
ROBOGUARDZ: A Scalable Zero-Shot Framework for
Detecting Zero-Day Malware in Robots

Upinder Kaur1, Z. Berkay Celik2, and Richard M. Voyles3

Abstract— The ubiquitous deployment of robots across di-
verse domains, from industrial automation to personal care,
underscores their critical role in modern society. However, this
growing dependence has also revealed security vulnerabilities.
An attack vector involves the deployment of malicious software
(malware) on robots, which can cause harm to robots themselves,
users, and even the surrounding environment. Machine learning
approaches, particularly supervised ones, have shown promise
in malware detection by building intricate models to identify
known malicious code patterns. However, these methods are
inherently limited in detecting unseen or zero-day malware
variants as they require regularly updated massive datasets that
might be unavailable to robots. To address this challenge, we
introduce ROBOGUARDZ, a novel malware detection framework
based on zero-shot learning for robots. This approach allows
ROBOGUARDZ to identify unseen malware by establishing rela-
tionships between known malicious code and benign behaviors,
allowing detection even before the code executes on the robot.
To ensure practical deployment in resource-constrained robotic
hardware, we employ a unique parallel structured pruning
and quantization strategy that compresses the ROBOGUARDZ
detection model by 37.4% while maintaining its accuracy. This
strategy reduces the size of the model and computational
demands, making it suitable for real-world robotic systems.
We evaluated ROBOGUARDZ on a recent dataset containing
real-world binary executables from multi-sensor autonomous
car controllers. The framework was deployed on two popular
robot embedded hardware platforms. Our results demonstrate
an average detection accuracy of 94.25% and a low false
negative rate of 5.8% with a minimal latency of 20 ms, which
demonstrates its effectiveness and practicality.

I. INTRODUCTION

Robots, now ubiquitous, play an essential role in diverse
sectors, from improving productivity on industrial assembly
lines to providing personal care, thus proving to be indispens-
able in our daily lives. Their omnipresence in both domestic
and professional environments has made them attractive
targets for cyber attacks that threaten their core functionalities:
confidentiality, integrity, and availability [1].

Recent studies have brought to light significant vulnera-
bilities, such as the potential for attackers to compromise

*Kaur and Voyles acknowledge support from USDA Grant 2018-67007-
28439 and NSF Grant CNS-1450342, while Celik acknowledges support
from NSF Grants CNS-2144645 and IIS-2229876 in the fulfillment of this
work.

1 Upinder Kaur is with the Agricultural and Biological Engineering
Department, Purdue University, 225 University Street, West Lafayette,
Indiana, USA. kauru@purdue.edu

2 Z. Berkay Celik is with the Department of Computer Science,
Purdue University, 401 Grant Street, West Lafayette, Indiana, USA. zce-
lik@purdue.edu

3 Richard M. Voyles is with the School of Engineering Technology, Purdue
Polytechnic Institute, Purdue University, 401 Grant Street, West Lafayette,
Indiana, USA. rvoyles@purdue.edu

Robot Computer
Exe

State

Controller

LIDAR

St
at

e
M

ea
su

re
m

en
ts

Co
nt

ro
lle

r C
om

m
an

ds

Physical SystemSe
ns

or
 In

pu
ts

ActuatorInputs

IMU

Camera
Steering

Wheels
Centralized
Control

Controller
Executable

Controller
Malware

Malfunction

Fig. 1. Compromised robot controllers can result in major malfunctions,
posing a risk to the robot’s functionality and its surrounding environment.

user privacy through robot sensors or disrupt the operational
integrity of robots by spoofing communications [2], [3], [4],
[5]. The threat extends to manipulation of robot control
software, which can lead to consequences, such as physical
harm [6], [7], as illustrated in Fig. 1. Despite the growing
sophistication of robot software, robust malware defense
specifically for robotics is lacking, a situation worsened by
vulnerabilities in the Robot Operating System (ROS) and the
rapid progression of sophisticated malware [8], [9], [10].

Machine learning (ML) techniques are increasingly em-
ployed for malware detection due to their ability to identify
emerging malware variants [11], [12]. These approaches,
predominantly rooted in supervised learning paradigms, excel
in detecting established malware patterns through intricate
models. However, their reliance on extensive, prelabeled
datasets poses a critical limitation: the incapacity to recognize
novel or zero-day malware threats which are defined by their
absence in existing datasets at the time of their discovery.
This limitation is particularly critical in robotics, where
the rapid co-evolution of software and hardware presents a
significant challenge to the curation of comprehensive and up-
to-date datasets. Although ML methods have been developed
for runtime analysis [13], they have several limitations,
including the need for isolated testing environments and the
vulnerability to evasion by advanced malware that can mimic
benign behavior [14], [12], [15].

