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activities. The objective of this research is to identify the consequences of failing to account for 46 



 

 

upper limits on returns from conservation in a modern portfolio theory (MPT) framework. We 47 

find that the amount of risk reduction conservation organizations can achieve with the same level 48 

of compromise in the expected return on investment is higher when returns are constrained. 49 
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Introduction 67 

With persistent uncertainty related to the effectiveness of conservation investments, 68 

the design and planning of such investments based purely on historical data may yield 69 

misleading results (Cho et al., 2018; Newbold, 2018; Snäll et al., 2021). Modern Portfolio 70 

Theory (MPT), a quantified version of “Do not put all your eggs in one basket”, developed by 71 

Markowitz (1952) and published in the financial literature, has been applied in recent years to 72 

help diversify risk in conservation investments (Shipway, 2009). This tool accounts for 73 

heterogeneities in climate and market uncertainty to minimize risk associated with investment 74 

portfolios that focus on conservation-related assets such as species, sites, and activities (Ando 75 

and Mallory, 2012; Eaton et al., 2019).  76 

Despite the merits of MPT, applications to conservation investment have not 77 

accounted for upper limits in returns that arise from physical limitations. In a species 78 

conservation context, return on conservation investment is clearly bounded by the total 79 

amount of species habitat available (e.g., the forested area that can be protected for a given 80 

site). A conservation organization will also face an upper limit in return to conservation if 81 

individual values for species conservation do not scale with the number of species protected. 82 

For example, surrogate bidding in nonmarket valuation studies may indicate that the 83 

willingness to pay to protect 100 animals is no different than the willingness to pay to protect 84 

1,000 animals (Kahneman and Knetsch 1992). Economic returns generated from ignoring 85 

such upper limits are not reflective of what the conservation assets can actually produce given 86 

constraints on species, sites, or activities and can lead conservation organizations to 87 

inefficiently focus investment toward certain high-return assets. In other words, conservation 88 

organizations may not be able to “put all their eggs in one basket” if the basket is not large 89 

enough to hold every egg.  90 
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This limitation of MPT comes from its original application to financial investments, 91 

where the asset market is perfectly competitive and no single investor is capable of 92 

influencing the returns of an asset, and thus does not face an upper limit constraint. Early 93 

applications of MPT to conservation problems did not consider potential constraints to each 94 

asset, and most subsequent studies continue to overlook this issue (e.g., Figge, 2004; Ando 95 

and Mallory, 2012). For example, none of the 26 species-habitat MPT case studies 96 

summarized by Ando et al. (2018) considered an upper limit constraint in returns.  97 

A limited number of recent studies have sought to improve conservation related MPT 98 

applications by indirectly limiting returns due to physical constraints (Jin et al., 2016; 99 

Runting et al., 2018). For example, Jin et al. (2016) applied MPT to the implementation of an 100 

ecosystem-based fishery management approach in different geographic regions. The authors 101 

considered the limited stock of each fish species available to harvest in their MPT application 102 

by constraining the maximum weight applied to each species’ harvest. Similarly, Runting et 103 

al. (2018) reformulated an integer quadratic programming MPT approach with a binary 104 

decision variable representing whether each site is selected for wetland protection. By using a 105 

binary decision variable, the authors indirectly accounted for limited returns based on each 106 

site’s limited availability, along with other physical considerations such as connectivity 107 

necessary for the landward migration of wetlands. However, it remains unclear how the 108 

benefits of risk diversification are impacted by physical constraints.  109 

The objective of this research is to identify the impacts of failing to account for upper 110 

limits on returns from conservation investment in an MPT framework and to understand the 111 

implications of accounting for these limits. To achieve the objective, we develop a MPT 112 

framework with and without upper limit constraints (referred to as ‘constrained MPT’ and 113 

‘naive MPT’, respectively) using county-level return on investments (ROIs) for conservation 114 

of forest biodiversity in the central and southern Appalachian region of the United States (see 115 
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Figure 1). Then, we conceptually illustrate the impacts of upper limits on MPT outcomes 116 

using two hypothetical counties with different expected ROI and associated risk levels. Next, 117 

We compare MPT outcomes between the two approaches using two metrics measuring the 118 

effectiveness of risk diversification: the slope of the efficient frontier representing risk-119 

reward trade-offs and the vertical distance between the simple diversification point and the 120 

efficient frontier representing the difference in potential expected ROI gained by the different 121 

MPT frameworks, given the same risk level.   122 

We choose to frame the models at the county level since counties (1) provide a 123 

relevant spatial grain when deciding how to allocate conservation budgets, (2) are a relevant 124 

administrative and political unit for regional and local land-use planning in the United States, 125 

and (3) are the level of units our socio-economic variables are available (Le Bouille, 126 

Fargione, and Armsworth, 2023). 127 

Because of the covariance in returns between counties, reducing risk implies forgoing 128 

expected return (i.e., spreading ones bets on conservation). The extent of risk reduction 129 

conservation organizations can attain with the same level of compromise in expected return is 130 

hypothesized to be different for the two MPT approaches. Restrictions on portfolio weights 131 

with constrained MPT impose a degree of “bet spreading” while naïve MPT does not. 132 

Therefore, the constrained MPT is useful for conservation investment when a regulatory cap 133 

on budget allocation for each site is present. Many conservation partnership programs are 134 

limited by regulatory constraints imposed by partnership funds. These kind of regulatory 135 

constraints would imply that upper limits on returns would diminish the value added from 136 

using MPT. However, if the constraints force conservation organizations to bet spread 137 

anyway, then it is wise to use MPT to allocate the bet spread in the best way possible. Our 138 

constrained MPT approach is designed to serve this very purpose.   139 

 140 
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Methods 141 

Naïve MPT framework  142 

Suppose a conservation organization wishes to allocate optimal portfolio weights 143 

across the counties. By modifying the framework developed by Runting et al. (2018) where 144 

risk minimization and expected return maximization are combined in a single framework, we 145 

develop a naïve MPT approach formatted as a quadratic programming problem without upper 146 

limit constraints as: 147 

(1)  𝑀𝑖𝑛𝑊  𝜆𝑾𝑻𝚺𝑾 − 𝑾𝑻𝚳 148 

                  subject to      149 

(2)                𝟎 ≤ 𝑾 ≤ 𝜤           (3) 150 

                 𝑾𝑻𝑰 = 1          151 

where 𝜆 is a weight for risk minimization which represents relative emphasis on risk 152 

mitigation from zero to infinity, 𝑾𝑻𝚺𝑾 is the weighted sum of the variance of counties 153 

representing the portfolio’s variance (or risk) where 𝑾𝑻 is a vector transpose of 𝑾, a 𝑛 × 1 154 

vector of efficient portfolio weights across 𝑛 counties as the decision variable, and 𝚺 is an 155 

