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Abstract

We study the problem of estimating the stationary mass—also called the unigram mass—
that is missing from a single trajectory of a discrete-time, ergodic Markov chain. This
problem has several applications—for example, estimating the stationary missing mass
is critical for accurately smoothing probability estimates in sequence models. While the
classical Good–Turing estimator from the 1950s has appealing properties for i.i.d. data,
it is known to be biased in the Markovian setting, and other heuristic estimators do not
come equipped with guarantees. Operating in the general setting in which the size of the
state space may be much larger than the length n of the trajectory, we develop a linear-
runtime estimator called Windowed Good–Turing (WingIt) and show that its risk decays

as Õ(Tmix/n), where Tmix denotes the mixing time of the chain in total variation distance.
Notably, this rate is independent of the size of the state space and minimax-optimal up to a
logarithmic factor in n/Tmix. We also present an upper bound on the variance of the missing
mass random variable, which may be of independent interest. We extend our estimator to
approximate the stationary mass placed on elements occurring with small frequency in the
trajectory. Finally, we demonstrate the efficacy of our estimators both in simulations on
canonical chains and on sequences constructed from natural language text.

Keywords: missing mass, Good–Turing, Markov chains, minimax optimal

1. Introduction

Two classical problems in statistical analysis—relevant to both design of experiments and
inference—are those of assessing sample coverage and discovery probability. Given a “train-
ing” sequence Xn = (X1, X2, . . . , Xn) of random examples in some unknown sample space,
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the latter question concerns the probability with which an independent “test” observation
Y will be a discovery, in that it is an element of the sample space that was unseen at training
time. Equivalently, we are interested in estimating the missing mass in the training sample
Xn, i.e. Pr{Y /∈ {X1, . . . , Xn}}.

This problem has roots in statistical analysis for ecology (Fisher et al., 1943), and also
has important applications across genomics (Favaro et al., 2012) as well as speech and
language modeling (Church and Gale, 1991; Chen and Goodman, 1999). Let us give a few
operational examples. For a first example from genomics (Lijoi et al., 2007), suppose we
have performed genome sequencing on several genes of an organism as part of training data,
and we are now interested in whether there is value in performing additional sequencing.
Then the missing mass exactly measures the probability that we discover a new gene with
additional sequencing, and an accurate estimate of this quantity can guide decisions about
whether or not to sequence further. For a second example, consider the problem of building
a probability model for a language corpus (Ney et al., 1994). Many heuristic “smoothing”
estimators have been developed for estimating these probability models (e.g., Ney et al.,
1994; Jelinek, 1985; Gale and Sampson, 1995). A crucial component of these smoothing
techniques is an estimate of the missing mass, since one would like to account for the (non-
trivial) possibility that a word exists in the population corpus but has not yet been observed
in the training data. Besides these examples, estimates of the missing mass are also used in
so-called competitive distribution estimation (Orlitsky and Suresh, 2015) and in estimating
other functionals of distributions such as their entropy (Vu et al., 2007). Recent connections
have also been made between the missing mass in a fact sequence and the propensity of
large language models to “hallucinate” spurious facts (Kalai and Vempala, 2024).

Many estimators with provable—and in fact minimax-optimal—guarantees exist for the
case where the training data are exchangeable (Good, 1953; Lijoi et al., 2007; McAllester and
Schapire, 2000). While the exchangeability assumption is reasonable in some applications,
for example ecology (Shen et al., 2003; Colwell et al., 2012), it is clearly limiting in both
genomics and speech or language applications, where temporal dependencies exist between
the examples. The simplest form of such temporal dependence is Markovian structure,
and, as articulated repeatedly in the literature (Hao et al., 2018; Chandra et al., 2021;
Skorski, 2020), handling such structure in a principled fashion is an important first step
for estimation of missing mass in temporally dependent training sequences. In spite of a
significant body of work motivated by this topic, there still do not exist consistent estimators
for missing mass functionals in general classes of Markovian sequences.

In this paper, we propose and theoretically analyze an estimator for the missing mass
in a Markovian data sample, and variants for related problems. To make things concrete,
suppose our stochastic process Xn := (X1, . . . , Xn) is modeled by a stationary Markov
chain (P , π) on a finite but unknown state space X . We will make no assumptions on the
alphabet size |X |, and will be interested in also capturing the practically relevant large-
alphabet setting, i.e. where |X | � n. Here π = (πx)x∈X denotes the unique stationary
distribution of the chain, and the matrix P ∈ [0, 1]|X |×|X | denotes the transition probability
matrix of the Markov chain. We assume for convenience that X1 ∼ π, but this assumption
can be straightforwardly relaxed1.

1. As is standard in the literature, one can handle the case of arbitrary X1 by letting the chain burn in for

a certain number of steps until the new “initial” distribution becomes close to the stationary measure.
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As previously mentioned, our primary goal is to estimate the mass of the Markov chain
that is missing from the random sample Xn. Motivated by the questions above, we focus
on the stationary missing mass of the chain, given by

Mπ(X
n) :=

∑

x∈X

πx · I {x /∈ {X1, . . . , Xn}}, (1)

where πx is the probability assigned by the stationary distribution π to element x ∈ X .
Note that Mπ(X

n) is a random functional, as it depends not only on the parameters of
the chain but also the random sample Xn. An equivalent definition—which resembles the
description above—is given by

Mπ(X
n) = E

Y∼π
Y⊥⊥Xn

[I {Y /∈ {X1, . . . , Xn}}] , (2)

where U ⊥⊥ V denotes that random variables U and V are independent.
The missing mass is not the only functional that is relevant to discovery probabilities.

A closely related functional is the small-count stationary probability, which measures the
probability of seeing an element that had a frequency at most ζ in the training sequence (Li-
joi et al., 2007; Favaro et al., 2012). In particular, consider the estimand

Mπ,≤ζ(X
n) = E

Y∼π
Y⊥⊥Xn

[I {Y appears at most ζ times in {X1, . . . , Xn}}] . (3)

We will present detailed results for estimating the functional Mπ,≤ζ in Section 5, focusing
up until that point on the missing mass.

Our goal is to produce an estimator M̂ : X n → [0, 1] with minimum risk, where risk is
measured using the mean squared error. In particular, for an estimand M : X n → [0, 1]

and estimator M̂ , we write

MSE(M̂,M) = E
Xn

[
|M̂(Xn)−M(Xn)|2

]
. (4)

Above, the expectation is taken over any other sources of randomness in M̂ in addition to
the randomness in the sequence Xn.

