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Abstract
Metric magnitude is a measure of the “size” of point clouds
with many desirable geometric properties. It has been adapted
to various mathematical contexts and recent work suggests
that it can enhance machine learning and optimization algo-
rithms. But its usability is limited due to the computational
cost when the dataset is large or when the computation must
be carried out repeatedly (e.g. in model training). In this pa-
per, we study the magnitude computation problem, and show
efficient ways of approximating it. We show that it can be cast
as a convex optimization problem, but not as a submodular
optimization. The paper describes two new algorithms – an it-
erative approximation algorithm that converges fast and is ac-
curate, and a subset selection method that makes the compu-
tation even faster. It has been previously proposed that magni-
tude of model sequences generated during stochastic gradient
descent is correlated to generalization gap. Extension of this
result using our more scalable algorithms shows that longer
sequences in fact bear higher correlations. We also describe
new applications of magnitude in machine learning – as an ef-
fective regularizer for neural network training, and as a novel
clustering criterion.

1 Introduction
Magnitude is a relatively new isometric invariant of metric
spaces. It was introduced to characterize ecology and bio-
diversity data, and was initially defined as an Euler Charac-
teristic of certain finite categories (Leinster 2008). Similar
to quantities such as the cardinality of a point set, the di-
mension of vector spaces and Euler characteristic of topo-
logical spaces, Magnitude can be seen as measuring the “ef-
fective size” of mathematical objects. See Figure 1 for an
intuition of Magnitude of Euclidean points. It has been de-
fined, adapted and studied in many different contexts such
as topology, finite metric spaces, compact metric spaces,
graphs, and machine learning (Leinster 2013; Leinster and
Willerton 2013; Barceló and Carbery 2018; Leinster 2019;
Leinster and Shulman 2021; Kaneta and Yoshinaga 2021;
Giusti and Menara 2024).

In machine learning and data science, the magnitude of a
point cloud can provide useful information about the struc-
ture of data. It has recently been applied to study the bound-
ary of a metric space (Bunch et al. 2021), edge detection for
images (Adamer et al. 2024), diversity (Limbeck et al. 2024)
and dimension (Andreeva et al. 2023) of sets of points in
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Figure 1: Consider the magnitude function of a 3-point
space, visualized above at different scales. (a) For a small
value of the scale parameter (e.g. t = 0.0001), all the three
points are very close to each other and appears as a single
unit. This space has magnitude close to 1. (b) At t = 0.01
the distance between the two points on the right is still small
and they are clustered together, and the third point is farther
away. This space has Magnitude close to 2 (c) When t is
large, all the three points are distinct and far apart, and Mag-
nitude is 3.

Euclidean space, with applications in data analysis as well
as generalization of models (Andreeva et al. 2024). Wider
applications of magnitude are limited by the computation
cost. For a set of n points, the standard method of comput-
ing Magnitude requires inverting an n ⇥ n matrix. The best
known lower bound for matrix multiplication and inversion
is ⌦(n2 log n) (Raz 2002); the commonly used Strassen’s al-
gorithm (Strassen 1969) has complexity O(n2.81)1. By defi-
nition, Magnitude computation requires consideration of all
pairs of input points, making it expensive for large datasets.
Our contributions. In this paper, we take the approach that
for many scenarios in data science, an approximate yet fast
estimate of magnitude is more likely to be useful, particu-
larly in real-world modern applications where datasets and
models are large and noisy and often require repeated com-
putation.

Given a point set X ⇢ RD, we first show (Section 3.1)
that the problem of computing the magnitude Mag(X) can
be seen as finding the minimum of a convex function, and

1Faster algorithms for matrix inversion exist, such as the
Coppersmith-Winograd algorithm (Coppersmith and Winograd
1990) with running time O(n2.376) and Optimized CW-like algo-
rithms with the best running time O(n2.371552) (Williams et al.
2024).
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thus can be approximated using suitable gradient descent
methods. Next, in Section 3.2 we define a new algorithm
that iteratively updates a set of weights called the Magni-
tude weighting to converge to the true answer. This method
converges quickly and is faster than matrix inversion or gra-
dient descent.

While avoiding inversion, both these methods need n⇥ n

matrices to store and use all pairs of similarities between
points. To improve upon this setup, we take an approach of
selecting a smaller subset S ⇢ X of representative points
so that Mag(S) approximates Mag(X). We first prove that
Magnitude is not a submodular function, that is, if we suc-
cessively add points to S, Mag(S) does not satisfy the rel-
evant diminishing returns property. In fact, for arbitrarily
high dimension D, the increase in Mag(S) can be arbitrarily
large with the addition of a single point. Though in the spe-
cial case of D = 1 Mag(S) is in fact submodular, and the
standard greedy algorithm (Nemhauser, Wolsey, and Fisher
1978) for submodular maximization can guarantee an ap-
proximation of (1 � 1/e) (Section 3.3). In practice, the
greedy algorithm is found to produce accurate approxima-
tions on all empirical datasets – both real-world ones and
synthetic ones. This algorithm adds points to S one by one;
in each step it iterates over all remaining points to find the
one that maximizes Mag(S). These magnitude computa-
tions are faster due to the smaller size of S, but the costs
add up as they are repeated over X .