𝑛 × 𝑛 variance-covariance matrix of ROIs across 𝑛 counties. The variance-covariance matrix 156 

between county i and county j is calculated as 𝐸[(𝑅𝑂𝐼𝑖 − 𝐸[𝑅𝑂𝐼𝑖])(𝑅𝑂𝐼𝑗 − 𝐸(𝑅𝑂𝐼𝑗)], where 157 

𝑅𝑂𝐼𝑖 (or 𝑅𝑂𝐼𝑗) is the ROI for county 𝑖 (or 𝑗) under 𝑠 uncertainty scenarios. 𝚳 is an 𝑛 × 1 158 

vector of expected ROIs, which are calculated as expected values of ROIs for 𝑛 counties: 159 

𝐸[𝑅𝑂𝐼𝑖] = ∑ 𝑝 × 𝑅𝑂𝐼𝑖𝑠𝑠  where 𝑝 is the probability of uncertainty scenario 𝑠 occurring, 160 

which is equal to 
1

𝑠
 by assuming a uniform probability distribution among s scenarios, and 161 

𝑅𝑂𝐼𝑖𝑠 is the ROI for county 𝑖 under specific uncertainty scenario s. 𝑾𝑻𝚳 is the expected ROI 162 

of the portfolio calculated by the weighted average of 𝚳 with efficient portfolio weight 𝑾.  163 
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The objective function in equation (1) maximizes expected ROI (i.e., 𝑾𝑻𝚳) or 164 

minimizes the portfolio’s variance (i.e., 𝑾𝑻𝚺𝑾) at a certain weight for risk minimization (𝜆). 165 

Equation (2) represents the minimum and maximum constraint on portfolio weights, and 𝟎 166 

and 𝜤 are 𝑛 × 1 vectors whose elements are equal to 0 and 1, respectively. The sum of all 167 

portfolio weights is always equal to 1 for any given risk level.  168 

 169 

Constrained MPT framework  170 

 For constrained MPT, we consider two layers of constraints—physical limitations and 171 

total budget constraints under the assumption that a conservation organization wishes to 172 

allocate optimal portfolio weights across the counties. To account for both constraints, we 173 

replace the decision variable of efficient portfolio weights shown in equation (1) with a 174 

decision variable for efficient budget allocation across counties 𝑋 shown in equation (4) 175 

below:  176 

(4)                  𝑀𝑖𝑛𝑋  𝜆𝑿𝑻𝚺𝑿 − 𝑿𝑻𝚳           177 

                   subject to      178 

(5)                               𝟎 ≤ 𝑿 ≤ 𝑪            179 

(6)                        𝑿𝑻𝑰 = B            180 

where 𝑿𝑻 is a vector transpose of 𝑿, a 𝑛 × 1 vector of efficient budget allocation in dollars 181 

across 𝑛 counties as the decision variable, 𝑪 is an 𝑛 × 1 vector of county-level physical 182 

constraints, whose elements are specified as the product of the size of eligible forestland (i.e., 183 

unprotected private forestland) as a physical constraint and unit opportunity cost for 184 

conservation as a cost constraint across 𝑛 counties, and B is a hypothetical total budget 185 

amount for the entire region.  186 

The precise knowledge of 𝑪 in the future by the conservation organization is not 187 

possible as the size of eligible forestland and unit opportunity cost vary under 𝑠 uncertainty 188 
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scenarios. Given the unknown probability distribution of uncertainty scenarios, we use its 189 

average value across the scenarios for each county for the model. By doing so, we implicitly 190 

assume that 𝑪 is normally distributed, and thus its mean value is a meaningful representation 191 

of 𝑪. For the sensitivity analysis, we estimate the model using the upper limits on both (high 192 

and low) ends of 95% confidence interval of their probability density distributions since 193 

upper limits at the mean may not encompass the entire spectrum of potential outcomes of 194 

constrained MPT. By performing the sensitivity analysis, we partially encompass infrequent 195 

occurrences that can exert significant influence on the size of eligible forestland and unit 196 

opportunity cost.  197 

The objective function in equation (4) maximizes the weighted sum of expected ROIs 198 

(𝑿𝑻𝚳) and minimizes the portfolio’s variance (i.e., 𝑿𝑻𝚺𝑿). Equation (5) specifies the 199 

county’s physical constraint C across 𝑛 counties, and equation (6) constrains the hypothetical 200 

total budget B. The physical constraints are fixed for counties by uncertainty scenario, while 201 

hypothetical total budget constraints may change depending on the budget available for the 202 

entire region. The physical and budget constraints are specified by equations (5) and (6), 203 

respectively, as the total budget is spread from one county to another after meeting each 204 

county’s physical constraint C as each county’s expected ROI goes to 0 (represented as a step 205 

function) until exhausting total budget B.  206 

We calculate efficient portfolio weight 𝑾 for constrained MPT by dividing efficient 207 

budget allocation 𝑿 by total budget B to derive the efficient portfolio’s expected ROI and 208 

corresponding variance as the weighted sum of expected ROIs (𝑾𝑻𝚳) and the variance of 209 

counties (𝑾𝑻𝚺𝑾) for the risk measure. In doing so, we derive efficient frontiers for naïve 210 

and constrained MPT under various levels of risk minimization weight 𝜆 by connecting 211 

points of expected ROIs and corresponding standard deviations for both MPT approaches. 212 