To set up some additional notation, we let ‖µ−ν‖TV denote the total variation distance
between two probability measures µ and ν defined on the same space. Throughout, we
assume that the Markov chain is ergodic and mixes in finite time. In particular, let tmix(ε)
denote the mixing time of the chain to within total variation ε ∈ (0, 1/2] of the stationary
measure, i.e.

tmix(ε) := min

{
t ∈ N : max

x∈X
‖e>xP t − π>‖TV ≤ ε

}
, (5)

where ex denotes the indicator vector on element x ∈ X and π is viewed as a |X |-dimensional
column vector. The quantity tmix(1/4) is typically called the mixing time of the chain, and
so we will write Tmix := tmix(1/4). It is straightforward to show (see, e.g. Levin and Peres
(2017)) that

tmix(ε) ≤ Tmix · log(1/ε) for all ε < 1/4. (6)
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1.1 Related work

The problem of estimating missing mass of a random sequence, where each element is drawn
from an arbitrarily large sample space, was studied as far back as the 1800s by Laplace
(1814), who proposed the first among the class of “add-constant” estimators. These es-
timators have seen a line of theoretical and empirical follow-up work (Krichevsky and
Trofimov, 1981; Gale and Church, 1994), with special attention being paid to the add-1/2-
estimator (Krichevsky and Trofimov, 1981). Instead of outputting the normalized empirical
frequencies of elements as a maximum-likelihood estimator would, these estimators add a
constant to the (un-normalized) empirical frequency prior to normalization. In the process,
they output a non-zero missing mass probability.

A notable and groundbreaking result of Good (1953)—attributed also to Turing—moved
away from the class of add-constant estimators and proposed to estimate the missing mass
via the normalized frequency of elements appearing once in the sequence. In particular,
letting φs(X

n) denote the number of distinct elements of X that have appeared s times in
the sample Xn, the celebrated Good–Turing estimator for the missing mass is given by

M̂GT =
φ1(X

n)

n
. (7)

The estimator has been applied to diverse areas (see, e.g., Song and Croft, 1999; Gale
et al., 1992; Church and Gale, 1991) and has also seen intense theoretical study in the last
three decades (see, e.g., McAllester and Schapire, 2000; Drukh and Mansour, 2005; Orlitsky
et al., 2003). In particular, several analyses of fine-grained properties of the estimator now
exist for the i.i.d. setting (see, e.g., Chandra et al., 2019; Rajaraman et al., 2017; Acharya
et al., 2018), and variants of the estimator have also been proposed and studied (Gandolfi
and Sastri, 2004; Favaro et al., 2016; Painsky, 2022, 2023). While most analyses focus on
additive error—e.g., the mean squared error of estimating the missing mass Mπ(X

n)—the
multiplicative error metric has also been studied (Ohannessian and Dahleh, 2012; Mossel
and Ohannessian, 2019; Ayed et al., 2021; Ben-Hamou et al., 2017; Grabchak and Zhang,
2017). Besides estimation, the missing mass random variable Mπ(X

n) has itself generated
a lot of interest in the i.i.d. setting—its concentration properties have been thoroughly
studied, and several analysis techniques have been developed along the way (McAllester
and Ortiz, 2003; Berend and Kontorovich, 2012, 2013).

In contrast to the i.i.d. setting, the Markovian setting has received relatively sparse
treatment, in spite of being the main setting—smoothing in language models—that mo-
tivated some of the initial papers on the theory of the subject (McAllester and Schapire,
2000, 2001). Some such papers include results for sticky Markov chains (Chandra et al.,
2022) and rank-2 Markov chains (Chandra et al., 2021). These papers mainly study the
performance of the Good–Turing estimator and/or certain scaled variants of it, and also
give sufficient conditions under which Good–Turing can succeed for Markovian data. How-
ever, these conditions are restrictive, and it is not yet known if one can perform consistent,
let alone minimax-optimal estimation of the missing mass in the general Markovian set-
ting. Concentration of missing mass in the Markovian setting has also received some recent
interest (Skorski, 2020)—we will discuss this paper in greater detail in the sequel.

The problem of estimating the small-count probability (3) has also been studied in
the literature (Lijoi et al., 2007), along with the related problem of estimating the exact
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count probability, i.e., the probability of elements occurring exactly ζ times (Good, 1953).
Estimators of the count probability have been developed for i.i.d. samples, and several
theoretical results are also available for this setting (McAllester and Schapire, 2001; Drukh
and Mansour, 2005; Acharya et al., 2013). The Markovian case, however, does not seem to
have been theoretically studied.

Finally, we mention that besides the missing mass and count probabilities, other estima-
tion and prediction problems (Hao et al., 2018; Han et al., 2023; Wolfer and Kontorovich,
2019) and bounds on “surprise” probabilities (Norris et al., 2017) have been studied for
Markov chains. It is worth noting that the size of the state space appears explicitly as a
parameter in these results.

1.2 Contributions and organization

Our contributions are summarized below:

• In Section 3, we propose an estimator for stationary missing mass in the Markov
setting called the Windowed Good–Turing, or WingIt, estimator. Our estimator is
based on the viewpoint of the Good–Turing estimator as a leave-one-out estimator, a
perspective that we review (for the i.i.d. setting) and develop in Section 2.

• In Theorem 1 of Section 4, we provide a risk bound on the WingIt estimator, showing
that it attains mean squared error on the order Tmix/n up to a logarithmic factor in
n/Tmix. This matches, up to this logarithmic factor, the minimax lower bound for
missing mass estimation in mixing Markov chains (Chandra et al., 2022).

• Aside from providing an estimator for the missing mass, we also analyze the missing
mass functional Mπ(X

n) as a random variable, and show in Theorem 2 that its vari-
ance is bounded on the order Tmix

2/n up to a logarithmic factor. This bound follows
from a stability property of the WingIt estimator and constitutes, to our knowledge,
the first variance bound on the missing mass in the Markovian setting, complementing
a one-sided bound due to Skorski (2020).

• In Section 5, we present an extension of our methodology for estimating the small-
count probability (3). Note that this generalizes the problem of estimating the sta-
tionary missing mass, which corresponds to the case ζ = 0. This result, stated as
Theorem 3, appears to improve analogous guarantees from the literature even for
i.i.d. samples.

• In Section 6, we provide simulations on some synthetic Markov chains and on natural
language text. These experiments corroborate our theory while showing how the
WingIt estimator can significantly outperform the vanilla Good–Turing estimator.
We also (empirically) explore an automatic and data-dependent tuning method for
the window size hyperparameter in our WingIt estimator.

