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Abstract

Existing continual learning (CL) methods mainly
rely on fine-tuning or adapting large language mod-
els (LLMs). They still suffer from catastrophic for-
getting (CF). Little work has been done to exploit
in-context learning (ICL) to leverage the extensive
knowledge within LLMs for CL without updating
any parameters. However, incrementally learning
each new task in ICL necessitates adding training
examples from each class of the task to the prompt,
which hampers scalability as the prompt length in-
creases. This issue not only leads to excessively
long prompts that exceed the input token limit of
the underlying LLM but also degrades the model’s
performance due to the overextended context. To
address this, we introduce InCA, a novel approach
that integrates an external continual learner (ECL)
with ICL to enable scalable CL without CF. The
ECL is built incrementally to pre-select a small
subset of likely classes for each test instance. By
restricting the ICL prompt to only these selected
classes, InCA prevents prompt lengths from becom-
ing excessively long, while maintaining high per-
formance. Experimental results demonstrate that
InCA significantly outperforms existing CL base-
lines, achieving substantial performance gains.'

1 Introduction

Continual learning (CL) aims to enable models to
learn a sequence of tasks incrementally (Chen and
Liu, 2018; De Lange et al., 2021). CL is typi-
cally categorized into three main settings: fask-
incremental learning, class-incremental learning
(CIL), and domain-incremental learning (Van de
Ven and Tolias, 2019). In this paper, we focus on the
CIL setting (Rebuffi et al., 2017), where each task
has a set of distinctive classes, and a single model
is developed to handle all tasks and classes. At
test time, no task information is provided for each
test instance. This differs from task-incremental
learning, which provides the task-id for each test
instance, making classification much easier. CIL re-
quires a unified model that can distinguish all classes

"Published as a conference paper at COLING 2025.

seen thus far. In domain-incremental learning, all
tasks have the same classes but are from different
domains.

There are two key challenges in CIL. (1) Catas-
trophic forgetting (CF), which refers to the perfor-
mance deterioration of earlier tasks due to parameter
updates in learning new tasks (McCloskey and Co-
hen, 1989). (2) Inter-task class separation (ICS),
which refers to the phenomenon that without access-
ing the previous task data, the learning of a new
task has difficulty in establishing decision bound-
aries between the new and old classes (Kim et al.,
2023). Although the CL. community has studied
CF extensively, the challenge of ICS has only been
identified recently in (Kim et al., 2022). Both chal-
lenges disappear in in-context CIL with LLMs. A
simple method to apply in-context learning to CIL
is to incrementally add few-shot training examples
for each new class to the in-context prompt. This
prompt includes examples from all classes encoun-
tered so far along with instructions for classification.
Since the LLM parameters remain unchanged, CF
is inherently avoided, and ICS is addressed by en-
compassing all classes and their examples within the
same prompt.

Unfortunately, this approach is not scalable for
CIL because the prompt length rapidly increases
with each new task or class added, quickly exceed-
ing the token limits of LLMs. Although summariz-
ing the training examples can increase the number
of classes that can be learned (i.e., included in the
prompt), the underlying scalability problem persists.
Moreover, including excessive and often irrelevant
information from various classes leads to significant
performance degradation (see Section 6). Even with
the recently introduced long-context LLMs (Chen
et al., 2024; Reid et al., 2024), our experiments
demonstrate that the performance degradation per-
sists despite the increased token capacity.

In this paper, we introduce InCA (In-context
Continual Learning Assisted by an External Con-
tinual Learner), a novel method that overcomes the



scalability and performance limitations of in-context
CIL while retaining the advantages of in-context
learning — specifically, avoiding CF and ICS prob-
lems. InCA leverages an external continual learner
(ECL) that both benefits from and enhances the
LLM’s in-context learning capabilities. The ECL
aims to reduce the number of candidate classes to
a small set of k classes that are most likely to in-
clude the correct class. For each input instance,
we first prompt the LLM to generate a list of fags—
descriptive topics or keywords that capture the es-
sential semantics of the input text (see Figure 1 for
an illustrative example). Each class in the dataset
is represented by a Gaussian distribution over the
embeddings of these tags, characterized by a mean
vector and a shared covariance matrix. The ECL
then computes the Mahalanobis distance (De Maess-
chalck et al., 2000) between the input’s tag embed-
dings and each class distribution to identify the top
k most similar classes. These selected classes are
then used to construct an in-context learning prompt,
efficiently managing the token limit while removing
irrelevant information.”