In this paper, we present a novel static malware detection
methodology tailored for robotic systems. This framework
analyzes the byte structure of executables to proactively

2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

October 14-18, 2024. Abu Dhabi, UAE

979-8-3503-7770-5/24/$31.00 ©2024 IEEE 12450

20
24

 IE
EE

/R
SJ

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

te
lli

ge
nt

 R
ob

ot
s a

nd
 S

ys
te

m
s (

IR
O

S)
 |

97
9-

8-
35

03
-7

77
0-

5/
24

/$
31

.0
0

©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
IR

O
S5

85
92

.2
02

4.
10

80
17

65

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 14,2025 at 19:56:46 UTC from IEEE Xplore. Restrictions apply.

identify malicious intent, crucial for robots in safety-critical
environments. While static detection methods exist for tradi-
tional and mobile platforms [16], [17], [18], [19], research
on robotic software stacks is limited [20], [21]. Moreover,
deep learning-based approaches are often computationally
prohibitive for resource-constrained robot embedded systems.

To address these challenges, we introduce ROBOGUARDZ,
a malware detection framework that takes advantage of zero-
shot learning principles [22], [23], [24], [25] to identify zero-
day malware in robotic systems. ROBOGUARDZ eschews direct
reliance on prior malware knowledge, instead employing a
fine-grained byte-level feature extractor and similarity map
to compare features from unseen malware to known classes,
enabling proactive detection of novel threats. Furthermore,
it uses model compression techniques such as pruning and
quantization to minimize its hardware footprint, ensuring
efficient operation without sacrificing detection accuracy.

• We introduce ROBOGUARDZ, a novel zero-shot learning
framework for malware detection in robots. By inte-
grating byte-level feature extraction with latent space
similarity mapping, ROBOGUARDZ identifies unknown
malware classes, achieving an average accuracy of 94%
for malware detection in a robot vehicle.

• We present a feature mapping technique, which encodes
known and novel malware classes into a shared feature
space and enables knowledge transfer through relational
byte-level embeddings. This facilitates an adaptive
framework for unseen attacks.

• To address resource limitations in embedded platforms,
we incorporate a parallel structured pruning and quanti-
zation algorithm to reduce the size of the ROBOGUARDZ
model without compromising its detection capabilities.

• In testing on a robotic malware dataset, we show that
ROBOGUARDZ demonstrates achieves 94.25% in zero-
shot learning (ZSL) and 94.8% in generalized zero-
shot learning (G-ZSL) scenarios. On a robot vehicle, it
operates with an average runtime overhead of 20 ms and
occupies only 7.38MB of disk space, which demonstrates
its efficiency and practicality for real-world applications.

II. THE ROBOGUARDZ ZERO-SHOT LEARNING
FRAMEWORK

A. Problem Statement

Our goal with ROBOGUARDZ to classify each robot software
binary as benign or malicious. Formally, we consider a dataset
D = {(x1, y1), (x2, y2), ...(xi, yi),(xK , yK)}, x 2 Rd,
where xi are samples of benign code and malware with
labels yi 2 {0, n} for n classes. In supervised learning, the
goal is to learn a model from the given dataset of benign
and malware executables; however, in zero-shot learning, the
goal is to detect an unseen class of malware by leveraging
the knowledge gained from the seen classes. For a set of
seen (s) and unseen (u) malware, zero-shot learning aims
to infer Xu� > Y u without prior knowledge of Y u. More
specifically, the goal is to learn a classifier F that is trained in
D(train) 2 D and used to predict labels on unseen malware

Te
st
in
g

Tr
a
in
in
g

Feature Extraction and Mapping
SeenMalware

Classes Feature Space

UnseenMalware

Classes

Similarity Map

Feature Space

Classifier

Training

Zero-Day

Detection

Fig. 2. ROBOGUARDZ’s training and test loops. The feature maps and
similarity maps created using the seen classes during training are leveraged
to decide the label for the unseen classes with a supervised classifier.

D(test). In this work, we accomplish this goal by building
a rich understanding of the executables with both similarity
maps and feature spaces, detailed below.