Notation: For two real numbers a and b, let a ∧ b = min{a, b} and a ∨ b = max{a, b}.
Let [n] denote the set of natural numbers less than or equal to n. For an index set P ⊆ [n],
let XP = {Xi}i∈P denote the set of random variables corresponding to that index set. The
set X[n] thus contains all random variables in the sequence Xn. With a slight abuse of
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notation, we let XP = (Xi)i∈P denote the sequence of random variables with indices in P ,
ordered canonically. For two sequences indexed by u, we use the notation f(u) . g(u) to
mean that there exists some absolute positive constant C that is independent of all problem
parameters, such that f(u) ≤ C · g(u) for all u. We use the notation f(u) & g(u) when
g(u) . f(u). We write f(u) � g(u) if both relations f(u) & g(u) and g(u) . f(u) hold.
Logarithms are taken to the base e. We use (c, C) to denote universal positive constants
that could be different in each instantiation.

2. From i.i.d. to Markov: Revisiting Good–Turing

First, let us revisit the special case where the samples Xn are i.i.d. and the stationary
distribution π corresponds to the probability mass function from which each sample is
drawn. Here, the celebrated Good–Turing estimator (7) of Mπ(X

n) is given by the number
of symbols that appear once in Xn divided by the sample size n. As articulated in the
literature (e.g., McAllester and Schapire, 2001), this quantity can be thought of as a leave-
one-out estimate of the functional that repeatedly simulates a placeholder for Y from the
given sample and approximately evaluates the indicator in Eq. (2). In particular, consider
the collection of estimators given by the random variables

M̂ (i) = I {Xi /∈ {X1, . . . , Xi−1, Xi+1, . . . , Xn}} for i = 1, . . . , n. (8)

We can then equivalently write the Good–Turing estimator (7) as

M̂GT =
1

n

n∑

i=1

M̂ (i). (9)

Clearly, the random variable Xi “simulates” drawing a fresh sample Y from π independently
of the subsequence (X1, . . . , Xi−1, Xi+1, . . . , Xn), and inspecting Eq. (2) yields that M̂ (i) is
an unbiased estimator of Mπ(X1, . . . , Xi−1, Xi+1, . . . , Xn). Using the i.i.d. nature of the
observations, one can then show that (McAllester and Schapire, 2000)

|E[Mπ((X1, . . . , Xi−1, Xi+1, . . . , Xn))]−Mπ(X
n)]| . n−1,

so that we have a near-unbiased estimator of the quantity E[Mπ(X
n)]. Coupling this ob-

servation with additional arguments that bound the variance of the estimator M̂GT and
estimand Mπ (McAllester and Schapire, 2000; McAllester and Ortiz, 2003), we obtain a
bound on the mean-squared error of the Good–Turing estimator.

It is instructive to re-examine the central pitfall of the Good–Turing estimator for a
Markov chain, which is that strong local dependencies between adjacent samples in the
Markov chain induce non-vanishing bias. This argument has been sketched before (see,
e.g. Chandra et al. (2022)), but we nevertheless give a brief, self-contained illustrative
example and a heuristic calculation of the bias below. Let X = [k] for some k � n and
consider transition kernels P ∈ [0, 1]k×k of the form

P = (1− p)I + p1π>, (10)

where I and 1 denote the identity matrix and all-1s column vector of suitable dimensions.
Such a transition kernel gives rise to a so-called “sticky”, or lazy, Markov chain having
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stationary distribution π and mixing time 1
2p ≤ Tmix ≤ 2

p for all k ≥ 2 and p ∈ (0, 1/2]
(see Lemma 10). Thus, as the probability p becomes small, the mixing time becomes
proportionally large.

Now suppose that π = 1
k1, so that the stationary distribution is the uniform distribution

on k elements. Due to the stickiness of the chain—i.e., its propensity to remain in its current
state—we will see K � np unique elements in a typical sample (X1, . . . , Xn) of the chain.
The stationary missing mass of the chain will hence be given, in expectation, by

E[Mπ(X
n)] =

k − E[K]

k
≥ k − Cnp

k

for some universal constant C > 0. In particular, if k ≥ Cn and p ≤ 1/4, we have
E[Mπ(X

n)] ≥ 3/4.

On the other hand, the Good–Turing estimator will obey E[M̂GT(X
n)] ≤ p. This is

because for all i ∈ [n], we have

E[M̂GT(X
n)] = E[M̂ (i)] = Pr{Xi /∈ {X1, . . . , Xi−1, Xi+1, . . . , Xn} ≤ Pr{Xi 6= Xi−1} ≤ p.

(11)

Consequently, for k ≥ Cn and p ≤ 1/4, we have

E[|Mπ(X
n)− M̂GT(X

n)|]
(i)

≥ |E[Mπ(X
n)− M̂GT(X

n)]| ≥ 3

4
− p ≥ 1

2
, (12)

where step (i) follows by Jensen’s inequality. In words, the Good–Turing estimator has
constant, non-vanishing bias for sticky Markov chains in which the stationary distribution
is uniform on a large state space. In addition, we have

Pr
{
|Mπ(X

n)− M̂GT(X
n)| ≥ 1/4

} (i)

≥ Pr

{
|Mπ(X

n)− M̂GT(X
n)| ≥ 1

2
· E[Z]

}

(ii)

≥ 1

4
· 1
4
=

1

16
,

where step (i) follows by Eq. (12), and step (ii) follows from the Paley–Zygmund inequality
Pr(Z ≥ θE[Z]) ≥ (1− θ)2 E[Z]2 for any random variable Z ∈ [0, 1], applied with θ = 1/2.

Thus, the Good–Turing estimator is inconsistent, in that its error |Mπ(X
n) − M̂GT(X

n)|
cannot converge in probability to zero even as n→∞. This phenomenon is also empirically
illustrated in Figure 2 in Section 6.

While the inconsistency of the Good–Turing estimator is unfortunate, we next build on
some important design principles sketched here in order to develop a consistent estimator.

3. Methodology: The Windowed Good–Turing estimator

In this section, we describe a natural modification of the Good–Turing estimator, inter-
preted through the leave-one-out lens (8), that mitigates the above issues and estimates the
stationary missing mass at a minimax-optimal rate.