Because ideal funding amount for the forest conservation for biodiversity of the study area is 213 
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unknown, we compare outcomes of the hypothesis found in the conceptual framework related 214 

to the impact of hypothetical total budget amounts on degree of deviation between naïve and 215 

constrained MPT. Specifically, we compare outcomes based on the two approaches under 216 

three hypothetical total budget constraints: low, moderate, and high total budget (i.e., $3 217 

million, $50 million, and $1 billion).   218 

Given the various ranges of expected ROI and standard deviation for each approach 219 

that are reflected in various lengths of the frontiers, we normalize risk level as the percent 220 

above minimum risk (referred to as ‘risk tolerance level’) to compare outcomes based on 221 

naïve and constrained MPT at the same degree of risk that conservation organizations can 222 

tolerate. If the feasible risk levels were different between the approaches, our comparisons 223 

would be limited. For example, if minimum risk levels were 0 and 3 for naive and 224 

constrained MPT, respectively, we could not compare the efficient portfolios at a risk level of 225 

3, which is not the minimum risk level associated with naïve MPT. By drawing the efficient 226 

frontiers where the x-axis represents risk tolerance level normalized as stated above, efficient 227 

frontiers are comparable at every risk tolerance level and show expected ROIs attainable at 228 

any risk tolerance level across different MPT specifications. 229 

 230 

Conceptual illustration  231 

Suppose a conservation organization wishes to allocate optimal portfolio weights 232 

between counties A and B based on naïve and constrained MPT. County A has a higher 233 

expected ROI with higher risk than county B (𝑅𝑂𝐼𝐴 > 𝑅𝑂𝐼𝐵). The positively sloping 234 

diagonal line in the upper graph of Figure 2 shows the allocation of efficient portfolio 235 

weights between the two counties at different risk levels based on naïve and constrained 236 

MPT. The lines indicated by 𝑤𝑀and 1 − 𝑤𝑀 represent the upper limits on weights assigned 237 

to counties A and B as the total weight between the two cannot exceed the full capacity of 238 
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available resources. The lower graph of the figure illustrates different areas portrayed by 239 

changes in expected ROI, 𝑤𝑅𝑂𝐼𝐴 + (1 − 𝑤)𝑅𝑂𝐼𝐵, corresponding to portfolio weights 240 

between the two counties based on naïve and constrained MPT shown in the upper graph.  241 

Based on the naïve MPT outcome, a conservation organization with maximum risk 242 

level 𝑟1 protects all conservation assets in county A (w = 1 in the upper graph of Figure 2), 243 

with the corresponding expected ROI being area afho in the lower graph. By comparison, 244 

consider the case where the constraint is binding in county A. Constrained MPT allocates 245 

weight 𝑤𝑀 to county A with the remaining weight, 1 − 𝑤𝑀, distributed to county B at the 246 

maximum risk level of 𝑟2, corresponding to 𝑤 = 𝑤𝑀. The resulting expected ROI is shown 247 

by area af'h'o for county A and area g'ghh' for county B. These results suggest that 248 

constrained MPT mitigates maximum risk relative to naïve MPT by 𝑟1 – 𝑟2 but corrects 249 

expected ROI by area f'fgg' compared to naïve MPT.   250 

Conservation investment would be divided between the two counties at lower risk 251 

than risk level 𝑟1 based on naïve MPT. With weight assignments of  𝑤𝑄 and 1 − 𝑤𝑄  for 252 

counties A and B, respectively, the minimum risk level of 0 is reached. As a result, expected 253 

ROI at the minimum risk level for naïve MPT is shown as the sum of area aceo for county A 254 

and area dghe for county B. By comparison, consider the case where the constraint is binding 255 

in county B, where 𝑤𝑀′ 𝑎𝑛𝑑 1 − 𝑤𝑀′ represent upper limits on weights assigned to counties 256 

A and B. Constrained MPT would allocate weight, 1 − 𝑤𝑀′, to county B and the remaining 257 

weight, 𝑤𝑀′, would be distributed to county A at the minimum risk level of 𝑟3. Expected 258 

ROIs are shown by area ac'e'o for county A and area d'ghe' for county B. These results 259 

suggest that constrained MPT sacrifices the minimum risk level by 𝑟3 but increases expected 260 

ROI by area cc'd'd relative to naïve MPT because of the added weight to the higher ROI 261 

county (i.e., county A) based on constrained MPT. Other cases could include a situation 262 
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where county B provides both lower expected ROI and higher risk. In this case, budget 263 

constraints on county A could both lower the expected ROI and increase the risk of investing.  264 

At the maximum risk level, naïve MPT maximizes risk and expected ROI by 265 

allocating a weight above the feasibility of county A (w=1 in the upper graph) while at the 266 

minimum risk level, naïve MPT minimizes risk by allocating a weight above the feasibility of 267 

county B (w=wQ in the upper graph). However, constrained MPT prevents the over-allocation 268 

of weights to counties A and B, respectively, at maximum and minimum risk levels. By doing 269 

so, the optimal portfolio based on constrained MPT suggests high risk but high expected ROI 270 

at the minimum risk level, whereas it compromises expected ROI at the low risk level in 271 

comparison with the optimal portfolio generated based on naïve MPT.  272 

Other cases are also possible. For example, in a situation where county B provides 273 

both lower expected ROI and higher risk, any upper limit constraint on the weight that can be 274 

assigned to county A will both lower the expected ROI and increase the associated risk. More 275 

generally, we can then see that adding upper limit constraints on how much investment can 276 

be directed to each asset is ambiguous in terms of whether it will increase or decrease 277 

expected ROI and associated risk.   278 

The overall budget to be invested in conservation also matters. If the overall budget is 279 

small relative to the level of investment each asset can receive, accounting for upper limits on 280 

how much investment is possible for each asset is irrelevant. In contrast, when the overall 281 

program budget is large enough that the constraints may be binding, accounting for this in the 282 

optimization approach becomes more important. Risk and expected ROI corrections made by 283 

constrained MPT, relative to naïve MPT, intensify with a greater hypothetical total budget 284 

because the share of the budget assigned to each county, constrained by its upper limit, 285 

decreases with a higher hypothetical total budget. Thus, we hypothesize that the total budget 286 
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available to a conservation organization influences the degree of deviation of risk level and 287 

corresponding expected ROI between the two approaches. 288 

Before developing a fuller empirical application, we first consider a simple two-289 

county case as an example to illustrate the effects of risk level and expected ROI on naïve 290 

and constrained MPT. While these comparisons are sufficient to build intuition for changes in 291 

return and risk, the notion of upper limits on return is grounded in the assumption of a linear 292 

relationship between risk and return, implying a clear and consistent trade-off between the 293 

two. However, real-world dynamics render the risk-return relationship more intricate, subject 294 

to fluctuations over time and diverse scenarios. Notably, factors like the physical constraints 295 

for conservation could also be influenced by climate and market uncertainties. Besides, we do 296 

not consider richer patterns of covariance. Accounting for covariance structure differences is 297 

where the strength of MPT reveals itself, and we next examine this with our empirical 298 

application. Furthermore, we assume the two counties are not perfectly correlated with each 299 

other, and thus the risk diversification strategy used has a feasible solution for both MPT 300 

approaches. 301 

  302 

Illustrative example: Forest conservation in Central and Southern Appalachia 303 

 To illustrate our framework, we apply MPT to forest conservation in a biodiversity 304 

hotspot – central and southern Appalachia. We select the central and southern Appalachian 305 

region as the study area because it provides critical habitat and a corridor for biodiversity 306 