Unlike traditional CL methods, our ECL requires
no additional training — it only incrementally ac-
cumulates and updates class means and a shared
covariance matrix derived from the embeddings of
the tags generated by the LLM. This approach inher-
ently avoids CF. Moreover, representing each class
with a Gaussian distribution addresses the ICS prob-
lem, as different classes are naturally distinguished
by their statistical distributions. While the ECL
alone (e.g., performing top-1 classification based
on Mahalanobis distance) can be applied to CIL, its
standalone accuracy is limited. However, when inte-
grated with the LLM’s in-context learning, InCA sig-
nificantly improves performance, as demonstrated in
our experiments (see Section 6). This approach ef-
fectively balances scalability and accuracy, making
in-context CIL feasible and efficient.

To summarize, our contributions are as follows:

1. We introduce the novel paradigm of in-context
CIL, which, to the best of our knowledge, has
not been previously studied.

2. We propose InCA, a new method that addresses
token limit constraints and performance degra-
dation caused by overextended context in in-
context CIL.

2Qur experiments demonstrate that the ECL achieves high
top-k recall, ensuring that the correct class is almost always

included in the top k classes to be used in the final in-context
learning prompt.

3. Our method surpasses existing state-of-the-art
CIL baselines, achieving significant perfor-
mance improvements across different bench-
mark datasets.

2 Related Works

There is a large body of literature on continual learn-
ing. The main focus is on dealing with CF. Existing
techniques can be broadly classified into a few cate-
gories. (1) Regularization, which uses a regularizer
to ensure that important network parameters from
previous tasks are minimally altered when learning
new tasks, thereby reducing CF (Li et al., 2022; Liu
et al., 2019). (2) Replay, which stores some train-
ing samples from previous tasks. When learning a
new task, the model is trained using both the new
task data and the stored replay data to mitigate CF
(Liu et al., 2021a; Qin et al., 2022; Huang et al.,
2021). Some replay methods do not store actual
data but learn data generators to generate data simi-
lar to those from previous tasks (Shin et al., 2017; He
and Jaeger, 2018). (3) Architectural-based, which
encompasses various methods aimed at managing
CF through structural modifications. Some tech-
niques expand the network’s capacity as new tasks
are learned (Wang et al., 2022a; Yan et al., 2021; Qin
et al., 2023). Some do parameter isolation, which
trains sub-networks for each task by using masks
to prevent updates to critical parameters or neurons
from previous tasks, or by ensuring that new task
parameters are orthogonal to those of prior tasks (Ke
et al., 2021a, 2023; Konishi et al., 2023; Serra et al.,
2018; Gururangan et al., 2022; Zhu et al., 2022;
Geng et al., 2021; Lin et al., 2022; Liu et al., 2023).

Moreover, some methods incorporate parameter-
efficient fine-tuning (PEFT) techniques such as
low-rank adaptation (LoRA) (Hu et al., 2021) and
prompt-tuning to allocate task-specific parameters
for each new task (Razdaibiedina et al., 2023; Wang
et al., 2022b, 2024b). These systems often imple-
ment various mechanisms to predict the task-id,
which is essential for selecting the appropriate model
for CIL. They may utilize a separate network, en-
tropy, or out-of-distribution detection to predict the
task-id (Rajasegaran et al., 2020; Abati et al., 2020;
Kim et al., 2023). Our work differs from these ap-
proaches as it does not require task-id prediction.
While the aforementioned methods train a different
model for each task and rely on task-ids, our ap-
proach allows for adding one class at a time with
no task-id prediction. Our ECL directly predicts the
most probable classes.
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Figure 1: Overview of the InCA framework. The diagram depicts the stages of generating semantic tags for the input,
identifying the most similar classes via the ECL, and constructing the prediction prompt with class summaries, which
together enables efficient in-context continual learning without retaining any training data.

