
Extended version of A Progressive Transformer for Unifying Binary Code Embedding and Knowledge Transfer
(Accepted to IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), 2025)

A Progressive Transformer for Unifying Binary Code Embedding and
Knowledge Transfer

Hanxiao Lu1, Hongyu Cai2, Yiming Liang2, Antonio Bianchi2, Z. Berkay Celik2
1Columbia University, hl3424@columbia.edu

2Purdue University, {hongyu, liang328, antoniob, zcelik}@purdue.edu

Abstract—Language model approaches have recently been
integrated into binary analysis tasks, such as function similarity
detection and function signature recovery. These models typically
employ a two-stage training process: pre-training via Masked
Language Modeling (MLM) on machine code and fine-tuning for
specific tasks. While MLM helps to understand binary code struc-
tures, it ignores essential code characteristics, including control
and data flow, which negatively affect model generalization. Recent
work leverages domain-specific features (e.g., control flow graphs
and dynamic execution traces) in transformer-based approaches
to improve binary code semantic understanding. However, this
approach involves complex feature engineering, a cumbersome and
time-consuming process that can introduce predictive uncertainty
when dealing with stripped or obfuscated code, leading to a
performance drop. In this paper, we introduce PROTST, a
novel transformer-based methodology for binary code embedding.
PROTST employs a hierarchical training process based on a
unique tree-like structure, where knowledge progressively flows
from fundamental tasks at the root to more specialized tasks
at the leaves. This progressive teacher-student paradigm allows
the model to build upon previously learned knowledge, resulting
in high-quality embeddings that can be effectively leveraged for
diverse downstream binary analysis tasks. The effectiveness of
PROTST is evaluated in seven binary analysis tasks, and the
results show that PROTST yields an average validation score
(F1, MRR, and Recall@1) improvement of 14.8% compared to
traditional two-stage training and an average validation score of
10.7% compared to multimodal two-stage frameworks.

I. INTRODUCTION

Deep learning, particularly NLP-inspired models, such as
RoBERTa [1] and GPT-based transformers [2], have signif-
icantly affected diverse downstream binary analysis tasks,
e.g., function similarity detection, indirect call recognition, and
function signature recovery. These models leverage transformer
architectures, which effectively capture contextual informa-
tion and long-range dependencies in sequential binaries. The
adoption of such models in learning-based binary analysis has
opened new avenues to improve the accuracy and efficiency of
these tasks [3], [4], [5], [6].

These models typically follow a two-stage training process:
(1) an initial pre-training phase via Masked Language Modeling
(MLM) on machine code and (2) a subsequent fine-tuning
phase for a specific task. In the pre-training phase, the model
learns general representations of the code by predicting masked
tokens, which helps to understand the structure and patterns
within binary code. The fine-tuning phase, on the other hand,
involves training the model on a labeled dataset specific to the
target task, allowing it to adapt its learned representations to

that particular downstream task. Fig. 1(a) shows two recent
approaches, XDA [3] and Binprov [7], which use this strategy
for disassembly and compiler provenance tasks. However, in
this context, MLM only analyzes the sequential order and
relationships between tokens, neglecting binary code’s inherent
structure and knowledge, such as control and data flow [8],
[9]. Recent studies [5], [10], [8], [4] showed that, without a
mechanism to incorporate such structure and knowledge, the
accuracy of target tasks may drop.

To address this issue, recent transformer-based binary analy-
sis frameworks [10], [8], [9], [5], [6], [11], as shown in Fig 1(b),
incorporate a wide range of domain-specific knowledge into
the traditional two-stage architecture by concatenating different
high-level modalities as input, e.g., assembly language, control
flow graphs (CFG), data flow graphs (DFG), and dynamic
execution traces. By integrating these additional features, the
model gains a richer understanding of binary code semantics;
thus, it may improve the performance of downstream tasks.

Extracting these features, however, necessitates sophisticated
reverse engineering tools and specialized knowledge for each
CPU architecture. This complexity makes them cumbersome
to use and limits their effectiveness in diverse binary datasets.
Furthermore, popular reverse engineering tools struggle with
stripped or obfuscated code, and misidentify function bound-
aries and assembly instructions [12]. These errors introduce
noise and inaccuracies into the extracted features, ultimately
degrading the data quality fed to deep learning models.
Moreover, some approaches [9] indiscriminately incorporate a
wide array of high-level features, e.g., operand type, operand
read/write status, and FLAGS register status during pre-training,
regardless of the target tasks the model will be fine-tuned for
later. This indiscriminate incorporation can include information
not relevant to the specific downstream task.

These limitations raise a critical research question: Can
we effectively capture the knowledge inherent in binary code
without relying on complex reverse engineering and feature
engineering, and instead, introduce an appropriate amount of
task-specific knowledge, avoiding the disadvantages of includ-
ing possible modalities into the model during pre-training? To
answer this question, in this paper, we introduce PROTST, a
Progressive Teacher-Student Binary Analysis framework that
transfers knowledge between binary analysis tasks to develop
high-quality embeddings. We observe that inherent binary
knowledge does not necessarily need to be learned from high-
level modalities but can be effectively captured through a step-
by-step progression of causally related binary tasks.
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To achieve this, PROTST adopts a hierarchical tree structure,
where knowledge progressively flows from fundamental tasks at
the root to more specialized tasks at the leaves. That is, lower-
level tasks, such as instruction and function boundary recovery,
reside near the root, while more specialized tasks, such as
function similarity detection and function name prediction, are
placed toward the leaves. Each node in this structure functions
as a student relative to its predecessor node. The model acquires
foundational knowledge from its teacher node and enhances
it with task-specific insights before teaching its downstream
node, which addresses a more challenging binary task. For
example, the function boundary recovery task acts as a student
relative to the instruction boundary recovery task. Once it
learns from its teacher, it becomes the teacher of the function
signature prediction task, which enables the model to leverage
the extracted function boundaries for more accurate predictions.
The knowledge of the function signature then becomes a teacher
for more advanced tasks, such as function similarity detection
and function name prediction.

This hierarchical design ensures a natural and logical pro-
gression of knowledge, following the teacher-student learning
paradigm [13], [14]. By placing related tasks with direct logical
connections close to each other, the model benefits from a
coherent flow of information. Unlike traditional two-phase
training architectures [5], [9], [5], [6], [11], where MLM pre-
training is the only strategy irrespective of the downstream
task, our progressive teacher-student framework systematically
guides the model from basic to advanced tasks. This step-
by-step progression, facilitated by the continuous transfer
of knowledge through model weight refinement, generates
semantically rich embeddings that are fine-tuned for a variety
of binary analysis tasks. To our best knowledge, PROTST is the
first work to build knowledge transfer between binary analysis
tasks within learning-based binary code embedding.

We evaluate PROTST on seven binary analysis tasks with
diverse datasets. We then compare its performance with
state-of-the-art methods in the same experimental setting.
Our experiment reveals significant advantages of the teacher-
student paradigm compared to a traditional two-stage training
architecture. When the teacher-student approach is introduced,
we observe an average 14.8% with at least 5% improvement
in validation score (F1, MRR, and Recall@1) in all tasks
and an average 3X times faster in convergence. Furthermore,
we demonstrate improvements in binaries compiled using
various optimization settings and dealing with obfuscated data.
Compared with multi-modal two-stage frameworks, PROTST
outperforms these models by an average of 10.7% validation
score in all tasks.

In summary, we make the following contributions.

• We introduce a progressive teacher-student paradigm for
binary analysis tasks. This paradigm facilitates efficient
knowledge transfer from fundamental tasks to more
complex ones, enabling the model to progressively build
a hierarchical understanding of binary code.

• To realize this paradigm, we introduce a model architecture
consisting of three key components: (1) an embedding
module that transforms raw binary code into a high-
dimensional representation, (2) a transformer backbone
model that captures code features, and (3) task-specific
heads designed for various objectives.

• We evaluate PROTST on seven diverse binary analysis tasks.
Our results demonstrate that PROTST yields an average
validation score improvement of 14.8% compared to tradi-
tional two-stage training and an average validation score
of 10.7% compared to multi-modal two-stage frameworks.

PROTST is publicly available at [15] for use and validation.

II. BACKGROUND AND RELATED WORK

Binary Code Embedding (BCE) is a technique that maps
raw binary code into a lower-dimensional space, allowing these
embeddings to be used for various binary analysis tasks. We
focus on deep learning-based approaches to BCE, specifically
those that could operate directly on raw-byte sequences. Tasks
such as vulnerability search [25], [26], [27], memory depen-
dency analysis [28], [11], variable type recovery [6], indirect
call recognition [29], and binary code comprehension [30], [31]
require assembly or higher-level pseudo-code for analysis and
are therefore not within the scope of this paper. Below, we
present BCE approaches by grouping them into learning-based
and transformer-based. Table I compares key characteristics of
recent works using these approaches and PROTST.
Learning-based BCE. With the increasing availability of large
datasets and advances in deep learning, most BCE approaches
initially used learning-based approaches. These methods can
be broadly categorized into three groups: (1) Sequence-based,
(2) CNN-based, and (3) GNN-based. Sequence-based models
such as SAFE [23], EKLAVYA [20], and Bi-RNN [19] use
RNNs (e.g., LSTMs [32], GRUs [33]) for tasks such as
code similarity detection, function signature prediction, and
boundary detection. Malconv2 [17] and o-glasses [21] use 1-d
CNNs to capture binary code embeddings for tasks such as
malware classification and compiler provenance. Additionally,
IMCFN [22] takes a different approach, using 2-dimensional
CNNs to embed binaries as images specifically for malware
classification. Techniques such as Gemini [34], DeepDi [18],
and Structure2Vec [35] use GNNs to model binary code using
graph representations, e.g., CFGs, DFGs.

