
GRAPHENE: Towards Data-driven Holistic Security
Posture Analysis using AI-generated Attack Graphs

Charalampos Katsis
Purdue University

ckatsis@purdue.edu

Xin Jin
The Ohio State University

jin.967@osu.edu

Fan Sang
Georgia Institute of Technology

fsang@gatech.edu

Jiahao Sun
Georgia Institute of Technology

jiahaosun@gatech.edu

Elisa Bertino
Purdue University

bertino@purdue.edu

Ramana Rao Kompella
Cisco Research

rkompell@cisco.com

Ashish Kundu
Cisco Research

ashkundu@cisco.com

Abstract—The rampant occurrence of cybersecurity breaches
imposes substantial limitations on the progress of network infras-
tructures, leading to compromised data, financial losses, potential
harm to individuals, and disruptions in essential services. The
current security landscape demands the urgent development of
a holistic security assessment solution that encompasses vul-
nerability analysis and investigates the potential exploitation of
these vulnerabilities as attack paths. In this paper, we propose
GRAPHENE, an advanced system designed to provide a detailed
analysis of the security posture of computing infrastructures.
Using user-provided information, such as device details and
software versions, GRAPHENE performs a comprehensive secu-
rity assessment. This assessment includes identifying associated
vulnerabilities and constructing potential attack graphs that
adversaries can exploit. Furthermore, it evaluates the exploitabil-
ity of these attack paths and quantifies the overall security
posture through a scoring mechanism. The system takes a holistic
approach by analyzing security layers encompassing hardware,
system, network, and cryptography. Furthermore, GRAPHENE
delves into the interconnections between these layers, exploring
how vulnerabilities in one layer can be leveraged to exploit
vulnerabilities in others. In this paper, we present the end-to-end
pipeline implemented in GRAPHENE, showcasing the systematic
approach adopted for conducting this thorough security analysis.

Index Terms—Attack Graphs, CVE, CWE, Attack Paths, Risk
Analysis, Security Posture Analysis

I. INTRODUCTION

The escalating complexity of enterprise networks and the
proliferation of applications and software packages from di-
verse sources have resulted in environments that are highly
susceptible to cyber-attacks. The intricate network of intercon-
nected devices, coupled with technologies such as cloud com-
puting and Internet of Things (IoT) devices, further expands
the attack surface, providing attackers with numerous entry
points [1]. Moreover, the interconnected nature of networks
intensifies the impact of a single vulnerability, enabling ad-
versaries to navigate interconnected systems and compromise
multiple hosts and devices. Finally, hundreds of vulnerabilities
are disclosed monthly in the national vulnerability databases;

The first three authors contributed equally to this work. Katsis, Jin, Sang
and Sun did part of the work during an internship at Cisco Research.

thus, an approach for evaluating and understanding their im-
pact is critical for several reasons, such as prioritizing patching
efforts.
Problem Scope. Given the expanding attack surface, we need
comprehensive systems able not only to identify vulnerabilities
specific to the infrastructure of interest but also to discern
how these vulnerabilities can be exploited in sequences. Our
goal is to develop a solution that leverages attack graphs to
(1) understand how vulnerabilities might serve as a sequence
of steps in a multi-step attack and (2) scrutinize and grasp
the implications of each vulnerability on the infrastructure
under analysis. Such a deep understanding of the nature and
impact of each vulnerability is essential to tailor effective
approaches for mitigation by subject matter experts. The sys-
tem implementing the solution should also be able to identify
and curate information regarding known vulnerabilities across
applications, systems and devices.
Challenges. Designing such a system requires addressing the
following challenges: (C1) The vulnerabilities are typically
described in natural language (i.e., common vulnerabilities and
exposures – CVE) rather than in a formally defined encoded
format. Therefore, a systematic approach is needed to capture
the vulnerability semantics and convert them into a suitable
format for further analysis. (C2) The construction of attack
paths constituting a chain of vulnerabilities to the attacker’s
objectives requires extracting the conditions that allow one to
exploit a vulnerability (i.e., preconditions) and the state of the
system once a vulnerability is exploited (i.e., postconditions).
(C3) It is hard to develop security quantification metrics that
capture the criticality of vulnerabilities and the impact on the
system under analysis.
Limitations of Prior Works. Previous research on attack
graph generation has several limitations. Many approaches
require manually inputting infrastructure-related CVEs [2]–
[4], which is challenging due to the constant emergence of new
vulnerabilities. A single vulnerability can substantially alter
the security landscape by introducing new attack possibilities
or high-risk pathways. Additionally, some methods rely on
proprietary formal expressions for defining vulnerabilities [2],

9

2024 IEEE 10th International Conference on Collaboration and Internet Computing (CIC)

979-8-3503-8670-7/24/$31.00 ©2024 IEEE
DOI 10.1109/CIC62241.2024.00012

20
24

 IE
EE

 1
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
ol

la
bo

ra
tio

n
an

d
In

te
rn

et
 C

om
pu

tin
g

(C
IC

) |
 9

79
-8

-3
50

3-
86

70
-7

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
IC

62
24

1.
20

24
.0

00
12

Authorized licensed use limited to: Purdue University. Downloaded on March 13,2025 at 19:15:42 UTC from IEEE Xplore. Restrictions apply.

[3], [5], which must be frequently updated to reflect new
attack vectors, and the accuracy of these definitions directly
impacts the quality of the attack graph. Some approaches
use hard-coded heuristics and keyword matching to connect
CVEs [2], [4]–[6], which limits applicability across different
vulnerabilities and fails to capture the nuanced information
in natural language text. Finally, many risk analysis methods
do not assess risk with respect to the underlying infrastruc-
ture [7]–[10]. Therefore, a tailored vulnerability assessment
is crucial for fully addressing the specific risks posed to an
infrastructure.
Our Approach. To address such challenges, we design an
innovative solution called GRAPHENE, which serves as a com-
prehensive security posture analyzer for computing infrastruc-
tures. Users (e.g., security officers) provide an inventory of the
interconnected devices’ details and software versions installed.
Then, the system continuously monitors trustworthy data
sources, such as the NIST National Vulnerability Database
(NVD) [11], for vulnerabilities specific to components of a
given infrastructure.

Using named entity recognition (NER), GRAPHENE is able
to extract the semantic meaning of these vulnerabilities and
encode them into a latent space for in-depth analysis. In
particular, it automatically extracts the preconditions required
for an adversary to exploit a vulnerability and the result after
exploiting the vulnerability (i.e., postconditions). For example,
GRAPHENE can discern that exploiting a particular CVE might
require the presence of the TensorFlow XLA compiler in the
Google TensorFlow version prior to 1.7.0 as a precondition.
Simultaneously, it captures postconditions such as a system
crash resulting from a heap buffer overflow.

GRAPHENE uses a semantic similarity-matching approach
based on word embeddings [12] to link the postconditions
of one vulnerability with the preconditions of another, con-
structing potential attack graphs for a given topology. After
generating these graphs, it evaluates the security posture using
a novel layered analysis. Vulnerabilities are grouped into
distinct layers—such as machine learning, system, hardware,
network, and cryptography—based on keyword matching and
CWE information. GRAPHENE performs similarity matching
within and across these layers, uncovering how vulnerabilities
in one layer can exploit those in another. This layered approach
enables subject matter experts to prioritize risk analysis, de-
velop targeted mitigation strategies, and implement patches
based on the severity of vulnerabilities in each layer.