Section 3.4 describes an approach to speed up the ap-
proximations further. It uses properties of Magnitude such
as monotonicity and growth with scale, to develop a selec-
tion method – called Discrete centers – that does not require
repeated computation of Magnitude. It is particularly useful
for computing the Magnitude Function – which is magni-
tude as a function of scale, and useful in dimension com-
putation (Andreeva et al. 2023). This method can also eas-
ily adapt to dynamic datasets where points are added or re-
moved. Faster estimates of magnitude allows new applica-
tions of Magnitude in machine learning. Section 4 describes
use of Magnitude as a regularizer for neural network, and
a clustering algorithm similar to density based clustering
methods, using Magnitude as a clustering criterion.

Experiments in Section 5 show that the approximation
methods are fast and accurate. Iterative Normalization out-
performs inversion for larger dataset sizes and converges
fast; for the subset selection algorithms, Discrete centers ap-
proximates the Greedy Maximization approach empirically
at a fraction of the computational cost. The more scalable
computation allows us to produce new results in the topic
of generalization, where we extend prior work on comput-
ing topological complexities based on magnitude (Andreeva
et al. 2024) to a larger number of training trajectories, ex-
tending from 5⇥103 due to computational limitations to 104,
and observe that the correlation coefficients average Granu-
lated Kendall ( ) and Kendall tau (⌧ ) improve significantly
with the increased number of trajectories. The new regular-
ization and clustering methods based on Magnitude are also
shown to be effective in practice.

In the next section, we cover the technical background.
Related works and discussion can be found in Section 6.

2 Technical Background
This section introduces the definitions needed for the rest of
the paper.

2.1 Metric Magnitude
For a finite metric space (X, d) with distance function d, we
define the similarity matrix ⇣ij = e

�dij for i, j 2 X . The
metric magnitude Mag(X, d) is defined (Leinster 2013) in
terms of a weighting as follows.
Definition 1 (Weighting w). A weighting of (X, d) is a func-

tion w : X ! R such that 8i 2 X,
P

j2X ⇣ijw(j) = 1.

We refer to the w(i) as the magnitude weight of i, and
interchangeably write it as wi.
Definition 2 (Metric Magnitude Mag(X, d)). The magni-

tude of (X, d) is defined as Mag(X, d) =
P

i2X w(i),
where w is a weighting of (X, d).

The existence of a suitable w, and therefore magnitude of
(X, d) is not guaranteed in general, but it exists for finite
point clouds X ⇢ RD with the ambient metric. In practice,
metric magnitude is often computed by inverting the simi-
larity matrix ⇣ and summing all the elements:

Mag(X, d) =
X

ij

(⇣�1)ij . (1)

Observe that when X is a finite subset of RD, then ⇣ is
a symmetric positive definite matrix, and the inverse ex-
ists (Leinster 2013).

Magnitude is best illustrated when considering a few sam-
ple spaces with a small number of points. For example, with
a single point a, ⇣X is a 1 ⇥ 1 matrix with ⇣

�1
X = 1 and

Mag(X) = 1. (When distance measure d is understood,
such as in R

D, we often omit it in the notation.)
Example 1. Consider the space of two points. Let X =
{a, b} be a finite metric space where d(a, b) = d. Then

⇣X =


1 e

�d

e
�d 1

�
,

so that ⇣
�1
X = 1

1�e�2d


1 �e�d

�e�d 1

�
,

and therefore

Mag(X) =
2� 2e�d

1� e�2d
=

2

1 + e�d
.

More information about a metric space can be obtained by
looking at its rescaled counterparts. The resulting represen-
tation is richer, and is called the magnitude function, which
we describe next.

2.2 Scaling and the Magnitude Function
For each value of a parameter t 2 R+, we consider the space
where the distances between points are scaled by t, often
written as tX .
Definition 3 (scaling and tX). Let (X, d) be a finite metric

space. We define (tX, dt) to be the metric space with the

same points as X and the metric dt(x, y) = td(x, y).



Definition 4 (Magnitude function). The magnitude function

of a finite metric space (X, d) is the function t 7! Mag(tX),
which is defined for all t 2 (0,1).

This concept is best illustrated by Figure 1.
Magnitude Function is important in computing magni-

tude dimension, which is a determined by growth rate of
Mag(tX) with respect to t. It is a quantity similar to fractal
dimension and useful in predicting generalization of models
computed via gradient descent (Andreeva et al. 2023).

2.3 Submodular Functions and Maximization
Algorithm

The notion of submodularity is inspired by diminishing re-
turns observed in many real world problems.

Definition 5 (Submodular Function). Given a set V , a func-

tion f : 2V ! R is submodular set function if:

8S, T ✓ V, f(S) + f(T ) � f(S [ T ) + f(S \ T ).

The definition implies that marginal utility of items or
subsets are smaller when they are added to larger sets. An
example is with sensor or security camera coverage, where
the marginal utility of a new camera is smaller then its own
coverage area as its coverage overlaps with existing cameras.

The submodular maximization problem consists of find-
ing a subset S ⇢ V of a fixed size k that maximizes the
function f . It shows up in various areas of machine learn-
ing, such as active learning, sensing, summarization, feature
selection and many others. See (Krause and Golovin 2014)
for a survey. The maximization problem is NP-hard, but is
often approximated to within a factor of 1 � 1/e using a
greedy algorithm (Nemhauser, Wolsey, and Fisher 1978).

3 Approximation Algorithms
We first examine algorithms that start with an arbitrary vec-
tor of weights for all points, and then iteratively adjusts them
to approximate a Magnitude weighting. Then we describe
methods that increase efficiency by selecting a small subset
of points that have magnitude close to that of X .