Current learning-based methods, however, often neglect
the nuances of individual instruction formats and complexities.
Their focus on static analysis also limits their ability to incorpo-
rate broader contextual information essential for comprehensive
binary semantic understanding.
Transformer-based BCE. Recent advancements in NLP,
particularly transformer models, have sparked a series of
BCE techniques. These methods leverage the transformer’s
self-attention mechanism to capture long-range dependencies
and complex patterns within raw binary code. They typically
involve a two-stage training process: pre-training with MLM
followed by fine-tuning on the specific target task. Models
such as XDA [3] and BinProv [7] (Figure 1(a)) directly apply
transformers to raw byte code for tasks, e.g., disassembly and
compiler provenance analysis. Other models recognize the
importance of including the inherent knowledge of binary code
to enhance understanding (Figure 1(b)). They achieve this by
working on assembly code and embedding information from
CFGs and DFGs into the model. This approach is used by
Palmtree [10] and jTrans [8] for tasks that include function
signature recovery and function similarity detection. A line of
work, such as Trex [5] and BinBert [16], model the dynamic
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TABLE I: Properties of existing Binary Code Embedding (BCE) approaches and their comparison with PROTST.
Transformer-based RNN/CNN/GNN-based

XDA Binprov Palmtree jTrans kTrans Trex Symlm BinBert Malconv2 DeepDi Bi-RNN EKLAVYA o-glasses IMCFN SAFE Gemini PROTST
[3] [7] [10] [8] [9] [5] [4] [16] [17] [18] [19] [20] [21] [22] [23] [24] F

Raw Bytes   · · · · · ·  ·  ·   · ·  

Assembly · ·       ·  ·  · ·   ·
CFG · ·   · · · · · · · · · · ·  ·

Input Modality DFG · ·  · · · · · · · · · · · · · ·
Register Info · · · ·  · · · · · · · · · · · ·
Operand Info · · · ·  · · · · · · · · · · · ·
Caller/Callee Info · · · · · ·  · · · · · · · · · ·
Dynamic Behavior · · · · ·    · · · · · · · · ·
Disassembly  · · · · · · · ·   · · · · ·  

Compiler Provenance ·  · · · · ·  · · · ·  · · ·  

Binary Task Malware Classification · · · · · · · ·  · · · ·  · ·  

Function Signature · ·  ·  · · · · · ·  · · · ·  

Function Name · · · · · ·  · · · · · · · · ·  

Function Similarity · ·     ·  · · · · · ·    

Equipped with Binary code Knowledge · · H# H# H# H# H# H# · H# · · · · · H#  

No Feature Engineering   · · · · · ·  ·      ·  

 This mark denotes the feature is fully implemented in the model.
H# This mark denotes that the model has a partial implementation of this feature.
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(b) Two-stage framework with multi-modality.

Fig. 1: (a) Traditional two-stage training on static code. (b)
Two-stage training with high-level modalities (e.g., CFG, DFG,
and execution traces).

behavior of binary code within the transformer architecture
for tasks, e.g., function similarity detection. Other methods,
kTrans [9] (using register and operand information) and
Symlm [4] (leveraging caller/callee information), demonstrate
the potential of incorporating specific details for tasks such as
function name prediction and function similarity detection.

Existing transformer-based methods for binary analysis,
however, face two challenges. First, the extraction of features
requires specialized knowledge per architecture, limiting their
use in diverse datasets. Popular reverse engineering tools
face difficulties with obfuscated code and misinterpret func-
tions/instructions, introducing data errors that degrade model
performance. Second, indiscriminately incorporating high-level
information during pre-training can negatively impact model
performance, especially if the information isn’t closely relevant

to the specific tasks the model will be fine-tuned for later.

III. TEACHER-STUDENT LEARNING FOR BINARY TASKS

We introduce PROTST, a novel transformer-based framework
for binary analysis tasks, which leverages a teacher-student
learning paradigm [13], [14]. PROTST organizes a series of
tasks in progressive order, where each subsequent task builds
on the knowledge gained from its predecessors.

Here, each task specializes in its domain, acting as a
focused teacher on the subsequent student task. This progressive
knowledge transfer provides a deeper understanding of binary
code than cramming various high-level modalities (e.g., CFG,
execution trace, register information) into a single model. In
addition, the collaborative nature of PROTST allows each stage
to build upon the knowledge acquired by previous stages. This
results in an effective transfer of knowledge regarding semantic
patterns among tasks, eliminating the need for customized
embeddings, complex feature and reverse engineering, or
explicit knowledge of the binary code structure.
Motivation and Approach Overview. Figure 2 shows the
architecture of PROTST, which conceptualizes the relationships
between binary analysis tasks as a series of teacher-student
paradigms. In the following, we will detail how the knowledge
acquired and representations learned during the execution of
one task (the teacher) can be transferred and leveraged to
enhance the performance on a subsequent task (the student).
We will empirically validate these relationships in Section V.

PROTST is composed of two main stages: (a) a Masked
Language Modeling (MLM) stage ( 1 ) to understand the syntax
of the language at the byte level, and (b) a novel Binary
Knowledge Accumulation (BKA) stage ( 2 - 8 ) to capture
and transfer inherent knowledge within binary code across
various tasks. In the BKA stage, the model learns three types
of knowledge: boundary knowledge ( 2 - 3 ), function-level
knowledge ( 4 - 6 ), and file-level knowledge ( 7 - 8 ).

The initial MLM stage ( 1 ) acts as the first teacher. It
trains a base model to predict masked bytes within the binary,
equipping the model with a fundamental understanding of the
binary’s structure and content, akin to learning the alphabet of a
new language. The student model then addresses the instruction
boundary recovery ( 2 ), leveraging the foundational knowledge
from the MLM stage to identify boundaries between individual
instructions. This crucial step enables the model to group bytes
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update_statinfo:
0: 55                 push  rbp 
1: 48  89 E5         mov   rbp, rsp
4: 48  83 EC 20 sub    rsp, 0x20
8: 8B  45 08         mov.  eax, [ebp+8]
1b: 31  C0         xor     eax, eax
1d: 89  45 FC mov   [ebp-0x4], eax
20: EB 0A         jmp    short loc_1
...
31: D9 04 24         fld  dword ptr [esp]
39: 83 C4 10         add  esp, 0x10
3c: 5D                 pop  rbp
3d: C3                 ret
...

Predict Start of Instruction

update_statinfo:
0: 55                 push  rbp 
1: 48  89 E5         mov   rbp, rsp
4: 48  83 EC 20 sub    rsp, 0x20
8: 8B  45 08         mov.  eax, [ebp+8]
1b: 31  C0         xor     eax, eax
1d: 89  45 FC mov   [ebp-0x4], eax
20: EB 0A         jmp    short loc_1
...
31: D9 04 24         fld  dword ptr [esp]
39: 83 C4 10         add  esp, 0x10
3c: 5D                 pop  rbp
3d: C3                 ret
...

Instruction Boundary RecoveryBinary File
update_statinfo:
0: 55                 push  rbp 
1: 48  89 E5         mov   rbp, rsp
4: 48  83 EC 20 sub    rsp, 0x20
8: 8B  45 08         mov  eax, [ebp+8]
1b: 31 [MASK] xor     eax, eax
1d: 89  45 FC mov   [ebp-0x4], eax
20:   [MASK] 0A jmp    short loc_1
...
31: D9 04 24         fld  dword ptr [esp]
39:   83 C4 10         add  esp, 0x10
3c: [MASK]         pop  rbp
3d: C3                 ret
...

Predict [MASK] byte

Masked Language Modeling

update_statinfo:
0: 55                 push  rbp 
1: 48  89 E5         mov   rbp, rsp
4: 48  83 EC 20 sub    rsp, 0x20
8: 8B  45 08         mov.  eax, [ebp+8]
1b: 31  C0         xor     eax, eax
1d: 89  45 FC mov   [ebp-0x4], eax
20: EB 0A         jmp    short loc_1
...
31: D9 04 24         fld  dword ptr [esp]
39: 83 C4 10         add  esp, 0x10
3c: 5D                 pop  rbp
3d: C3                 ret
...

Predict Start of Function
and End of Function

Function Boundary Recovery
update_statinfo:
0: 55                 push  rbp 
1: 48  89 E5         mov   rbp, rsp
4: 48  83 EC 20 sub    rsp, 0x20
8: 8B  45 08         mov.  eax, [ebp+8]
1b: 31  C0         xor     eax, eax
1d: 89  45 FC mov   [ebp-0x4], eax
20: EB 0A         jmp    short loc_1
...
31: D9 04 24         fld  dword ptr [esp]
39: 83 C4 10         add  esp, 0x10
3c: 5D                 pop  rbp
3d: C3                 ret
...

Compiler Provenance

Prediction helped by instruction
patterns in Prologue, Epilogue  

update_statinfo:
0: 55                 push  rbp 
1: 48  89 E5         mov   rbp, rsp
4: 48  83 EC 20 sub    rsp, 0x20
8: 8B  45 08         mov.  eax, [ebp+8]
1b: 31  C0         xor     eax, eax
1d: 89  45 FC.       mov   [ebp-0x4], eax
20: EB 0A         jmp    short loc_1
...
31: D9 04 24         fld  dword ptr [esp]
39: 83 C4 10         add  esp, 0x10
3c: 5D                 pop  rbp
3d: C3                 ret
...

Malware Classification

Prediction helped by compiler
fingerprinting in code segment 

update_statinfo:
0: 55                 push  rbp 
1: 48  89 E5         mov   rbp, rsp
4: 48  83 EC 20 sub    rsp, 0x20
8: 8B  45 08         mov.  eax, [ebp+8]
1b: 31  C0         xor     eax, eax
1d: 89  45 FC mov   [ebp-0x4], eax
20: EB 0A         jmp    short loc_1
...
31: D9 04 24         fld  dword ptr [esp]
39: 83 C4 10         add  esp, 0x10
3c: 5D                 pop  rbp
3d: C3                 ret
...