As a result, GRAPHENE automatically produces two
types of attack graphs: cumulative (or multi-layer) attack
graphs and layered attack graphs. Cumulative attack graphs
show how an attacker could exploit CVEs across multiple
layers. In contrast, layered attack graphs focus on exploiting
vulnerabilities within the same layer. This dual representation
provides a comprehensive understanding of the potential attack
paths across different layers and within individual layers.

GRAPHENE traverses the generated attack graphs to thor-
oughly analyze the infrastructure’s security posture, offering
both cumulative and layer-specific analytics. These analytics

ǭ

(+-*+ - - ./-$�/$*) *! -)� - � �
 '�4 -. *- !-�(.
$) ��Ҋ���� 1 -.$*). !-*(тѵпѵп /* тѵпѵрч ' ��. /*
�'$�&%��&$)" �//��&.ѵ
! � 0. - ��� .. . � .+ �$�''4
�-�!/ � +�" 2#$' '*"" � $)/* /# ��($)$./-�/$1
+�" Ѷ 0)$)/)� � *+ -�/$*). (�4 � �*)�0�/ �ѵ

�- �*)�$/$*)
)+0/ �0/+0/ �*./�*)�$/$*)

Fig. 1: An example of Vulnerability Description and Attack
Graph Node Attributes for CVE-2020-5679.

assess (1) the effort required by an adversary to exploit a step
or sequence of steps and (2) the impact of those steps based on
the criticality of the affected resources. After computing scores
relative to this criticality, GRAPHENE highlights vulnerabilities
and high-impact attack paths that demand immediate attention.
The ultimate goal is to equip security officers with a clear
understanding of their network’s threat landscape, enabling
organizations to proactively tailor mitigation strategies and
strengthen defenses against evolving threats.
Contributions. We make the following contributions:
• We introduce a novel fully-automated security posture an-

alyzer to generate attack graphs for computing infrastruc-
tures.

• We propose a natural language processing approach based
on NER and word embeddings that streamlines pre- and
postcondition extraction, facilitating the generation of attack
graphs without the need for manual intervention.

• Our framework adopts a comprehensive strategy for ana-
lyzing security postures in a multi-layered fashion, which
analyzes each layer separately and combines them into one
unified analysis.

• We propose risk scoring methods for tailored analysis of
the underlying network infrastructure.

II. BACKGROUND

CVE and CWE. Common Vulnerabilities and Exposures
(CVE) disclosures are essential in cybersecurity, providing
a standardized system for identifying and cataloging known
vulnerabilities with unique identifiers enabling prompt detec-
tion and response to threats. Complementing this, the Com-
mon Weakness Enumeration (CWE) system categorizes the
weaknesses that cause vulnerabilities, offering a structured
approach to understanding security issues. Additionally, the
Common Vulnerability Scoring System (CVSS) assigns nu-
merical scores (0 to 10) to CVEs, quantifying their severity
based on impacts to confidentiality, integrity, and availability.
Attack Graphs. At the high level, an attack graph can be
defined as a structured representation of the potential paths
an attacker can take to compromise a network or system by
exploiting vulnerabilities [2], [8]. In such a representation, the
attack graph nodes are the attack units that assemble basic
vulnerability attributes combined as coherent entities. These
attributes encompass preconditions, postconditions, inputs, and
outputs. Preconditions refer to a collection of system proper-
ties that must hold for an exploit to succeed. For example,
in Figure 1, the CVE requires any EC-CUBE version from
3.0.0 to 3.0.18 to be installed. If these preconditions are not
met, it becomes possible to render all subsequent steps of an

10

Authorized licensed use limited to: Purdue University. Downloaded on March 13,2025 at 19:15:42 UTC from IEEE Xplore. Restrictions apply.

attack ineffective. Postconditions are the system properties that
hold as the results of an attack step, which are necessary for
the generation of outputs. For example, in Figure 1, the user
must be logged into the admin page for the clickjacking attack
(output) to work. The inputs are the actions that attackers need
to take to trigger the vulnerability and perform the exploit. In
Figure 1, the user must access a specifically crafted page that
serves as an input to the vulnerability. The outputs refer to
the final values or results that the system returns or produces
when exploits to vulnerabilities are executed. In Figure 1, the
output of the CVE exploitation is the clickjacking attack.

Attack graph nodes can be categorized as attackers, attack
targets, and vulnerabilities. Generally, attackers act as the
source or root nodes, vulnerabilities function as intermediate
nodes, and attack targets represent the sink/leaf nodes. By
exploiting vulnerabilities, attackers can perform a sequence
of steps or actions to attack the victims, such as gaining
unauthorized access to a network or system. Such steps and
actions are the edges in the attack graph, serving as the
basic connections. Formally, attack graph edges represent
the transitions and chains of vulnerabilities [13]. Successful
attacks often require executing a series of exploits in a specific
sequence. For example, to compromise the macOS Kernel
through Safari, exploiting a chain of six vulnerabilities is
required [14]. Therefore, the edge connecting two nodes in an
attack graph indicates that the vulnerability exploited by one
node can serve as the input and trigger for the other node.

III. AUTOMATED ATTACK GRAPH GENERATION

In this section, we present how we leverage machine learn-
ing and natural language processing to build attack graphs.

A. Attack Graph Node Identification
The attack graph nodes are the fundamental element of

attack graphs, where they provide relevant vulnerability
details, i.e., preconditions, postconditions, inputs, and outputs.
Identifying attack graph nodes from vulnerability descriptions
and reports is not trivial, as it requires understanding the
semantics of vulnerabilities. Consider the description of
CVE-2020-5679 shown in Figure 1, which can be exploited
to perform clickjacking attacks. With manual efforts, human
analysts can identify the key properties of this vulnerability
by understanding the description and identifying the words
or phrases that represent the nodes. However, manual
identification of graph nodes based on human knowledge
is not scalable. Another approach is to use pivot words [6]
or heuristic rules [2], [4], [13], [15], [16]. However, these
methods are not generalizable since natural language is
noisy [17], e.g., different vulnerability descriptions can
include semantically but syntactically different expressions.
Node Identification by Entity Recognition. To address
the aforementioned challenges, we propose to use NER for
automatic attack graph node identification, which is a process
of identifying entities in input texts by classifying words and
phrases in vulnerability texts into the corresponding entities
(addressing C1). Unlike existing approaches that have very

���
�
���	���
���	�

�

��
�� ����������� �� �������� �� 	�����

���� ���� ���� ���� ���� ����

���
�����
����	���	���	�

Fig. 2: The Named Entity Recognition Model

limited scope and use weak models [18]–[20], e.g., only
focusing on home computers [19], we propose a generalizable
solution using generative language models. Specifically, as
shown in Figure 2, our model takes as input the vulnerability
descriptions and documents, which are tokenized into natural
language tokens. These tokens are then encoded by a trans-
former encoder. The encoder generates semantic embeddings
by mapping the input tokens into latent space. The transition-
based decoder maps the token embeddings into named entities
based on a finite-state transducer [21]. The model is expected
to identify security entities. In this paper, we define six
entities, including vulnerability type, affected product, root
cause, impact, attacker type, and attack vector. These entities
are selected because they are the required information by the
NVD CVE maintenance team and rigorously defined in the
official CVE template for all CVE descriptions that covers
the critical details for automated phrasing [22]. The design
choice of selecting these entities as model output makes
our model general to vulnerabilities because of the wide
adoption of the MITRE CVE template. We systematically
categorize the identified entities as attributes of attack nodes,
namely preconditions, postconditions, inputs, and outputs. In
this framework, we classify the affected product entity as a
precondition, the vulnerability type as a postcondition, and
the attacker type and root cause as inputs. Finally, the impact
and attack vector entities are categorized as outputs.