In the field of NLP, CL has been employed to
address a variety of problems, including text clas-
sification (Chuang et al., 2020), sentiment analy-
sis (Ke et al., 2021a), topic modeling (Gupta et al.,
2020), slot filling (Shen et al., 2019), question an-
swering (Greco et al., 2019), language learning (Li
et al., 2019; Liang et al., 2024; Zhao et al., 2024b),
and the pre-training of language models (Ke et al.,
2023; Qin et al., 2022). Pre-trained models are com-
monly utilized in most NLP-related continual learn-
ing tasks, serving as a standard practice (Ke et al.,
2021b; Wang et al., 2024c). For further insights and
a comprehensive overview, refer to surveys (Ke and
Liu, 2022; Wang et al., 2024a).

Our approach differs from the aforementioned
methods that adapt or fine-tune pre-trained language
models, as we primarily leverage in-context learn-
ing for CIL. While advancements in LLMs have
improved few-shot and instruction-based prompt-
ing (Wei et al., 2022; Yao et al., 2024; Hao et al.,
2023), they fail to address CL challenges, such as
growing prompt sizes that quickly exceed token lim-
its. Moreover, even with long-context LLMs (Reid
et al., 2024; Dubey et al., 2024), extended prompts
containing excessive and often irrelevant informa-
tion can lead to significant performance degradation.
InCA overcomes these issues by using an external
continual learner that can be updated without CF.

InCA bears some resemblance to retrieval-
augmented generation (RAG) (Zhao et al., 2024a),
which uses a retriever to gather information to pro-
vide domain-specific knowledge for enhancing con-
tent generation. However, InCA is fundamentally
different, as our ECL is a coarse-grained classifier

that tries to identify the most similar classes rather
than retrieving domain- or task-specific content. Ad-
ditionally, due to the incremental nature of CIL, our
ECL must be built incrementally and handle CF and
ICS without storing data from previous tasks — chal-
lenges that retrievers do not encounter.

3 Problem Formulation

We study class-incremental learning in the text clas-
sification domain. CIL involves learning a sequence
of tasks arriving sequentially (Kim et al., 2023). Let
B be the number of tasks encountered so far. Each
task b (1 < b < B) is associated with a training

dataset Dy, = {(SUl(f) ) yg(,i))}nb

i=1°
number of instances in Dy, xl(f) denotes an input
(text) instance, and i‘/z(,Z) is its corresponding class
label. Let Y}, be the set of classes belonging to b
(i.e., the set of all classes in D). For any two tasks
b and V', their corresponding class sets are disjoint
(YpyNYy = 0 for b # b'). The overall class set
for all B tasks is defined as | J;_, Y, = Y. The
goal is to construct a unified predictive function
f : X = Y capable of classifying any given test in-
stance x across all tasks/classes seen so far, despite
the restriction that no data from previous tasks are
retained during training, i.e., replay-free.

where ny, is the total

4 Proposed InCA Method

This section presents InCA (In-context Contin-
val Learning Assisted by an External Continual
Learner), a framework designed to address the chal-
lenges of CIL by leveraging the in-context learn-
ing capabilities of LLMs. InCA has three main



stages: (1) tag generation, where semantic tags are
extracted from the input text using the LLM (Sec-
tion 4.1); (2) external continual learning, which
identifies the top k& most probable classes based on
the generated tags through Gaussian class model-
ing and Mahalanobis distance scoring (Section 4.2);
and (3) in-context learning with class summaries,
where the LLM predicts the final class label for the
input text using summaries of the top k candidate
classes (Section 4.3). Figure 1 depicts the overall
framework.

4.1 Tag Generation

To capture the essential semantic information from
an input text x, we generate a list of tags that include
topics, keywords, important entities, and other rele-
vant elements. For example, a customer’s banking
query processed by our framework (see Figure 1)
might generate tags such as “banking” or “paycheck
deposit” while omitting less pertinent information.
Additionally, the tags are automatically extended
to include related terms that commonly appear in
similar contexts. For instance, the tag “paycheck de-
posit” may be extended to include terms like “trans-
fer funds” or “payroll processing”. Tags are gener-
ated by prompting the LLM to produce both primary
tags and related terms. The specific prompt used for
tag generation is detailed in Appendix A.2.

4.2 External Continual Learner

The ECL leverages the generated tags to identify the
k most probable classes for a given input, thereby
filtering out the irrelevant context. As mentioned
earlier, the ECL operates by accumulating statis-
tics without additional training and thus, inherently
avoids CF.