Function Signature Prediction

Prediction helped by byte
sequence around function boundary

update_statinfo:
0: 55                 push  rbp 
1: 48  89 E5         mov   rbp, rsp
4: 48  83 EC 20 sub    rsp, 0x20
8: 8B  45 08         mov.  eax, [ebp+8]
1b: 31  C0         xor     eax, eax
1d: 89  45 FC mov   [ebp-0x4], eax
20: EB 0A         jmp    short loc_1
...
31: D9 04 24         fld  dword ptr [esp]
39: 83 C4 10         add  esp, 0x10
3c: 5D                 pop  rbp
3d: C3                 ret
...

Function Name Prediction

Function signatures encode purpose,
aiding Function Name Prediction

update_statinfo:
0: 55                 push  rbp 
1: 48  89 E5         mov   rbp, rsp
4: 48  83 EC 20 sub    rsp, 0x20
8: 8B  45 08         mov.  eax, [ebp+8]
1b: 31  C0         xor     eax, eax
1d: 89  45 FC mov   [ebp-0x4], eax
20: EB 0A         jmp    short loc_1
...
31: D9 04 24         fld  dword ptr [esp]
39: 83 C4 10         add  esp, 0x10
3c: 5D                 pop  rbp
3d: C3                 ret
...

Function Similarity Detection

Candidate_1:
0: 55                 push  ebp
1: 89 E5         mov   ebp, esp
4: 83 EC 08         sub    esp, 8
7:     8B 45 08          mov   eax, [ebp + 8]
...
27:   D9 04 24         fld  dword ptr [esp]
2a: C9                 leave
2b: C3                 ret
...

Candidate_2:
0: 55                 push  ebp
1: 89 E5         mov   ebp, esp
4: 83 EC 08         sub    esp, 8
7:     8B 45 04          mov   eax, [ebp + 4]
...
28:   89  0x10          mov   eax, 0x10
2a: C9                 leave
2b: C3                 ret
...

Similar functions tend to have similar function signatures, 
while dissimilar functions typically have distinct signatures.

Similar
pair

Distinct
pair

Boundary Knowledge

Function-level Knowledge

File-level
 Knowledge

Fig. 2: The progressive teacher-student learning of PROTST. Tasks are hierarchically structured to leverage foundational knowledge
for more complex tasks. Each task employs a transformer, with model weights serving as interfaces between adjacent nodes. The
system operates solely on the raw byte sequence (address and assembly are shown for illustration only).

into meaningful instruction sequences, similar to parsing words
from sentences. Building on this foundation, function boundary
recovery ( 3 ) becomes the next teacher, enhancing the student’s
ability to delineate functional blocks within the binary based
on the previously learned instruction boundaries. Mastering
function boundaries is essential for further analysis reliant on
the program’s functional organization, akin to understanding
paragraphs and their purposes within a text.

Once the student model has grasped these two levels
of boundary knowledge, it delves deeper into function-level
knowledge. This includes function signature prediction ( 4 ),
which act as high-level summary of a function’s purpose, similar
to titles for chapters in a book. Accurate predictions offer
valuable insights into a function’s role within the program.
Precise boundary knowledge is crucial for accurate signature
prediction. Recognizing where functions start and end helps
the model isolate and focus on the relevant bytes that make
up a function. This focus ensures that the model analyzes only
the pertinent parts of the code, improving its understanding of
the function’s structure and behavior.

In addition, identifying individual instructions within a
function offers a more granular view of its operations. This
perspective helps the model determine the number of arguments
a function accepts and the data types it returns. In essence,

both function and instruction boundary knowledge provide a
strong foundation for accurate function signature prediction.

The extracted semantics from a function’s signature form
a unique fingerprint. This fingerprint captures a high-level
overview of the function’s purpose and its interactions within
the program. By analyzing and comparing these fingerprints,
the model can detect functions with similar functionalities,
even if their internal implementations differ. This capability
is important for function similarity detection ( 5 ). Leveraging
these fingerprints facilitates the model’s discovery of shared
functionalities and code reuse patterns across functions. Fur-
thermore, the patterns derived from function signatures offer
valuable clues about a function’s purpose. This information is
beneficial for the task of function name prediction ( 6 ). By
recognizing similar signatures, the model can infer the likely
role and behavior of a function, guiding it to assign descriptive,
human-readable names that reflect each function’s purpose.

Beyond understanding the internal structure and function-
ality of binaries, PROTST also extends its focus to file-level
knowledge, with particular attention to compiler provenance
( 7 ) and malware classification ( 8 ). Here, the two levels
of boundary knowledge acquired during pre-training come
into play. The boundary knowledge facilitates the model in
detecting distinct patterns and traits associated with specific
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compilers. Function prologues and epilogues often contain
unique sequences of instructions that are characteristic of the
compiler used. These, along with other internal instruction
patterns, provide valuable clues that help to pinpoint the likely
compiler that generated the binary. Understanding compiler-
specific traits reveals optimizations and behaviors that influence
the binary’s performance and structure. In the realm of
security, particularly in malware classification, this knowledge
is crucial. The design of PROTST assumes that malware from
the same family is often compiled using the same (or a similar)
compiler [36]. Consequently, identifying the compiler used can
be instrumental in tracing malware’s origins and family.

A. Model Architecture

Figure 3 illustrates the model architecture of PROTST across
all binary analysis tasks. This unified architecture enables the
transfer of knowledge and representations between tasks. The
model comprises three components: (1) embedding module, (2)
backbone model, and (3) task head module.

1) Embedding Module: The embedding module is the first
step for processing binary code. It transforms the raw data of
a binary file, a sequence of bytes for further analysis by the
model. We define the input x as a sequence of byte tokens
of size n: x = {0x00, ..., 0xff}n. Each input byte xi 2 x is
represented as a one-hot encoded vector, e.g., a3 is encoded as
a 256 dimensional vector with all 0s but single 1 at position
163. In addition to the possible 256 byte values, we add 5
special tokens to the input vocabulary, including [CLS] at the
beginning and [SEP] at the end. [PAD] tokens are appended to
the end of the token sequence to ensure equal length for each
sequence. Token sequences that exceed the maximum length
limit are truncated. For tokens not found in the vocabulary,
we uniformly represent them with the special [UNK] token.
[Mask] tokens are applied to the input byte token to perform
MLM pre-training. Notably, we do not impose constraints on
the input sequence length n. This allows flexibility, enabling
byte sequences to span the entire binary program or focus on
specific subsets of instructions within a single binary.

Beyond byte-level information, capturing relative positions
within the code is crucial to understanding its meaning. Unlike
natural language, where the swapping of two words can roughly
preserve the same semantic meaning, swapping two bytes can
significantly change the instructions. To address this issue, a
widely used learned positional encoding method [1] is employed.
This method first transforms the one-hot encoded byte token xi

through an embedding Ebyte(xi). This embedding captures the
semantic meaning of the individual byte. We then incorporate
positional information into the model by applying a learned
positional encoding Epos(i) based on the specific position i of
the byte token xi. Lastly, a final input embedding is created,
Ei(xi), for the byte token by combining:

Ei(xi) = Ebyte(xi) + Epos(i) (1)

2) Backbone Model: The backbone model is the core
component for processing the embedded binary code generated
by the embedding module. We adopt a multi-layer transformer
encoder, RoBERTa [1], as the backbone model. The transformer
is a bidirectional language model based on the self-attention
mechanism, which allows it to capture contextual dependencies

between tokens (byte embeddings) at different levels of
abstraction.

The self-attention mechanism computes a weighted sum of
the input embeddings, where the pairwise similarity between
the tokens determines the weight. Let X = [x1, x2, ..., xn] be
a sequence of byte embeddings, where xi 2 Rd and d is the
embedding dimension. The self-attention mechanism can be
expressed as follows:

Attention(X) = softmax

✓
XWq(XWk)Tp

dk

◆
XWv (2)

where Wq , Wk, and Wv are learned weight matrices, and
dk is a scaling factor.

In the context of binary analysis, each xi represents an
embedded byte. The self-attention mechanism allows the model
to weigh the importance of each byte in the context of all
other bytes in the sequence. This enables the model to learn
complex relationships between bytes, even if they are not
directly adjacent in the sequence. For instance, the model can
learn that a byte representing a function call is related to
the bytes representing the corresponding function definition,
regardless of their distance in the binary.

Within our framework, we define a sequence of T binary
analysis tasks, with each task t 2 {1, 2, ..., T} employing a
dedicated instance of the RoBERTa transformer, denoted as Mt.
The knowledge transfer process proceeds sequentially through
this task chain. More specifically, we consider ⇥t to represent
the set of parameters for the model Mt. For the initial task
(t = 1), the model is trained on a labeled dataset D1, optimizing
its parameters to minimize a task-specific loss function L1:

⇥⇤
1 = argmin

⇥1

L1(M1(⇥1), D1) (3)

For subsequent tasks (t > 1), the knowledge acquired by the
previous model Mt�1 is transferred to initialize the parameters
of the current model Mt:

⇥init
t = ⇥⇤

t�1 (4)

Following this initialization, further fine-tuning is performed
on the task-specific dataset Dt, optimizing the parameters to
minimize the loss Lt:

⇥⇤
t = argmin

⇥t

Lt(Mt(⇥t), Dt) (5)

This iterative process of knowledge transfer and fine-
tuning allows each model Mt to benefit from the knowledge
accumulated by its predecessors in the task chain, leading
to a progressive refinement of representations and improved
performance on downstream tasks.