B. ROBOGUARDZ Overview
The architecture of ROBOGUARDZ is shown in Fig. 2.

Using granular byte-level features and similarity mapping, it
builds a rich representation of malware and benign software.
It consists of three main components: (1) Feature Space
Mapping extracts a set of fine-grained features from the binary.
(2) Similarity Mapping maps the binaries to a common spatial
space, and their pairwise distances are calculated. (3) Fusion
and Classification combine the information extracted from
the previous two stages and train a classifier to predict the
label of the unseen malware.

C. Feature Space Mapping
This component extracts structural and pattern information

directly from the raw bytes of the executable, eliminating
the need for computationally expensive conversions to high-
dimensional representations, such as images. Initially, each
input binary executable is transformed into a string of
hexadecimal values, with padding applied to ensure uniform
length across the dataset. This string is then passed through
an embedding layer with a vocabulary of 257 (representing
0 to 256 in hexadecimal). This embedding encodes each hex-
adecimal value into a fixed-length representation, facilitating
finer-grained learning and capturing semantic relationships,
irrespective of vocabulary size.

Subsequently, the refined inputs are processed by a stack of
parallel one-dimensional convolutional neural network (CNN)
layers. The varying filter sizes within these layers capture
local mappings at different hierarchical levels. Moreover,
the parallel architecture of CNNs enables ROBOGUARDZ to
optimize both speed and performance compared to serial

12451

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 14,2025 at 19:56:46 UTC from IEEE Xplore. Restrictions apply.

structures. Finally, the layer outputs are pooled and concate-
nated to generate a latent feature space. The output of this
component is as follows:

Lf = [fs1
m (fk1,w1

c (edw)),

fs2
m (fk2,w2

c (edw)),

fs3
m (fk3,w3

c (edw))] (1)

where, ed and fk,w
c are the embedding layer with dw

dimensional input and convolutional layers with kernel size
k and weights w. The output of the convolutional layers
is pooled using the max-pooling layers fs

m with stride s to
generate a latent space mapping Lf . The latent space mapping
is generated for all inputs to the network.

D. Similarity Mapping

To identify the malicious and benign classes of binaries,
we create a higher-dimension feature space with the features
extracted from the binaries. We define a function F d : X� >
Ls that maps the inputs to a similarity space Ls using a
distance metric d, as illustrated in Fig. 2. We use the �2

distance to calculate the distance between a pair of samples,
which is defined as

k(xi, xj) = exp

��
X

i

(xi � xj)2

(xi + xj)

!
(2)

where xi and xj are two sets of binaries and � is a
hyperparameter. The set of ki for all sample pairs builds
a distance-based similarity mapping Lk for the input binaries
for both seen and unseen classes of malware. Compared to
other distance metrics, we show in our ablation study in
Sec. IV that �2 distance yields superior results.

E. Fusion and Classification

We then combine the encoded latent feature space and
similarity mapping to build a stack of features that can be
easily used for training and, subsequently, at test time to
characterize the unseen malware. A supervised classifier SC
is used to decide the final label y for the input executable as,

yi = SC([Lf , Lki]) (3)

where the output label yi 2 0, n, where n is the number of
malware classes with 0 being the label for benign executables.

The model is trained concurrently on both the seen set
of malware and benign executables, using the mini-batch
stochastic gradient descent algorithm with binary cross-
entropy loss as the objective function,

LBCE = � 1

N

NX

i=1

[yi · log(ŷi) + (1� yi) · log(1� ŷi)]

(4)
where N is the total number of samples, c is the samples

of each class, yi is the true label and ŷi is the predicted label.

III. THE ROBOGUARDZ MODEL SCALING

Robots often utilize embedded circuits with limited compu-
tational resources, which imposes space and time constraints.
To address this, we aim to minimize the malware detection
model’s footprint on the robot’s edge device, thereby reducing
computation time and energy consumption. Crucially, this
minimization must be achieved while preserving detection
performance, specifically accuracy and sensitivity. To this
end, ROBOGUARDZ employs a series of operations to reduce
network complexity, optimizing space and time utilization
without compromising its effectiveness in identifying threats.

A. Parallel-Structured Model Pruning and Quantization
Neural networks excel at capturing intricate patterns within

data, but this capability often comes with an increased
model complexity due to the numerous trainable weights
in layers such as embeddings and convolutions [26]. In
ROBOGUARDZ, not all these weights contribute equally to the
performance [27], [28]. Pruning addresses this by strategically
removing neurons (and their associated weights) based on
their magnitude, effectively simplifying the model [29]. We
achieve this by setting the weights to zero, controlled by a
sparsity hyperparameter ⌘ (0

Quantization, on the other hand, reduces the precision of
numerical representations (e.g., from 64-bit floating point to
8-bit integer) [30]. This saves memory and can improve the
inference speed, as some operations are optimized for lower-
precision data types. Although pruning and quantization are
applied independently, we adopt a combined approach.