Gaussian Class Representation: Each class is
modeled as a Gaussian distribution, with a mean vec-
tor and a shared covariance matrix. This represen-
tation helps mitigate the ICS problem by allowing
classes to have independent distributions. However,
since the covariance matrix has high dimensionality,
storing a separate covariance matrix for each class
would result in excessive space consumption. To ad-
dress this, we assume that all classes share the same
covariance matrix, drastically reducing the space
required.

Let 7; = [t1,j,t2,5 - .., R, ] be the list of all tags
generated by the LLM for class j, where R is the
total number of tags generated from all training
instances of class j. We employ the widely-used
Sentence-BERT (SBERT) (Reimers and Gurevych,
2019) model to encode each tag t,; € 7; into a

h-dimensional embedding vector z,.; € R". The
mean vector [ € R” for class j is computed as the
average of all its tag embeddings:

1 R
Hj = R;Zw‘

The shared covariance matrix ¥ € R"*" is up-
dated incrementally as new classes are introduced.
The contribution of class j to the shared covariance
matrix, denoted as A, is based on the deviations
of its tag embeddings from the mean (Park et al.,
2018):

R
1
Aj=5 > (zrg = 1) (g — )"
r=1

The overall shared covariance matrix is updated
after each new class is processed:

(J—1)¥j1+ A

=
! j

)

where X; denotes the shared covariance matrix
after processing class j, assuming that classes
{1,2,...,j — 1} have been previously learned.

Mahalanobis Distance Scoring: For each test
instance, the ECL uses the Mahalanobis distance
(De Maesschalck et al., 2000) to select the top k
most similar classes. Let {z;}/", be the set of tag
embeddings generated for the input instance x. The
Mahalanobis distance between an embedding z; and
the Gaussian distribution for class j is computed as:

(2, pij, X) = \/(Zz‘ — 1) "5 (2 — )

Here, ¥ represents the shared covariance matrix up-
dated up to the current point when the inference is
performed. The overall distance of the test instance
x from the class is the average Mahalanobis distance
over all tag embeddings:

m

1
d(iU,/,Lg,Z) = % Zd(ziauju E)
i=1

The top k classes with the smallest Mahalanobis
distances are selected for the final prediction step.

4.3 In-context Learning with Class Summaries

Once the top k candidate classes are identified by the
ECL, in-context learning is applied using class sum-
maries to determine the final prediction. Storing
and using too many training examples for in-context



learning would be impractical and inefficient for con-
tinual learning. Instead, for each class, we generate
a summary at the time of its introduction, serving as
a compact representation of the class.

Generating Class Summaries: The summary for
each class is generated by prompting the LLM using
a small subset of randomly selected training exam-
ples of the class. The prompt used for generating the
summary is given in Appendix A.1. Each summary
captures the essential characteristics or information
of the class, allowing for efficient in-context learning
without storing lots of examples.

Prediction with In-context Learning: During
prediction, the test instance is concatenated with
the summaries of the top k classes to form a sin-
gle prompt. The LLM processes this prompt and
predicts the class label based on the context pro-
vided. The prompt format for this prediction stage
is detailed in Appendix A.3.

To summarize, InCA stores only a mean embed-
ding vector for each class and a shared covariance
matrix for all classes encountered so far. Thus, the
amount of information saved in the CIL process is
very small. The whole process involves no training
and it is replay-free, i.e., no previous task data is
stored to help deal with CF. Moreover, as explained
earlier, it avoids both the CF and ICS problems that
have plagued the existing CIL techniques.

5 Experiment Setup

In this section, we describe the datasets, baselines,
implementation details, and evaluation metrics.
Datasets: We utilize four datasets for our ex-
periments: CLINC (Larson et al., 2019), Banking
(Casanueva et al., 2020), HWU (Liu et al., 2021b),
and DBpedia (Auer et al., 2007). The intent clas-
sification datasets — CLINC, Banking, and HWU
comprise of 150, 77, and 64 classes, respectively.
DBpedia is a topic classification dataset with 70
classes. For the train/test splits, we allocate 10k/750
samples for CLINC, 10k/1k samples for Banking,
9k/1k samples for HWU, and 10k/1k samples for
DBpedia.> InCA can incrementally learn each class
one by one. For baselines, we adhere to the standard
CIL protocol by splitting the classes into disjoint
tasks, each composed of a subset of classes. Mul-
tiple runs with different task splits are conducted,
and the accuracy values are averaged to minimize

3Note that we do not use datasets for some other NLP tasks
(e.g., dialogue generation, summarization, translation, etc.) be-
cause they are not suitable for class-incremental learning. More
details can be found in Section 9.

the influence of any specific task split on overall
performance.