In contrast to the common practice of freezing certain model
parameters during fine-tuning, we allow all parameters in the
backbone to be updated during training for each task t [37].
This complete fine-tuning approach provides the model with
greater flexibility to adapt to the specific nuances of each task
and leads to improved performance (See Section V).
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Fig. 3: The model architecture of PROTST

3) Task Head Module: The BKA stage of PROTST encom-
passes a diverse set of tasks to accumulate knowledge about
binary code. Each task addresses a specific aspect of binary
analysis, and to facilitate this learning process, we equip the
backbone model with distinct task-specific “heads”. The heads
serve as interfaces that enable the model to apply the knowledge
from the backbone to the specific requirements of each task.
Masked Language Modeling Head. The MLM head ( 1
in Figure 3) operates during the initial pre-training stage. It
is designed to predict masked bytes within the binary code
by leveraging the context from surrounding tokens. This task
encourages the model to develop a fundamental understanding
of the structure and semantics inherent in the raw byte sequence,
akin to learning the vocabulary and grammar of a new language.

We adopt a configurable MLM strategy [3], where we
randomly mask a proportion pmask of the input bytes. Of these
masked bytes, a fraction preplace are replaced with the special
[MASK] token, while the remaining 1� preplace are replaced
with random bytes from the vocabulary {0x00, ..., 0xff}.

Formally, let x denote the original input byte sequence
and m

x the indices of the masked tokens. The masked input
sequence x

MLM can be expressed as:

x
MLM = REPLACE(x,mx

, [MASK]) (6)

The objective of the MLM head is to reconstruct the original
masked bytes, formulated as the following loss function:

LMLM = �
X

i2mx

logP (xi | xMLM ) (7)

This objective function drives the model to maximize the
probability of reconstructing the original masked bytes to learn
meaningful data representations.

Binary Task Heads. Following the MLM pre-training, PROTST
addresses seven distinct binary analysis tasks within the BKA
stage. We employ three types of task-specific heads, each
tailored to the particular classification problem.

Sequence-Level Classifier. We use this head for tasks that
necessitate the characterization of an entire byte sequence,
such as predicting function names, identifying compilers, or
classifying malware families (tasks 4 , 6 - 8 ). It operates on
the final hidden state h[CLS] corresponding to the [CLS] token
produced by the backbone model.

Token-Level Classifier. With this head, we focus on fine-grained
analysis of the byte sequence, where the goal is to assign a
class label to each individual byte (token). Tasks including
instruction and function boundary recovery (tasks 2 - 3 ) fall
into this category. For each token xi in the input sequence x,
the token-level classifier processes its corresponding hidden
state hi from the backbone model and produces an output yi.

Sequence Embedding Head. We use this head for the task of
function similarity detection ( 5 ). It generates a fixed-length
embedding representation e for an entire byte sequence x by ag-
gregating (e.g., averaging) the output embeddings h1, h2, ..., hn

from the backbone model. These sequence embeddings can
then be compared using cosine similarity or other suitable
distance metrics to assess the functional similarity between
different code segments.

The choice of loss function depends on the specific task.
For multi-class, multi-label classification tasks such as function
name prediction, we employ the binary cross-entropy loss with
logits (BCELogit Loss). For function similarity detection, which
involves embedding comparison, we use the Cosine Embedding
Loss. For all other standard multi-class classification tasks, the
Cross-Entropy Loss is employed. Detailed information on the
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ground truth for each task and the specific configuration of
each task head can be found in Appendix A.

Although PROTST involves a multi-stage pre-training pro-
cess, it utilizes only one instance of RoBERTa during inference.
This design allows for efficient adaptation to new tasks. If a
new binary analysis task needs to be added to the hierarchy,
only the new task after the insertion point requires further
training. For instance, if a new task needs to be placed after
function boundary recovery, we can leverage the pre-trained
checkpoints stored at that stage and continue fine-tuning the
new task.

IV. IMPLEMENTATION AND EVALUATION SETUP

We evaluate PROTST using seven binary tasks, each per-
formed on a distinct dataset. Since binaries within a single
dataset may exhibit similar patterns, this diversity in data
patterns is crucial to demonstrate PROTST’s generality. In this
paper, we focus on the x86 architecture, as it is prevalent
in BCE research involving multiple tasks [8], [9], [10]. The
summary of each dataset is provided in Table II and their details
are given in Appendix B.

A. Model Configuration

We configure PROTST with the pre-trained RoBERTa model,
using its default settings of 12 layers, 12 attention heads per
layer, and a hidden dimension of 768. The maximum input
sequence length is set to 512 tokens.
Pre-training. In this stage, we employ either a binary or project-
level split depending on the task. For instruction/function
boundary recovery and malware classification, a binary-level
split is used to ensure that the model is evaluated on entirely
unseen binaries. For other tasks, a project-level split is used
to ensure that data from different projects are kept separate
during pre-training and evaluation.

In both cases, the split ratio is 90% for pre-training and 10%
for evaluation. This setup aims to assess the model’s ability
to generalize to unseen data and avoid overfitting. During pre-
training, each task (teacher) is trained with a batch size of
96 samples for 20 epochs. The MLM pre-training task adopts
preplace of 0.5, which aligns with XDA [3].
Fine-tuning. For fine-tuning, we randomly select 100K samples
from the evaluation dataset of each task, except for malware
classification, where we use 10K samples due to limited data
availability in BIG2015. The selected samples are then split
into fine-tuning and testing sets. For tasks involving instruction
boundaries, compiler provenance, function signatures, and
function similarity detection, we allocate 1% of the samples for
fine-tuning and 99% for testing. With this train-test ratio, we
aim to minimize overfitting, better generalize to unseen data,
and expose the pre-trained teacher models to a much larger and
more diverse dataset than the student models to enable effective
knowledge transfer. A less strict split of 10% for fine-tuning
and 90% for testing is employed for other tasks. Similar to
pre-training, fine-tuning involves processing the data in batches
of 96 samples for 100 epochs.

B. Evaluation Metrics

To assess PROTST’s performance in binary analysis tasks,
we employ established evaluation metrics from previous work.

TABLE II: Binary datasets used to evaluate PROTST.

Dataset Data Size Task
Binutils [38] 1 project Masked Language Modeling
SPEC CPU [39], [40] 2.01G bytes Inst./Func. Boundary Prediction
BAP [12] 345M bytes Func. Boundary Prediction
BinKit [41] 75M functions Compiler Prov./Func. Signature Prediction
Symlm [4] 1.44M functions Func. Name Prediction
Binarycorp-3M [8] 404K functions Func. Similarity Detection
BIG2015 [42] 10860 files Malware Classification

Following recent work [3], [4], [6], the primary metric used
to evaluate most tasks in PROTST is the F1 score. To account
for potential class imbalances that might skew performance
assessments, we specifically employ the macro-F1 score variant.
This metric is computed by first calculating the F1-score for
each individual class, which is the harmonic mean of precision
and recall. Then we average the F1-scores across all classes,
which yields the macro-F1 score:

Macro-F1 =
1

|C|
X

c2C

F1c (8)

where |C| denotes the total number of classes, and F1c
represents the F1-score for class c. This ensures that all classes
contribute equally to the overall evaluation regardless of their
frequency in the dataset.

For the task of function similarity detection, we adopt the
Mean Reciprocal Rank (MRR) and Recall@k metrics from a
recent work [8]. MRR quantifies how well the model ranks
the most similar function (ground truth) relative to others for a
given query function:

MRR =
1

|Q|
X

qi2Q

1

rank(qgti )
(9)

where |Q| is the total number of query functions in the
evaluation set, qi represents a query function, qgti denotes its
ground truth counterpart, and rank(qgti ) indicates the position
of the ground truth function in the ranked list returned by the
model for query qi. A lower rank signifies a better result.

Recall@k, as a complementary metric, measures the propor-
tion of queries in which the ground truth function is included
within the top k results retrieved by the model:

Recall@k =
1

|Q|
X

qi2Q

I(rank(qgti )  k) (10)

where I(·) is an indicator function that equals 1 if the
condition inside the parentheses is true and 0 otherwise.

We note that some tasks within our framework have distinct
subtasks. Function signature prediction, for example, includes
predicting both argument count and return type. Similarly,
function similarity detection involves evaluating the similarity
at varying sizes (32 and 10K functions). To fully assess the
PROTST’s performance, we report metrics for each subtask.
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TABLE III: Results on instruction boundary recovery.

Model Class AverageStart Middle
Bi-RNN [19] 0.443 0.885 0.664
DeepDi [18] 0.765 0.998 0.881
PROTST0 0.61 0.906 0.758
PROTST 0.827 0.941 0.884

V. EVALUATION

We evaluate PROTST in seven diverse binary analysis
tasks using the datasets and evaluation metrics described
in Section IV. We present our findings through several key
research questions:

RQ1 Does the progressive teacher-student paradigm employed
by PROTST yield improved performance on downstream
binary analysis tasks compared to established baselines?

RQ2 To what extent does PROTST generalize to varying binary
optimization levels and code obfuscation techniques?

RQ3 How does the order of tasks in the BKA stage influence
knowledge transfer and impact overall performance?

RQ4 What is the computational efficiency of PROTST com-
pared to alternative approaches, and how does it scale
with task complexity and dataset size?

To ensure a fair comparison, in the experiments, all models
undergo the same fine-tuning procedure as for PROTST, detailed
in Section IV-A. All experiments were performed on a dedicated
server with eight AMD EPYC 7543 32-core processors, one
A100 GPU, 32GB memory, and 1TB SSD.

A. RQ1: Overall Binary Task Effectiveness

We present the performance of PROTST in each individual
task and compare it with the state-of-the-art method of each task.
For each task, we report the performance metrics of models
for each class within the dataset.