3.1 Convex optimization formulation and
gradient descent

The problem of finding weights w can be formulated as a
convex optimization using the squared loss:

min
w

X

i

0

@
X

j

⇣ijwj � 1

1

A
2

(2)

This loss function is based on weighting (Definition 1), and
reflects the error with respect to an ideal weighting where
for each i,

P
j ⇣ijwj will add up to 1.

This is a strongly convex optimization problem and can
be addressed using methods suitable for such optimization,
including gradient descent or stochastic gradient descent.

3.2 Iterative Normalization Algorithm
In this section we present a different algorithm that we
call the Iterative Normalization Algorithm. It starts with a
weight vector of all ones. Then for every point i, it com-
putes the sum G(i) =

P
j ⇣ijwj . For a proper magnitude

weighting every G(i) should be 1, thus the algorithm simu-
lates dividing by G(i) to normalize the row to 1, and saves
wi  wi/G(i). It does this in parallel for all rows (points).

Algorithm 1: Iterative normalization algorithm for the ap-
proximation of magnitude
Input: The set of points X

Initialise wi = 1 for all i 2 X

while not converged do
Compute G(i) =

P
j ⇣ijwj for all i 2 X

Update wi = wi/G(i) for all i 2 X

end while

Observe that compared to matrix inversion, which has a
complexity of O(n2.371552), the iterative normalization uses
O(n2) per iteration, and achieves useable accuracy in rela-
tively few iterations. In this problem, unlike usual optimiza-
tion problems, we in fact know the optimum value of the
loss for each point, and as a result we can use this approach
of pushing the parameters toward this minimum value.

A caveat is that this algorithm produces a weighting that
consists of positive weights. While individual magnitude
weights can in principle be negative, Magnitude of a point
cloud is always positive and in our experiments, the algo-
rithm always finds a weighting whose sum converges toward
the true magnitude. In this context, note that positive weights
have been found to be relevant in predicting generalization
of neural networks. See (Andreeva et al. 2024).

3.3 Approximation via greedy subset selection
To approximate more efficiently, we can attempt to iden-
tify a subset S of points that approximate the magnitude
of X . Magnitude increases monotonically with addition of
points to S (Leinster 2013), which suggests approxima-
tion via algorithms that greedily add points to X simi-
lar to Nemhauser’s submodular maximization (Nemhauser,
Wolsey, and Fisher 1978). However, magnitude of a point set
is not quite submodular, and thus the approximation guaran-
tees do not carry over.

The non-submodularity can be seen in the following coun-
terexample. Let e1, ..., eD be the standard basis vectors of
RD, so e1 = (1, 0, ..., 0) etc. Let t > 0 be a real number
and te1, ..., teD be the scaled basis vectors of RD, so te1 =
(t, 0, 0..., 0) etc. Consider X = {te1,�te1, ..., teD,�teD},
with the usual metric. Thus X consists of the points on the
axes of RD that are a distance of t away from the origin. For
a numerical example: when t = 5 and D = 500, we get
Mag(X [ {0})�Mag(X) ⇡ 7.18. Thus, while the magni-
tude of a single point (origin) is 1 by itself, adding it to X

produces an increase far greater than 1.
This construction can be generalised to higher dimensions

D, and behaves as follows in the limit:



Algorithm 2: Greedy algorithm for the computation of orig-
inal magnitude
Input: The set of points S
Parameter: Tolerance k

Output: The approximated total magnitude and the max-
imising set S0

Initialise S
0 to be the empty set

Add a random element s1 from S to S
0.

while Mag(S0) < (1� k) ⇤Mag(S0 \ si|) (The previous
computation of magnitude is within the tolerance param-
eter) do

Find the element si in S \ S0, maximising Mag(S0 [
si)

Add si to S
0

end while
return S

0
,Mag(S0)

(a) (b)

Figure 2: Greedy algorithm approximates magnitude
with small number of points. Plot (a) shows magnitude ap-
proximation of a Gaussian blobs, 3 centers, with 500 points.
Plot (b) shows Gaussian blobs with 3 clusters and 104 points.

Theorem 2. Let X = {te1,�te1, ..., teD,�teD} be a set

of points in RD
as described above. Then in the limit:

lim
D!1

(Mag(X [ {0})�Mag(X)) =
(et � e

t
p
2)2

e2t � et
p
2
.

Greedy set selection algorithm While the theorem
above implies that submodularity does not hold in gen-
eral for magnitude, our experiments suggest that in prac-
tice, Nemhauser’s algorithm (Nemhauser, Wolsey, and
Fisher 1978) adapted to Magnitude achieves approximation
rapidly. A version of this idea can be seen in Algorithm 2.

In certrain restricted cases, submodularity can be shown:
Theorem 3. Mag(X) is submodular when X ⇢ R.

Thus, when X ⇢ R, the greedy approximation of (1 �
1/e) holds.

3.4 Discrete Center Hierarchy Algorithm
The computational cost of the greedy algorithm arises from
the need to repeatedly compute magnitude at each greedy
step to examine ⌦(n) points and compute magnitude each
time to find the next point to add. To avoid this cost, we
propose a faster approximation method.

