the mean. At the maximum
risk level, the results show that constrained MPT compromised expected ROI while
improving risk mitigation to a greater extent compared to naive MPT. At the minimum risk
level, constrained MPT gained higher expected ROI by reducing risk mitigation more than
naive MPT. These findings imply that constrained MPT corrects misallocated portfolio
weights, and based on this correction, the tradeoff between risk and expected ROI at
maximum and minimum risk levels, respectively.

Deviations in risk level and expected ROI between naive and constrained MPT
depend on how efficiently county portfolio weights are bound by upper limits. For example,
portfolio weights for constrained MPT with a $3 million total budget did not deviate much

from those from naive MPT since counties with optimal budgets above county-level physical

' We make comparisons using the expected ROI-standard deviation frontiers, instead of the
expected ROI-risk tolerance frontiers because the simple diversification portfolio cannot be
normalized.
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constraints (e.g., 1 of 16 counties selected at four risk tolerance levels) were rare. No
correction of risk and expected ROI is made by constrained MPT with a $3 million budget at
the maximum risk level since the efficient portfolios between the two models are the same:
all investment is allocated to a single county, Coosa County (AL). The upper limit constraint
of Coosa County (AL) is less than the total budget of $3 million. Thus, the efficient portfolio
weight of the county is not bound by its upper limit. Similarly, efficient portfolio weights
between the approaches are the same at the minimum risk level (see Table S1 for details on
portfolio weight allocations) since all efficient portfolio weights do not reach their upper
limits. As a result, the efficient portfolio is the same regardless of whether the upper limit is
considered or not. In contrast, deviation was much more apparent if the total budget for
constrained MPT increased to $1 billion since counties with optimal budgets above county-
level budget constraints (e.g., 81 of 85 counties selected at four risk tolerance levels) were
much more numerous (see Table 1). These findings show that the degree of correction in risk
and expected ROI made by constrained MPT is greater with higher total budgets, and greater
diversification of counties is achieved regardless of risk mitigation especially when higher
total budgets are considered.

Table 2 illustrates heterogeneity in different aspects of sixteen selected counties,
among which three counties are chosen twice in different risk levels, from naive MPT. Ten of
the sixteen counties are categorized as rural counties. The sizes of the counties display
considerable disparities. For example, Randolph, WV, the largest county among the sixteen
counties (402,033 hectares), is almost five times in size relative to Jefferson, WV, the
smallest county among the sixteen counties (82,416 hectares). Forestland area generally
reflects the size of the county, and the ratio of public to private forestland on average over the
486 uncertainty scenarios ranges between 0 and 16 across the sixteen counties. The average

species ranges for 258 species vary from 10.5 million to 55.4 million hectares across the
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counties over the uncertainty scenarios. The scale and variation of the urban return is greater
than the forest return. As a result, the discrepancy of relative opportunity costs is determined
more by the urban return than the forest return. A noticeable disparity is found in the ROIs
across the counties. In particular, a $1 million investment would allow persistence of 0.1232
additional species in Coosa, AL, which is more than three hundred times greater than the
expected ROI in Buncombe County, NC (0.0004) in average over the uncertainty scenarios.

Figure 4 shows the spatial distributions of portfolio weight allocations from naive
MPT and constrained MPT with $3 million and $1 billion total budgets at four risk tolerance
levels (i.e., minimum, 15%, 25%, and maximum risk tolerance) with upper limits at the
mean. At minimum risk tolerance, we observe that a portfolio weight of 0.12 is assigned to
Henderson County (NC) based on constrained MPT with a $1 billion total budget, whereas
the same county’s portfolio weight is 0.24 for naive MPT. The portfolio weight of 0.24
without an upper limit constraint does not exceed the county-level budget constraint of $120
million if the total budget constraint was $3 million. Consequently, the portfolio weight of
0.24 remains the same between naive MPT and constrained MPT at minimum risk tolerance
when a $3 million total budget is considered. (See S1 and Table S1 in the Supplementary
Material for discussion on portfolio weights between the two MPT approaches with three
hypothetical total budgets and four risk levels.) These findings suggest that correction of
misleading portfolio weights by constrained MPT occurs only if the optimal budget assigned
to a county without a total budget constraint is above the county’s budget constraint.

Figures S1 and S2 and Tables S2 and S3 in the Supplementary Material, respectively,
show 1) the expected ROI-standard deviation frontiers and 2) optimal portfolio expected ROI
for biodiversity conservation and risk under four risk levels between naive MPT and
constrained MPT with three hypothetical total budget scenarios using upper limits on both

ends of 95% confidence interval of their probability density distributions. These consistent
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findings with different size of upper bound constraints reaffirm the robustness of
characteristics discussed on 1) and 2) regardless of the size of upper limit constraints used in

the constrained MPT.