(Zhu et al., 2021), and the region is expected to experience further climate change impacts 307 

and urban development pressure (Rogers et al., 2016). For both MPT approaches, we use 308 

expected ROIs for biodiversity conservation in 2050, which is far enough into the future to 309 

observe the impact of climate and market uncertainty on benefits and costs. The benefit 310 

component for expected ROI is calculated by estimating future species ranges using species 311 
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distribution models. The conservation cost component for expected ROI is proxied as urban 312 

return minus forestland return (referred to as “relative opportunity cost”) under the 313 

assumption that urban development is the dominant competing land use for forestland. This 314 

assumption is based on evidence that urbanization is the main driver of forest loss in the 315 

study region (Wear and Greis, 2013; Keyser et al., 2014).  316 

  317 

Estimating scenario specific ROI 318 

Scenario-specific expected ROIs are structured by combining predicted future benefit 319 

scenarios and relative opportunity cost scenarios at the county level for 193 of 246 total 320 

counties in our study area. Fifty-three counties are not considered in our analysis since they 321 

are either consolidated city-counties or counties where urbanization is not a primary concern 322 

(see Figure 1). Scenarios for predicting future biodiversity benefits are only related to climate 323 

change, and multiple climate scenarios are considered. In comparison, relative opportunity 324 

costs are projected under various climate and market scenarios associated with different 325 

climate, land use, and market conditions.  326 

Multiple sources of uncertainty associated with benefits and costs derived from 327 

climate and market scenarios may have (i) different forms of variability and covariance 328 

structures (ii) different patterns of covariance structure across county within each type of 329 

uncertainty, and (iii) different patterns of covariance structure between each type of benefit 330 

and cost uncertainty. Due to these covariance structure differences, efforts to diversify 331 

market-induced risk may undermine or complement efforts to diversify climate-induced risk.  332 

The benefit component for biodiversity ROI was taken from Zhu et al. (2021) which 333 

estimated species distributions for 258 forest-dependent vertebrates of policy concern as 334 

determined by US Fish and Wildlife Service (2020) and Landscape Conservation 335 

Cooperative Network (2020). Future species distributions in 2050 were specified as the 336 
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benefit component for biodiversity since they are direct representations of areas where 337 

species can be found and protected (Fuentes-Castillo et al., 2019). The species distribution 338 

model (SDM) Maxent was used to forecast future species distributions under future climate 339 

scenarios for two representative concentration pathways (RCPs; RCP4.5 and RCP 8.5) and 340 

six General Circulation Models (GCMs; ACCESS1-0, CanESM2, CCSM4, CNRM-CM5, 341 

CSIRO-Mk3, and INM-CM4) (Phillips, 1956; Flato et al., 2014) using the ClimateNA 342 

database (Wang et al., 2016).  343 

Maxent was used to estimate probabilities of climatic suitability for species at the 1-344 

km2 pixel level under 12 future climate scenarios (i.e., 6 GCMs, each associated with RCP 345 

4.5 and 8.5). Then, probabilities were converted into binary variables using a 10% training 346 

presence threshold, which allows the top 90% of predicted probabilities to be considered as 347 

suitable habitat and the remaining 10% as unsuitable habitat (Peterson et al., 2011). Next, 348 

pixel areas from the suitability binary variables are aggregated for all 258 species at the 349 

county level, and these estimates were specified as the benefit component of species 350 

distributions for all species under 12 future climate scenarios. See Zhu et al. (2021) for more 351 

details related to the methodology used to project future species distribution. 352 

For future urban return needed to estimate relative opportunity cost, annualized 353 

median assessed land value was determined by broadly emulating Lubowski et al. (2006) 354 

using the following procedure. First, land value ratios per hectare were estimated by dividing 355 

assessed land value per hectare by total assessed value at the parcel level for sample counties 356 

where data were available. Second, land value ratios at the parcel level were converted to the 357 

census block group (CBG) level by regressing land value ratio per hectare against 358 

socioeconomic and location variables at the CBG level (see Liu et al., 2019 for more details). 359 

Third, median housing price in 2050 under three real estate market conditions (upturn, 360 

moderate, downturn) was projected based on recent real estate growth cycles to account for 361 
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the effect of real estate market uncertainty on urban return. Finally, median assessed land 362 

value per hectare was estimated by multiplying median housing price under the three real 363 

estate market conditions by land value ratio per hectare, which was then annualized (see 364 

Mingie and Cho, 2020 for details).  365 

The effect of climate and market uncertainty on forestland return was considered by 366 

projecting future harvest volume and timber price to estimate future annualized forest return 367 

using Soil Expectation Value (SEV). County-level harvest volume projections were created 368 

for three Special Report on Emission Scenarios (SRES; A1B, A2, and B2). State-level timber 369 

prices were estimated based on a stochastic modeling approach using regional stumpage price 370 

datasets from Timber Mart-South (2015) and other timber price reports. Three timber price 371 

scenarios were estimated: high (2050 mean plus standard deviation), moderate (2050 mean), 372 

and low (2050 mean minus standard deviation). 373 

Scenarios have been represented slightly differently across climate change assessment 374 

reports and our study draws on products that span different reports. The A1B and A2 375 

scenarios in the SRES correspond better with the RCP8.5 scenario. Meanwhile, the B2 376 

scenario in the SRES corresponds better with RCP4.5. The full set of scenarios we consider 377 

in our analyses are generated by cross-factoring an emissions scenario with a GCM for 378 

making climate predictions and an assumption about timber volume, timber price and the real 379 

estate market. Under the more intensive emissions situation (RCP 8.5), we include 324 380 

possible futures were developed (2 SRES * 6 GCMs * 3 timber volume scenarios * 3 timber 381 

price scenarios * 3 real estate market scenarios). In addition, under an assumption of more 382 

moderate future emissions (RCP4.5), we include a further 162 possible futures (1 SRES * 6 383 