B. Attack Graph Edge Connection

The attack graph edge indicates that the exploit result
of one vulnerability can serve as the trigger for another
vulnerability. Building the edge connection requires the precise
reasoning of relationships between two nodes. Given the
identified conditions in natural language, a simple way to
build edges is to match the words of different graph nodes.
Yet, it may not always work since morphological words
(e.g., synonyms, abbreviations, and misspellings) are widely
used in vulnerability descriptions and texts. For instance, in
the case of web injection vulnerabilities, the abbreviation
“XSS” is frequently employed to refer to cross-site scripting.
To overcome such limitations, we propose to utilize word
embeddings to semantically build attack graph edges.
Word Embedding-based Edge Construction. In natural
languages, words in different contexts can carry different
meanings. For example, the word “band” has different mean-
ings under material and music context and corpus. In other
words, the word embeddings trained on one specific domain

11

Authorized licensed use limited to: Purdue University. Downloaded on March 13,2025 at 19:15:42 UTC from IEEE Xplore. Restrictions apply.

������
���� ������
����

����	��������

���������

������
�����
�������
�
�
��

Fig. 3: The Security Corpus Curation Framework.

� ��	��� ��
��� ��
������ ������

� ��	��� ��
��� ��
������ ������

���

	��������

������	�������
����

���	�������
��������

� ��	��� ��
��� ��
������ ������ ���
���������
�������

�����

	������
�

	��

����

Fig. 4: The Dataset Sampling and Training Samples.

cannot be directly used in other domains because there can
be semantic changes. Therefore, we argue that existing word
vectors (e.g., Glove and word2vec [23], [24]), which are pre-
trained on general English corpus (e.g., Wikipedia), cannot
precisely deliver word semantics in the security domain.

In order to obtain embeddings tailored for holistic security
assessment, we propose to train embedding models using
a corpus specifically focused on security (addressing C2).
This approach offers two distinct advantages: (1) The re-
sulting word embeddings will facilitate the accurate semantic
matching of attack nodes, allowing for precise identification
and classification. (2) By quantifying the matching outcomes
as similarity scores, we can assign weights to the attack
edges, enabling a more nuanced representation of each attack’s
severity or relevance. To obtain the similarity scores, we first
compute the semantic representations of attack node attributes
by averaging the vectors of all words in the ports. Next, we
calculate the node similarity by the cosine similarity function.

To train the word embeddings, we curate the representative
security corpus from vetted sources, e.g., NVD [11]. The
NVD database contains detailed vulnerability descriptions and
references of CVEs that have undergone thorough manual
assessment and processing. Moreover, there are also many
other online resources, such as MITRE ATT&CK knowl-
edge base [25], that collect comprehensive vulnerability in-
formation, such as CWEs, which we also consider in our
dataset curation process. We build a security corpus curation
framework as shown in Figure 3. The framework takes a
list of query seeds (e.g., CVEs and keywords) as input. The
output of the web crawler includes online web pages and
resources and the CVE feeds. Note that the CVE feeds contain
much useful information, such as CWEs, vulnerable products,
affected versions, CVSS scores, and reference links [26]. After
obtaining all the online resources and CVE feeds, we run the
doc parser to clean up these documents and extract useful
content, such as the CVE descriptions and vulnerability texts.

To preprocess our curated dataset, we first clean it by
removing punctuation. We do not follow the common natural
language processing practice of removing stop words, as some
of these words play a key role in the security context. For
example, removing the stop word “of” from the phrase “denial
of service” will break this popular attack phrase and change its

semantics. Next, we sample the processed security documents
into training samples using sliding windows as shown in
Figure 4. The training samples are sets of center words and
context words. For example, in the word set (a, remote,
denial), remote is the center word while a and denial
are the context words. This sampling method enables us to
learn the word semantics by modeling the context information.
For example, the word embedding model Continuous Bag-of-
Words (CBOW) [27] learns word semantics by optimizing the
probability likelihood estimation:

1

N

N∑

i=1

∑

−c≤j≤c,j #=0

log(p(wi | wi+j)) (1)

where N is the total number of words in the security docu-
ment, c is the sliding window size, and wi and wi+j are the
center word and context word.

C. Attack Graph Construction and Partition
The attack graph comprises three primary node types:

the attacker (source nodes), existing CVEs associated with
different network entities (intermediate nodes), and CWEs
serving as attacking targets (sink nodes). The construction
of edges connecting nodes and assigning corresponding edge
weights depend on the types of connected nodes and available
data. By default, an edge is established from the attacker
node to each CVE node, assuming the attacker can exploit
the CVE. This inclusivity aligns with GRAPHENE’s objective
to generate all conceivable scenarios under various adversarial
assumptions in the network. For example, if a CVE’s attack
vector necessitates physical access to the device, GRAPHENE
includes an analysis of such a scenario. Users can subsequently
filter the generated attack graphs based on their network’s
specific adversarial assumptions. The edge weights for these
edges are predominantly determined by CVSS base scores,
indicating the likelihood of a successful attacker exploit,
directly correlating with the severity of the threat posed by
exposure to such vulnerabilities.

For any given pair of CVE nodes, an edge is established
if the postcondition of one CVE node aligns (partially) with
the precondition of another CVE node, indicating the po-
tential for an attacker to exploit one vulnerability to access
the other—essentially forming a chain of vulnerabilities for
exploitation. Beyond relying on CVSS scores, the weights
assigned to these edges are contingent on the node matching
score of the two nodes, derived from the word-embedding-
based node matching. The node matching score gauges the
semantic similarity between the postcondition and precondi-
tion of the directed edge connecting two CVE nodes, offering
insights into the difficulty an attacker might face in reaching
the latter CVE by exploiting the former. Additionally, to mit-
igate graph complexity arising from marginally related CVE
nodes, the user can stipulate the construction of edges only
when the node matching score exceeds a specified threshold.
Consequently, the resulting attack graph comprises paths that
are more feasible for attackers, optimizing computational re-
sources by excluding less viable paths. Lastly, each CVE node

12

Authorized licensed use limited to: Purdue University. Downloaded on March 13,2025 at 19:15:42 UTC from IEEE Xplore. Restrictions apply.

is linked to CWE nodes, representing the system’s encountered
threats. In the CVSS database, each CVE is associated with
one or several corresponding CWEs, each instantiated as an
edge in the attack graph. Similar to other edge types, the CVSS
scores determine the edge weights, with the option to prune
edges by setting a weight threshold.
Attack Graph Partition. After obtaining the holistic security
posture, another potential need is to get an in-depth security
analysis by focusing on the specific layer or scope of the target
systems. To achieve this, we propose the attack graph partition
component to get subgraphs from the cumulative attack graph.