To further investigate the efficacy of the teacher-student
paradigm, we introduce a variant model, PROTST0. In contrast
to PROTST, which leverages fine-tuning on student tasks to re-
fine the transferred knowledge, PROTST0 directly leverages the
embeddings generated by the pre-trained teacher model. This
approach aligns with the principles of zero-shot learning [43],
in which a model is evaluated on unseen tasks without any task-
specific adaptation. The performance of PROTST0 is a critical
indicator of knowledge transferability by the teacher model,
as it relies solely on the teacher’s knowledge to generalize to
novel tasks.

1) Instruction Boundary Recovery: The instruction boundary
recovery task aims to classify each byte within a binary file
as either “Start” (the first byte of an assembly instruction) or
“Middle” (all other bytes within an instruction). We evaluate the
performance of PROTST against two baselines: the Bidirectional
Recurrent Neural Network (Bi-RNN) based method by Shin
et al. [19] and DeepDi [18], a graph neural network (GNN)-
based disassembler. It is important to note that DeepDi is a
commercial tool, and we leverage its functionality through its
provided API without fine-tuning the model under the same
experimental setup used for the other methods.

TABLE IV: Results on function boundary recovery.

Model Class AverageMiddle Start End
Bi-RNN [19] 0.997 0 0 0.332
DeepDi [18] 0.999 0.741 0.741 0.827
PROTST0 0.997 0.066 0.04 0.368
PROTST 0.999 0.849 0.897 0.915

Table III summarizes the results for this task. Our analysis
yields several key observations. First, PROTST achieves the
highest average F1-score of 88.4%, outperforming both Bi-
RNN (66.4%) and DeepDi (88.1%). Although DeepDi has
been trained on a larger dataset of binaries compared to the
fine-tuning setting used for PROTST, it still exhibits lower
performance in identifying Start classes, which represent a
minor class within the dataset (DeepDi: 76.5% vs. PROTST:
82.7%). This improvement is due to the knowledge transferred
from the MLM pre-training stage to instruction boundary
recovery. Second, PROTST0 exhibits competitive performance
over the Bi-RNN baseline; it yields an average F1-score
of 75.8%. This shows that the RoBERTa-based architecture
captures local patterns within binary code, even without task-
specific fine-tuning. Lastly, a consistent trend across all models
is the performance in classifying Middle bytes compared
to Start bytes. This disparity is due to the inherent class
imbalance, where middle bytes are significantly more prevalent
than start bytes, which poses a challenge for models to learn
discriminative features for the less frequent class.

2) Function Boundary Recovery: The function boundary
recovery task aims to classify each byte within a binary
file as either “Start of Function”, “Middle of Function”, or
“End of Function”. We evaluate PROTST against the same
methods used in instruction boundary recovery: Bi-RNN [19]
and DeepDi [18]. It is important to acknowledge a limitation
in DeepDi’s API for this task. It cannot differentiate between
Start and End classes. Consequently, we will report the average
F1-score for the combined Start/End class for DeepDi.

Similar to the instruction boundary recovery task, as shown
in Table IV, all models exhibit near-perfect performance on the
dominant Middle class but encounter difficulties in classifying
the less frequent Start and End classes due to the inherent class
imbalance in the dataset. Yet, PROTST significantly outperforms
both DeepDi and Bi-RNN, achieving an average 91.5% F1
score. Although DeepDi has been trained on a larger data
set of binaries compared to the fine-tuning setting used for
PROTST, it still exhibits lower performance in identifying the
Start and End classes (DeepDi: 74.1% vs. PROTST: 84.9% at
Start and 89.7% at End). This improvement is attributed to the
additional instruction boundary knowledge transferred from the
previous stage, which provides valuable contextual information
for function boundary recovery. Moreover, PROTST0, shows a
rudimentary ability to classify function boundaries and achieves
F1-scores of 6.6% and 4.0% for Start and End classes. This
surpasses the Bi-RNN baseline, which fails to identify any
patterns in these classes; this shows the effectiveness of the
RoBERTa-based architecture in capturing function boundaries
even without task-specific fine-tuning.

3) Compiler Provenance: The compiler provenance task
involves identifying both the compiler (GCC or Clang) and its
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TABLE V: Results on compiler provenance.

Model GCC Clang AverageO0 O1 O2 O3 Os Ofast O0 O1 O2 O3 Os Ofast
o-glasses [21] 0.157 0.346 0.04 0.005 0.013 0.079 0.397 0.137 0.001 0 0.221 0.157 0.129
Binprov [7] 0.888 0.663 0.27 0.221 0.517 0.228 0.918 0.321 0.228 0.125 0.389 0.231 0.416
PROTST0 0.485 0.317 0.048 0 0 0 0.578 0.243 0.043 0.1 0 0.016 0.153
PROTST 0.902 0.713 0.293 0.327 0.587 0.267 0.938 0.425 0.183 0.247 0.389 0.249 0.46

TABLE VI: Results on malware classification task.

Malware ClassModel Ramnit Lollipop Kelihos ver3 Vundo Simda Tracur Kelihos ver1 Obfuscator.ACY Gatak Average

IMCFN [22] 0.529 0.8 0.986 0.474 0.026 0.493 0.855 0.711 0.474 0.594
Malconv2 [17] 0.751 0.941 0.985 0.334 0.026 0.587 0.74 0.748 0.701 0.646
PROTST0 0.596 0.73 0.855 0.251 0 0.223 0.011 0.615 0.434 0.413
PROTST 0.824 0.948 0.986 0.837 0.182 0.795 0.871 0.862 0.905 0.801

specific optimization level (O0, O1, . . . ,Ofast) used to generate
a given binary file (see Appendix A for class descriptions). We
evaluate the performance of PROTST against two established
methods: O-glasses [21], which employs 1D convolutions to
analyze raw binary sequences for provenance, and Binprov [7],
which uses a transformer-based architecture with a traditional
two-stage training approach that operates directly on raw bytes.

Table V presents the results for this task. PROTST achieves
an average F1-score of 46%, outperforming both Binprov
(41.6%) and O-glasses (12.9%). Performance improvement
is evident in all classes. To better understand the impact of
knowledge transfer within PROTST, we compare its results
with PROTST0, which, despite outperforming O-glasses with
an average F1-score of 15.3%, exhibits a clear weakness
in identifying certain compiler-optimization combinations–
particularly GCC-O3, GCC-Os, GCC-Ofast, and Clang-Os–
where it achieves a zero F1-score. This suggests that fine-tuning
is crucial for achieving better generalization. Our results also
demonstrate that classifying binaries compiled with Clang is
more challenging than those compiled with GCC, as all models
exhibit lower performance on Clang-compiled binaries.

4) Malware Classification: In this task, we evaluate PROTST
in a malware classification task to identify the specific malware
class within a given binary file. We compare PROTST against
two established baselines: IMCFN [22], which uses a 2D-
CNN to extract image-like features from byte sequences, and
Malconv2 [17], which employs a 1D-CNN to directly extract
features from the raw 1D representation of the malware bytes.

As shown in Table VI, PROTST outperforms both IMCFN
(59.4%) and Malconv2 (64.6%), achieving an average F1-
score of 80.1%. We observe that performance improvement
is due to knowledge transfer enabled by the teacher-student
paradigm and the powerful representation learning capabilities
of the RoBERTa backbone, which together lead to learning
discriminative representations for each class. However, the
relatively small size (10K samples) of the BIG2015 dataset
limits the ability of PROTST0 to fully leverage the knowledge
transferred from the teacher model without fine-tuning, leading
to lower performance than the other models. Notably, all models
struggle with the Simda class, as Simda samples comprise only
0.4% of the total dataset.

5) Function Signature Prediction: The function signature
prediction task involves predicting two crucial aspects of a
function’s signature: (a) the return type and (b) the number
of arguments it accepts. We evaluate PROTST against two
established methods: EKLAVYA [20], which uses RNNs
to learn function type signatures, and Palmtree [10], which
leverages a transformer-based architecture that incorporates
data/control flow information on assembly code.

Table VII summarizes the results. Our analysis reveals that
PROTST outperforms both EKLAVYA and Palmtree in both
number of arguments prediction, 76.3% vs. 34.9% and 34.0%,
and return type prediction, 62.6% vs. 22.6% and 35.2%. While
Palmtree reports high accuracy in its experimental setting (237
binaries for training and 14 binaries for testing), it demonstrates
less adaptability to our more challenging fine-tuning setting.
This suggests that the domain-specific knowledge incorporated
by PalmTree through context window prediction (CWP) and
def-use prediction (DUP) tasks is less effective than the
knowledge transfer achieved through PROTST’s teacher-student
paradigm. Furthermore, PROTST0, performs competitively,
matching EKLAVYA’s performance in return-type prediction
(around 22% for both) and surpassing EKLAVYA and Palmtree
in number of arguments prediction (43.9% vs. 34.9% and
34.0%). However, PROTST0 fails to distinguish certain less
frequent return-type classes than EKLAVYA, particularly for
bool and char.

6) Function Name Prediction: The function name prediction
task involves assigning human-readable names to functions
within a binary file. We evaluate PROTST against two estab-
lished methods: Symlm [4], a transformer-based model that
leverages context-sensitive, execution-aware code embeddings
derived from assembly code, and Asm2vec [44], which employs
random walks on the CFG to sample instruction sequences,
and then utilizes the PV-DM [45] model for joint learning
of function embedding. It is important to note that function
name prediction involves assigning names from a vocabulary
of human-readable words; therefore, we report the micro-F1
score for this task.