GCMs * 3 timber volume projections * 3 timber price scenarios * 3 real estate market 384 

scenarios).  385 
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A shared-based land use model was applied at the county level using historical land 386 

use data from the National Land Cover Database (NLCD, 2016) and the historical relative 387 

opportunity cost data. We forecasted forestland area in each county under diverse scenarios in 388 

2050 using the parameters from the land use model and the forecasts of the relative 389 

opportunity costs under different scenarios. While the land use change model predicts the 390 

forest area that will remain in the county in 2050 with or without investment, it does not 391 

forecast where exactly this forest area will be located within the county. The improvements in 392 

the persistence probabilities for species resulting from protecting forestland in different 393 

counties do not consider the proximity of counties to one another.   394 

We also needed to make an additional assumption to convert changes in forest within 395 

climatically suitable areas for a species into a statement about region-wide species persistence 396 

in 2050. Following Armsworth et al. (2020), the probability of persistence function was 397 

assumed as a linear, piecewise continuous, hockey-stick function, which allowed the 398 

persistence probability to equal zero when no forest remained but increase linearly when 399 

forest area in the county increased until a saturation threshold at 1 was reached. We also 400 

considered the difference of ecological quality between protected forest and private forest, 401 

treated as intermediate usable habitat, and differentiated the land use types by assigning two 402 

weights (i.e., 1 or 0.25) to protected forest and private forest, respectively (see Armsworth et 403 

al., 2020 for more details).  404 

Based on the probability of persistence function and average opportunity cost, the 405 

marginal benefit to cost ratio in each county was estimated, which was optimized by both 406 

naïve and constrained MPT. Finally, expected marginal ROI under each scenario was defined 407 

as the change in species richness (i.e., number of species) by aggregating relevant 408 

probabilities for 258 species, which was optimized by both naive and constrained MPTs 409 

(Kang, Sims, and Cho, 2022). 410 
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Empirical Results 411 

Figure 3 shows four efficient frontiers indicating the expected ROI-risk tolerance 412 

relationship for portfolios generated from naïve MPT and constrained MPT with three 413 

hypothetical total budget constraints with upper limits at the mean. The four efficient 414 

frontiers are upward sloping implying higher return (i.e., expected ROI) with higher risk. The 415 

four frontiers are also concave-shaped implying that risk diversification becomes more costly 416 

(i.e., more return is sacrificed) as portfolio risk is reduced.  417 

Figure 3 illustrates how constraints on returns impact the effectiveness of risk 418 

mitigation in two ways. First, the constraints reduce how much expected ROI must be 419 

foregone to achieve the same level of risk reduction (see Figure 3A). The slope of the frontier 420 

is smaller under constrained MPT than under naïve MPT especially at higher budget amounts 421 

where constraints are binding for more counties. These findings imply that when a 422 

conservation organization will have to spread more investment around due to a larger total 423 

budget, it can reduce risk with less loss in expected return with constrained MPT than with 424 

naïve MPT.  425 

Figure 3B also shows how constraints on returns could force land managers in the 426 

Appalachian region to spread their bets by spreading the budget to a greater number of 427 

counties. This bet spreading behavior yields an expected ROI closer to what would be 428 

achieved if the budget was to be divided evenly among all counties (i.e., simple 429 

diversification; point marked as an X in Figure 3B). Specifically, the difference in expected 430 

ROI at the same risk level between the constrained efficient frontiers and the simple 431 
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diversification point decreases as the budget increases.1 Points a, b, c, and d are points on the 432 

efficient frontier for naïve MPT and constrained MPT with $3 million, $50 million, and $1 433 

billion budgets, respectively, at the same standard deviation as point X. The vertical distances 434 

from simple diversification portfolio X to a, b, c and d represent differences in potential 435 

expected ROI gained by the different MPT frameworks, given the same risk level. The longer 436 

vertical distance from X to a compared to distances from X to b, c, and d reinforces the 437 

notion that MPT is less efficient with constrained MPT since constraints direct more 438 

investment to counties with a smaller ROI. 439 

 Table 1 shows optimal portfolio expected ROI for biodiversity conservation and risk, 440 

reflected in its standard deviation, at four risk levels from naïve MPT and constrained MPT 441 

with three hypothetical total budget scenarios with upper limits at the mean. At the maximum 442 

risk level, the results show that constrained MPT compromised expected ROI while 443 

improving risk mitigation to a greater extent compared to naïve MPT. At the minimum risk 444 

level, constrained MPT gained higher expected ROI by reducing risk mitigation more than 445 

naïve MPT. These findings imply that constrained MPT corrects misallocated portfolio 446 

weights, and based on this correction, the tradeoff between risk and expected ROI at 447 

maximum and minimum risk levels, respectively.   448 

Deviations in risk level and expected ROI between naïve and constrained MPT 449 

depend on how efficiently county portfolio weights are bound by upper limits. For example, 450 

portfolio weights for constrained MPT with a $3 million total budget did not deviate much 451 

from those from naïve MPT since counties with optimal budgets above county-level physical 452 