Baselines: We evaluate our proposed method
against several baselines. The Vanilla baseline se-
quentially fine-tunes the LLLM on each task with-
out any specific mechanism to mitigate CF. EWC
(Kirkpatrick et al., 2017) is a regularization-based
technique that mitigates CF by preserving important
parameters for previous tasks through a quadratic
penalty. L2P (Wang et al., 2022b) freezes the LLM’s
parameters and learns a set of trainable prompts
to guide the model during inference. LAMOL
(Sun et al., 2020) employs pseudo-replay, generat-
ing pseudo-examples of previous tasks to interleave
with new task data in training, thus maintaining per-
formance on past tasks. VAG (Shao et al., 2023)
leverages vocabulary sparsity to selectively generate
relevant outputs for each task through label genera-
tion, rather than traditional classification objective.
JOINT learns all the classes together as a single
task. It is not a continual learning setting and its
accuracy is regarded as the upper-bound accuracy of
CIL.

Additionally, we compare our method against
several long-context LL.Ms, where all class sum-
maries are directly included in the final in-context
learning prompt (see Section 4.3) without using the
ECL. Specifically, we evaluate using Mistral (with a
32K context window) (Jiang et al., 2023), Llama3
(128K) (Dubey et al., 2024), and Gemini (2M) (Reid
et al., 2024), each trained to support these extended
context lengths. We also include comparisons with
LongLlama (128K) (Tworkowski et al., 2024) and
LongAlpaca (16K) (Chen et al., 2024), which adapt
pre-trained LLMs for handling longer contexts.

Implementation Details: We use the Mistral-7B
model for all experiments and ablations, except for
one where we evaluate our framework with different
LLMs, specified accordingly. For generating sum-
maries, we use 20 training instances per class in the
summarizing prompt. 4 In the ablation with limited
data, we use all available instances when there are
fewer than 20. We limit the length of the summaries
to a maximum of 256 tokens. To determine the opti-
mal k value for the ECL, we use a small validation
set. Despite varying values for k across different
datasets, it never exceeds 3 in any dataset during
our experiments, indicating that including only 3
class summaries in the final prompt is sufficient for
accurate prediction, even with 150 classes as in the

“We also tested with more than 20 instances per class for
summaries but observed no noticeable improvement.



Fine-tuning based Methods

Dataset ~ #Tasks Vanilla EWC L2P LAMOL VAG InCA  JOINT
CLINC 10 51.27 41196 54.22 4114 52.53 4170 58424984 76.424090 94.40 @ 97.60
Banking 7 27.77 +2.46 29.10 +1.78 25.78 +1.21 42.60 +1.36 59.34 +1.28 84.90 92.50
DBpedia 7 39.02 +2.68 40.30 +2.89 42.84 +5.47 48.61 +1.82 65.40 +1.52 84.20 95.70
HWU 8 38.38 1401 42.72.4962 28.771318 44.851157 56.881199 86.61 90.43

Table 1: Final accuracy (%) of InCA compared with various fine-tuning based baselines. The gray column shows
the results in the JOINT setting, which is not continual learning and regarded as the upper bound. Experiments are
conducted with three different task splits to minimize the influence of any specific task split on performance.

CLINC dataset.

For the Vanilla, EWC, and JOINT systems, we
perform parameter-efficient fine-tuning using LoRA
adaptors (Hu et al., 2021). This approach is selected
due to the large model size and PEFT’s better adap-
tation to the task with limited data. Following (Shao
et al., 2023), we employ a label generation objective
instead of a classification head, as generation loss
helps mitigate CF. For LAMOL and VAG, we had to
use their original language models, BART for VAG
and GPT-2 for LAMOL, because LAMOL’s code is
incompatible with Mistral, while VAG’s use of an
encoder-decoder architecture also results in incom-
patibility. For embedding the tags, we use a small
SBERT paraphrase-MiniLM-L6-v2 model. All pre-
trained models are obtained from the Transformers
library (Wolf et al., 2020).