GRAPHENE follows two approaches to classify the iden-
tified vulnerabilities to the layers of interest. In the first
approach, it uses a predefined set of high-frequency keywords
that typically appear in the corresponding layer. For example,
in the network layer, the system uses keywords such as “TCP”,
“SSL”, and “certificate”. The second approach is based on
the MITRE’s CWE identifier appointed by the vulnerability
database. The reason for using both approaches is that, on the
one hand, only keyword matching may result in misclassified
vulnerabilities. On the other hand, relying merely on the CWEs
is not enough, as many vulnerabilities have not been appointed
to CWEs. Additionally, the Dashboard service (Section V) al-
lows an administrator to change the layer to which a particular
vulnerability has been assigned.

IV. RISK SCORING SYSTEM

Following the construction of attack graphs, a comprehen-
sive assessment of the security posture is conducted through a
risk-scoring system (addressing C3). This system receives the
attack graphs generated by Graph MS and produces analytics
on the security posture.

Within the graphs, each CVE node is linked to exploitability,
impact, and risk scores. These scores are derived according to
the CVSS standard [28] (v. 3.1). Recognizing that these scores
offer a limited, isolated perspective on vulnerability impact,
GRAPHENE enhances the computed scores based on CVSS
standards and integrates them for the risk assessment of attack
graphs, considering the criticality of affected resources. The
evaluation of security posture involves:
Computing graph exploitability, risk, and impact scores.
The first step is to compute the scores based on the attack
graphs.
Edge Exploitability Score (EES). Let eesi denote the EES of
the edge i. It is computed as follows:

eesi = eScore(source(i)) + c
∑̇

x∈in edges(source(i))
eesx

(2)
source(i) returns the source node of edge i while eScore()
returns the exploitability score as a function of the node
provided as an argument. in edges() returns all inbound edges
to the node provided as an argument, and c is a predefined
multiplication constant (c = 0.1 in the experiments). Hence,
the calculated EES for each edge is associated with the
exploitability score of the edge’s source node and the scores
of all preceding edges in all the paths that include the edge.

Edge Impact Score (EIS). Let eisi denote the EIS of edge i.
It is computed as follows:

eisi = iScore(sink(i)) + k ·
∑

x∈out edges(sink(i))

eisx (3)

sink(i) returns the sink node of edge i while iScore() returns
the impact score as a function of the node provided as an
argument. out edges() returns all the outbound edges from
the node provided as an argument, and k (k = 0.01 in the
experiments) is a predefined multiplication constant. Hence,
the computed EIS of each edge is associated with the impact
score of the edge’s sink node and the scores of all the
subsequent edges in all the paths that include the edge. In
simpler terms, the EIS score of an edge accumulates the impact
of all subgraphs starting with that edge.

The functions eScore() and iScore() in GRAPHENE are
intentionally user-defined to account for the varying impact of
CVEs across different deployment scenarios. For example, a
CVE affecting a device in critical infrastructure has a much
different impact than the same CVE in a publicly-facing
demilitarized zone. To address this variability, users can create
custom functions that factor in CVE scores and other relevant
parameters, providing a tailored evaluation of exploitability
and impact. If no custom functions are provided, GRAPHENE
defaults to using the CVSS exploitability and impact scores
for each CVE.
Edge Risk Score (ERS). Let ersi denote the ERS of edge i. It
is computed as ersi = weighti · (eesi+ eisi), where weighti
is the weight of edge i, and the values eesi and eisi are
computed as per the Equations 2 and 3, respectively. Hence,
the computed ERS of each edge is associated with the impact
and exploitability scores of the edge i.

Once the computation of the edge scores is completed, we
normalize them on a scale of 0 (low) to 10 (high). We apply
the normalization for each set of edge scores (i.e., EES, EIS,

ERS) as
10 · edge score

max set score
, where edge score is the original

edge score, and max set score is the maximum score in the
set.
Graph Scores. For each generated graph, GRAPHENE com-
putes the exploit, impact, and risk scores. Each score is
computed as the average of the EES, EIS, and ERS sets.
Identifying the shortest paths with respect to the attacker
goals. We define the shortest path towards the attacker’s goals
as the path in which the sum of the edge scores present
in the path is the highest. Given a graph, we first find the
maximum exploitability score of all the nodes in the graph.
We, then, define the weight of the edge i as edge weighti =
max exploit−eScore(source(i)), where max exploit is the
maximum exploitability score of all the nodes in the graph.
Thus, the higher the exploitability score of the source node of
an edge i, the lower the weight assigned to the edge. We then
add a temporary node to the graph where all the sink nodes
(i.e., the attacker goals) have an edge targeting it. This node
is called the “supersink” node. Finally, we run a weighted
shortest path algorithm from the attacker node to the sink

13

Authorized licensed use limited to: Purdue University. Downloaded on March 13,2025 at 19:15:42 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: GRAPHENE’s microservices (MS) decomposition.

node. The algorithm runs in polynomial time and finds the
paths with the least weight, thus the highly exploitable paths.
Identifying the high severity attack paths. To compute
all the paths from the attacker node to the attacker’s goals,
GRAPHENE searches for all the possible paths up to a certain
number of edges; this is the cutoff limit for path explo-
rations. For each computed path, it computes the exploitability,
impact, and risk score of every path, which is essentially
the total sum of EES, EIS, and ERS of the edges in the
path. Then GRAPHENE sorts the paths in descending order of
risk, exploitability, and impact. GRAPHENE allows the system
administrator to change how sorting is performed through the
dashboard interface.
Identifying the key vulnerabilities that require immediate
patching. To find those vulnerabilities in the attack graph, we
measure the degree of every intermediate node (i.e., any node
other than the source or sinks) in the graph. The degree of the
node is defined as the number of edges that are incident to the
node. A node with a high degree essentially means that the
node is present in several attack paths. Thus, eliminating (i.e.,
patching) such nodes may render several attacks impractical.
Identifying the minimum set of vulnerabilities that cover
all the attack paths. We apply a minimum set of vertex
cover on the constructed attack graph to identify the minimum
set of vulnerabilities that cover all the edges in the graph.
As vertex cover is an NP-hard problem, we use a local-
ratio approximation algorithm to find the minimum set vertex
cover [29]. Thus, GRAPHENE identifies the minimum set of
vulnerabilities that could render the attack paths impractical
once mitigated.

V. IMPLEMENTATION

GRAPHENE is comprised of five microservices (MS)
(see Figure 5). Steps 1 and 2 are implemented by the
Machine Learning MS, step 3 by Graph MS and step 4
by the Risk Scoring MS. Those services are implemented
with 987 lines of Python code. We build the named
entity recognition and word embedding models based on
spaCy [30], Gensim [31], and Scikit-learn [32]. For the risk
scoring system, we use the NetworkX [33] library for graph
construction, graph traversal, and risk score computation.

The Dashboard MS orchestrates the GRAPHENE pipeline.
It has been implemented using Flask [34] and Dash [35]
libraries. The dashboard provides an interface allowing the
user (e.g., security officers and network admins) to import
details about the network infrastructure, such as the commu-

TABLE I: Overall Results of Our NER Model and Baselines
Baselines

Performance en core web sm en core web lg Our Model

Precision 95.88 95.2 98.75
Recall 96.07 96.65 98.55
F1 Score 95.97 95.92 98.65

nicating entities and device details. Once the posture analysis
is completed, the dashboard presents the generated graphs and
the results of the risk analysis. For instance, Figure 6 shows
a multi-layer attack graph generated, where the initial CVE
node is categorized within the ML layer, while the subsequent
CVE node is categorized within the domain of hardware and
systems. The Database MS stores all the constructed graphs
and their analysis in a Neo4j graph database [36].