Discussion

The comparison of MPT outputs with and without upper limit constraints shows that
the change in portfolio risk that conservation organizations can achieve with the same level of
compromise in expected ROI is higher with constrained MPT than with naive MPT. This
finding has implications for conservation strategies with different objectives. Constrained
MPT is useful when seeking to protect species that are habitat specialists, such as several
highly endemic salamanders in our case study region. It is also useful when prioritizing land
that is only available for conservation acquisition occasionally because there may only be a
few properties available in a desirable location during a period when the conservation
program must allocate its budget.

Other possible circumstances that fit well for constrained MPT is when additional
capacity constraints might be limiting (e.g., if the conservation program relies on partners for
long-term management of the site). For example, the Critical Ecosystem Partnership Fund
(CEPF, 2022) supports protecting natural areas essential to biodiversity with designated
budget amounts. There are state programs also that cap how much any one state can receive.
For example, the Cooperative Endangered Species Conservation Fund supports section 6 of
the ESA (Pittman-Robertson Wildlife Restoration Act, 1937; US Fish and Wildlife Services,
2021) and provides grants to States and Territories for species and habitat conservation
actions on non-federal land. State allocations from this fund are derived from an established
formula and specific constraints. The funding proportion given to each state does not change

from year to year since these appropriations are based on the program’s formula.
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Despite our study’s contribution, conservation organizations should be mindful of the
limitations associated with solely relying on upper limits on returns from conservation using
a constrained MPT. The precise projections of the upper limits are not possible given the
unknown probability distribution of uncertainty scenarios. Instead, we use average values of
upper limits on returns across the scenarios for the main finding and vary their values as a
sensitivity analysis. This type of approach offers layers of optimal solutions and allows a
comparison of their implications for conservation decisions. Yet, conservation organizations
need to go beyond comparing outcomes using multiple upper limits as they have little
reference for which upper limits are most relevant to their conservation decision making.
Furthermore, the unexpected economic, political, and technological shifts may result in the
upper limits beyond what are covered by the scenario-specific projections. The potential
occurrence of such extreme conditions hinders the application of the constrained MPT.

Another aspect of limitation lies on the influences of behavioral and social factors on
conservation decisions. Conservation decision-making and behavior can deviate from rational
expectations as they can be linked to social, psychological and behavioral factors. For
example, emotion, habit, culture and involvement are found to have significantly and
positively associated with conservation behavior (Singha et al., 2022), resulting in
overreactions or underreactions to conservation commitment. As a result of these influences,
conservation organizations may deviate from the optimal risk-diversification strategies with
their decision-making processes. Consequently, their portfolios of conservation practices
might exceed the projected upper limits on return, which in turn can shape dynamics of
conservation behaviors. Likewise, we modeled a range of future scenarios, but obviously our
models would not perform well if future black swan like events fall well outside the range

that we consider.
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It is also worth mentioning caveats for identifying future research needs. Our
constrained MPT models focus on upper limits in returns that arise from physical limitations
of conservation investments, while a conservation organization also faces upper limits due to
diminishing returns. For example, a conservation organization attempting to protect species
habitat for a specific target site faces diminishing returns at each target site since the number
of species preserved per unit area will monotonically decrease as each additional unit area is
protected if the response of each species to protection is not convex (Popov et al., 2022). In a
way, our constrained MPT takes account of marginal returns with a step function where ROI
goes to 0 when the weight crosses a threshold of the physical constraint in equations (5) and
(6). The use of a step function reflects the fact that practitioners may only be able to coarsely
estimate diminishing returns since data on the marginal effect of conservation investment is
limited. Thus, future research could explore developing another modified constrained MPT
framework accounting for upper limits in returns that arise from both physical limitations and
diminishing returns when data on the marginal effect of conservation investment is viable.

We recognize there are other limitations to existing applications of MPT (both naive
and constrained MPT) in conservation. As with any approach, assumptions must be made.
For example, applications of MPT in conservation typically assume static, one-off decisions
which are relevant to some conservation programs (e.g., those needing to allocate funds
during fixed windows of time), but not others (e.g., those planning acquisition strategies that
are to be implemented gradually over a couple of decades). In reality, conservation agencies
typically face scenarios in which building conservation programs at different sites takes time.
In the interim, they accumulate new information relevant for final decision making (Pressey
et al. 2013). To address this challenge, future research will have to develop a dynamic

counterpart to the MPT approach to conservation planning and use it to determine a time
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series of portfolios of target sites for conservation that accommodates future spatial and
temporal uncertainties.