Experiments were conducted on a single A100
GPU with 80GB VRAM. The baseline models im-
plemented were trained for 10 epochs per task with
a batch size of 8, employing early stopping and the
Adam optimizer with a learning rate of 2e-5. The
LAMOL and VAG models were executed using their
official configurations and hyperparameter settings.
All models were maintained at 32-bit precision dur-
ing training and inference, except for long-context
settings, where 8-bit quantization (Dettmers et al.,
2022) was employed due to the extended prompt
length and VRAM requirements.

Evaluation Metric: We measure classification
accuracy after all tasks/classes have been processed,
referred to as Last or Final accuracy. All experi-
ments are conducted three times and the accuracy is
averaged, except for the zero-training LLM setups,
which are deterministic.

6 Main Results

Surpassing Traditional CIL: The proposed InCA
demonstrates a clear advantage over traditional CIL
methods involving training, as seen in Table 1. It
significantly outperforms all the baselines across

all datasets. Despite employing a range of strate-
gies such as regularization, parameter freezing,
and pseudo-replay, none of the baseline methods
achieved comparable performance.

As outlined in Section 1, CF occurs when updat-
ing model parameters for a new task disrupts the
knowledge acquired from previously learned tasks.
Our proposed system, InCA, avoids CF as it operates
without any training. Although InCA’s performance
remains below the upper bound achieved by JOINT
fine-tuning, this is mainly due to the limitations of
in-context learning, which may not match the task-
specific optimization of fine-tuning.

InCA vs. Long-context Setting: The limited
context window of LLMSs becomes a significant chal-
lenge as the number of classes increases. InCA ad-
dresses this by using an external continual learner
to identify the most relevant classes and construct
a precise prediction prompt. In contrast, extending
the context window of the LLM to include more
information is an alternative approach. To assess the
effectiveness of our approach, we compared InCA
against the long-context setting of LLMs, where all
class summaries are passed directly into the predic-
tion prompt.

We conducted experiments using several long-
context models, including Mistral, Llama3, and
Gemini 1.5 flash, both with and without the
assistance of the ECL. Additionally, we tested
LongLlama and LongAlpaca, which adapt standard
LLMs to handle long-context tasks. Since these
models are not instruction-tuned, they are not suit-
able for generating the tags required by InCA. Con-
sequently, we used these models only in the long-
context setting, utilizing class summaries generated
by Mistral, as their own summaries may not match
the quality of instruction-tuned models.

The results, shown in Table 2, reveal that the
long-context models without the ECL performed
significantly worse than InCA. Even with Gemini,
which has a 2M token context window, performance
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Figure 2: Comparison of recall between our ECL and the text retriever (TR) at various values of k. The ECL operates
without storing any replay data (buffer size = 0), while the TR maintains a buffer of instances to retrieve the most
similar ones during inference. For the TR, we evaluate performance across different buffer sizes. When the TR’s buffer
size is zero, we store the embeddings of class summaries for retrieval, rather than training instances.

Model CLINC Banking DBpedia HWU
Mistral-7B 94.40% 84.90% 84.20% 86.61%
Llama3-8B 95.73% 84.30% 87.60% 87.45%
Gemini 1.5 flash | 95.32% 86.15% 91.63% 89.22%
Without ECL
Mistral-7B 86.93% 6590% 6530% 81.04%
Llama3-8B 83.73% 77.80% 72.710% 83.27%
Gemini 1.5 flash | 93.86% 83.52%  79.64% 87.27%
LongAlpaca-7B | 45.87% 33.20% 24.90% 35.97%
LongAlpaca-13B | 51.20% 63.60%  59.10% 62.83%
Longllama-3B 62.00% 52.80% 3890% 58.46%
LongLlama-7B 84.67% 73.10% 61.00% 77.88%

Table 2: Comparison of InCA against long-context LLMs
(without ECL), where all class summaries are included in
the prediction prompt. For Longl.lama and LongAlpaca
models, class summaries are generated using Mistral, as
they are not instruction-tuned.

degraded when overloaded with excessive context.
This demonstrates that extending the context length
is not sufficient, as overextended prompts hamper
the model’s ability to focus on the relevant informa-
tion. In contrast, InCA ensures that only the most
relevant class information (summaries) is included
in the prompt, resulting in more accurate predictions
and also, faster inference times due to the shorter
prompts.