Our approach to pruning and quantization is parallel-
structured. We iterate through each convolutional layer, setting
the smallest weights to zero. Since our feature extraction
module uses parallel convolutional layers, pruning occurs
simultaneously across these layers, coupled by their shared
network output. Unlike many pruning algorithms that rely on
the model’s own output for evaluation, we let the performance
of the downstream supervised classifier guide the pruning
process. After each pruning iteration, we assess the average
detection accuracy (See Algorithm 1). We incrementally
increase the number of pruned weights until a predefined
threshold of change in generalized accuracy is reached.
Finally, we quantize the dense layer of the feature extraction
module to further reduce memory usage, without impacting
the feature mapping established by the pruned CNN layers.

.

IV. EXPERIMENTS AND RESULTS

A. Dataset, Platforms, and Metric
We evaluated the performance of ROBOGUARDZ within the

simulation environments of both an F1-tenth car and a robot
rally car, as shown in Fig. 3. The RoboMal dataset [20],
comprising benign and malicious robot executables, served
as the source of binaries for these platforms. This dataset
was generated using the source code of a scaled mobile
robot, with the malware validated within a gazebo-based
simulator for a wall-following scenario. RoboMal consists of
450 executables, with 218 classified as benign and 232 as

12452

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 14,2025 at 19:56:46 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 ROBOGUARDZ’s Pruning and Quantization
Require: Dtrain,M{Conv(Wc), SC(SCW)}

for t  T do
Prune(Wci 0),Wci 2 {1, 2, ...Wc}8fc
fci (Wci, Dtrain)
M fci , i = {1, 2, 3}
train(SC) M(D)
if �acc � accth then

reset
else

buffer Wci

end if
end for
Quantize(Wd) I

TABLE I
THE CLASS-WISE ATTACK DISTRIBUTION OF ROBOMAL DATASET

Attacks Attack Motives Samples

— Benign 218
Attack Class 1 Parameter Attacks 24
Attack Class 2 Servo-targeting Attacks 29
Attack Class 3 Velocity-targeting Attacks 60
Attack Class 4 Steering-Targeting Attacks 81
Attack Class 5 Safety Attacks 38

malicious. As detailed in Table I, the malware is categorized
into five classes based on the nature of the attacks they
embody. To validate performance, we used a leave-one-out
cross-validation approach, systematically excluding one class
from the training examples.

We evaluated the performance of ROBOGUARDZ through
standard metrics used in zero-shot learning: accuracy, recall,
F1 score, false negative rate (FNR), and zero-day accuracy
(ZD-Acc). The ZD-Acc is defined as

ZD �Acc =
TPz + TNz

TPz + TNz + FPz + FNz
⇤ 100 (5)

where TPz, TNz, FPz , and FNz represent the true positives,
true negatives, false positives, and false negatives, respectively,
computed exclusively during the evaluation of the framework
on unseen malware classes. These metrics collectively capture
the overall performance of the proposed framework.

B. Hyperparameter Settings
The ROBOGUARDZ has two critical sets of hyperparameters,

one for the feature extraction module and the other for the
supervised classifier. In the feature extraction module, we
choose a vocabulary size of 257 for the 2500 bytes of input
(input strings are padded for consistency). The three parallel
1D-CNN layers have filter size 22 with kernels of 3, 5, and
8. The subsequent max-pooling layers have a pool size of
two and one stride. Each of these layers has LeakyReLU as
its activation function. We set the batch size to five, and the
layers are trained for 22 epochs and use the root-mean-square
propagation (rmsprop) optimizer with a learning rate of 0.001
in training. For ZSL and G-ZSl, we use sparse categorical
cross-entropy loss and binary cross-entropy loss.

(a) (b)

Fig. 3. The (a) simulation and (b) robot vehicle used in the validation of
the ROBOGUARDZ framework.

We optimize the hyperparameters of the classifiers through
a grid search to improve their generalization capabilities.
Specifically, we employ the following configurations: a
nearest-neighbor classifier with two neighbors and Manhattan
distance, a random forest classifier with 100 estimators, an
SVM classifier with a radial basis function (RBF) kernel, an
AdaBoost classifier with 200 estimators, and a decision tree
classifier with a maximum depth of five.