 
1 We make comparisons using the expected ROI-standard deviation frontiers, instead of the 

expected ROI-risk tolerance frontiers because the simple diversification portfolio cannot be 

normalized. 
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constraints (e.g., 1 of 16 counties selected at four risk tolerance levels) were rare. No 453 

correction of risk and expected ROI is made by constrained MPT with a $3 million budget at 454 

the maximum risk level since the efficient portfolios between the two models are the same: 455 

all investment is allocated to a single county, Coosa County (AL). The upper limit constraint 456 

of Coosa County (AL) is less than the total budget of $3 million. Thus, the efficient portfolio 457 

weight of the county is not bound by its upper limit. Similarly, efficient portfolio weights 458 

between the approaches are the same at the minimum risk level (see Table S1 for details on 459 

portfolio weight allocations) since all efficient portfolio weights do not reach their upper 460 

limits. As a result, the efficient portfolio is the same regardless of whether the upper limit is 461 

considered or not. In contrast, deviation was much more apparent if the total budget for 462 

constrained MPT increased to $1 billion since counties with optimal budgets above county-463 

level budget constraints (e.g., 81 of 85 counties selected at four risk tolerance levels) were 464 

much more numerous (see Table 1). These findings show that the degree of correction in risk 465 

and expected ROI made by constrained MPT is greater with higher total budgets, and greater 466 

diversification of counties is achieved regardless of risk mitigation especially when higher 467 

total budgets are considered.  468 

Table 2 illustrates heterogeneity in different aspects of sixteen selected counties, 469 

among which three counties are chosen twice in different risk levels, from naïve MPT. Ten of 470 

the sixteen counties are categorized as rural counties. The sizes of the counties display 471 

considerable disparities. For example, Randolph, WV, the largest county among the sixteen 472 

counties (402,033 hectares), is almost five times in size relative to Jefferson, WV, the 473 

smallest county among the sixteen counties (82,416 hectares). Forestland area generally 474 

reflects the size of the county, and the ratio of public to private forestland on average over the 475 

486 uncertainty scenarios ranges between 0 and 16 across the sixteen counties. The average 476 

species ranges for 258 species vary from 10.5 million to 55.4 million hectares across the 477 
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counties over the uncertainty scenarios. The scale and variation of the urban return is greater 478 

than the forest return. As a result, the discrepancy of relative opportunity costs is determined 479 

more by the urban return than the forest return. A noticeable disparity is found in the ROIs 480 

across the counties. In particular, a $1 million investment would allow persistence of 0.1232 481 

additional species in Coosa, AL, which is more than three hundred times greater than the 482 

expected ROI in Buncombe County, NC (0.0004) in average over the uncertainty scenarios. 483 

Figure 4 shows the spatial distributions of portfolio weight allocations from naïve 484 

MPT and constrained MPT with $3 million and $1 billion total budgets at four risk tolerance 485 

levels (i.e., minimum, 15%, 25%, and maximum risk tolerance) with upper limits at the 486 

mean. At minimum risk tolerance, we observe that a portfolio weight of 0.12 is assigned to 487 

Henderson County (NC) based on constrained MPT with a $1 billion total budget, whereas 488 

the same county’s portfolio weight is 0.24 for naïve MPT. The portfolio weight of 0.24 489 

without an upper limit constraint does not exceed the county-level budget constraint of $120 490 

million if the total budget constraint was $3 million. Consequently, the portfolio weight of 491 

0.24 remains the same between naïve MPT and constrained MPT at minimum risk tolerance 492 

when a $3 million total budget is considered. (See S1 and Table S1 in the Supplementary 493 

Material for discussion on portfolio weights between the two MPT approaches with three 494 

hypothetical total budgets and four risk levels.) These findings suggest that correction of 495 

misleading portfolio weights by constrained MPT occurs only if the optimal budget assigned 496 

to a county without a total budget constraint is above the county’s budget constraint. 497 

Figures S1 and S2 and Tables S2 and S3 in the Supplementary Material, respectively, 498 

show 1) the expected ROI-standard deviation frontiers and 2) optimal portfolio expected ROI 499 

for biodiversity conservation and risk under four risk levels between naïve MPT and 500 

constrained MPT with three hypothetical total budget scenarios using upper limits on both 501 

ends of 95% confidence interval of their probability density distributions. These consistent 502 
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findings with different size of upper bound constraints reaffirm the robustness of 503 

characteristics discussed on 1) and 2) regardless of the size of upper limit constraints used in 504 

the constrained MPT.  505 

 506 

Discussion 507 

The comparison of MPT outputs with and without upper limit constraints shows that 508 

the change in portfolio risk that conservation organizations can achieve with the same level of 509 

compromise in expected ROI is higher with constrained MPT than with naïve MPT. This 510 

finding has implications for conservation strategies with different objectives. Constrained 511 

MPT is useful when seeking to protect species that are habitat specialists, such as several 512 

highly endemic salamanders in our case study region. It is also useful when prioritizing land 513 

that is only available for conservation acquisition occasionally because there may only be a 514 

few properties available in a desirable location during a period when the conservation 515 

program must allocate its budget.  516 

Other possible circumstances that fit well for constrained MPT is when additional 517 

capacity constraints might be limiting (e.g., if the conservation program relies on partners for 518 

long-term management of the site). For example, the Critical Ecosystem Partnership Fund 519 

(CEPF, 2022) supports protecting natural areas essential to biodiversity with designated 520 

budget amounts. There are state programs also that cap how much any one state can receive. 521 

For example, the Cooperative Endangered Species Conservation Fund supports section 6 of 522 

the ESA (Pittman-Robertson Wildlife Restoration Act, 1937; US Fish and Wildlife Services, 523 

2021) and provides grants to States and Territories for species and habitat conservation 524 

actions on non-federal land. State allocations from this fund are derived from an established 525 

formula and specific constraints. The funding proportion given to each state does not change 526 

from year to year since these appropriations are based on the program’s formula.  527 
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Despite our study’s contribution, conservation organizations should be mindful of the 528 

limitations associated with solely relying on upper limits on returns from conservation using 529 

a constrained MPT. The precise projections of the upper limits are not possible given the 530 

unknown probability distribution of uncertainty scenarios. Instead, we use average values of 531 

upper limits on returns across the scenarios for the main finding and vary their values as a 532 

sensitivity analysis. This type of approach offers layers of optimal solutions and allows a 533 

comparison of their implications for conservation decisions. Yet, conservation organizations 534 

need to go beyond comparing outcomes using multiple upper limits as they have little 535 

reference for which upper limits are most relevant to their conservation decision making. 536 

Furthermore, the unexpected economic, political, and technological shifts may result in the 537 

upper limits beyond what are covered by the scenario-specific projections. The potential 538 

occurrence of such extreme conditions hinders the application of the constrained MPT.  539 