As shown in Table VIII, PROTST achieves the highest aver-
age F1-score of 83.5%, outperforming both Asm2vec (60.4%)
and Symlm (77.8%). While Symlm incorporates contextual
information as multi-modal inputs, including execution traces
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TABLE VII: Results on function signature prediction: (Left) argument count prediction and (Right) return type prediction

Model Number of Arguments Class Average0 1 2 3 4 5 others
EKLAVYA [20] 0.149 0.321 0.325 0.282 0.585 0.121 0.659 0.349
Palmtree [10] 0.431 0.475 0.393 0.266 0.117 0.141 0.557 0.34
PROTST0 0.321 0.541 0.421 0.313 0.601 0.055 0.826 0.439
PROTST 0.853 0.84 0.755 0.737 0.783 0.436 0.94 0.763

Return Type ClassModel int char void double bool others Average

EKLAVYA [20] 0.074 0.035 0.779 0 0.065 0.407 0.226
Palmtree [10] 0.291 0.102 0.758 0.511 0.202 0.248 0.352
PROTST0 0.015 0 0.78 0.075 0 0.465 0.223
PROTST 0.549 0.495 0.876 0.694 0.423 0.724 0.626

TABLE VIII: Results on function name prediction.

Model Average
Asm2vec [44] 0.604
Symlm [4] 0.778
PROTST0 0.698
PROTST 0.835

and call graph embeddings, in our setting with a limited
fine-tuning dataset and demanding train-test split, it does not
achieve the same level of performance as PROTST, which
benefits from knowledge transfer from earlier tasks. Notably,
PROTST0 performs competitively, achieving an F1-score of
69.8%, surpassing Asm2vec [44]. This further demonstrates
the value of pre-trained knowledge embedded in PROTST.

7) Function Similarity Detection: The function similarity
detection task involves querying a pool of function embeddings
to identify the most similar function to a given binary func-
tion. We evaluate PROTST against two established methods,
Asm2vec [44] and jTrans [8], a transformer-based model that
embeds control flow graphs with assembly code as input. We
use MRR and Recall@1 metrics for different function pool
sizes (32 and 10K), as shown in Table IX. In Figure 4, we also
present Recall@1 results for various optimization combinations
across a broader range of pool sizes (i.e., 2, 10, . . . , 10K).

Our analysis reveals that the function similarity detection
task benefits from a richer vocabulary, granting jTrans an
inherent advantage due to its use of assembly code (over 10K
tokens [9]) compared to PROTST’s raw byte representation (256
tokens). This advantage is particularly evident for larger pool
sizes. However, even with this limitation, PROTST achieves
competitive results, particularly for smaller function pools (32
or fewer). We observe that PROTST shows a higher MRR and
Recall@1 for small pool sizes in most optimization settings.
For larger pool sizes, the performance gap between PROTST
and jTrans narrows to a 2% difference in average MRR. These
results show the effectiveness of the teacher-student learning
approach, where transferred knowledge (boundary and function-
level knowledge) improves the function similarity detection
accuracy. Furthermore, despite Asm2vec directly incorporating
function CFG information into its model, PROTST0 consistently
surpasses in both MRR and Recall@1 across all pool sizes,
which shows the benefit of pre-training.

B. RQ2: Generalization of PROTST

In Section V-A, we demonstrate the effectiveness of PROTST
in various binary analysis tasks and compare it with the state-of-
the-art methods. We now assess its generalization capabilities
in two key aspects: (1) PROTST’s performance on binaries
compiled with different optimization levels (e.g., O0, O1, O2),

and (2) its effectiveness under diverse code obfuscation tech-
niques. We benchmark PROTST against XDA [3] to highlight
the distinct advantages of the teacher-student learning paradigm.
XDA, a traditional two-stage training approach, serves as a
suitable baseline as it operates directly on raw byte sequences.

Optimization Levels. To assess PROTST’s ability to address
variations in compiler optimization, we categorize binaries
based on their optimization flags, ranging from minimal
optimization (O0) to aggressive levels (e.g., Ofast). We note that
specific optimization levels may vary depending on the compiler
and dataset. Due to the absence of optimization information
in the BIG2015 dataset, malware classification was excluded
from this evaluation. We then evaluated the performance of
both PROTST and XDA in these categorized datasets, with each
optimization level (or optimization pair for function similarity
detection) undergoing 100 fine-tuning epochs.

The results are presented in Figure 5. For instruction
boundary recovery, as expected, the initial task in our teacher-
student paradigm, both PROTST and XDA exhibit comparable
performance across optimization levels. However, for subse-
quent tasks, PROTST shows significantly improved effectiveness
compared to XDA, achieving an average performance improve-
ment of 18.4% at various optimization levels. This substantial
improvement is mainly due to the knowledge transfer with
teacher-student learning process, which improves the model’s
ability to generalize to unseen optimization settings.

Code Obfuscation. To assess the effectiveness of PROTST
against code manipulation techniques, we evaluate its perfor-
mance on obfuscated binaries. We used the llvm-obfuscator
tool [46] to obfuscate a set of 51 popular open-source software
projects (including binutils, curl, and gzip) with three distinct
methods: bogus control flow (bcf), instruction substitution (sub),
and control flow flattening (cff).

The obfuscation process required several modifications to
our initial evaluation setup. First, since only a single obfuscator
compiler (llvm-obfuscator) was used, the compiler prediction
aspect of the compiler provenance task was omitted, focusing
solely on predicting the optimization level. Second, applying
obfuscation methods resulted in insufficient complete binary
pairs (covering all optimization levels from O0 to Os) for
the function similarity detection task with a pool size of 10K.
Therefore, we report results using a smaller pool size of 1K
to ensure sufficient data for robust evaluation. Third, due to
the absence of corresponding source code in malware datasets,
which is required by llvm-obfuscator, malware classification
was excluded from this evaluation. We leveraged the binary
knowledge learned from the pre-trained models in PROTST,
without any pre-training on obfuscated binaries, and performed
fine-tuning on the obfuscated data following the strategy
outlined in Section IV-A.
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TABLE IX: Results on function similarity detection for pool sizes 32 and 10k.

MRRModel O0,O3 O1,O3 O2,O3 O0,Os O1,Os O2,Os Average

Asm2vec [44] 0.212/0.011 0.429/0.122 0.599/0.296 0.215/0.009 0.414/0.128 0.461/0.157 0.422/0.121
Jtrans [8] 0.762/0.267 0.911/0.611 0.976/0.762 0.815/0.323 0.926/0.631 0.934/0.625 0.887/0.536
PROTST0 0.537/0.13 0.857/0.359 0.948/0.672 0.574/0.146 0.823/0.326 0.852/0.389 0.766/0.337
PROTST 0.796/0.218 0.943/0.619 0.973/0.792 0.84/0.256 0.944/0.592 0.941/0.614 0.906/0.515

Fig. 4: The performance (Recall@1) of different models for binary code similarity detection with respect to pool size.

Fig. 5: Comparative performance of PROTST and XDA on various binary analysis tasks across different optimization levels.

Figure 6 summarizes the results. Our findings align with
those from the optimization-level experiments. We observe that
PROTST outperforms XDA, achieving an average improvement
of 16.6% across all obfuscation methods and tasks. This is a
notable improvement considering that PROTST was not pre-
trained on any obfuscated binaries. We postulate that explicitly
training the model on obfuscated code at the pre-training
stage could further improve its effectiveness against such code
manipulation techniques.

C. RQ3: Ablation Study on Knowledge Transfer

We investigate the impact of the staged design in PROTST’s
Binary Knowledge Accumulation (BKA) module, focusing
on how each preceding task influences the performance of
downstream tasks. To investigate this, we conduct ablation
experiments to evaluate two configurations of the BKA stage
with altered task orders (C-A and C-B), as depicted in Figure 7.

Table X summarizes the ablation study results. Due to the
similarity between C-A and C-B, only the differing settings and

their corresponding results are reported for C-B. We exclude
function name prediction and malware classification from
evaluation as teacher modules since they are leaf tasks in both
configurations. Similarly, function similarity detection, a leaf
task in C-A, does not serve as a teacher in that configuration.

In summary, detailed below, our results demonstrate a consis-
tent trend: Each task’s performance improves by incorporating
prior knowledge from the preceding teacher tasks. As we
progress from a lower ID (less prior knowledge) to an adjacent
higher ID (more prior knowledge), we observe a minimum
performance gain of 2%. Notably, comparing the best results
(bolded in the table) for each task with the traditional two-stage
training baseline (ID-1) reveals a consistent improvement of an
average 14.8% with at least 5% across all downstream tasks.
Impact of Task Order. We observe that C-B surpasses C-A
in function signature prediction, demonstrating notably higher
performance for both the prediction of the number of arguments
(76.3% in ID-6 compared to 62.6% in ID-3) and return type
(62.6% in ID-6 compared to 61.3% in ID-3). Similarly, function
name prediction also benefits from the task order in C-B,
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Fig. 6: Comparative performance of PROTST and XDA on various binary analysis tasks under different obfuscation methods.

TABLE X: Analyzing task effectiveness in our design choices. Each row corresponds to a model pre-trained with a specific
combination of task modules listed in the “Teacher Modules” column. Row ID � 0 serves as the baseline without pre-training
and row ID � 1 represents the traditional two-stage framework with only MLM pre-training. A dash (-) indicates no result for a
specific student task under a particular combination of teacher modules.

Teacher Modules Student TasksID Config.
MLM Inst Boun Func Boun Func Sim Func Sig Comp Prov Inst Boun Func Boun Func Sig Count Func Sig Type Func Name Func Sim 32 Func Sim 10000 Comp Prov Mal CLS

0 0.871 0.478 0.529 0.495 0.641 0.768 0.257 0.368 0.714
1 3 0.884 0.492 0.538 0.556 0.693 0.791 0.282 0.406 0.73
2 3 3 - 0.915 0.62 0.587 0.788 0.816 0.29 0.449 0.743
3 3 3 3 - - 0.626 0.613 0.805 0.827 0.332 0.46 0.787
4 3 3 3 3 - - - - 0.814 0.865 0.393 - -
5

A

3 3 3 3 - - - - - - - - 0.801
6 3 3 3 3 - - 0.763 0.626 0.81 - - - -
7

B
3 3 3 3 3 - - - - 0.835 0.906 0.515 - -
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Function Similarity
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Function Signature
Prediction
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Prediction

Function Similarity
Detection

Function Signature
Prediction

Function Name
Prediction C-A
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Fig. 7: Different knowledge transfer configs (C-A and C-B).

reaching 83.5% accuracy (ID-7) compared to 81.4% in C-
A (ID-4). This improvement is attributable to the inclusion
of function similarity detection as an additional teacher task
in C-B, which provides the model with valuable knowledge
beneficial for the downstream tasks.