C. Performance Evaluation of ROBOGUARDZ

We evaluated the performance of the ROBOGUARDZ frame-
work under two distinct conditions: a zero-shot learning
(ZSL) setting, where only unseen classes are included in
the evaluation, and a generalized zero-shot learning (G-ZSL)
setting, where both seen and unseen classes are part of the
test set. In both scenarios, we used a leave-one-out strategy,
excluding one class from the training set to serve as the unseen
class. We trained the remaining malware and benign classes
using 10-fold cross-validation. The framework classifies each
sample as benign (0) or malware (1). To ensure independence
from initial conditions, we repeated training and testing for
10 runs. We calculated the previously discussed metrics for
each setup, and computed their mean and standard deviation
in all 10 runs for the five classes with the selected supervised
classifiers, as shown in Table II.

The supervised classifiers chosen for this evaluation
comprise nearest neighbors (k-NN), random forests (RF),
AdaBoost, XGBoost, and LightGBM. We leverage XGBoost,
SVM, and AdaBoost as final classifiers in conjunction with
the ROBOGUARDZ feature extraction framework. The results
in Table II show that classifiers employing boosting tech-
niques outperform standard classifiers. Notably, the AdaBoost
classifier paired with ROBOGUARDZ achieves the highest
performance, boasting an average zero-day accuracy of
94.25%, with SVM and XGBoost demonstrating comparable
performance in the ZSL approach. These findings demonstrate
the ROBOGUARDZ’s effectiveness in constructing a feature
space rich enough for robust classifier performance.

A closer examination of the classwise zero-day average
accuracy, illustrated in Fig. 4 for a suite of classifiers using
ROBOGUARDZ for initial processing and feature extraction
(including decision trees (DT) and Gaussian Naive Bayes (GB)
classifiers), reveals a notable drop in accuracy when class 3

12453

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 14,2025 at 19:56:46 UTC from IEEE Xplore. Restrictions apply.

TABLE II
THE PERFORMANCE OF ROBOGUARDZ FRAMEWORK WITH THE SELECTED CLASSIFIERS ON THE ROBOMAL DATASET.

Model ZSL G-ZSL

Zero-day Accuracy Precision F1-Score FNR Accuracy Precision F1-Score FNR

k-NN 82.62 82.62 89.4 17.31 88.81 85.82 91.9 5.02
RF 83.25 83.25 89.99 16.74 86.74 91.13 99.04 7.8
AdaBoost 82.51 82.52 89.51 17.4 80.93 80.59 80.68 19.95
XGBoost 81.9 82.1 89.72 18 89.13 86.96 91.90 8.3
LightGBM 84.12 82.45 84.74 13.54 79.48 81.47 78.41 23.15
RoboGuardZ(XGBoost) 87.89 87.89 93.32 11.11 91.38 92.88 95.99 7.9
RoboGuardZ(SVM) 87.28 87.63 92.18 12.5 83.80 84.9 89.40 11.8
RoboGuardZ(AdaBoost) 94.25 94.25 97.12 5.8 94.8 92.39 96.58 4.38

0

0.2

0.4

0.6

0.8

1

 k-NN RF SVM AdaBoost GB DT XGBoost

Class 1 Class 2 Class 3 Class 4 Class 5

A
v

e
ra

g
e

 A
c

c
u

ra
c

y

Fig. 4. The class-wise performance of the classifiers with the ROBO-
GUARDZ framework for pre-processing and feature extraction.

is excluded as the unseen class. This performance decline
across all classifiers may be attributed to the unbalanced class
sizes and unique perturbations associated with this particular
class. Despite this, AdaBoost consistently demonstrates the
most stable performance across all classes.

D. Ablation Study

We conduct an ablation study to assess the impact of
fundamental design choices in ROBOGUARDZ, specifically
examining its overall performance with the best-performing
classifiers while systematically varying two key features.

1) Embedding Layer: The ROBOGUARDZ framework incor-
porates an embedding layer to enable individual characteriza-
tion of each byte within the executable. In this representation,
we employ a vocabulary of 257 words, corresponding to each
unique hexadecimal value. To assess the impact of this design
choice, we conducted an experiment in which the embedding
layer was removed and AdaBoost and SVM classifiers were
evaluated in the same set of 5 classes using 10-fold cross-
validation and 10 runs.

Under the ZLS setup, the average zero-day accuracy for
both classifiers, with and without the embedding layer, was
plotted and is presented in Table III. The results clearly
demonstrate that removal of the embedding layer leads to an
approximate 17% decrease in classification accuracy.