In addition to being monotone increasing with addition
of points in X , the Mag(tX) also grows with t, and at the

limit limt!1 Mag(tX) = #X . (where #X is the number
of points in X) (Leinster 2013). Therefore, point sets with
larger distances between the points will have larger magni-
tude. Thus an iterative subset selection algorithm that prefers
well separated points is likely to increase the estimate faster
toward the true magnitude

This effect is achieved using Algorithm 3, which creates
a hierarchy of discrete centers and uses them to succes-
sively approximate magnitude. The hierarchy is constructed
as a sequence S0, S1, S2, . . . of independent covering sets.
Given a set S, a subset s is a minimal independent covering
set of radius r, if it satisfies the following properties: (1): for
every x 2 S, there exists y 2 s such that d(x, y)  r (2):
8x, y 2 s, d(x, y) > r and (3) s is minimal with respect to
these properties, that is removing any point from s will vi-
olate the first property. With this in mind, we can construct
the hierarchy as follows:

Algorithm 3: Discrete Center Hierarchy construction

Input: (X, d).
S0 = X

Si  ; for i = 1, 2, ...
for i = 1, 2, ... do

Select Si ✓ Si�1 where Si is a minimal independent
covering set of Si�1 of radius 2i�1

end for

The hierarchy will have a height of at most h =
log2(maxx,y2X d(x, y)), that is, log of the diameter of X .
This hierarchy is used to successively approximate magni-
tude by traversing it from the top to the bottom. That is,
starting from s = ;, we first add points in Sh to s, followed
by those in Sh�1, Sh�2 etc, with Mag(s) increasing toward
Mag(X).

Observe that when computing Magnitude function (Defi-
nition 4) which requires computation for several values of t,
this same sequence can be used for approximations at all the
scales. Experiments described later show that a small num-
ber of points in this sequence (from the top few levels) suf-
fices to get a good approximation of magnitude.

Incremental updates to the hierarchy. This hierarchy can
be efficiently updated to be consistent with addition or re-
moval of points. When a new point q is added, we traverse
top down in the hierarchy searching for the center in Si

within distance 2i�1 to q. When such a center does not ex-
ist, we insert q to be a center in Sj for all j  i. With a
data structure that keeps all centers of Si within distance
c · 2i�1 for some constant c, we could implement efficient
‘point location’ such that insertion takes time proportional to
the number of levels in the hierarchy. If a point q is deleted
from the hierarchy, we need to delete q from bottom up. At
each level i if there are centers of Si�1 within distance 2i�1

from q, some of them will be selectively ‘promoted’ to Si

to restore the property. For more detailed description of a
similar geometric hierarchy, see (Gao, Guibas, and Nguyen
2006).



(a) (b) (c) (d) (e) (f)

Figure 3: Discrete centers are close to Greedy Maximization at a fraction of the computational cost and better than
random. In plot (a) we have the Iris dataset, in plot (b) the Breast cancer dataset, in plot (c) the Wine dataset. In the remaining
plots, we see subsamples of size 500 for popular image datasets: (d) MNIST, (e) CIFAR10 and (f) CIFAR100.

4 Applications in Machine Learning
Here we describe the use of magnitude in two novel appli-
cations: as a regularization strategy for neural networks and
for clustering.

Algorithm 4: Magnitude Clusterer
Let X be a set of points (scaled so the average pairwise
distance is 1) and t � 0 be some threshold.
Initialise R = X \ {a} and C = {{a}} for some random
point a.
while R 6= ? do

Initialise best increase =1 and best point = ?, best
cluster = ?.

for b 2 R, c 2 C do
Set increase = Mag(c [ {b})�Mag(c)
if increase < best increase then

best increase = increase
best point = b
best cluster = c

end if
end for
if increase < t then

Replace c 2 C with c [ { best point }.
else

Add { best point } to C.
end if
Remove best point from R.

end while
return C

4.1 Neural Network Regularization
Large neural network weights can be an indicator of over-
fitting to noise in the training data. Methods like weight de-
cay add a term to the model’s loss function to penalise large
weights. We use Magnitude of the weights as a regulariser
term. If the weight parameters are given by a vector p, where
each pi 2 R, then the magnitude of this metric space (p,R)
with the ambient metric of R is submodular (Theorem 3)
with guaranteed approximation of 1� 1/e.

Specifically, we use the following algorithm to estimate
magnitude. First select 1000 randomly chosen weights of the
network, and then add the network weights with the small-
est and largest values. As the set of the smallest and largest
weights is the set of two weights with the largest possible

magnitude, these points will be returned by the initial execu-
tion of the Greedy Maximization algorithm which, as mag-
nitude is submodular on the real line, has a theoretical guar-
antee of performance. Then select a random subset of the
remaining weights.

4.2 Clustering
Inspired by the greedy approximation algorithm for sub-
modular set functions, we propose a novel magnitude-based
clustering algorithm. The key idea behind this algorithm is
that, given a pre-defined set of clusters, if a new point be-
longs to one of those clusters then its inclusion in the cluster
should not cause the magnitude of the cluster to increase
significantly. Thus the algorithm works as follows: In every
round, the algorithm tries to find a point b that is coherent
with an existing cluster c, where coherence is measured as
the change in magnitude of c being below some threshold
t when adding b to c. If no such point-cluster pair can be
found, then the algorithm initializes b as a new cluster. The
details are in Algorithm 4.

Good thresholds can be found by carrying out magnitude
clustering over a range of threshold values and monitoring
the number of clusters. The cluster counts that persist over
a range of threshold values are likely to be represent natural
clusterings of the data. Selecting the most persistent count
is natural way to determine clustering without any other pa-
rameter.

5 Experiments
Experiments ran on a NVIDIA 2080Ti GPU with 11GB
RAM and Intel Xeon Silver 4114 CPU. We use PyTorch’s
GPU implementation for matrix inverison. The SGD exper-
iments used a learning rate of 0.01 and momentum of 0.9.