7



Pananjady, Muthukumar, Thangaraj

3.1 A first step: Modifying the “leave-one-out” estimator to reduce its bias

The central issue with the original leave-one-out estimator M̂ (i) (Eq. (8)) when applied
to Markov chains lay in the strong dependencies induced between adjacent samples of
the chain: As demonstrated by Eq. (11), successive samples Xi and Xi−1 are tightly
coupled through the structure of the transition kernel and very far from being indepen-
dent. To mitigate this issue, we modify the leave-one-out estimator to a “leave-a-window-
out” estimator that removes the samples that are adjacent to Xi before computing the
corresponding estimator. We first illustrate the idea for i = n for simplicity. Recall
that M̂ (n) = I {Xn /∈ {X1, . . . , Xn−1}}. Instead of using the leave-one-out subsequence
(X1, . . . , Xn−1) as a proxy for Xn, we use the slightly smaller subsequence (X1, . . . , Xn−τ ).
As long as we choose some fixed τ � Tmix, we should expect that (X1, . . . , Xn−τ ) is nearly
independent of Xn. Accordingly, we define the estimator

M̂ (n)
τ := I {Xn /∈ {X1, . . . , Xn−τ}}. (13)

To develop some heuristic intuition, suppose for the moment that Xn were exactly indepen-
dent of (X1, . . . , Xn−τ ), and recall that the marginal distribution of Xn is the stationary

measure π. Then by construction, the random variable M̂
(n)
τ would be an unbiased estima-

tor of Mπ(X
n−τ ), which one should expect, in turn, to be close to the desired missing mass

Mπ(X
n) provided τ is not too large. In other words, the estimate M̂

(n)
τ will have a small

bias that can be controlled via a suitable choice of window size τ .

3.2 WingIt: Averaging an ensemble of windowed leave-one-out estimators

Above, we have sketched how to produce a single random variable M̂
(n)
τ with small esti-

mation bias. However, we still have the issue of variance. How do we construct multiple

estimators like M̂
(n)
τ and average over them as in Eq. (9)? The natural idea to construct

the i-th such estimator is to inspect the definition (13), replace Xn with Xi, and the set
{X1, . . . , Xn−τ} with the portion of the sequence Xn that should behave as nearly indepen-
dent of Xi. Concretely, for each i ∈ [n], define the index sets

Di = {k ∈ [n] : |k − i| < τ} and Ii = [n] \ Di. (14)

In words the set Di contains indices that are close to i, so that if τ � tmix then we should
expect XDi

to be the set of random variables in the sequence that depend significantly on
Xi. On the other hand, the complementary set Ii is the index set of random variables that
are nearly independent of Xi. The above intuition then leads naturally to the estimator

M̂ (i)
τ := I {Xi /∈XIi}, (15)

which generalizes M̂
(n)
τ to any index i. Finally, we combine these estimates to reduce

variance, creating the final estimator

M̂WingIt(τ) =
1

n

n∑

i=1

M̂ (i)
τ . (16)

Note that if τ = 1, then we recover the Good–Turing estimator (9). See Figure 5 later in
the paper for an illustration of the windowing procedure.

8



Just Wing It: Near-Optimal Estimation of Missing Mass in a Markovian Sequence

3.3 Linear time implementation of WingIt

As presented in Eqs. (15) and (16), the WingIt estimator can be naively implemented in

O(n2) time, since each estimator M̂
(i)
τ can be computed by searching through the entire

sequence. In this section, we show that, in fact, the entire estimator M̂WingIt(τ) can be com-
puted in time O(n) time for any value of the window size τ . The computational complexity
of the WingIt estimator is thus comparable to that of the vanilla Good–Turing estima-
tor (7). Given a sequence Xn and a natural number τ , the WingIt estimator proceeds via
two passes through the data as shown in Algorithm 1.

Algorithm 1 Linear time implementation of the WingIt estimator.

Require: Sequence Xn = X1, . . . , Xn, Natural number τ
1: Initialize locations as a dictionary
2: for i = 1, . . . , n do

3: if Xi /∈ locations then

4: Initialize locations[Xi] as a list
5: end if

6: Append i to locations[Xi]
7: end for

8: M̂ ← 0
9: for i = 1, . . . , n do

10: if locations[Xi].first > i− τ and locations[Xi].last < i+ τ then

11: M̂ ← M̂ + 1/n
12: end if

13: end for

14: return M̂

Correctness: It suffices to show that the condition in Step 10 evaluates to True only when
I {Xi /∈XIi} = 1. By construction, the list locations[Xi] contains indices k ∈ [n] sorted
in increasing order such that Xk = Xi. So, if the first (i.e. smallest) and last (i.e., largest)
element of the list locations[Xi] are within (i− τ, i+ τ), then we have that Xi /∈XIi .

Running time: The for loop in Steps 2–7 requires a single pass through the data. In
the for loop in Steps 9–12, for each value of i, we access only the first and last element of
the list locations[Xi], which takes two operations in a Python implementation. The total
running time of both loops is therefore O(n), resulting in an overall algorithm that runs in
linear time.

Memory: The memory requirement is dominated by the dictionary creation in Steps 2–7.
We create a list for each dictionary key, and there are at most n keys. The sum of sizes
of all lists in the dictionary is equal to the number of elements observed, i.e., n. So the
memory, assuming each element of [n] can be stored in constant space, is O(n).

Having proved that the WingIt estimator can be computed using linear time and space,
we now turn to studying its estimation error properties.
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4. Theoretical results on missing mass estimation

This section presents a risk guarantee for M̂WingIt and a variance bound on the estimand
Mπ(X

n).

4.1 Risk guarantee for the WingIt estimator

We first provide a guarantee for the risk of the estimator M̂WingIt (16). Recall the def-
inition (5) of the mixing time up to arbitrary total variation tmix(ε) and that we write
Tmix = tmix(1/4).

Theorem 1 Suppose we choose τ ≥ tmix ((Tmix/n) ∧ 1/4), and let M̂WingIt(τ) denote the
estimator defined in Eq. (16). Then there is an absolute positive constant C such that

MSE(M̂WingIt(τ),Mπ) ≤ C · τ
n
∧ 1. (17)

In the special case of i.i.d sequences, the chain mixes in one step, our estimator specializes
to Good–Turing, and we may set τ = 1 in Theorem 1 to recover existing guarantees for the
Good–Turing estimator of missing mass on i.i.d. sequences (McAllester and Schapire, 2000;
Rajaraman et al., 2017). A few remarks on the general Markov case are now in order. We
assume that n ≥ 4Tmix in all the remarks below; if n < 4Tmix, then the RHS in Eq. (17)
reduces to a universal constant and conversely, it is straightforward to show that consistent
estimation is impossible (see footnote 3 below). Let us now proceed to our discussion.

First, observe that if n ≥ 4Tmix, it follows from the mixing condition in Eqs. (5) and (6)

that tmix

(
(Tmix

n ) ∧ 1/4
)
≤ Tmix · log(n/Tmix). Therefore, setting the window size τ � Tmix ·

log(n/Tmix), we obtain

MSE(M̂WingIt(τ),Mπ) .
Tmix

n
· log(n/Tmix),

so that the MSE is on the order O
(
logn∗

n∗

)
with n∗ = n/Tmix denoting the effective sample

size. Note that by Markov’s inequality, we immediately obtain that for all ε > 0,

Pr
{
|M̂WingIt(τ)−Mπ(X

n)| ≥ ε
}
≤ C

Tmix

nε2
· log(n/Tmix),

thereby showing that M̂WingIt(τ) is a consistent estimator of Mπ provided τ is chosen
appropriately.