7 Ablation Results

Tag-based ECL vs. Text Retrieval: Given the
resemblance between our approach and retrieval-
augmented generation, we benchmark our tag-based
classifier against a retrieval method based on text
similarity. We adopt a common RAG framework,
maintaining a pool of training instances for each
class and using SBERT to retrieve the most simi-
lar instances during inference based on text simi-
larity. It is important to note that this method is
not applicable to CL since it involves storing origi-
nal instances; we use it solely for comparison. We
retrieve instances until we have obtained instances

from k distinct classes, after which we measure the
recall and compare these results to our ECL, which
operates without a buffer (i.e., no replay data).

The results illustrated in Figure 2 demonstrate
that our tag-based ECL consistently outperforms
text retrieval across all scenarios, even when the text
retriever has access to a substantial buffer of train-
ing instances. The same SBERT model is used for
embedding both tags and input text. The superior
performance of the ECL is particularly noteworthy
as it does not require storing any instances, highlight-
ing its effectiveness, especially in contexts where
storing training instances is impractical.

In-context Learning Boosts Accuracy: The ef-
fectiveness of the in-context learning and the InCA
approach becomes evident when comparing the
model’s final accuracy with the top-1 accuracy of
the ECL alone. As shown in Figure 3, the final accu-
racy of InCA is significantly higher than the ECL’s
top-1 accuracy. This demonstrates the added value
of in-context learning. Although the ECL alone may
not be highly accurate, it effectively narrows down
the relevant classes, enabling in-context learning to
focus on a smaller subset and improve the overall
performance.

Impact of Data Size: To assess the impact of
training data size on model performance, we con-
ducted experiments under constrained data condi-
tions. As shown in Figure 4, we compared InCA
with the JOINT fine-tuning method across varying
data sizes. InCA consistently maintains performance
comparable to that of the full dataset, even with sig-
nificantly reduced training data (e.g., 10 examples
per class). Remarkably, under these limited data con-
ditions, InCA outperforms the JOINT fine-tuning
method, often considered the upper bound. These
results highlight InCA’s robustness and effectiveness
under limited data availability.
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Figure 3: Accuracy of InCA and ECL recall at different & values. The solid portion of each bar represents the accuracy
of the model using in-context learning (ICL) with the top & classes retrieved by the ECL. The leftmost column (k=1)
represents the accuracy of ECL alone, where the most similar class is predicted without ICL. The dashed region
indicates cases where the correct label is within the top k classes retrieved by the ECL but the model’s prediction is
incorrect. Therefore, the total height of each bar (solid plus dashed) represents the ECL’s recall of the correct classes at

that k value.
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Figure 4: Performance comparison of InCA and JOINT
fine-tuning across different data sizes. InCA demon-
strates robust performance with limited data, particularly
excelling over the fine-tuned model in data-constrained
situations.

8 Conclusion

Existing continual learning (CL) research in NLP
has primarily focused on fine-tuning or adapting
LLMs for individual tasks, either by learning train-
able prompts or adapters or updating the LLM’s
parameters. While these approaches can improve

CL accuracy, their effectiveness remains limited due
to catastrophic forgetting (CF). On the other hand,
in-context learning with LLMs has proven highly
effective across various NLP tasks. However, its
application to CL is hindered by the limited context
window of LLMs. As the number of tasks increases,
the in-context prompt grows, often exceeding the
token limit or leading to performance degradation
due to overextended context, which may include ir-
relevant information. This paper proposed a novel
method to address these challenges by leveraging an
external continual learner. Our method is replay-free
and does not fine-tune or adapt the LLM, treating
it solely as a black box. Experiments show that our
method markedly outperforms baselines, without
suffering from CF.