Attacker

CVE-2020-15211
Base score: 4.8
Exploit score: 2.2
Impact score: 2.5
Layer: ML
Device/Library: Tensorflow
Description: [...]
Precondition: In TensorFlow Lite [...] flatbuffer format
Postcondition: writing and reading from outside
[...] 2.2.1, or 2.3.1.

CVE-2018-1000026
Base score: 7.7
Exploit score: 3.1
Impact score: 4
Layer: HW&SYS
Device/Library: Linux kernel
Description: [...]
Precondition: Linux kernel version [...] card.
Postcondition: Insufficient input validation

Improper
Input

Validation

90%
similarity

Fig. 6: An example of a generated multi-layer attack graph.

VI. EVALUATION

In this section, we first evaluate the effectiveness of our
NER-based model for processing CVE disclosures, followed
by an evaluation of our word embedding technique used
for attack graph construction. We then present a case study
reasoning about the output of GRAPHENE. Our evaluations
aim to answer the following research questions:
RQ1: How effective is the named entity recognition model for
attack graph nodes?
RQ2: Can the proposed word embedding method semantically
match the attack graph nodes?

We deploy GRAPHENE on a Google Cloud virtual machine
with an Intel Broadwell CPU, 4 GB memory, 110 GB storage,
the Ubuntu 20.04 operating system, and an NVIDIA Tesla
P100 graphics card.

A. RQ1: Effectiveness of Named Entity Recognition Model

To answer RQ1, we evaluate our named entity recognition
(NER) model by comparing it with baseline models on a large
vulnerability NER dataset.
Dataset. Our dataset is adapted from PMA [37], which con-
tains descriptions of 52,532 CVEs, 245,573 labeled entities,
and 1,828,597 words. The entities have been annotated and
classified into six categories, which are vulnerability type,
affected products, root cause, impact, attacker type, and attack
vector. It is worth noting that these entities are in line with the
vulnerability definitions of the official CVE template [22]. We
split the dataset into training, validation, and test sets based
on the 8:1:1 split ratio.
Baselines and Evaluation Metrics. Although our NER model
encoder is constructed on a transformer encoder, we showcase
its superior adaptability by building baseline NER models
using alternative encoders. Specifically, as our NER model

14

Authorized licensed use limited to: Purdue University. Downloaded on March 13,2025 at 19:15:42 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Performance on Individual Entities
Entity Precision Recall F1 Score

Attacker Type 97.55 98.08 97.81
Impact 99.59 99.59 99.59
Attack Vector 98.48 97.6 98.04
Root Cause 98.68 99.02 98.85
Vulnerability Type 99.03 98.35 98.69
Affected product 98.21 98.36 98.28

is developed atop spaCy [30], we develop baselines uti-
lizing spaCy’s en_core_web_sm and en_core_web_lg
encoders [30]. Here, the baselines are chosen because our
focus is on comparing the base models, eliminating the differ-
ences introduced by the frameworks. We train, fine-tune, and
evaluate our NER model and baselines on the same training1,
validation, and test datasets. We evaluate our NER model and
baselines with macro metrics, i.e., precision, recall, and F1
score [38].
Evaluation Performance. Table I presents the overall per-
formance of the compared models across all the vulnerability
entities. The results show the superior performance of our NER
model compared to baselines. Moreover, we also evaluate our
NER model on individual vulnerability entities. Table II shows
the detailed performance, i.e., precision, recall, and F1 score,
of our NER model on the individual vulnerability entities.
Among the entities, our NER model performs the best on the
“impact” entity but the worst on the “attacker type” entity
(see [39]) To understand the performance differences between
these two entities, we conducted a manual investigation on
our test samples and discovered that vulnerability descriptions
often provide more explicit information about the impact rather
than the attacker types. As an illustration, the NVD description
of CVE-2017-11341 does not mention the attacker type in its
description.

B. RQ2: Effectiveness of Our Word Embedding Method

To address RQ2, we perform evaluations on our word
embedding methods for semantically matching attack graph
nodes.
Word Embedding Dataset and Training. Based on the
dataset curation framework presented in Figure 3, we are able
to obtain 62,544 pre-processed security documents to train
our word embedding models, which are stored in the SQLite
database. The dataset sampling approach (§III-B) results in
6,335,336 word embedding training samples in total. To model
the word semantics in the security context, we choose to
train the Continuous Bag-of-Words (CBOW) and Skip-Gram
models based on the SentencePiece framework [40]. We train
the models to optimal performance by monitoring the loss
curve which showed a convergence trend.
Evaluation. To evaluate word embedding, the common prac-
tice is using public synonyms datasets, e.g., WS-353 and
MTurk-287 [41]. However, to the best of our knowledge, there
is no such open dataset in the security context. Additionally,
constructing such a dataset with ground truth requires huge
human effort and domain-specific expertise, e.g., linguistic

1The number of training steps is set to 2000, with which our NER model
and baselines exhibited loss convergence.

-4 -2 0 2 4
2

3

4

5
sensitive information

does not properly handle
improperly processes

low privilege user
user with privilege

A privileged user/process

sensitive data

cross site scripting flaw
XSS vulnerability

Fig. 7: t-SNE Evaluation of Generated Embeddings. The
distance between phrases shows their semantic similarity.

^ĞƌǀĞƌ�ǁŝƚŚ�'WhƐ

EĞƚ�^ǁŝƚĐŚ�ĂŶĚ�ZŽƵƚĞƌ

�ŶĚ��ĞǀŝĐĞƐ

Fig. 8: Test System for GRAPHENE

and security knowledge. Therefore, we opt to visualize word
embeddings by using the t-distributed stochastic neighbor
embedding (t-SNE) [42] to evaluate the performance of our
word embedding models; t-SNE is an algorithm used for
data visualization by reducing high-dimensional data to two
or three dimensions [42]. It does so by preserving the local
structure of the data and creating a low-dimensional map
where similar data points are grouped together. We apply
t-SNE to our word embedding models by visualizing the
semantic similarity between attack circuit ports, e.g., the input
of one attack graph node and the output of another attack
graph node. Figure 7 presents an example where the distance
of dots representing phrases corresponds to their semantic
similarity. In Figure 7, we present the embeddings of the
randomly selected phrases identified by our NER models. Note
that while we could show embeddings of all phrases, we opt
not to do this for clearer visualization. This figure shows
that similar semantic phrases are clustered together, such as
“cross site scripting flaw” and “XSS vulnerability”. The results
show that our word embedding models can capture the word
semantics well in the security context. Additionally, in [39],
we present the computed word embedding scores of each
CVE’s postconditions against the preconditions of all other
CVE samples.

C. Case Study

To evaluate GRAPHENE on capturing the holistic security
posture of computer systems, we test it on the infrastructure
shown in Figure 8. The test system includes three major
components: (1) Jetson Nano device as the server with GPUs,
(2) TP-link devices as network switch and router, and (3)
Raspberry Pi boards as end devices. Moreover, we have also
adopted the common communication library, OpenSSL, as the
software for securing network traffic.