5.1 Accuracy and computation cost comparison
Iterative algorithms In Figure 4 we see a comparison of
the iterative algorithms on points sampled from N (0, 1) in
R2 with 104 points. We observe that the Iterative Normaliza-
tion algorithm is faster than Inversion and SGD in plot (a)
and it only needs a few iterations (less than 20) to converge
as seen in plot (b), while GD/SGD takes a longer number of
iterations. In plot (c) we see the convergence performance
over 100 different runs, and again we note that Iterative Nor-
malization converges fast, while GD requires a larger num-
ber of iterations.



(a) (b) (c)

Figure 4: Iterative algorithms comparison Comparison of
Inversion, Iterative Normalization and GD (a) Mean and
standard deviation over 10 different runs, with 50 iterations
of both iterative algorithms. (b) Number of iterations for
convergence of Iterative Normalization for a randomly gen-
erated sample of 10000 points. (c) Iterative Normalization
vs GD. Iterative Normalization converges fast, GD takes a
longer number of iterations. 100 runs. Comparison on larger
point sets in supplementary materials.

(a) (b)

Figure 5: Subset selection algorithms comparison (a)
Time taken for Inversion, Greedy Maximization and Dis-
crete Centers to execute. (b) zoom on the performance of
Inversion and Discrete Centers, and note that Discrete Cen-
ters performs better as the number of points increases. Com-
parison on larger datasets in supplementary materials.

Subset selection algorithms Figure 5, shows a compari-
son of the subset selection algorithms on a randomly gener-
ated dataset with 104 points sampled from N (0, 1) in R2.

Figure 3 shows the performance of the subset selection
algorithms for a number of scikit-learn datasets (Iris,
Breast Cancer, Wine) and for subsamples of MNIST, CI-
FAR10 (Krizhevsky, Nair, and Hinton 2014) and CIFAR100
(Krizhevsky 2009). We note that the Greedy Mazimization
performs the best, but Discrete Centers produces a very sim-
ilar hierarchy of points. Selecting points at Random does not
lead to an improvemnet in a sense that you need to approach
the cardinality of the set to get a good enough approximation
of magnitude.

5.2 Applications in ML
Training trajectories and generalization It has been
shown that Magnitude and a quantity derived from Magni-
tude called Positive magnitude (PMag), consisting of pos-
itive weights) are important in bounds of worst case gener-
alization error. The method relies on computing a trajectory
by taking n steps of mini-batch gradient descent after con-
vergence, and computing the Magnitude of corresponding
point set on the loss landscape. See (Andreeva et al. 2024)
for details.

The experiments up to now have been limited to training

Metric  lr  bs  ⌧

Mag5000 0.68 0.62 0.65 0.64
Mag7000 0.71 0.77 0.74 0.69
Mag10000 0.75 0.82 0.79 0.74
PMag5000 0.91 0.67 0.79 0.85
PMag7000 0.93 0.73 0.83 0.88
PMag10000 0.97 0.79 0.88 0.90

Table 1: Generalization gap correlation improvement using
an increasing number of points. ⌧ is Kendall tau.

trajectories of at most size 5 ⇥ 103 due to computational
limitations. Our faster approximation methods can allow us
to verify the results on larger trajectories.

We denote by Magn and PMagn the relevant quantities
trjectories of length n. Size upto 5000 have been considered
in the original paper. We extend to sizes of 7000 and 10000.
We use ViT (Touvron et al. 2021) on CIFAR10, ADAM op-
timizer (Kingma and Ba 2017), and perform the experiment
over a grid of 6 different learning rates and 6 batch sizes,
where the learning rate is in the range [10�5

, 10�3], and the
batch size is between [8, 256] resulting in 36 different exper-
imental settings.

The results can be found in Table 1, showing a number
of correlation coefficients relevant for generalization (Gast-
par et al. 2023) between generalization gap and Magn and
PMagn for n = {5000, 7000, 10000}. We use the granu-
lated Kendall’s coefficients ( lr and  bs are the granulated
Kendall coefficient for the learning rate and for batch size re-
spectively, and  is the Average Kendall coefficient, which
is the average of  lr and  bs (Gastpar et al. 2023)), which
are more relevant than the classical Kendall’s coefficient for
capturing causal relationships.

We observe that all correlation coefficients improve with
the increase of trajectory size. In particular, the Kendall tau
coefficient and the Average Granulated Kendall coefficient
increases by 0.14 for Mag10000 compared to Mag5000, and
by 0.09 for PMag10000. Similarly, Kendall tau improves by
0.10 for Mag10000 and 0.05 for PMag10000. This is an in-
teresting result which needs to be investigated further for
more models and datasets. Further visualisation results can
be seen in Figure 6, where we see how the proposed quan-
tities change with the generalization gap, and when more
trajectories are considered.

Neural Network Regularization Utilising the magnitude
approximation described in Section 4.1, we train five neu-
ral networks each with two fully connected hidden layers
on the MNIST dataset for 2000 epochs, using cross entropy
loss on MNIST. We train the models with a scalar multi-
ple of the magnitude of the weights as a penalty term. One
of the networks we train (with a regularization constant of
0) corresponds to an unregularised model. We then evaluate
the differences in magnitude as well as train and test loss for
each model.

Our results are shown in Table 2. We first observe that as
expected, adding a magnitude-based penalty term causes the
network’s magnitude to decrease. More interestingly mag-



(a) (b) (c) (d)

Figure 6: Extended complexity measures vs. the generalization gap We compare the original topological ocmplexity measure
Mag5000 (a) and PMag5000 (c) with the extended complexity measures Mag10000 (b) and PMag10000 (d) for a ViT trained on
CIFAR10.