2) Similarity Metric: The choice of the similarity metric
is crucial in ROBOGUARDZ, as it determines the mapping
between the learned and unseen classes, along with their
respective characteristics. We opt for the �-squared simi-

TABLE III
ABLATION STUDY: IMPACT OF THE EMBEDDINGS LAYER ON

ROBOGUARDZ PERFORMANCE

Model No Embeddings With Embeddings

RoboGuardZ(SVM) 0.70 0.87
RoboGuardZ(AdaBoost) 0.79 0.97

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

chi_squared Laplacian Cosine

AdaBoost

XGBoost

SVM
A

v
e
ra

g
e
 A

c
c
u

ra
c
y

Fig. 5. The variation in average zero-day detection accuracy achieved
by Adaboost, SVM, and XGBoost classifiers in ROBOGUARDZ with �2,
Laplacian, and cosine similarity metrics.

larity mapping to efficiently capture pairwise similarities
in a statistically sound manner. However, cosine similarity,
often used in conjunction with Laplacian kernels, is also
prevalent in the literature to map pairwise similarities [31].
Therefore, we investigated the impact of �-squared, cosine,
and Laplacian similarity mappings on the overall performance
of ROBOGUARDZ.

As depicted in Fig. 5, the �-squared similarity metric
outperforms both cosine and Laplacian for the AdaBoost,
XGBoost, and SVM classifiers within the ROBOGUARDZ
framework. Although cosine similarity achieves an average
zero-day accuracy of 91% for AdaBoost, its performance
with SVM and XGBoost is significantly worse, indicating its
inability to meet our specific application.

E. Hardware Performance Analysis
We employed our parallel-structured pruning and quantiza-

tion strategy to compress ROBOGUARDZ for deployment on
embedded hardware. To evaluate its compressed performance,
we selected two representative robot vehicles equipped with
Raspberry Pi 4B and Jetson TX2 as their embedded computing

12454

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 14,2025 at 19:56:46 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
SPECIFICATIONS OF ROBOT PLATFORMS

Specs Robot Vehicle Robot Rally Car

CPU

Quad-core
Cortex-A72
(ARM v8) 64-bit
SoC@1.5GHz

Dual-Core
Denver 64-bit
quad-core ARM
Cortex-A57

System Raspberry Pi-4B Jetson TX2

RAM 4GB 4GB

OS Raspbian + ROS Ubuntu 18.04 + ROS

NVM 64GB 64GB

platforms. Table IV provides a detailed overview of the
hardware specifications for these boards. Subsequently, we
used TensorFlow Lite and TinyML [32] to facilitate the
deployment of ROBOGUARDZ on these platforms.

The neurons within ROBOGUARDZ are pruned based on a
sparsity factor, defined as the percentage of total trainable
parameters and classifier weights to be removed. We evaluated
the impact of pruning on the average accuracy in 10
executions, varying the sparsity in the weights of the feature
extraction model from 0% to 60%. As illustrated in Fig. 6,
we did not observe a significant decrease in accuracy up to
a sparsity level of 30%. However, increasing the sparsity
beyond 40% resulted in a decrease in accuracy exceeding
1%. Furthermore, we quantized the dense layer weights per
algorithm, reducing their representation to 8-bit integers.
This combined pruning and quantization strategy reduced
the framework’s memory footprint from 11.8MB to 7.38MB,
achieving a 37.4% reduction in memory size.

TABLE V
PERFORMANCE OF SCALED ROBOGUARDZ FRAMEWORK ON

EMBEDDED HARDWARE

Robot Vehicle (R-Pi) Robot Rally Car (Jetson TX2)
Memory 7.38MB 7.38MB

Execution 175ms± 8.78 20ms± 3.14
Accuracy 94.67± 2.1 94.49± 3.87

The ROBOGUARDZ framework was successfully deployed
on the aforementioned robot platforms. Table V presents
a comparative analysis that focuses on detection latency,
required storage space on robot onboard memory, and average
zero-day detection accuracy. We observed only a slight
increase in latency on both platforms, 175 ms and 20 ms,
respectively, attributed to the integration of ROBOGUARDZ.
Furthermore, it can be seamlessly integrated as a preliminary
check within the ROS controller node or as an essential
verification process executed before each operation cycle.
These results highlight the feasibility of deploying it on a wide
range of robotic platforms, particularly those with embedded
computing and limited memory resources, affirming its
practicality and efficiency in real-world applications.

Fig. 6. The change in average accuracy with increasing sparsity in weights
(0% to 60%) for ROBOGUARDZ with pruning.