It is worth remarking at this juncture that the window size τ is a hyperparameter in
our algorithm, and Theorem 1 holds provided it is chosen in a data-independent fashion
but satisfies the (non-random) bound τ ≥ tmix ((Tmix/n) ∧ 1/4). In practice, we may not
know Tmix (even up to a constant factor) and one may need to tune τ in a data-dependent
manner. In this case, Theorem 1 does not apply as is, but our proof techniques may still
be useful in showing that a data-dependent procedure is valid. Note that estimators for
the mixing time are available in the literature, e.g. for reversible Markov chains (Hsu et al.,
2019), and these mixing time estimates could be used to tune τ . We sketch a different
data-dependent tuning method in Section 6. Theoretically analyzing such estimators with
data-dependent τ is an important direction for future work.
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Next, we remark on the issue of optimality. Chandra et al. (2022) proved a minimax
lower bound of order Ω((np)−1) on the mean squared error of estimating missing mass
in sticky chains of the form (10). As remarked on before (see Lemma 10), such chains
have a mixing time Tmix � p−1, so this yields a lower bound of Ω(Tmix/n) for such chains.
Theorem 1 matches this lower bound up to the logarithmic factor log(n/Tmix) and further
holds for all chains of mixing time2 at most Tmix.

More formally, define the class of Markov chains that mix in time at most T , as

Pmix(T ) := {Markov chain (P , π) : mixing time of chain Tmix is at most T}.

Theorem 1 implies that for a universal constant C > 0, we have the worst-case upper bound

sup
(P ,π)∈Pmix(T )

MSE(M̂WingIt(2T log n),Mπ) ≤ C · T log(n/T )

n
. (18a)

On the other hand, we may state3 the minimax lower bound (Chandra et al., 2022, Theorem
2) as the following: There is a universal constant c > 0 such that if n ≥ 2T log n then for

any estimator M̂ that is a measurable function of the observations Xn, we must have

sup
(P ,π)∈Pmix(T )

MSE(M̂,Mπ) ≥ c · T
n
. (18b)

Taken together, Eqs. (18a) and (18b) thus imply that in the regime4 n & T log n, the
WingIt estimator is information-theoretically minimax optimal up to a logarithmic factor
in n. Removing this logarithmic factor is an interesting open problem, and will likely require
new ideas both in terms of algorithm design and analysis.

Finally, we comment on our analysis path, which is significantly different from the re-
lated literature on missing mass estimation from an i.i.d. sequence. As alluded to before,
a natural and popular method to analyze estimators of the missing mass in the i.i.d. set-
ting (McAllester and Schapire, 2000, 2001) is to exploit concentration of the estimand and
write

MSE(M̂,Mπ) ≤ 3| E
Xn

[M̂(Xn)]− E
Xn

[Mπ(X
n)]|2 + 3var(M̂(Xn)) + 3 var(Mπ(X

n)), (19)

which can be obtained by adding and subtracting terms and using the elementary inequality
(a+ b+ c)2 ≤ 3(a2 + b2 + c2). Operationally, therefore, analyzing the MSE of the estimator
relies in itself on understanding the variance of the missing mass random variable Mπ(X

n),
which has nothing to do with the estimator. In the Markovian case, it appears challenging to
control var(Mπ(X

n)) by straightforward means. Other analysis techniques for missing mass

2. For the specific class of sticky chains, Theorem 1 would yield the rate of O((np)−1 log(np)), which
matches the lower bound of Chandra et al. (2022) up to a factor log(np).

3. Such a statement follows from noting that in Chandra et al. (2022, Eq. (6)): (a) We can set T = 2/(1−α),
and (b) When n ≥

2 logn

1−α
= 2T log n, the second term on the RHS can be made less than half the first

term.
4. In the regime n ≤ Tmix, the worst case risk of any estimator can be shown to be lower bounded by a

constant, so our estimator is also trivially minimax-optimal in this regime.

11
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estimation in the i.i.d. setting (e.g. Rajaraman et al., 2017; Chandra et al., 2019) work with
an exact decomposition of the MSE expressed as a sum of weighted indicators over pairs of
elements x, x′ ∈ X , and use the i.i.d. assumption to bound these terms in a precise fashion.
One such property that is used to show concentration is the negative associativity of certain
random variables (McAllester and Ortiz, 2003), and we do not expect this property to hold
for general Markov chains.

In contrast to these approaches, we begin with a nonstandard decomposition of the MSE
by conditioning on the sequence Xn, and our argument deviates significantly from Eq. (19).
Additionally, owing to the structure of our estimator (16), we must compare our random
sequence Xn to suitably modified random sequences with windows of random variables left
out and/or replaced by independent copies; we do so by proving certain total variation
bounds for Markov bridges, in Lemmas 13 and 14.

4.2 Variance of missing mass functional Mπ(X
n)

The analysis path that we sketched above circumvents needing to control the variance of the
estimand, i.e. var(Mπ(X

n)). Nevertheless, and somewhat surprisingly, analyzing various

properties of the estimator M̂WingIt allows us to indirectly upper bound var(Mπ(X
n)). We

state this result as the following theorem, which could be of independent interest.

Theorem 2 There is an absolute positive constant C such that

var(Mπ(X
n)) ≤ C · Tmix

2 · log(1 + n/Tmix)

n
∧ 1. (20)

Theorem 2 is proved in Section 7.3. En route, we control the variance of the estimator
M̂WingIt(τ) by proving that it satisfies a certain stability (i.e. bounded differences) property
for all values of τ—see Lemma 7, which may be of independent interest. Intuitively speaking,
the random variable M̂WingIt(τ) satisfies a bounded differences property with respect to
the sequence Xn since if τ small, the impact of changing one coordinate is local5. Having
said that, we conjecture that the bound (20) can be improved by replacing Tmix

2 by Tmix,
but doing so will require different techniques since the bounded differences inequality in
Lemma 7 is tight (see Remark 8).