15

Authorized licensed use limited to: Purdue University. Downloaded on March 13,2025 at 19:15:42 UTC from IEEE Xplore. Restrictions apply.

Base Score Impact Score Exploit Score

2

4

6

8

10

Sc
or

e

(a) Vulnerability Scores

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ed
ge

 W
ei

gh
t

(b) Edge Weights
Fig. 9: Distributions of Vulnerability Scores and Attack Graph
Edge Weights

To assess the security of the test system, we follow the
workflow shown in Figure 5. That is, we first curate all 18K
CVEs (till June 2022) from the NVD CVE database. We then
identify CVEs related to the devices, software and libraries
used in Figure 8 by matching the product names in CVE
entries. After manually confirming the CVEs, we identified
99 CVEs vulnerability descriptions and reports for the test
system, including 4 CVEs for Raspberry Pi, 8 CVEs for Jetson
Nano, 35 CVEs for TP-link, and 52 CVEs for OpenSSL.

Next, we collect CVE metadata from the NVD database,
i.e., CVE descriptions and vulnerability scores. CVE descrip-
tions carry enriched security information. The mean, median,
minimal, and maximum number of words in the descriptions
are 48.5, 45, 9, and 131, respectively. Moreover, the most
frequent bigram and trigram are “remote attackers” and “denial
of service”, which appear in the descriptions 38 and 34 times,
showing the popular types of attackers and attacks. For risk
assessment, Figure 9a presents the distribution of CVE base
scores, impact scores, and exploit scores. From this figure,
we observe that (1) CVSS base scores show a pretty high
risk associated with the CVEs; (2) compared to base scores,
the impact scores are in a narrow range; (3) the high impact
scores reflect the high likelihood or probability that CVEs will
be actively exploited in real-world attacks.
Attack Graph Construction. To identify attack graph nodes
and build attack graph edges, we run REST APIs of the named
entity recognition (NER) and word embedding models. The
average inference time of the NER and word embedding mod-
els are 0.023 and 0.0017 seconds for each input, respectively.
Afterward, we convert the identified entities into the input,
output, precondition, and postcondition for each attack graph
node. To build the edges, we calculate the Cosine similar
score between attack graph nodes based on the embeddings
generated by the word embedding models, which serve as the
edge weights. Figure 9b presents the distribution of attack
graph edge weights. The distribution shows that the majority
of attack graph nodes are with high connectivity, i.e., the
average edge weight is 0.683. In our experiments, we applied
a threshold of 0.8 for the similarity score. In practical terms,
if CVE A has a similarity score lower than 0.8 with CVE
B, there is no edge connecting them in the resulting attack
graphs. Our resulting cumulative attack graph contains 100
graph nodes, including one attacker node, 80 CVE nodes, and
19 target (CWE) nodes.
Risk Scoring. Table III shows some numerical results and
performance measures for the scenario in Figure 8. We provide
the results for the cumulative attack graph as well as the

TABLE III: Risk scores for the Architecture of Figure 8
Layer Commulative Network System & HW ML Crypto
Exploit score (/10) 2.89 3.57 3.068 5.74 2.94
Impact score (/10) 3.07 3.18 3.8322 5.82 4.277
Risk score (/10) 2.31 2.72 3.9583 5.41 2.61
Total nodes 100 27 30 30 22
Number of attack paths 27297 137 53 6289 20
Shortest attack paths 5 3 4 3 2
Vertex cover size 50 19 15 21 3
Score computation time
(seconds) 0.0198 0.0018 0.0014 0.0051 0.00098

Risk analysis time
(seconds) 1.1874 0.0053 0.0021 0.2538 0.00097

layered attack graphs. As mentioned in Section IV, the exploit,
impact, and risk scores are within the [0-10] range. The score
computation time (expressed in seconds) includes the time
needed to traverse the generated attack graphs from the graph
service and compute the graph exploitability, risk, and impact
scores. The risk analysis time (expressed in seconds) is the
time needed by the risk scoring system operations, that is,
(1) identifying the shortest attack paths and the high-severity
paths, (2) identifying key vulnerabilities, and (3) identifying
the minimum set of vulnerabilities that cover all the attack
paths.

In the cumulative attack graph, GRAPHENE has identified
CVE-2020-5215, CVE-2020-15206, and CVE-2021-29540 as
the top three critical vulnerabilities associated with the in-
stallation of two vulnerable Tensorflow versions (2.4.2 and
1.15.2, respectively) on servers equipped with GPUs. These
vulnerabilities are part of the computed vertex cover, indicat-
ing their presence in the set of vulnerabilities encompassing all
attack paths. Ultimately, GRAPHENE identified the five shortest
attack paths within the cumulative attack graph, each having
one CVE node with an exploitability score of 10, denoting the
highest possible score. These CVE nodes are specifically CVE-
2010-3173 (Mozilla Firefox on end devices), CVE-2011-0392
(Cisco TelePresence Recording Server on the server), CVE-
2012-6531 (Zend Framework on end devices), CVE-2012-
0884 (OpenSSL in all devices and the server), and CVE-2015-
0763 (Cisco Unified MeetingPlace on end devices). Notably,
analogous observations hold true for the other layers.

VII. DISCUSSION

A key concern with attack graphs generated by our method-
ology is the potential for inaccuracies, which can impact
specific use cases differently. Here, we discuss the effects of
these inaccuracies in the context of posture analysis.

Inaccuracies may lead to (1) generating false paths—paths
that are not feasible—and (2) missing feasible paths.
False paths. False paths represent connections between attack
nodes that are not feasible in practice. For instance, a multi-
step attack requiring phishing, privilege escalation, and lateral
movement would be impossible if any intermediate step fails.
Despite their infeasibility, these paths remain valuable in
GRAPHENE’s role as a posture analysis tool, offering insights
into potential vulnerabilities and even unlikely attack scenar-
ios. Rather than being flaws, false paths can help refine defense
strategies and strengthen security.
Missing paths. Missing paths refer to potential connections
between nodes that are absent from GRAPHENE’s output, af-
fecting the attack graph’s completeness. Although GRAPHENE

16

Authorized licensed use limited to: Purdue University. Downloaded on March 13,2025 at 19:15:42 UTC from IEEE Xplore. Restrictions apply.

scans all known vulnerabilities to ensure a comprehensive
node-set, it may not generate all possible edges. This could
be due to (1) the model failing to infer connections based on
pre- and postconditions or (2) insufficient detail in CVE de-
scriptions to establish links. For (1), retraining the model with
updated datasets could improve performance, and GRAPHENE
allows users to adjust pre- and postconditions to correct
errors. For (2), users can identify CVEs with weak or missing
correlations through the dashboard and provide additional
contextual data, prompting the system to re-process the CVE
and potentially generate the missing paths.

The above strategies can be combined with frameworks for
automatically assessing the feasibility of attack graphs gener-
ated by GRAPHENE or similar systems. One such framework
that we envision generates executable attack scripts from the
attack graphs using ML applied to publicly available data, such
as code snippets and function names. The scripts can then be
run in simulated environments, such as Caldera [43], to assess
their feasibility.