V. CONCLUSION AND DISCUSSION

We introduce ROBOGUARDZ, a novel zero-shot learning
framework designed to address the critical challenge of zero-
day malware detection in robotic systems. By leveraging
byte-level features and similarity mapping, ROBOGUARDZ
establishes a comprehensive understanding of executable
feature distributions, enabling it to identify previously unseen
malware threats.

Evaluation in a dedicated robot malware dataset shows
that ROBOGUARDZ achieves a zero-day detection accuracy
of 94. 25% and a precision of 94. 8%, with a false negative
rate of 5. 8%. Performance is robust across malware classes.
Ablation studies validate our embedded layer and similarity
metric choices.

We successfully adapted the model for deployment on
common embedded hardware in robotic vehicles. Our custom
pruning and quantization reduced the model size by 37.4%
with minimal accuracy loss. On a Raspberry Pi 4B, the model
exhibits 20 ms latency (Jetson TX2) and occupies 7.38MB of
storage, demonstrating its practicality for real-time zero-day
malware detection in robotic networks.

Future work will explore the integration of ROBOGUARDZ
into distributed robotic systems for collaborative threat
detection and response. In addition, our goal is to develop
advanced compression techniques for further latency reduction
in time-critical robotic applications.

REFERENCES

[1] S. Geris and H. Karimipour, “A feature selection-based approach for
joint cyber-attack detection and state estimation,” in IEEE International
Conference on Smart Energy Grid Engineering (SEGE), 2019, pp. 1–5.

[2] H. M. Rouzbahani, H. Karimipour, A. Rahimnejad, A. Dehghantanha,
and G. Srivastava, “Anomaly detection in cyber-physical systems using
machine learning,” in Handbook of Big Data Privacy. Springer, 2020,
pp. 219–235.

[3] T. Bonaci, J. Herron, T. Yusuf, J. Yan, T. Kohno, and H. J. Chizeck, “To
make a robot secure: An experimental analysis of cyber security threats
against teleoperated surgical robots,” arXiv preprint arXiv:1504.04339,
2015.

[4] J.-P. A. Yaacoub, O. Salman, H. N. Noura, N. Kaaniche, A. Chehab,
and M. Malli, “Cyber-physical systems security: Limitations, issues
and future trends,” Microprocessors and Microsystems, 2020.

12455

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 14,2025 at 19:56:46 UTC from IEEE Xplore. Restrictions apply.

[5] H. Kim, R. Bandyopadhyay, M. O. Ozmen, Z. B. Celik, A. Bianchi,
Y. Kim, and D. Xu, “A systematic study of physical sensor attack
hardness,” in IEEE Symposium on Security and Privacy (S&P), 2024.

[6] K. Chung, X. Li, P. Tang, Z. Zhu, Z. T. Kalbarczyk, R. K. Iyer, and
T. Kesavadas, “Smart malware that uses leaked control data of robotic
applications: The case of raven-ii surgical robots,” in International
Symposium on Research in Attacks, Intrusions and Defenses (RAID),
2019, pp. 337–351.

[7] P. Dash, M. Karimibiuki, and K. Pattabiraman, “Out of control: stealthy
attacks against robotic vehicles protected by control-based techniques,”
in Proceedings of the 35th Annual Computer Security Applications
Conference, 2019, pp. 660–672.

[8] J.-P. A. Yaacoub, H. N. Noura, O. Salman, and A. Chehab, “Robotics
cyber security: Vulnerabilities, attacks, countermeasures, and recom-
mendations,” International Journal of Information Security, vol. 21,
no. 1, pp. 115–158, 2022.

[9] B. Dieber, R. White, S. Taurer, B. Breiling, G. Caiazza, H. Christensen,
and A. Cortesi, “Penetration testing ros,” Robot Operating System
(ROS) The Complete Reference (Volume 4), pp. 183–225, 2020.

[10] H. Choi, W.-C. Lee, Y. Aafer, F. Fei, Z. Tu, X. Zhang, D. Xu,
and X. Deng, “Detecting attacks against robotic vehicles: A control
invariant approach,” in ACM SIGSAC Conference on Computer and
Communications Security, 2018, pp. 801–816.

[11] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and
C. Nicholas, “Malware detection by eating a whole exe,” in AAAI
Workshop on Artificial Intelligence for Cyber Security, 2018.

[12] B. Athiwaratkun and J. W. Stokes, “Malware classification with lstm
and gru language models and a character-level cnn,” in 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2017, pp. 2482–2486.

[13] T. Raffetseder, C. Kruegel, and E. Kirda, “Detecting system emulators,”
in International Conference on Information Security, 2007, pp. 1–18.