The most related result to Theorem 2 was proved by Skorski (2020), who showed a
one-sided tail bound on Mπ(X

n) in terms of the hitting time of large sets of the Markov
chain. Even though the hitting time of large sets is comparable to the mixing time (Oliveira,
2012; Peres and Sousi, 2015), the main result of Skorski (2020) cannot, strictly speaking, be
compared with Theorem 2. On the one hand, Theorem 2 implies the two-sided polynomial
tail bound

Pr {|Mπ(X
n)− E[Mπ(X

n)]| ≥ ε} ≤ C · Tmix
2 log(1 + n/Tmix)

nε2
for all ε > 0,

which can be obtained via direct application of Markov’s inequality. On the other hand, Sko-
rski (2020, Corollary 1) provides a stronger exponentially decaying bound depending linearly

5. In the extreme case where the window length is 1, we recover the well-known bounded differences property
of the vanilla Good–Turing estimator (McAllester and Schapire, 2000).
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on Tmix, but only on the upper tail of the random variable and without centering it at its
expectation. Consequently, a variance bound cannot be extracted from that result.

Having discussed estimation guarantees for the missing mass, we now turn to the prob-
lem of estimating small-count probabilities.

5. Estimating stationary mass of elements with frequency at most ζ

In this section, we show that the idea behind the WingIt estimator can be applied robustly
to estimate not only the missing mass functional Mπ(X

n), but also the mass of all elements
that occur at most ζ times (3). To define this functional formally, let Nx(XP ) = Nx(XP ) :=∑

i∈P I {Xi = x} denote the number of occurrences of the element x ∈ X in the (sub)-
sequence XP and (sub)-set XP . Then, the mass of all elements that occur exactly ζ times
is defined as

Mπ,ζ(X
n) :=

∑

x∈X

πx · I {Nx(X
n) = ζ}. (21)

We focus on the mass of all elements that occur at most ζ times (cf. the definition in
Eq. (3))

Mπ,≤ζ(X
n) :=

∑

x∈X

πx · I {Nx(X
n) ≤ ζ}. (22)

Clearly, both Eq. (21) and Eq. (22) recover the missing mass functional Mπ(X
n) when

ζ = 0. For small ζ, both of these functionals provide more fine-grained information about
the mass placed by the stationary distribution on low-frequency elements of Xn. It is worth
noting that the functional (22) is directly related to the discovery probability (Lijoi et al.,
2007; Favaro et al., 2012), whereby we are interested in the probability of “discovering” in
the test sample an element that appeared rarely (i.e. ≤ ζ times) in the training sample .

We now define a natural extension of theWingIt estimator for the functionalMπ,≤ζ(X
n)

that retains the leave-a-window-out principle. In particular, recalling our notation from

Eq. (14), we generalize the missing mass estimator M̂
(i)
τ (15) via

M̂
(i)
τ,≤ζ := I {NXi

(XIi) ≤ ζ}, and construct the estimator M̂WingIt,≤ζ(τ) :=
1

n

n∑

i=1

M̂
(i)
τ,≤ζ .

(23)

The following theorem shows that the estimator M̂WingIt,≤ζ(τ) has small MSE.

Theorem 3 Suppose we choose τ ≥ tmix ((Tmix/n) ∧ 1/4), and let M̂WingIt,≤ζ(τ) denote
the estimator defined in Eq. (23). Then there is an absolute positive constant C such that

MSE(M̂WingIt,≤ζ(τ),Mπ,≤ζ) ≤ C · (ζ + 1)τ

n
∧ 1. (24)

Theorem 3 is proved in Section 7.4; a few remarks on the result follow. First, note that
by setting ζ = 0, Theorem 3 recovers Theorem 1, our result for missing mass, since the
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estimator M̂WingIt,≤0(τ) exactly coincides with the missing mass estimator M̂WingIt(τ).
Accordingly, the proof of this theorem generalizes (and is structured similarly to) the proof
of Theorem 1. Second, note that setting τ � Tmix log(1 + n/Tmix) yields

MSE(M̂WingIt,≤ζ(τ),Mπ,≤ζ) .
(ζ + 1)Tmix

n
· log(1 + n/Tmix), (25)

so that the MSE is on the order O
(
(ζ + 1) · logn∗

n∗

)
with n∗ = n/Tmix denoting the effective

sample size. To our knowledge, a result equivalent to Eq. (25) with linear dependence on
ζ + 1 is not directly available in the literature, even in the i.i.d. setting. In fact, it is
instructive to revisit the i.i.d. setting for small-count probabilities and compare with the
Good–Turing estimator (Good, 1953).

Remark 4 Recalling the notation φs(X
n) for the number of elements of the sample space

X that occur s times in Xn, the Good–Turing estimator for the functional Mπ,ζ(X
n) (21)

is given by M̂GT,ζ = ζ+1
n · φζ+1(X

n). We can then derive an estimator for Mπ,≤ζ(X
n)

by writing M̂GT,≤ζ =
∑ζ

s=0 M̂GT,s. Conversely, we can derive an estimator of the exact-

count functional Mπ,ζ from our estimator M̂WingIt,≤ζ . In particular, we can construct the

estimator M̂WingIt,ζ(τ) := M̂WingIt,≤ζ(τ)− M̂WingIt,≤(ζ−1)(τ), which can be interpreted as
writing

M̂
(i)
τ,ζ := I {NXi

(XIi) = ζ}, and constructing the estimator M̂WingIt,ζ(τ) =
1

n

n∑

i=1

M̂
(i)
τ,ζ .

The leave-one-out perspective (McAllester and Schapire, 2001) then yields the following

consequence for τ = 1 in our estimator: We have M̂WingIt,ζ(1) = MGT,ζ , and therefore

M̂WingIt,≤ζ(1) = MGT,≤ζ .

To our knowledge, existing analyses of the Good–Turing estimator that are tailored
to exact-count estimation do not recover the small-count estimation error guarantee of
Theorem 3 even in the special case of i.i.d. observations; simply translating these results to
guarantees on estimating M̂GT,ζ leads to weaker guarantees. To be concrete, applying the

result of Drukh and Mansour (2005) (which is for the MSE of M̂GT,ζ) yields

MSE(M̂GT,≤ζ ,Mπ,≤ζ)
(i)

≤ ζ

ζ∑

s=0

MSE(M̂GT,s,Mπ,s) = ζ

ζ∑

s=0

√
s

n
+
( s
n

)2
.