� Train. Loss Test Loss Gap Magnitude
0 0.0021 0.0757 0.0736 1.5810
0.1 0.0041 0.0641 0.0600 1.1567
0.2 0.0061 0.0607 0.0546 1.1293
0.5 0.0103 0.0602 0.0499 1.0842
1 0.0167 0.0631 0.0464 1.0668

Table 2: Magnitude and performance of Neural Net-
works after training to minimise Training Loss(weights) +
�Mag(weights).

nitude regularization causes the neural network to perform
better. This increase in performance occurs both in terms
of test loss and generalization error, with the unregularised
model recording both the largest test loss and generaliza-
tion gap. It is also interesting to note that the generalization
appears to increase consistently with the strength of regular-
ization, whereas test loss appears to have an optimal strength
of regularization at � = 0.5.

Clustering The results of using the Clustering algorithms
described in the previous section are presented in Figure 7.
We note that our algorithm performs satisfactory, provid-
ing clustering better than Agglomerative, k-means and DB-
SCAN.

6 Related work
The literature relevant to magnitude and machine learn-
ing has already been discussed in previous sections. We
have studied closely the relation of magnitude to generaliza-
tion (Andreeva et al. 2024, 2023). In other works diversity of
latent representations have been recently explored in (Lim-
beck et al. 2024). Magnitude based clustering has been sug-
gested in (O’Mally 2023). The algorithms proposed make
use of a similar quantity called alpha magnitude (O’Malley,
Kalisnik, and Otter 2023), but unlike ours, requires multiple
parameters as input.

In the mathematical literature, we observe that recent de-
velopments such as Magnitude for graphs (Leinster 2019)
and relation between Magnitude and entropy (Chen and Vi-
gneaux 2023) are likely to be of interest in machine learning.
As is the interpretation of magnitude as dual of Reproducing
Kernel Hilbert Space (Meckes 2015).

Figure 7: Results of applying the Magnitude clustering algo-
rithm to an artificial dataset. We can see that the magnitude-
based algorithm manages to find natural clusters and is
able to determine a suitable number of clusters, whereas
K-means and hierarchical clustering (Ward clustering in
scikit-learn) need the user to determine this. A main
difference between DBSCAN and the magnitude algorithm
is in the treatment of outliers.

The computational problem can be seen as solving the lin-
ear system ⇣w = 1, with 1 as a vector of all 1. Notice that
our matrix ⇣ is symmetric positive definite but also a dense
matrix. The iterative normalization algorithm we proposed
bears resemblance to basis pursuit and other algorithms in
compressive sensing (Foucart and Rauhut 2013), but the re-
lation is not yet clear.

7 Conclusion

In this paper, we introduced fast and scalable methods for
approximating metric magnitude. We provided novel appli-
cations to deep learning and clustering, and extended exist-
ing ones, leading to better overall performance. We expect
that this work will enable the wider use of this versatile ge-
ometric concept in machine learning and optimization.
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A Appendix
A.1 Proofs of theorems
Proof of Theorem 2

Proof. We note that X is a homogeneous metric space, thus
using Proposition 2.1.5 from (Leinster 2013) we can calcu-
late

Mag(X) =
2D

1 + e�2t + 2(D � 1)e�t
p
2

Next, we consider the similarity matrix of X [ {0} to
calculate its magnitude.

⇣X[{0} =

✓
A1 A2

A3 A4

◆

where A1 is the similarity matrix for X ,

A2 =

0

BB@

e
�t

e
�t

...
e
�t

1

CCA A3 = A
T
2 A4 = (1) .

We will use the inverse formula:

✓
A1 A2

A3 A4

◆�1

=

✓
A

�1
1 +A

�1
1 A2B

�1
A3A

�1
1 �A�1

1 A2B
�1

�B�1
A3A

�1
1 B

�1

◆

where B = A4 �A3A
�1
1 A2

As X is homogeneous, we observe that the sum of rows
of A�1

1 give Mag(X)
D , so each entry of A�1

1 B is e�1 Mag(X)
D ,

and by symmetry the same is true for CA
�1. Thus B =

1
1�e2Mag(X) . It then follows that the magnitude of |X [{0}|
is

(1� 2e�t)Mag(X) + 1

1� e�2tMag(X)
.

When this expression is expanded, L’Hopital’s rule then
gives that

lim
D!1

Mag(X[{0})�Mag(X) =
8(e2t � e

t(1+
p
2))2

8(e4t � et(2+
p
2))

=
(et � e

t
p
2)2

e2t � et
p
2
.

Definition 6. Let x, y 2 Rn
be such that x1 � x2 � ... �

xn, y1 � y2 � ... � yn and
Pn

i=1 xi =
Pn

i=1 yi. Then we

say that x majorises y if for all k = 1, ..., n

kX

i=1

xi �
kX

i=1

yi.

Theorem 4 (Karamata’s inequality). Let I be an interval on

R and let f : I ! R be concave. If x1, ..., xn and y1, ..., yn

are numbers in I such that (x1, ..., xn) majorises y1, ..., yn

then

f(x1) + ...+ f(xn)  f(y1) + ...+ f(yn).

Proof of Theorem 3

Proof. Given a set X , we can write B = {b1 < ... <

bn} = X [ {�1,1}. The formula provided in corollary
2.3.4 from (Leinster 2013) gives that

Mag(X) =
nX

i=1

tanh

✓
bi+1 � bi

2

◆
� 1.