[14] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic analysis
of malware behavior using machine learning.” Journal of Computer
Security, vol. 19, no. 4, pp. 639–668, 2011. [Online]. Available:
http://dblp.uni-trier.de/db/journals/jcs/jcs19.html

[15] U. Kaur, H. Zhou, X. Shen, B.-C. Min, and R. M. Voyles, “Robo-
mal: Malware detection for robot network systems,” arXiv preprint
arXiv:2201.08470, 2022.

[16] E. Raff, J. Sylvester, and C. Nicholas, “Learning the pe header, malware
detection with minimal domain knowledge,” in ACM Workshop on
Artificial Intelligence and Security, 2017, pp. 121–132.

[17] J. Sahs and L. Khan, “A machine learning approach to android malware
detection,” in 2012 European Intelligence and Security Informatics
Conference, 2012, pp. 141–147.

[18] Z. Ma, H. Ge, Y. Liu, M. Zhao, and J. Ma, “A combination method for

android malware detection based on control flow graphs and machine
learning algorithms,” IEEE Access, vol. 7, pp. 21 235–21 245, 2019.

[19] J. Saxe and K. Berlin, “Deep neural network based malware detection
using two dimensional binary program features,” in 2015 10th Interna-
tional Conference on Malicious and Unwanted Software (MALWARE),
2015, pp. 11–20.

[20] U. Kaur, H. Zhou, X. Shen, B.-C. Min, and R. M. Voyles, “Robomal:
Malware detection for robot network systems,” in IEEE International
Conference on Robotic Computing (IRC), 2021, pp. 65–72.

[21] H. Kim, M. O. Ozmen, A. Bianchi, Z. B. Celik, and D. Xu, “Pgfuzz:
Policy-guided fuzzing for robotic vehicles.” in Network and Distributed
System Security (NDSS) Symposium, 2021.

[22] M. Sarhan, S. Layeghy, M. Gallagher, and M. Portmann, “From zero-
shot machine learning to zero-day attack detection,” arXiv preprint
arXiv:2109.14868, 2021.

[23] C. Patrı́cio and J. C. Neves, “Zspeedl - evaluating the performance
of zero-shot learning methods using low-power devices,” in IEEE
International Conference on Advanced Video and Signal Based
Surveillance (AVSS), 2021, pp. 1–8.

[24] M. K. Yucel, R. G. Cinbis, and P. Duygulu, “A deep dive into adversarial
robustness in zero-shot learning,” in European Conference on Computer
Vision. Springer, 2020, pp. 3–21.

[25] J.-Y. Kim, S.-J. Bu, and S.-B. Cho, “Zero-day malware detection using
transferred generative adversarial networks based on deep autoencoders,”
Information Sciences, pp. 83–102, 2018.

[26] F. Gomez-Bravo, R. J. Naharro, J. M. Garcı́a, J. G. Galán, and M. Raya,
“Hardware attacks on mobile robots: I2c clock attacking,” in Robot 2015:
Second Iberian Robotics Conference. Springer, 2016, pp. 147–159.

[27] H. Mao, S. Han, J. Pool, W. Li, X. Liu, Y. Wang, and W. J. Dally,
“Exploring the granularity of sparsity in convolutional neural networks,”
in IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 13–20.

[28] Y. Wang, X. Zhang, L. Xie, J. Zhou, H. Su, B. Zhang, and X. Hu,
“Pruning from scratch,” in AAAI Conference on Artificial Intelligence,
vol. 34, no. 07, 2020, pp. 12 273–12 280.

[29] H. Wang, C. Qin, Y. Zhang, and Y. Fu, “Emerging paradigms of neural
network pruning,” arXiv preprint arXiv:2103.06460, 2021.

[30] U. Kulkarni, S. Meena, S. V. Gurlahosur, and G. Bhogar, “Quantiza-
tion friendly mobilenet (qf-mobilenet) architecture for vision based
applications on embedded platforms,” Neural Networks, vol. 136, pp.
28–39, 2021.

[31] P. H. Barros, E. T. Chagas, L. B. Oliveira, F. Queiroz, and H. S. Ramos,
“Malware-smell: A zero-shot learning strategy for detecting zero-day
vulnerabilities.” Computers & Security, p. 102785, 2022.

[32] P. Warden and D. Situnayake, Tinyml: Machine learning with tensorflow
lite on arduino and ultra-low-power microcontrollers. O’Reilly Media,
2019.

12456

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 14,2025 at 19:56:46 UTC from IEEE Xplore. Restrictions apply.