However, C-B presents a trade-off. Although it excels in
function signature and name prediction, its performance in
function similarity detection is marginally diminished compared
to C-A. In C-A, function similarity detection achieves 86.5%
accuracy for a function pool size of 32 (ID-4), and 39.3% for
a pool size of 10K (ID-4). In contrast, when placed earlier in
the BKA hierarchy in C-B (ID-3), it receives less knowledge
accumulated from previous tasks, resulting in slightly lower
performance (82.7% for a pool size of 32 and 33.2% for a
pool size of 10K). This finding underscores the significance
of task order, as tasks positioned later in the hierarchy can
leverage accumulated knowledge from teacher tasks and lead
to improved performance.
Impact of Cyclical Transfer. We investigate cyclical knowl-

edge transfer within the BKA module, where tasks iteratively
refine each other’s representations. Specifically, we show that
one task can enhance the embeddings of another, subsequently
improving the original task through this refined knowledge.
We illustrate this using function similarity detection (ID-7
in C-B), where function signature prediction (ID-7) benefits
from having function similarity detection as an additional
teacher task compared to C-A (ID-4). The knowledge gained
from function similarity detection during pre-training enhances
function signature prediction accuracy, which is then transferred
back to function similarity detection during fine-tuning. We
ensure no data leakage by keeping the fine-tuning and pre-
training data separate (Section IV-A).

Our results demonstrate significant improvements in func-
tion similarity detection when it serves as a teacher task for
function signature prediction. ID-7 outperforms ID-4 (pool
size 32: 90.6% vs. 86.5%; pool size 10K: 51.5% vs. 39.3%).
This cyclical transfer strategy, applicable to any task configura-
tion, opens avenues for diverse teacher-student combinations,
potentially enhancing the performance of all involved tasks.

D. RQ4: Pre-training Effectiveness

To evaluate PROTST’s efficiency in adapting to new tasks
with limited data and fine-tuning epochs, we perform two
experiments. First, we analyze the number of fine-tuning epochs
required for PROTST to achieve the desired performance on
validation data. This enables us to evaluate how effectively the
model can adapt to new tasks with limited fine-tuning. Second,
we examine the impact of limiting the number of training
samples used in the teacher’s tasks during pre-training. This
simulates resource constraints and assesses the generalizability
of PROTST to such limitations. We benchmark PROTST against
XDA [3], a model that lacks progressive knowledge transfer.
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Fig. 8: Convergence analysis of validation scores between PROTST and XDA.

Fig. 9: The results of data scaling experiments.

Fine-tuning Epochs. We assess whether PROTST requires fewer
fine-tuning epochs than XDA to exceed a chosen performance
threshold on the validation data. A lower number of epochs
indicates faster convergence and suggests that the pre-trained
model is equipped with richer knowledge, which allows for a
quicker adaptation to new tasks. We note that the instruction
boundary recovery task, being the first task, is expected to
exhibit the same convergence speed. Therefore, we exclude
this task from the fine-tuning epoch comparison.

Figure 8 presents the convergence analysis of the validation
scores between PROTST and XDA. PROTST requires fewer fine-
tuning epochs to exceed a given threshold than XDA in all
downstream tasks. For example, in the compiler provenance
task, XDA requires 30 epochs to reach an F-1 score of 0.3,
while PROTST achieves this in approximately 10 epochs. Across
most binary tasks, it shows an average convergence of two to
three times faster than XDA to reach a specific performance
threshold. This is because the BKA module accumulates
different types of binary knowledge progressively, and the
acquired knowledge base facilitates faster convergence during
fine-tuning on downstream tasks.
Data Scaling. To investigate the impact of pre-training data
size on the performance of PROTST, we evaluate four scenarios:
The model is fine-tuned directly without any pre-training stage
(S1), pre-trained using only 33% of the available data (S2),
pre-trained using only 66% of the available data (S3), and
pre-trained using the entire dataset (S4).

As shown in Figure 9, the model performance suffers signif-
icantly (with an average drop of 17.6%) when no pre-training is
applied (S1). This observation highlights the importance of pre-
training in equipping the model with foundational knowledge
for effective downstream performance. Interestingly, we observe

that the fine-tuned models achieve a similar validation score.
Even when pre-trained with only 33% (S2) or 66% (S3) of
the data, the decrease in the validation score compared to the
entire dataset pre-training (S4) is minimal, staying within the
range 4% for most binary tasks. This suggests that we can
potentially achieve similar performance levels while using a
reduced amount of pre-training data; this demonstrates the
efficiency of PROTST’s pre-training process and its ability to
leverage a smaller dataset.

VI. DISCUSSION AND LIMITATIONS

Due to computational constraints, we opted for raw byte
input, as assembly code possesses a significantly larger vo-
cabulary [9], which would lead to a significantly longer
convergence time in our multi-stage pre-training framework;
however, the core knowledge transfer technique of PROTST
remains applicable to assembly code by substituting our raw-
byte backbone model with an assembly-based one from previous
studies [4], [5], [8], [9], [10]. This adaptability enables the
incorporation of additional binary analysis tasks, including
those based on assembly-level input, into the PROTST’s learning
process, potentially enhancing its overall capabilities. Future
work will explore tasks such as vulnerability search, indirect call
recognition, and memory dependency analysis within PROTST.

The hierarchical task order in PROTST is currently manually
determined based on the logical flow of binary knowledge.
However, due to computational constraints, the optimal task
ordering for PROTST has not been fully explored. A promising
future direction involves leveraging curriculum learning [47]
to extend PROTST to new tasks and optimize the task order in
a more systematic manner. Additionally, to accommodate an
increasing number of tasks efficiently, lightweight fine-tuning
approaches such as LoRA [48] or sparse transformers such as
Longformer [49] could be employed to enable faster and more
scalable fine-tuning.

Although we primarily focus on the x86 architecture due
to space constraints, PROTST is readily applicable to other
instruction sets, such as ARM and MIPS, particularly with
datasets like [41] that include binaries for these architectures.
PROTST requires only the ground truth of binary tasks, which
can be readily obtained from labeled datasets or through
straightforward manual extraction. Future work will explore
the application of PROTST to these architectures.

PROTST leverages parameter-based knowledge transfer.
Alternative methods such as feature-based and unified-loss
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learning offer distinct approaches to knowledge transfer. In
feature-based transfer learning, each task generates feature
embeddings as supplementary input for subsequent tasks within
the hierarchical structure. This facilitates the propagation of
knowledge from earlier to later tasks through these learned
representations. Unified-loss learning, on the other hand, treats
all task-specific loss functions as a single, unified loss, thereby
supervising all tasks simultaneously. This approach allows
knowledge transfer to benefit from the backpropagation of
gradients from later tasks to earlier ones, potentially leading
to further refinements in the learned representations. However,
both require the design of a specialized model architecture
and a training procedure. We are actively investigating the
implementation and evaluation of both feature-based and
unified-loss within the PROTST framework.

VII. CONCLUSION

We introduce PROTST, a Progressive Teacher-Student Bi-
nary Analysis framework specifically designed to enhance both
the accuracy and efficiency of binary analysis tasks. Unlike
traditional two-stage training approaches, PROTST employs
a hierarchical tree structure that facilitates a progressive
knowledge transfer from fundamental to more specialized tasks.
This hierarchical design ensures a natural and logical flow of
information, where foundational tasks establish a robust base for
more complex tasks. This progressive approach minimizes the
reliance on external tools and avoids the tedious processes
associated with reverse engineering and feature extraction,
thereby simplifying the incorporation of binary code knowledge.
Our extensive evaluations underscore the efficacy of PROTST
in a broad range of binary analysis tasks. The results of
intensive testing reveal that our progressive teacher-student
framework significantly exceeds existing methods regarding
learning efficiency and task performance. We believe that
our method opens up new avenues for research and offers
a promising starting point for future work.
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APPENDIX A
BINARY TASK HEAD DETAILS

PROTST contains different heads for seven different binary
tasks integrated into its model architecture.
Instruction Boundary Recovery Head. Instruction boundary
recovery ( 2 ) aims to identify the starting points of the
instructions and whether subsequent bytes belong to the same
instruction sequence. Give an input byte sequence x of length
n, the corresponding ground truth y

IB is another sequence of
labels of the same length n:

y
IB = {yIB1 , y

IB
2 , ..., y

IB
n } (11)

where each element yIBi in the sequence belongs to the set
{SI,MI}. Here, “SI” denotes the “Start of Instruction” and
“MI” denotes “Middle of Instruction”. Each byte xi in the
input sequence is assigned a corresponding label yIBi in the
ground-truth sequence. To train the model effectively for this
token-level classification task, a cross-entropy loss function
is employed. This function measures the difference between
the predicted probabilities for each byte’s class (SI or MI)
and the actual ground truth labels. Mathematically, it can be
represented as:

LIB = �
nX

i=1

CX

c=1

y
IB
i,c logP (yIBi,c | xi) (12)

where C is the number of classes (2 in this task, SI and MI)
and y

IB
i,c is a binary indicator (0 or 1) that is 1 if the true class

of the i-th byte is c. In simpler terms, this objective compares
the true class labels for each byte xi against the predicted
probabilities across all possible classes C (SI and MI).
Function Boundary Recovery Head. Function boundary
recovery ( 3 ) aims to identify the starting point, the continuation
within the function, and the end point of functions within
binary files. Given an input byte sequence x of length n, the
corresponding ground truth label y