Another aspect of limitation lies on the influences of behavioral and social factors on 540 

conservation decisions. Conservation decision-making and behavior can deviate from rational 541 

expectations as they can be linked to social, psychological and behavioral factors. For 542 

example, emotion, habit, culture and involvement are found to have significantly and 543 

positively associated with conservation behavior (Singha et al., 2022), resulting in 544 

overreactions or underreactions to conservation commitment. As a result of these influences, 545 

conservation organizations may deviate from the optimal risk-diversification strategies with 546 

their decision-making processes. Consequently, their portfolios of conservation practices 547 

might exceed the projected upper limits on return, which in turn can shape dynamics of 548 

conservation behaviors. Likewise, we modeled a range of future scenarios, but obviously our 549 

models would not perform well if future black swan like events fall well outside the range 550 

that we consider. 551 
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It is also worth mentioning caveats for identifying future research needs. Our 552 

constrained MPT models focus on upper limits in returns that arise from physical limitations 553 

of conservation investments, while a conservation organization also faces upper limits due to 554 

diminishing returns. For example, a conservation organization attempting to protect species 555 

habitat for a specific target site faces diminishing returns at each target site since the number 556 

of species preserved per unit area will monotonically decrease as each additional unit area is 557 

protected if the response of each species to protection is not convex (Popov et al., 2022). In a 558 

way, our constrained MPT takes account of marginal returns with a step function where ROI 559 

goes to 0 when the weight crosses a threshold of the physical constraint in equations (5) and 560 

(6). The use of a step function reflects the fact that practitioners may only be able to coarsely 561 

estimate diminishing returns since data on the marginal effect of conservation investment is 562 

limited. Thus, future research could explore developing another modified constrained MPT 563 

framework accounting for upper limits in returns that arise from both physical limitations and 564 

diminishing returns when data on the marginal effect of conservation investment is viable.   565 

We recognize there are other limitations to existing applications of MPT (both naïve 566 

and constrained MPT) in conservation. As with any approach, assumptions must be made. 567 

For example, applications of MPT in conservation typically assume static, one-off decisions 568 

which are relevant to some conservation programs (e.g., those needing to allocate funds 569 

during fixed windows of time), but not others (e.g., those planning acquisition strategies that 570 

are to be implemented gradually over a couple of decades). In reality, conservation agencies 571 

typically face scenarios in which building conservation programs at different sites takes time. 572 

In the interim, they accumulate new information relevant for final decision making (Pressey 573 

et al. 2013). To address this challenge, future research will have to develop a dynamic 574 

counterpart to the MPT approach to conservation planning and use it to determine a time 575 
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series of portfolios of target sites for conservation that accommodates future spatial and 576 

temporal uncertainties. 577 

Also, applications of MPT (both naïve and constrained MPT) are limited in the 578 

number of assets they can consider, which can result in a reliance on relatively coarse units 579 

such as counties in our empirical analysis. Specifically, the MPT cannot determine optimal 580 

solutions when the number of scenarios available is equal to or smaller than the number of 581 

assets considered because in such case the information needed to calculate the variance-582 

covariance matrix for the solution of portfolio weights would not be sufficient (Mallory and 583 

Ando 2014). We have not yet compared the relative importance of accounting for upper limit 584 

constraints on how much investment can be directed to different assets to the relative 585 

importance of accounting for other refinements of MPT. We chose to focus here on the role 586 

of upper limit constraints on potential targets for investment because these constraints have 587 

the potential to induce some degree of risk spreading, which has been touted as a prevailing 588 

benefit of MPT. In our empirical application, we find that including these constraints 589 

enhanced the benefits of applying MPT. In essence, if a conservation organization must 590 

spread investment around anyway, it would be wise to use MPT to maximize the benefits of 591 

doing so. 592 

 593 

Conclusion 594 

The constrained MPT model is structured to correct potentially misleading portfolio 595 

weights from naïve MPT that does not account for upper limits in returns from conservation 596 

investments. We find that the amount of reduction in risk conservation organizations can 597 

achieve with the same level of compromise in expected ROI is higher with constrained MPT 598 

than with naïve MPT. However, our findings also suggest that improvement can be made 599 

only if the total budget assigned to a conservation organization is large enough so that 600 
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portfolio weights from naïve MPT allocate beyond physical limitations determined by upper 601 

limits of potential target sites or regions that trigger misallocation of portfolio weights for 602 

target sites. For this reason, divergences between each approach’s outcomes becomes more 603 

evident if the total budget for constrained MPT is higher, and the degree of divergence 604 

depends on how physical limitations bind and correct for misleading portfolio weights.  605 

Constrained MPT can help conservation organizations by providing risk-mitigating 606 

portfolios of conservation targets that consider each target site’s upper limit constraint. 607 

Comparing naïve and constrained MPT outcomes under various total budget constraint levels 608 

illustrate the vulnerability of naïve MPT and can help conservation organizations evaluate 609 

risk-diversifying strategies that are specific to different available total budget levels. 610 

Constrained MPT for a given risk tolerance level and specific total budget can identify a risk- 611 

and budget-specific portfolio of target sites for biodiversity conservation. This implication 612 

suggests that the portfolio weights associated with the risk-mitigating allocation of 613 

conservation investment can be adjusted by a conservation organization’s risk tolerance and 614 

the total budget it manages.  615 

  616 

  617 
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Table 1. Portfolio expected ROI for biodiversity conservation, portfolio risk reflected in its standard 

deviation, number of counties selected, number of counties bound by upper limit constraints, and 

average costs of selected counties from naïve MPT and constrained MPT with three total budgets 