Also, applications of MPT (both naive and constrained MPT) are limited in the
number of assets they can consider, which can result in a reliance on relatively coarse units
such as counties in our empirical analysis. Specifically, the MPT cannot determine optimal
solutions when the number of scenarios available is equal to or smaller than the number of
assets considered because in such case the information needed to calculate the variance-
covariance matrix for the solution of portfolio weights would not be sufficient (Mallory and
Ando 2014). We have not yet compared the relative importance of accounting for upper limit
constraints on how much investment can be directed to different assets to the relative
importance of accounting for other refinements of MPT. We chose to focus here on the role
of upper limit constraints on potential targets for investment because these constraints have
the potential to induce some degree of risk spreading, which has been touted as a prevailing
benefit of MPT. In our empirical application, we find that including these constraints
enhanced the benefits of applying MPT. In essence, if a conservation organization must
spread investment around anyway, it would be wise to use MPT to maximize the benefits of

doing so.

Conclusion
The constrained MPT model is structured to correct potentially misleading portfolio
weights from naive MPT that does not account for upper limits in returns from conservation
investments. We find that the amount of reduction in risk conservation organizations can
achieve with the same level of compromise in expected ROI is higher with constrained MPT
than with naive MPT. However, our findings also suggest that improvement can be made

only if the total budget assigned to a conservation organization is large enough so that
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portfolio weights from naive MPT allocate beyond physical limitations determined by upper
limits of potential target sites or regions that trigger misallocation of portfolio weights for
target sites. For this reason, divergences between each approach’s outcomes becomes more
evident if the total budget for constrained MPT is higher, and the degree of divergence
depends on how physical limitations bind and correct for misleading portfolio weights.
Constrained MPT can help conservation organizations by providing risk-mitigating
portfolios of conservation targets that consider each target site’s upper limit constraint.
Comparing naive and constrained MPT outcomes under various total budget constraint levels
illustrate the vulnerability of naive MPT and can help conservation organizations evaluate
risk-diversifying strategies that are specific to different available total budget levels.
Constrained MPT for a given risk tolerance level and specific total budget can identify a risk-
and budget-specific portfolio of target sites for biodiversity conservation. This implication
suggests that the portfolio weights associated with the risk-mitigating allocation of
conservation investment can be adjusted by a conservation organization’s risk tolerance and

the total budget it manages.
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Table 1. Portfolio expected ROI for biodiversity conservation, portfolio risk reflected in its standard
deviation, number of counties selected, number of counties bound by upper limit constraints, and
average costs of selected counties from naive MPT and constrained MPT with three total budgets
under four risk levels with upper limits at the mean

Naive MPT Constrained MPT's
$3 million $50 million $1 billion
Portfolio’s expected ROI 0.00173 0.00119 0.00104 0.00091
Portfolio’s standard 0.00005 0.00004 0.00004 0.00004
deviation
M1n1murn # of counties selected 12 12 12 16
risk level
# of counties bound by its
- . - 0 1 9
upper limit constraint
Average cost of selected ¢4 765 ¢49  §00.762.849  $90.762.849  $92.585.968
counties
Portfolio’s expected ROI 0.03792 0.03760 0.01174 0.00372
Portfolio’s standard 0.01607 0.01617 0.00185 0.00040
deviation
o)
15% risk # of counties selected 3 4 8 35
level
# of counties bound by its
- . - 1 4 27
upper limit constraint
Average costof selected ¢g 300 061 §7200.854  $17.481.817  $32.823.862
counties
Portfolio’s expected ROI 0.04996 0.04902 0.01534 0.00474
Portfolio’s standard 0.02667 0.02735 0.00307 0.00065
deviation
o)
25% risk # of counties selected 3 4 9 43
level
# of counties bound by its
- 3 - 1 3 38
upper limit constraint
Average costofselected 3 553 555 §700.854  $10461209  $24.450.516
counties
Portfolio’s expected ROI 0.12324 0.12324 0.02744 0.00691
Portfolio’s standard 0.10734 0.10734 0.01234 0.00228
deviation
Max1mum # of counties selected 1 1 9 59
risk level
# of counties bound by its
- 3 - 0 8 58
upper limit constraint
Average cost of selected
$3,645,232 $3,645,232 $5,588,646 $17,942,059

counties
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Table 2. Summary of the sixteen selected counties from naive MPT under four risk levels.