ζ5/2

n
∧ 1, (26a)

where step (i) follows from the (loose) inequality (
∑ζ

s=0 as)
2 ≤ ζ

∑ζ
s=0 a

2
s. However, setting

τ = 1 in Theorem 3, we see that Eq. (24) improves the guarantee (26a) even in the i.i.d.
case, showing that

MSE(M̂GT,≤ζ ,Mπ,≤ζ)
(i)
= MSE(M̂WingIt,≤ζ(1),Mπ,≤ζ) . (ζ + 1)/n, (26b)

where step (i) follows from Remark 4.
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Conversely, our bound on the exact-count Good–Turing estimator (obtained by setting
τ = 1 in Theorem 3 and appealing to Remark 4) is suboptimal in its dependence on ζ. Our
bound specializes in the i.i.d. case to

MSE(M̂GT,ζ ,Mπ,ζ) ≤ 2MSE(M̂GT,≤ζ ,Mπ,≤ζ) + 2MSE(M̂GT,≤(ζ−1),Mπ,≤(ζ−1)) .
(ζ + 1)

n
.

(27a)

Note that the dependence on ζ is linear, compared to the following bound of Drukh and
Mansour (2005) that has an improved dependence on ζ:

MSE(M̂GT,ζ ,Mπ,ζ) .

√
ζ + 1

n
+

(
ζ + 1

n

)2

. (27b)

It is worth noting that the bounds (26) are on the same estimator, and the bounds (27)
are on the same estimator. Our analysis technique appears to be better equipped to deal
with estimation error on the small-count probabilities, i.e. MSE(M̂GT,≤ζ ,Mπ,≤ζ), while the
analysis technique of Drukh and Mansour (2005) is better equipped to deal with estimation

error on the exact-count probabilities, i.e., MSE(M̂GT,ζ ,Mπ,ζ).
The problems of whether the rate (26b) and its Markovian analog (25) are information-

theoretically optimal for estimating the small-count6 probability Mπ,≤ζ are interesting and,
to our knowledge, open, both in the i.i.d. and Markovian settings. To address this, it would
be interesting to examine and carefully modify generalizations of Good–Turing estimators
(e.g. Painsky (2023)) for the Markov setting.

6. Numerical experiments

In this section, we provide a set of simulations on synthetically constructed Markov chains
and on natural language text in order to corroborate our theoretical results, in particular
Theorem 1. Before proceeding to the experiments themselves, we describe in Section 6.1 a
data-dependent tuning procedure of the window size τ in the estimator M̂WingIt(τ).

Code and the text used for the simulations are available at Thangaraj et al. (2024).

6.1 Data-dependent tuning of window size τ

Theorem 1 prescribes that we choose the window size τ to be at least on the order Tmix log(1+
n/Tmix). An important question to address is how to choose the window size τ when we do
not have access to a valid upper bound on Tmix. We now propose a validation procedure to
select τ , and test this procedure in the experiments in the sequel. For this section, assume
n is divisible by 3 for notational convenience.

Given the sequenceXn, we choose a candidate window size τ̂ via the following procedure.
We first split the sequence into the first one-third Z(1) = (X1, . . . , Xn/3) and the final one-

third Z(2) = (X2n/3+1, . . . , Xn) and compute the random variable

M̃(Z(1), Z(2)) =
1

(n/3)

n∑

i=2n/3+1

I
{
Xi /∈ {X1, . . . , Xn/3}

}
.

6. Note that the small ζ regime, i.e. ζ = o(n), is the interesting one; we should expect accurate estimation
to be possible for large ζ since the corresponding elements appear many times.
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Next, iterate τ = 1, 2, 4, . . . , 2blog2(n/6)c in increasing order, and compute M̂WingIt(τ) on the

sequence Z(1); denote this random variable by M̂WingIt(Z
(1); τ) for convenience. We then

set τ̂ to be the smallest τ among this set such that

∣∣∣M̂WingIt(Z
(1); τ)− M̃(Z(1), Z(2)

∣∣∣
2
≤ Ctune τ

(n/3)
(28)

for a suitable choice of the constant Ctune > 0. If such an inequality is not satisfied for any
τ in the prescribed list, then we set τ̂ = n/6. While we do not prove theoretical guarantees
for the tuned estimator, Appendix B provides some intuition for why this procedure is
reasonable as an automatic tuning method. We next show that empirically, this tuning
method is competitive with the optimally chosen window size.

6.2 Experiments on simulated Markov chains and natural language text

For the simulated Markov and natural language text sequences considered in this section,
we vary the sequence length n and plot the MSE of the estimator M̂WingIt(τ) as a function
of n for different values of the window size τ . We also plot the MSE of the tuned estimator
M̂WingIt(τ̂). Note once again that the special case τ = 1 corresponds to the Good–Turing
estimator (7). We also plot (in dashed lines) the result of the tuning procedure that we
described in Section 6.1, with the constant Ctune in Eq. (28) set to be 1. Every point in
these plots is generated by averaging the results of multiple sequences generated from the
source. Throughout this section we denote M̂(·) := M̂WingIt(·) as shorthand.

First, and as a sanity check, we consider the case of the trivial Markov chain formed
by i.i.d. samples. For generating n samples, we consider the uniform distribution over
the state space X = {1, 2, . . . , b1.2nc}, which is close to the worst-case distribution for
the Good–Turing estimator. Moreover, this ensures that the missing mass Mπ(X

n) is
significant. Figure 1 shows two plots. The plot on the left is that of the MSE of the
estimator M̂WingIt(τ) as a function of sequence length n for various values of the window
size τ and for tuned τ̂ . The plot on the right shows the mean values (over the 100 runs)

of the triple of random variables (Mπ, M̂(1), M̂(τ̂)) along with the 90 percentile confidence
bar (5th to 95th percentile). Observe that on the one hand—and as expected in the i.i.d.
setting with mixing time Tmix = 1—the minimum MSE is attained when τ = 1, i.e., by the
vanilla Good–Turing estimator (7). On the other hand, the MSE is only marginally higher
for higher values of the window size τ , and all estimators appear to enjoy the same rate of
decay of MSE in the sequence length n. The effect of misspecifying τ appears to become
insignificant as n increases. The MSE of M̂(τ̂) with tuned τ̂ (dashed line) is close to the
minimum attained MSE. In the plot to the right, the mean values of missing mass Mπ and
the estimators M̂(1), M̂(τ̂) are almost overlapping for all n. The confidence bars for the

three quantities are shown as a wide blue bar for Mπ, an orange bar for M̂(1) and as a

capped black line for M̂(τ̂). The confidence bars, narrow to begin with, shrink to negligible
lengths as n increases.