under four risk levels with upper limits at the mean 

 Naïve MPT Constrained MPTs 

  $3 million $50 million $1 billion 

Minimum 

risk level  

Portfolio’s expected ROI 0.00173 0.00119 0.00104 0.00091 

Portfolio’s standard 

deviation 
0.00005 0.00004 0.00004 0.00004 

# of counties selected 12 12 12 16 

# of counties bound by its 

upper limit constraint  
- 0 1 9 

Average cost of selected 

counties 
$90,762,849  $90,762,849  $90,762,849  $92,585,968 

15% risk 

level 

Portfolio’s expected ROI 0.03792 0.03760 0.01174 0.00372 

Portfolio’s standard 

deviation 
0.01607 0.01617 0.00185 0.00040 

# of counties selected 3 4 8 35 

# of counties bound by its 

upper limit constraint 
- 1 4 27 

Average cost of selected 

counties 
$8,386,061 $7,200,854 $17,481,817 $32,823,862 

25% risk 

level 

Portfolio’s expected ROI 0.04996 0.04902 0.01534 0.00474 

Portfolio’s standard 

deviation 
0.02667 0.02735 0.00307 0.00065 

# of counties selected 3 4 9 43 

# of counties bound by its 

upper limit constraint 
- 1 3 38 

Average cost of selected 

counties 
$3,253,555 $7,200,854 $10,461,209 $24,450,516 

Maximum 

risk level  

Portfolio’s expected ROI 0.12324 0.12324 0.02744 0.00691 

Portfolio’s standard 

deviation 
0.10734 0.10734 0.01234 0.00228 

# of counties selected 1 1 9 59 

# of counties bound by its 

upper limit constraint 
- 0 8 58 

Average cost of selected 

counties 
$3,645,232… $3,645,232… $5,588,646… $17,942,059.  
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Table 2. Summary of the sixteen selected counties from naïve MPT under four risk levels.  

  

County Type 
Size 

(hectare) 

Size of 

forestland 

(hectare) 

Private 

forestland 

(hectare) 

Public 

forestland 

(hectare) 

Species 

ranges of 

258 

species 

(hectare) 

Forest 

return 

($/hectare) 

Urban 

return 

($/hectare) 

Relative 

opportunity 

cost 

($/hectare) 

Minimum 

risk level 
Buncombe, NC Urban 244,890  162,436  128,962  33,474 33,554,911 87  1,959  1,872 0.0004 

Haywood, NC Rural 205,647  163,698  55,369  108,329 29,633,914 76  1,057  981 0.0011 

Henderson, NC Urban 138,699  86,721  70,874  15,847 19,234,632 65  1,824  1,758 0.0006 

Jackson, NC Rural 182,754  154,343  8,906  145,437 26,604,084 104  901  797 0.0008 

Transylvania, 

NC 
Rural 140,519  119,281  34,785  84,496 19,626,066 91  952  862 0.0010 

Greenville, SC Urban 292,390  151,886  151,886  - 38,557,472 55  1,731  1,676 0.0009 

Sevier, TN Rural 222,275  161,512  88,767  72,745 29,947,641 65  1,015  950 0.0005 

Roanoke, VA Urban 95,201  66,524  61,410  5,115 12,886,994 130  1,438  1,308 0.0005 

Fayette, WV Rural 255,761  219,338  200,872  18,467 36,137,436 60  390  330 0.0023 

Jefferson, WV Urban 82,416  23,413  23,167  246 10,526,362 62  1,544  1,482 0.0008 

Nicholas, WV Rural 251,337  203,827  175,096  28,730 35,744,704 20  226  206 0.0049 

Randolph, WV Rural 402,033  353,349  156,814  196,535 55,448,499 68  552  484 0.0035 

15% risk 

level 
Clay, AL Rural 218,645  157,964  124,256  33,708 27,414,832 45  85  40 0.0415 

Wolfe, KY Rural 84,926  67,963  53,030  14,933 11,480,003 47  69  22 0.0463 

Preston, WV Rural 254,289  193,619  186,693  6,925 36,454,081 17  119  102 0.0185 

25% risk 

level 
Clay, AL Rural 218,645  157,964  124,256  33,708 27,414,832 45  85  40 0.0415 

Coosa, AL Rural 239,645  171,112  171,112  - 30,449,521 46  68  21 0.1232 

Wolfe, KY Rural 84,926  67,963  53,030  14,933 11,480,003 47  69  22 0.0463 

Maximum 

risk level 
Coosa, AL Rural 239,645  171,112  171,112  - 30,449,521 6 8 1 0.1232 

Notes: Species ranges are average values of 258 species over 486 uncertainty scenarios, and private forestland, forest return, urban return, relatively opportunity 

cost, and ROI are average values over 486 uncertainty scenarios.
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Figure 1. Map of 193 counties used for naïve MPT and constrained MPT 

 

 
 

Notes: 53 counties are not considered for analysis since they are consolidated city-counties or 

counties with negative relative opportunity costs that do not face urban development concern 

  

Counties not considered in the analysis  

193 counties  
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Figure 2. Consequences of failing to account for an upper limit constraint in MPT.  
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Notes: The upper graph of the figure shows allocations of efficient portfolio weights between 

two counties (𝑤𝑀 and 1 − 𝑤𝑀′ represent upper limits on weights for counties A and B, and 𝑤𝑄 

and 1 − 𝑤𝑄 represent weights at the minimum risk level for counties A and B) at different risk 

levels (0 and 𝑟1 for minimum and maximum risk level based on naïve MPT and 𝑟2 and 𝑟3 for 

minimum and maximum risk levels based on constrained MPT) based on \ MPTs. The lower 

graph of the figure illustrates changes in expected ROI (ROIA as expected ROI for county A and 

ROI𝐵 as expected ROI for county B) corresponding to efficient portfolio weights between the 

two counties (𝑤𝑀′ 𝑎𝑛𝑑 1 − 𝑤𝑀′ represent weights assigned to counties A and B for the case 

where the constraint is binding in county B at minimum risk level, and 𝑤𝑀 and 1 −
𝑤𝑀 represent weights for counties A and B where the constraint is binding in county A at 

maximum risk.) based on naïve and constrained MPT shown in the upper graph.   
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Figure 3. Four efficient frontiers of the expected ROI-risk tolerance relationship for 

portfolios from naïve MPT and constrained MPT with three budgets ($3 million, $50 

million, and $1 billion) with upper limits at the mean. (A) Constraints on asset returns 

lower the slope of the frontier at many reasonable risk tolerance levels implying less 

expected ROI must be forfeited to reduce risk. (B) Constraints on asset returns also reduce 

the increase in expected ROI that can be achieved through risk diversification.   

 

 
 

Notes: Points a, b, c, and d are the points on the efficient frontiers for naïve MPT, and 

constrained MPT with $3 million, $50 million, and $1 billion, respectively, with the same 

standard deviation as point X. 
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Figure 4. Spatial distributions of portfolio weight allocations from naïve MPT and constrained MPT with $3 million and $1 billion total 

budgets at four risk tolerance levels (i.e., minimum, 15%, 25%, and maximum risk tolerance levels) with upper limits at the mean  

 

 