VIII. RELATED WORK

Attack graph construction. Prior approaches mainly focus
on extracting attack information [2], [13], [18], [44]–[49].
They can be categorized as rule-based and learning-based
methods. In rule-based methods [2], [13], [45], [46], all rules
are manually defined, limiting their scalability. Learning-based
methods use traditional machine learning algorithms [18],
[47], such as support vector machines, and deep learning
models [48], [49]. However, such learning-based methods
are usually trained on fuzzy or domain-specific features and
thus fail to learn the general vulnerability semantics in the
security context. For example, such previous approaches use
pre-trained word vectors trained on general English datasets.
Therefore they are less accurate in the security domain due to
the presence of specific terminology and linguistic semantics.
NER and Word Embedding for Security Applications.
The application of NER to the descriptions and analysis of
vulnerabilities is not new, and previous works have analyzed
vulnerabilities from different aspects with domain-specific
NER [18]–[20]. Unfortunately, such approaches have limited
scope or use weak machine learning models resulting in
a suboptimal performance [50]. Word embedding generates
distributed representations of natural language words for effi-
cient computations [27], [51]. Like its applications in natural
language processing, there are approaches adopting it for
security applications [52]. For example, Shen et al. [52]
model the cyberattack steps by temporal word embedding.
Srivastava et al. [53] propose enhancing security NLP models
by word embeddings. Unlike existing works, we focus on
contextualizing the vulnerability-specific word embeddings by
training models on massive vulnerability reports, i.e., CVE
descriptions.
Risk Scoring. Li et al. [54] proposed a cost/benefit analysis for
attack graphs, requiring manual input of cost and benefit values
for each node. Lu et al. [7] used graph neural networks and
Google’s PageRank algorithm to rank the importance of attack
graph steps. In contrast, GRAPHENE extends the CVSS scoring

system, aligning with the CVE assigner’s assessment. Idika
et al. [8] focused on attack graph-based metrics, analyzing
shortest paths and attack paths without considering severity.
Probabilistic approaches, like Liu et al.’s [9] Bayesian network
model, require users to assign exploitability probabilities to
each CVE, which can lead to inaccuracies and overlook the
impact on critical network resources.

IX. CONCLUSION

In this paper, we propose GRAPHENE, a novel automated
security posture analyzer to generate attack graphs. Using
machine learning, natural language processing, and systematic
vulnerability analysis, GRAPHENE offers a comprehensive
security solution that can extract semantic meanings from
disclosed vulnerabilities, perform layered classification, and
create comprehensive attack graphs for holistic security ana-
lytics. The multi-layered approach to security posture analysis
provided by GRAPHENE has the potential for a more nu-
anced understanding of a network’s security posture, allowing
vulnerabilities of different natures and their interrelations to
be addressed by subject matter experts. Furthermore, the
proposed scoring methods provide a more tailored and rele-
vant security assessment for the infrastructure under analysis,
thereby enhancing the practical value of the analytics.

ACKNOWLEDGMENTS

The work reported in this paper has been supported by NSF
under grant 2229876 and by Cisco Research.

REFERENCES

[1] X. Jin, C. Katsis, F. Sang, J. Sun, A. Kundu, and R. Kompella, “Edge
security: Challenges and issues,” arXiv preprint arXiv:2206.07164,
2022.

[2] M. U. Aksu, K. Bicakci, M. H. Dilek, A. M. Ozbayoglu, and E. ı. Tatli,
“Automated generation of attack graphs using nvd,” in Proceedings of the
Eighth ACM Conference on Data and Application Security and Privacy,
2018, pp. 135–142.

[3] B. Bezawada, I. Ray, and K. Tiwary, “Agbuilder: an ai tool for
automated attack graph building, analysis, and refinement,” in Data
and Applications Security and Privacy XXXIII: 33rd Annual IFIP WG
11.3 Conference, DBSec 2019, Charleston, SC, USA, July 15–17, 2019,
Proceedings 33. Springer, 2019, pp. 23–42.

[4] A. Ibrahim, S. Bozhinoski, and A. Pretschner, “Attack graph generation
for microservice architecture,” in Proceedings of the 34th ACM/SIGAPP
symposium on applied computing, 2019, pp. 1235–1242.

[5] Z. Fang, H. Fu, T. Gu, P. Hu, J. Song, T. Jaeger, and P. Mohapatra,
“Iota: A framework for analyzing system-level security of iots,” in
2022 IEEE/ACM Seventh International Conference on Internet-of-Things
Design and Implementation (IoTDI). IEEE, 2022, pp. 143–155.

[6] M. Urbanska, I. Ray, A. E. Howe, and M. Roberts, “Structuring
a vulnerability description for comprehensive single system security
analysis,” Rocky Mountain Celebration of Women in Computing, Fort
Collins, CO, USA, 2012.

[7] L. Lu, R. Safavi-Naini, M. Hagenbuchner, W. Susilo, J. Horton, S. L.
Yong, and A. C. Tsoi, “Ranking attack graphs with graph neural
networks,” in Information Security Practice and Experience: 5th In-
ternational Conference, ISPEC 2009 Xi’an, China, April 13-15, 2009
Proceedings 5. Springer, 2009, pp. 345–359.

[8] N. Idika and B. Bhargava, “Extending attack graph-based security
metrics and aggregating their application,” IEEE Transactions on de-
pendable and secure computing, vol. 9, no. 1, pp. 75–85, 2010.

[9] Y. Liu and H. Man, “Network vulnerability assessment using bayesian
networks,” in Data mining, intrusion detection, information assurance,
and data networks security 2005, vol. 5812. SPIE, 2005, pp. 61–71.

17

Authorized licensed use limited to: Purdue University. Downloaded on March 13,2025 at 19:15:42 UTC from IEEE Xplore. Restrictions apply.

[10] S. Abraham and S. Nair, “Cyber security analytics: a stochastic model
for security quantification using absorbing markov chains,” Journal of
Communications, vol. 9, no. 12, pp. 899–907, 2014.

[11] (2024) National vulnerability database. [Online]. Available: https:
//nvd.nist.gov/

[12] Y. Li and T. Yang, “Word embedding for understanding natural language:
a survey,” in Guide to big data applications. Springer, 2018, pp. 83–
104.

[13] J. Payne, K. Budhraja, and A. Kundu, “How secure is your iot network?”
in 2019 IEEE International Congress on Internet of Things (ICIOT).
IEEE, 2019, pp. 181–188.

[14] Y. Jin, J. Lim, I. Yun, and T. Kim, “Compromising the macOS kernel
through Safari by chaining six vulnerabilities,” in Black Hat USA
Briefings (Black Hat USA), Las Vegas, NV, Aug. 2020.

[15] X. Feng, X. Liao, X. Wang, H. Wang, Q. Li, K. Yang, H. Zhu, and
L. Sun, “Understanding and securing device vulnerabilities through
automated bug report analysis,” in SEC’19: Proceedings of the 28th
USENIX Conference on Security Symposium, 2019.

[16] R. A. Bridges, C. L. Jones, M. D. Iannacone, K. M. Testa, and J. R.
Goodall, “Automatic labeling for entity extraction in cyber security,”
arXiv preprint arXiv:1308.4941, 2013.

[17] X. Jin, K. Pei, J. Y. Won, and Z. Lin, “Symlm: Predicting function
names in stripped binaries via context-sensitive execution-aware code
embeddings,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, 2022, pp. 1631–1645.