9 Limitations and Future Work

One limitation of this work is that experiments are
conducted exclusively on text classification datasets.
This focus may limit the generalizability of our
model to other types of NLP tasks (e.g., dialogue
generation, summarization, translation, sentiment
analysis, etc), which have different data character-
istics and task requirements and are not suitable
for class-incremental learning because they are not



classification tasks with many classes that may be
learned incrementally. Although sentiment analy-
sis is often solved as a classification task, it has
a fixed number of classes, i.e., positive, negative,
and neutral. These other tasks are more suitable for
task-incremental learning or domain-incremental
learning (Ke and Liu, 2022). We believe some vari-
ations of the proposed method should apply to the
other NLP tasks. Designing one general method that
is suitable for multiple different NLP tasks will be
an interesting future research direction.
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A Prompts and Examples

In this section, we detail the prompts used in various parts of our model. The provided prompts and examples
are from the CLINC dataset. For different datasets, we use slightly modified versions of the same prompts
based on the task at hand (e.g., intent classification, topic classification).

A.1 Summarization Prompt

prompt = (
Review the following user queries and provide a summary of the intent. Keep
the summary generic and avoid referencing any named entities that appear in
the queries.

Queries: {user_queries}
Summary:

)

Review the following user queries and provide a summary of the intent. Keep the summary generic
and avoid referencing any named entities that appear in the queries.

Queries:

* how would i apply for an american express

* show me the application for a visa card

* can you apply for idaho independent card for me

* do you have any information on how to open a new credit card

* is this where i apply for a new credit card

* is it possible to apply for a new credit card

» walk me through applying for a visa card

» what’s the procedure to apply for a new credit card

* i want to put in an application for a line of a credit card how do i do that

* does bank of america give credit cards to people like me

Summary:

The intent of these queries is to apply for a new credit card. Users are looking for information on the
application process, requirements, and specific credit card types. Some users are interested in applying
for a specific credit card, such as an American Express or a Visa card, while others are looking for
general information on how to open a new credit card.




A.2 Tag Generation Prompt

prompt = (
Generate descriptive tags for the following queries. Focus on user
intention, relevant entities, and keywords. Extend these tags to related,
unmentioned terms that are contextually relevant.

Guidelines:

Topic: Identify user intention or subject area the query pertains to.
Entity Recognition: Focus on recognizable entities common in similar
queries.

Keywords: Extract specific terms or verbs that define the query's intent.
Related Tags: Include tags that are related to user intention, even if not
directly mentioned, to provide broader contextual understanding.

Examples: {example_section}

Query: {user_query}
Tags:

J

Generate descriptive tags for the following queries. Focus on user intention, relevant entities, and
keywords. Extend these tags to related, unmentioned terms that are contextually relevant.

Guidelines:

Topic: Identify user intention or subject area the query pertains to.

Entity Recognition: Focus on recognizable entities common in similar queries.
Keywords: Extract specific terms or verbs that define the query’s intent.

Related Tags: Include tags that are related to user intention, even if not directly mentioned, to provide
broader contextual understanding.

Examples:
Query: "Should I wear a coat today?"
Tags: weather advice, inquiry, clothing, temperature, coat, wear

Query: "Book a table for two at a popular Italian restaurant downtown?"
Tags: dining reservation, Italian cuisine, booking, restaurant, table, request

Query: "How can I send money to a foreign bank account using the app?"
Tags: international money transfer, send money, app, foreign bank, digital transfer

Query: do i have to pay for carry-ons on delta
Tags: airline fees, carry-on, delta airlines, travel, pay, luggage




A.3 Prediction Prompt

prompt = (
Based on the given query, classify the user's intent into one of the
following categories: {retrieved_classes}

{class_summaries}

Query: {user_query}
Class:

)

Based on the given query, classify the user’s intent into one of the following categories: direct_deposit,
income, payday

direct_deposit:

The users are inquiring about the process of setting up a Direct Deposit for their paychecks or bank
accounts. They want to know how to arrange for their checks to deposit directly into their accounts
and are looking for instructions or guidance on how to do this. Some users are specifically interested
in setting up Direct Deposit at certain banks, while others are seeking general information on how
Direct Deposit works.

income:

The users are inquiring about their current or past income, salary, or earnings from their job. They
want to know how much money they make or earned, and sometimes they want to calculate their
total income. Some users are also interested in knowing the amount they bring in annually or their
compensation.

payday:

The users are inquiring about the timing of their next paycheck or payment. They want to know
how often they are paid, when they can expect to be paid next, and when their next payment will be
deposited. They are also interested in knowing the date or day on which they will receive their next
check or be paid. Some users want to be informed about the date their most recent payment was made,
while others want to plan for their next upcoming payment.

Query: get my paycheck to direct deposit
Class: direct_deposit
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