Note that here we define tanh1 = 1.
Then given the points x1 < x2 such that x1 2 (bj , bj+1)

and x2 2 (bk, bk+1), we calculate that

Mag(X [ {x1})

=
nX

i=1

tanh

✓
bi+1 � bi

2

◆
� 1� tanh
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2

◆

+tanh

✓
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2
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+ tanh
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2

◆
.

Mag(X [ {x2})

=
nX

i=1

tanh

✓
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2
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� 1� tanh
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2
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+tanh

✓
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+ tanh
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If j 6= k then

Mag(X [ {x1, x2}) =
nX

i=1

tanh
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It follows that

Mag(X [ {x1}) +Mag(X [ {x2})

= Mag(X [ {x1, x2}) +Mag(X).

If j = k, then

|X [ {x1, x2}| =
nX

i=1

tanh
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� 1
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So

Mag(X[{x1})+Mag(X[{x2})�Mag(X[{x1, x2})�Mag(X)

= tanh
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2

◆
+ tanh

✓
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2
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�

tanh

✓
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x2 � x1

2
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We observe that tanh(x) is concave on x � 0 and that
since bj+1 � bj � bj+1 � x1 and bj+1 � bj � x2 � bj and
bj+1�bj+x2�x1 = bj+1�x1+x2�bj , (x2�x1, bj+1�bj)
majorises (bj+1�x1, x2�bj). Thus by Karamata’s inequal-
ity,

tanh

✓
bj+1 � x1

2

◆
+ tanh

✓
x2 � bj

2

◆
�

tanh

✓
bj+1 � bj

2

◆
� tanh

✓
x2 � x1

2

◆
� 0.

Thus it follows that

Mag(X[{x1})+Mag(X[{x2}) � Mag(X[{x1, x2})+Mag(X).

Hence magnitude on X is submodular.

Theorem 5. Every set of 3 points with the magnitude func-

tion is submodular.

Proof. Let X = {x1, x2, x3} be a 3-point space and d be a
metric on X . Then magnitude is submodular on the metric
space (X, d).

Write d1 = d(x1, x2), d2 = d(x1, x3), d3 = (x2, x3).
Take a = max{d1, d2, d3} and b = min{d1, d2, d3}. We
note that 0 < b < a.

Let Y be the space containing the 2 points b apart. Then by
the above corollary for any 2-point subspace X , Mag(X) �
|Y |.

We then calculate the magnitude of Y as
����

✓
1 e

�b

e
�b 1

◆���� =
2eb

eb + 1
.

Furthermore, adding in the remaining point, the distances
from that point and the original pair of points are at most
a. So then again using Lemma 2.2.5 in (Leinster 2013), the
magnitude of X is at most:

������
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1

A

������
=

(3e2a � 4ea)eb + e
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(e2a � 2)eb + e2a
.

It then follows that the difference in magnitude between
any 3 and 2-point set is at most

(3e2a � 4ea)eb + e
2a

(e2a � 2)eb + e2a
� 2eb

eb + 1

=
(e2a � 4ea + 4)e2b + 2(e2a � 2ea)eb + e

2a

(e2a � 2)e2b + 2(e2a � 1)eb + e2a
.

A similar argument shows that the increase in magnitude
from a 1-point to a 2-point set is at most

e
a � 1

ea + 1
.

Then suppose

(e2a � 4ea + 4)e2b + 2(e2a � 2ea)eb + e
2a

(e2a � 2)e2b + 2(e2a � 1)eb + e2a
� e

a � 1

ea + 1
.

This implies that

((e2a � 4ea + 4)e2b + 2(e2a � 2ea)eb + e
2a)(ea + 1)

� ((e2a � 2)e2b + 2(e2a � 1)eb + e
2a)(ea � 1)

=) �2(eb � 1)(�ea+b + e
2a+b + e

2a � e
b) � 0.

We note that as a > b > 0, (�ea+b+e
2a+b+e

2a�e
b) �

0, thus (eb � 1)  0 for b � 0 which is a contradiction.
Thus the increase from 1 to 2 points must be greater than

or equal to the increase from 2 to 3 points.

B More experimental results and details
Larger datasets In Figure 8, we see a comparison be-
tween matrix inversion and Iterative Normalizaion for 2 ⇥
104 points sampled from N (0, 1) in R2 over 5 runs. Itera-
tive Normalization is run for 10 iteration, as we observe fast
convergence towards the true magnitude value.

The experiment was ran on a NVIDIA 2080Ti GPU with
11GB RAM.

B.1 Further investigation of SGD algorithm
We experimented with multiple different batch sizes, but full
size of the dataset, or Gradient Descent (GD) appears to
achieve fastest convergence. For completeness, here we re-
port the convergence results when we vary the batch size.
Note that while this method appears to be slower than It-
erative Normalization, it can be used when the size of the
dataset cannot fit into memory.

Batch sizes are = {8, 16, 32, 64, 128, 256} and show in
how many iterations the algorithm converges, and learning
rate is fixed at 0.01. Figure 9 shows mean and standard de-
viation, repeated over 10 runs, for 50 iterations, for a dataset
with 2000 points sampled from N (0, 1) in R2.

It appears that all batch sizes tend to converge towards the
true magnitude value after iteration 20.

Experiments ran on a NVIDIA 2080Ti GPU with 11GB
RAM.



Figure 8: Time is measured in seconds. It takes 1.12 seconds
for Iterative Normalization to execute for 2 ⇥ 104 points,
while Inversion requires 126.9 seconds.

Figure 9: Varying the batch sizes and its effect on conver-
gence towards the true magnitude value.