FB is another sequence
of labels of the same length n. This can be mathematically
expressed as:

y
FB = {yFB

1 , y
FB
2 , ..., y

FB
n } (13)

where each element y
FB
i in sequence belongs to the set

{SF,MF,EF}. Here, “SF” denotes the “Start of Func-
tion”,“MF” denotes the “Middle of Function”, and “EF” denotes
the “End of Function”. Each byte xi in the input sequence
is assigned a corresponding label y

FB
i in the ground-truth

sequence. To train the model effectively for this token-level
classification task, a cross-entropy loss function is employed.
This function measures the difference between the predicted
probabilities for each byte’s class (SF , MF or EF ) and the
actual ground truth labels. Mathematically, it can be represented
as:

LFB = �
nX

i=1

CX

c=1

y
FB
i,c logP (yFB

i,c | xi) (14)

where C is the number of classes (3 in this task, SF , MF

and EF ) and y
IB
i,c is a binary indicator (0 or 1) that is 1 if the

true class of the i-th byte is c. In simpler terms, this objective
compares the true class labels for each byte xi against the
predicted probabilities across all possible classes C (SF , MF

and EF ).
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Function Signature Prediction Head. Function signature
prediction ( 4 ) aims to identify the number of arguments a
function takes and its return data type. Given a binary function
represented by its byte sequence x, the corresponding ground
truth y

FS that defines the function’s signature. This can be
mathematically expressed as:

y
FS = {yFS

n , y
FS
t } (15)

where y
FS
n represents the number of arguments the function

takes. It can take values from the set {1, 2, 3, 4, 5, “others”}.
The “others” category encompasses functions with more than 5
arguments. yFS

t represents the return data type of the function.
It can take values from the set {int, char, void, double, bool,
“others”}. The “others” category encompasses the less common
data types. To train the model effectively for this sequence-
level classification task, a cross-entropy loss function is used.
This function measures the difference between the predicted
probabilities for each aspect of the signature (number of
arguments and return type) and the actual ground truth labels.
Mathematically, it can be represented as:

LFS = �
 CnX

c=1

y
FS
n,c logP (yFS

n,c | x)

+
CtX

d=1

y
FS
t,d logP (yFS

t,d | x)
�

(16)

where Cn is the number of classes for the number of arguments
(e.g., 1, 2, 3, 4, 5, ”others”), Ct is the number of classes for the
return data type (e.g., int, char, void, double, bool, ”others”).
y
FS
n,c is a binary indicator (0 or 1) that is 1 if the true class

of the number of arguments is c. yFS
t,d is a binary indicator

(0 or 1) that is 1 if the true class of the return data type is
d. This cross-entropy loss function combines the losses for
both predictions into a single loss function by summing the
individual cross-entropy losses for each attribute.
Function Similarity Detection Head. Function similarity
detection ( 5 ) aims to assess the degree of similarity between
two code snippets represented in binary code. Given a pair
of functions x1 and x2, the backbone model processes each
function separately, generating embeddings E

x1 and E
x2 .

These embeddings capture the essential characteristics of the
respective functions. The model then determines the similarity
between the functions. The ground truth label y takes on a value
of either 1 or -1 (1 indicates similar functions and -1 indicates
dissimilar functions). To calculate the function embedding,
the model first averages the individual embeddings generated
by the backbone model for each function E

x
i . This averaged

embedding is then fed into a 2-layer Multi-Layer Perceptron
(MLP) network. The MLP network further processes the
averaged embedding to produce a final output that reflects the
predicted similarity between the functions. The final embedding
of function can be mathematically expressed as:

F(x) = MLP

 
1

N

NX

i=1

Ex
i

!
(17)

We use cosine embedding loss to train this task. Given two
function embeddings, the loss can be formulated as:

LCE =

⇢
1� cos(F(x1),F(x2)) if y = 1
max(0, cos(F(x1),F(x2))�m) if y = �1

where cos(F(x1),F(x2)) denotes the cosine similarity between
the embeddings F(x1) and F(x2). m is a margin that helps
to distinguish dissimilar pairs, typically 0  m  1. This
cosine embedding loss encourages the model to maximize the
similarity for similar functions and minimize it for dissimilar
ones.
Function Name Prediction Head. Function name prediction
( 6 ) aims at predicting the names assigned to functions within
binary code. Given a binary function represented by its byte
sequence x, the corresponding ground truth y

FN is a sequence
of words that represents the function name. This can be
mathematically expressed as:

y
FN = {wFN

1 , w
FN
2 , ..., w

FN
n | wFN

i 2 V }, (18)

where w
FN
i represents an individual word within the sequence

of predicted function names. V represents the complete
vocabulary of possible function names.

This vocabulary consists primarily of English words but
may also include: (1) Developer-chosen terms such as ab-
breviations, data types (e.g., int, float), (2) numbers, and (3)
misspellings. To address challenges such as morphological
variations (word form differences) and frequent occurrences
of out-of-vocabulary (OOV) words in function names, we
follow the pre-processing strategy [4], which involves splitting,
segmenting, and lemmatizing (converting words to their base
form) function names. Additionally, we adjust thresholds to
filter out function names containing tokens that appear either
too frequently or infrequently in the training data. This helps
ensure a more balanced and fair learning process for the model.
The task is framed as a multi-class, multi-label classification
problem. We employ the BCElogit loss to solve this task.
Mathematically, this loss function can be formulated as:

LFN = �
nX

i=1

|V |X

j=1


y
FN
i,j log �(P (wFN

i,j | x))

+ (1� y
FN
i,j ) log(1� �(P (wFN

i,j | x)))
�

(19)

where n is the length of the function name sequence, |V | is the
size of the vocabulary V . yFN

i,j is a binary indicator (0 or 1)
that is 1 if the i-th word in the function name is the j-th word
in the vocabulary V . � represents the sigmoid function, which
converts logits into probabilities. This loss function measures
the discrepancy between the predicted probabilities and the
actual labels for each word in the function name.
Compiler Provenance Head. Compiler provenance ( 7 ) aims
to identify the compiler and optimization level used to generate
a binary file. Given a binary file represented by its byte sequence
x, the model predicts a pair of labels y

CP . This pair identifies
the compiler and the optimization level used for compilation.
This can be expressed as:

y
CP = {yCP

c , y
CP
o } (20)

where y
CP
c represents the compiler used. For instance, it

can take values from the set {clang, gcc}, indicating either the
“clang” or “gcc” compiler. yCP

o represents the optimization
level. It takes values from the set {O0, O1, O2, O3, Os,
Ofast}, signifying different optimization levels offered by the
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compilers. To train the model effectively for this sequence-
level classification task, a cross-entropy loss function is used.
This function measures the difference between the predicted
probabilities for each aspect of the signature (compiler and its
optimization) and the actual ground truth labels. Mathematically,
it can be represented as:

LCP = �
 CcX

c=1

y
CP
c,c logP (yCP

c,c | x)

+
CoX

o=1

y
CP
o,o logP (yCP

o,o | x)
�

(21)

where Cc is the number of compiler classes (e.g., clang, gcc),
Co is the number of optimization level classes (e.g., O0, O1,
O2, O3, Os, Ofast). yCP

c,c is a binary indicator (0 or 1) that is 1
if the true class for the compiler is c. yCP

o,o is a binary indicator
(0 or 1) that is 1 if the true class for the optimization level is
o. This loss function combines the errors from the predicted
probabilities of both the compiler and the optimization level
into a single objective.
Malware Classification Head. Malware classification ( 8 ) aims
to categorize a binary file into a specific type of malware family
based on its byte sequence. Given a malware file represented by
its byte sequence x, the model predicts a label yMC . This label
corresponds to a specific malware family from a predefined list
in the BIG2015 dataset [42]. The list includes malware families
like Ramnit, Lollipop, Kelihosver3, and others. To train the
model effectively for this sequence-level classification task, a
cross-entropy loss function is used, which can be formulated
as

LMC = �
KX

k=1

y
MC
k logP (yMC

k | x) (22)

where K is the number of malware family classes (9 in
this task, BIG2015 [42] contains 9 malware families). yMC

k
is a binary indicator (0 or 1) that is 1 if the correct class
for the malware family is k. This loss function evaluates
the discrepancy between the predicted probabilities for each
malware family and the actual ground truth labels, guiding the
model to improve its classification accuracy.

APPENDIX B
DATASET DETAILS

We present the details of the datasets used to evaluate
PROTST below.
Binutils. This dataset [38] is generated by compiling the GNU
Binutils package with its default settings. It serves as the
training data for the MLM pre-training stage.
SPEC CPU. This dataset includes binaries from various
benchmarks (SPEC CPU 2017 [39] and 2006 [40]), compiled
with different configurations. SPEC CPU 2017 includes 588
binaries, while SPEC CPU 2006 has 333. They are used for
instruction and function boundary recovery.
BAP. This dataset [12] contains 2,200 binaries from open-
source programs across various platforms (Windows, Linux)
and architectures (x86, x64). It’s used for function boundary
recovery.

BIG2015. This dataset [42] consists of 10,868 malware
samples categorized into nine families. It’s used for malware
classification.
Binkit. This dataset [41] features 243,128 binaries with
75,230,573 binary functions derived from 51 distinct software
packages, compiled using a diverse array of options across
compilers and architectures. It’s used for tasks like compiler
provenance and function signature prediction.
SymLM. This dataset [4] includes 16,027 binaries and
1,431,169 functions derived from 27 open-source projects,
compiled across multiple architectures and optimization levels
using gcc-7.5. It’s used for function name prediction.
Binarycorp-3M. This dataset [8] encompasses approximately
3.6 million functions extracted from 10,265 binary programs
compiled using gcc and g++ based on ArchLinux packages.
It’s used for function similarity detection.
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