Species Relative
Size Size of Private Public ranges of Forest Urban opportunity
County  Type (hectare) forestland forestland forestland 25{3 return return cost
(hectare) (hectare) (hectare) species  ($/hectare) ($/hectare) ($/hectare)
(hectare)

Minimum Buncombe, NC Urban 244,890 162,436 128,962 33,474 33,554,911 87 1,959 1,872 0.0004
risklevel 1 wood, NC Rural 205,647 163,698 55369 108,329 29,633,914 76 1,057 981 0.0011
Henderson, NC ~ Urban 138,699 86,721 70,874 15,847 19,234,632 65 1,824 1,758 0.0006

Jackson, NC Rural 182,754 154,343 8,006 145437 26,604,084 104 901 797 0.0008
;%nsylvama’ Rural 140,519 119,281 34,785 84,496 19,626,066 91 952 862 0.0010

Greenville, SC  Urban 292,390 151,886 151,886 - 38,557,472 55 1,731 1,676 0.0009

Sevier, TN Rural 222,275 161,512 88,767 72,745 29,947,641 65 1,015 950 0.0005

Roanoke, VA Urban 95201 66,524 61,410 5115 12,886,994 130 1,438 1,308 0.0005

Fayette, WV Rural 255,761 219,338 200,872 18,467 36,137,436 60 390 330 0.0023

Jefferson, WV Urban 82,416 23,413 23,167 246 10,526,362 62 1,544 1,482 0.0008

Nicholas, WV Rural 251,337 203,827 175,096 28,730 35,744,704 20 226 206 0.0049

Randolph, WV Rural 402,033 353349 156,814 196,535 55,448,499 68 552 484 0.0035

15%risk  Clay, AL Rural 218,645 157,964 124,256 33,708 27,414,832 45 85 40 0.0415
level Wolfe, KY Rural 84,926 67,963 53,030 14,933 11,480,003 47 69 22 0.0463
Preston, WV Rural 254289 193,619 186,693 6,925 36,454,081 17 119 102 0.0185

25% sk Clay, AL Rural 218,645 157,964 124,256 33,708 27,414,832 45 85 40 0.0415
level Coosa, AL Rural 239,645 171,112 171,112 - 30,449,521 46 68 21 0.1232
Wolfe, KY Rural 84,926 67,963 53,030 14,933 11,480,003 47 69 22 0.0463

Xf‘lgg?l Coosa, AL Rural 239,645 171,112 171,112 - 30,449,521 6 8 1 0.1232

Notes: Species ranges are average values of 258 species over 486 uncertainty scenarios, and private forestland, forest return, urban return, relatively opportunity
cost, and ROI are average values over 486 uncertainty scenarios.
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Figure 1. Map of 193 counties used for naive MPT and constrained MPT

|:| 193 counties

|:| Counties not considered in the analysis

0 75 150mi

Notes: 53 counties are not considered for analysis since they are consolidated city-counties or
counties with negative relative opportunity costs that do not face urban development concern
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Figure 2. Consequences of failing to account for an upper limit constraint in MPT.
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[ ] Areaafho representing the expected ROI based on naive MPT at maximum risk level

Area af’g’gho representing the expected ROI based on constrained MPT at maximum risk level
Area acdgho representing the expected ROI based on naive MPT at minimum risk level

Area ac’d’gho representing the expected ROI based on constrained MPT at minimum risk level
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Notes: The upper graph of the figure shows allocations of efficient portfolio weights between

two counties (WM and 1 — w™ represent upper limits on weights for counties A and B, and Wo
and 1 — wg represent weights at the minimum risk level for counties A and B) at different risk
levels (0 and r; for minimum and maximum risk level based on naive MPT and r,, and r3 for
minimum and maximum risk levels based on constrained MPT) based on \ MPTs. The lower
graph of the figure illustrates changes in expected ROI (ROI, as expected ROI for county A and

ROl as expected ROI for county B) corresponding to efficient portfolio weights between the

two counties (WM and 1 — w™ represent weights assigned to counties A and B for the case

where the constraint is binding in county B at minimum risk level, and w™ and 1 —
wM represent weights for counties A and B where the constraint is binding in county A at
maximum risk.) based on naive and constrained MPT shown in the upper graph.
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Figure 3. Four efficient frontiers of the expected ROI-risk tolerance relationship for
portfolios from naive MPT and constrained MPT with three budgets ($3 million, $50
million, and $1 billion) with upper limits at the mean. (A) Constraints on asset returns
lower the slope of the frontier at many reasonable risk tolerance levels implying less

expected ROI must be forfeited to reduce risk. (B) Constraints on asset returns also reduce

the increase in expected ROI that can be achieved through risk diversification.
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Notes: Points a, b, ¢, and d are the points on the efficient frontiers for naive MPT, and
constrained MPT with $3 million, $50 million, and $1 billion, respectively, with the same
standard deviation as point X.
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Figure 4. Spatial distributions of portfolio weight allocations from naive MPT and constrained MPT with $3 million and $1 billion total
budgets at four risk tolerance levels (i.e., minimum, 15%, 25%, and maximum risk tolerance levels) with upper limits at the mean
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