B.2 Experimental details
Algorithm comparison We use PyTorch’s GPU imple-
mentation for matrix inverison. The SGD experiments used
a learning rate of 0.01 and momentum of 0.9. We set the
size of the batch to equal the size of the dataset for the GD
experiments in the main paper.

Training trajectories and generalization We use a modi-
fied version of the ViT for small datasets as per (Raghu et al.
2021). The implementation is based on the (Gani, Naseer,
and Yaqub 2022), which is based on the timm library with
the architecture parameters as follows: depth of 9, patch size
of 4, token dimension of 192, 12 heads, MLP-Ratio of 2, re-
sulting in 2697610 parameters in total, as described in more
detail in (Andreeva et al. 2024).

We start from a pre-trained weight vector, which achieves
high training accuracy on the classification task. By varying

the learning rate in the range [10�5
, 10�3] and the batch size

between [8, 256], we define a grid of 6⇥ 6 hyperparameters.
For each pair of batch size and learning rate, we compute
the training trajectory for 104 iterations. We use the Adam
optimizer (Kingma and Ba 2017). We compute the data-
dependent pseudometric, first defined in (Dupuis, Deligian-
nidis, and Simsekli 2023) by ⇢

(1)
S (w,w0) = r

�1||LS(w) �
LS(w0)||1, to obtain a distance matrix. Then we proceed
to compute the quantities of interest Magn and PMagn for
n = {5000, 7000, 10000}, using the distance matrix as de-
rived from the pseudometric ⇢

(1)
S . We set the magnitude

scale t =
p
r, where r is the size of the training set (r =

50000 for CIFAR10). This value is motivated by the theory
in (Andreeva et al. 2024), and for a fair comparison with
their methods. We then compute the granulated Kendall’s
coefficients ( lr and  bs for the learning rate and for batch
size respectively,  , which is the Average Kendall coeffi-
cient (the average of  lr and  bs) (Gastpar et al. 2023)),
which are more relevant than the classical Kendall’s coeffi-
cient for capturing causal relationships; and Kendall tau (⌧ ).

Experiments ran on a NVIDIA 2080Ti GPU with 11GB
RAM.

Regularization We train five neural networks each with
two fully connected hidden layers on the MNIST dataset
for 2000 epochs, using cross entropy loss on MNIST and
a learning rate of 0.001.

Experiments ran on NVIDIA GeForce GTX 1060 6GB
GPU.

Figure 10: Comparison of subset selection on the Swiss roll
with subsample of 500 points.

Clustering For DBSCAN, we used ✏ = 10 and minimum
number of clusters = 2. For k-means and Agglomerative
clustering, the minimum number of clusters was set to the
number of cluster centers used to generate the dataset.

Experiments ran on Intel Xeon CPU E5-2603 v4 CPU
with 3GB memory.

B.3 More experimental Results - Clustering
In Figure 11, we show more results of the magnitude clus-
tering algorithm using a number of different random seeds
for dataset generation.



Figure 11: Magnitude clustering algorithm versus conventional algorithms on randomly generated datasets. The difference
between the plots comes from using a different random seed to generate the datasets. We note that the magnitude algorithm
consistently identifies a reasonable number of clusters and provides a sensible cluster assignment to each point.



B.4 Subset selection
Figure 10 shows an example of a synthetic dataset called the
Swiss roll. The Discrete centers algorithm produces a hier-
archy which provides almost the same approximation as the
Greedy Maximization algorithm for a fraction of the com-
putational cost. In Figure 12 we see a comparison between
Greedy Maximization, Discrete Centers and selecting points
at random (Random) for the 3 standard scikit-learn
datasets Iris, Breast cancer and Wine dataset. We have used
the entire dataset for generating the plot. In Figure 13 we
see the same comparison, but with a random subset of 500
points from MNIST, CIFAR10 and CIFAR100. We have re-
duced the dimensions of each dataset using PCA to 100.

B.5 Magnitude of a compact space
For completeness, we provide the formal definition of mag-
nitude for compact sets, and a few important results.
Definition 7. A metric space is positive definite if every fi-

nite subspace is positive definite. The magnitude of a com-

pact positive definite space A is

Mag(A) = sup{Mag(B) : B is a finite subspace of A} 2 [0,1].
(3)

Definition 8. Let a weight measure for a compact space A

be a signed measure µ 2M(A) such that, for all a 2 A,

Z
e
�d(a,b)

dµ(b) = 1. (4)

Then Mag(X) = µ(A) whenever µ is a weight measure for

A.

Theorem 6 (Theorem 5.4 in (Meckes 2015)). Let A ⇢ Rn

be compact and t � 1. Then

Mag(A)

t
 Mag(tA)  t

nMag(A) (5)

Theorem 7 (Theorem 1 in (Barceló and Carbery 2018)). Let

X be a nonempty compact set in Rn
. Then

Mag(tX)! 1 as t! 0 (6)

and

t
�nMag(tX)! V ol(X)

n!!n
as t!1. (7)



(a) (b) (c)

Figure 12: Discrete centers are close to Greedy Maximization at a fraction of the computational cost and better than
random. In plot (a) we have the Iris dataset, in plot (b) the Breast cancer dataset, in plot (c) the Wine dataset.

(a) (b) (c)

Figure 13: Discrete centers are close to Greedy Maximization at a fraction of the computational cost and better than
random. In plot (a) we a subsample from MNIST dataset, in plot (b) from CIFAR10, and in plot (c) we see a subsample of
CIFAR100.