[18] S. Weerawardhana, S. Mukherjee, I. Ray, and A. Howe, “Automated
extraction of vulnerability information for home computer security,”
in International Symposium on Foundations and Practice of Security.
Springer, 2014, pp. 356–366.

[19] H. Binyamini, R. Bitton, M. Inokuchi, T. Yagyu, Y. Elovici, and
A. Shabtai, “A framework for modeling cyber attack techniques from
security vulnerability descriptions,” in Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, 2021,
pp. 2574–2583.

[20] X. Jin, S. Manandhar, K. Kafle, Z. Lin, and A. Nadkarni, “Understanding
iot security from a market-scale perspective,” in Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security,
2022, pp. 1615–1629.

[21] M. Kuhlmann, C. Gómez-Rodrı́guez, and G. Satta, “Dynamic program-
ming algorithms for transition-based dependency parsers,” in Proceed-
ings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, 2011, pp. 673–682.

[22] (2022) Key details phrasing. [Online]. Available: https://cveproject.
github.io/docs/content/key-details-phrasing.pdf

[23] M. Naili, A. H. Chaibi, and H. H. B. Ghezala, “Comparative study of
word embedding methods in topic segmentation,” Procedia computer
science, vol. 112, pp. 340–349, 2017.

[24] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[25] B. E. Strom, A. Applebaum, D. P. Miller, K. C. Nickels, A. G.
Pennington, and C. B. Thomas, “Mitre att&ck: Design and philosophy,”
in Technical report. The MITRE Corporation, 2018.

[26] J. Fan, Y. Li, S. Wang, and T. N. Nguyen, “Ac/c++ code vulnerability
dataset with code changes and cve summaries,” in Proceedings of the
17th International Conference on Mining Software Repositories, 2020,
pp. 508–512.

[27] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[28] FIRST.Org. Common vulnerability scoring system v3.1: Specifi-
cation document. [Online]. Available: https://www.first.org/cvss/v3.1/
specification-document

[29] R. Bar-Yehuda and S. Even, “A local-ratio theorem for approximating
the weighted vertex cover problem,” Annals of Discrete Mathematics,
vol. 25, no. 27-46, p. 50, 1985.

[30] M. Honnibal, I. Montani, S. Van Landeghem, A. Boyd et al., “spacy:
Industrial-strength natural language processing in python,” 2020.

[31] R. Rehurek and P. Sojka, “Gensim–python framework for vector space
modelling,” NLP Centre, Faculty of Informatics, Masaryk University,
Brno, Czech Republic, vol. 3, no. 2, 2011.

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,

“Scikit-learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825–2830, 2011.

[33] A. Hagberg, P. Swart, and D. S Chult, “Exploring network struc-
ture, dynamics, and function using networkx,” Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

[34] Flask documentation. [Online]. Available: https://flask.palletsprojects.
com/en/3.0.x/

[35] Dash documentation. [Online]. Available: https://dash.plotly.com/
[36] J. J. Miller, “Graph database applications and concepts with neo4j,”

in Proceedings of the southern association for information systems
conference, Atlanta, GA, USA, vol. 2324, no. 36, 2013.

[37] H. Guo, S. Chen, Z. Xing, X. Li, Y. Bai, and J. Sun, “Detecting and
augmenting missing key aspects in vulnerability descriptions,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 31, no. 3, pp. 1–27, 2022.

[38] P. Liu, Y. Guo, F. Wang, and G. Li, “Chinese named entity recognition:
The state of the art,” Neurocomputing, vol. 473, pp. 37–53, 2022.

[39] Graphene. [Online]. Available: https://github.com/graphene-security/
graphene-sample-data

[40] T. Kudo and J. Richardson, “Sentencepiece: A simple and language inde-
pendent subword tokenizer and detokenizer for neural text processing,”
arXiv preprint arXiv:1808.06226, 2018.

[41] B. Wang, A. Wang, F. Chen, Y. Wang, and C.-C. J. Kuo, “Evaluating
word embedding models: Methods and experimental results,” APSIPA
transactions on signal and information processing, vol. 8, p. e19, 2019.

[42] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of machine learning research, vol. 9, no. 11, 2008.

[43] MITRE. Caldera. [Online]. Available: https://caldera.mitre.org/
[44] L. P. Swiler, C. Phillips, and T. Gaylor, “A graph-based network-

vulnerability analysis system,” Sandia National Lab.(SNL-NM), Albu-
querque, NM (United States), Tech. Rep., 1998.

[45] M. Inokuchi, Y. Ohta, S. Kinoshita, T. Yagyu, O. Stan, R. Bitton,
Y. Elovici, and A. Shabtai, “Design procedure of knowledge base for
practical attack graph generation,” in Proceedings of the 2019 ACM
Asia Conference on Computer and Communications Security, 2019, pp.
594–601.

[46] S. Weerawardhana, S. Mukherjee, I. Ray, and A. Howe, “Automated
extraction of vulnerability information for home computer security,” in
Foundations and Practice of Security: 7th International Symposium, FPS
2014, Montreal, QC, Canada, November 3-5, 2014. Revised Selected
Papers 7. Springer, 2015, pp. 356–366.

[47] C. L. Jones, R. A. Bridges, K. M. Huffer, and J. R. Goodall, “Towards
a relation extraction framework for cyber-security concepts,” in Pro-
ceedings of the 10th Annual Cyber and Information Security Research
Conference, 2015, pp. 1–4.

[48] T. Li, Y. Guo, and A. Ju, “A self-attention-based approach for named
entity recognition in cybersecurity,” in 2019 15th International Confer-
ence on Computational Intelligence and Security (CIS). IEEE, 2019,
pp. 147–150.

[49] K. Simran, S. Sriram, R. Vinayakumar, and K. Soman, “Deep learning
approach for intelligent named entity recognition of cyber security,” in
Advances in Signal Processing and Intelligent Recognition Systems: 5th
International Symposium, SIRS 2019, Trivandrum, India, December 18–
21, 2019, Revised Selected Papers 5. Springer, 2020, pp. 163–172.

[50] Y. Yao, J. Duan, K. Xu, Y. Cai, E. Sun, and Y. Zhang, “A survey on
large language model (llm) security and privacy: The good, the bad, and
the ugly,” arXiv preprint arXiv:2312.02003, 2023.

[51] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” Advances in neural information processing systems, vol. 26,
2013.

[52] Y. Shen and G. Stringhini, “{ATTACK2VEC}: Leveraging temporal
word embeddings to understand the evolution of cyberattacks,” in 28th
USENIX Security Symposium (USENIX Security 19), 2019, pp. 905–921.

[53] S. Srivastava, B. Paul, and D. Gupta, “Study of word embeddings for
enhanced cyber security named entity recognition,” Procedia Computer
Science, vol. 218, pp. 449–460, 2023.

[54] W. Li and R. B. Vaughn, “Cluster security research involving the
modeling of network exploitations using exploitation graphs,” in Sixth
IEEE International Symposium on Cluster Computing and the Grid
(CCGRID’06), vol. 2. IEEE, 2006, pp. 26–26.

18

Authorized licensed use limited to: Purdue University. Downloaded on March 13,2025 at 19:15:42 UTC from IEEE Xplore. Restrictions apply.