In our second experiment, we once again consider the state space X = {1, . . . , b1.2nc}.
We simulate the sticky Markov chain (10) with p = 0.5 and stationary distribution given
by the uniform distribution on X , i.e., πx = 1

b1.2nc for all x ∈ X . As before, we simulate the
performance of the WingIt estimator as a function of n for different values of window size
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Figure 1: IID Uniform([1.2n]) for n samples, averaged over 100 trajectories.
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Figure 2. Sticky(0.5) with π =Uniform([1.2n]) for n samples, averaged over 100 trajectories.
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τ , and present our results in Figure 2. In the MSE plot to the left, we observe the following.
In contrast to the previous i.i.d. example, we now find that the choice τ = 1 is a poor one,
and that the error of the estimator does not decay with the sample size n. As expected from
the analysis presented in Section 2, the vanilla Good–Turing estimator (7) indeed suffers
a constant MSE in this setting. Note that by Lemma 10, the mixing time of this chain is
bounded as Tmix ∈ [1, 4], and Theorem 1 predicts that the estimator should succeed when
the window size τ is larger than Tmix. This prediction is borne out in simulation: While the
estimator exhibits constant bias even when τ = 4, when τ = 8 the MSE suddenly decays in
n. Further increases in the window size τ preserve the consistency of the estimator while
affecting the MSE only slightly. In the plot to the right in Figure 2, we see that the mean
value of missing mass coincides with the mean value of both the estimators (one with τ = 16
and the other with tuned window size) for larger values of n. For n < 2000, the mean of the

estimator M̂WingIt(16) almost coincides with missing mass, while the mean of M̂WingIt(τ̂)
is smaller. The confidence bars for both estimators are wider than that of the missing mass
for n < 2000 though they narrow quickly as n grows. These observations suggest that the
tuning procedure may be improvable, particularly for small n.
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Figure 3. Sticky(p) with π = Uniform([1.2n]) for n samples, 100 trajectories. Compared to
Eq. (10), we have reparameterized as p = 1− p. To reduce clutter, confidence bar is shown

only for M̂WingIt(τ̂).

In our next experiment, we simulate the sticky Markov chain (10) with p , 1 − p =
0.1, 0.5, 0.9 setting the state space and stationary distribution as before. The aim of this
experiment is to examine more closely the influence of the stickiness parameter p on the
optimal choice of window size τ . The same simulations are performed and results are
compared in Figure 3. The best (power of 2) window sizes for p = 0.1, 0.5, 0.9 are observed
through simulations to be, respectively, τ = 4, 16, 64. The plot to the left shows the MSE
of M̂WingIt(τ) for the best observed window size and for the data-tuned window size τ̂
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(called “tuned”). For the least sticky chain (p = 0.1), the tuned and the best estimators
have overlapping MSEs for all n. As stickiness increases, the MSE of the tuned estimator
marginally deviates from the best for small n. For highly sticky chains (p = 0.9), the
deviation persists for significantly longer. The plot to the right shows mean values and
confidence bars (for the tuned estimator alone) for all three values of p. The best estimator
is close in mean to missing mass for all n for all p. As stickiness increases, the tuning
procedure appears to require increasingly larger values of n for good accuracy.

In our final experiment, presented in Figure 4, we consider the text of the novel A Tale
of Two Cities by Charles Dickens accessed through Project Gutenberg (Dickens, 1994).
All auxiliary content (preface, table of contents, chapter titles, Project Gutenberg related
text) were removed and only the novel text was retained. This text was tokenized and all
punctuation was removed. Titles (Miss, Mr. etc.) and names of characters that occurred as
collocations with high frequency (10 of them) were merged into single tokens. The result was
a sequence of N = 136092 tokens, numbered from 0 to N − 1, with a vocabulary X (unique
tokens) of size |X | = 10542. For defining missing massMπ, the overall frequency distribution
of the N tokens was taken to be the stationary distribution π. A consecutive sequence of
n tokens (Token s+1 to Token s+ n with starting point s) is considered as a trajectory of
length n, i.e. Xn. For a given length n, approximately 15N/n trajectories were considered
in the simulations with their starting points separated by n/15. An important feature of this
data is that the Markov assumption (also known as the bigram assumption in this literature)
is clearly violated, since we expect the text to have longer-range dependencies. In any case,
we can run our estimator for the missing mass and compare it to the true missing mass,
which can still be computed from the sequence once the stationary probability is fixed.
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Figure 4. Text of ‘A Tale of Two Cities’ by Charles Dickens, Vocabulary: 10542 words,
Trajectories: sequences of n words from text.

In Figure 4, we show the MSE in the plot to the left and the means with confidence
bars to the right. Interestingly, all of the choices of τ that we consider yield similar MSE
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performance for the WingIt estimator, and all of these choices appear to have a super-
linear rate of decay with the sample size n. The reason for the difference in rate of decay
could be because we hold |X | constant as we increase n in the text simulations resulting in
a decrease in Mπ with n. This decrease is confirmed in the plot on the right, where we see
that the mean of missing mass falls from about 0.45 for n = 600 to about 0.1 for n = 19200.
Further, from the right plot, we observe that the tuned estimator and the estimator with
τ = 32 are close to each other in mean, while deviating a bit from the mean of missing mass
for small n. The aforementioned long-range dependencies in the text are likely to be causing
this minor deviation. In any case, the estimator M̂WingIt(τ̂) appears to be accurate for all
n. Overall, our experiments on this corpus demonstrate that the missing mass estimator is
robust to model misspecification, and could work well even for non-Markovian sources.

7. Proofs

In this section, we present proofs of the main theorems. We begin with preliminaries in
Section 7.1, which introduces additional notation and a useful reduction device that will help
us analyze our estimators M̂WingIt(τ) and M̂WingIt,≤ζ(τ). Technical lemmas are frequently
referenced in our proofs, and their statements and proofs can be found in Appendix A.

7.1 Preliminary decompositions and notation

Suppose for convenience7 that n is divisible by 2τ , and let n0 = n/(2τ). Recall our single-

sample estimators M̂
(i)
τ (Eq. (15)) and the definition (16) of the WingIt estimator. Define

the “skipped” estimators

M̂WingIt(τ ; `) :=
1

n0

n0∑

j=1

M̂ (2τj−`)
τ for each ` = 0, . . . , 2τ − 1. (29)

In words, each of these estimators averages only n0 of the individual estimates M̂
(i)
τ by

skipping 2τ indices at a time; this skipping induces further decorrelations. Note that we
may write

M̂WingIt(τ) =
1

2τ

2τ−1∑

`=0

M̂WingIt(τ ; `)

by definition. Furthermore, we have

MSE(M̂WingIt(τ),Mπ) = E

(
1

2τ

2τ−1∑

`=0

M̂WingIt(τ ; `)−Mπ

)2

(i)

≤ 1

2τ

2τ−1∑

`=0

E

(
M̂WingIt(τ ; `)−Mπ

)2
, (30)

where step (i) follows from Jensen’s inequality applied to the convex function z 7→ z2.

7. Our argument extends straightforwardly without this assumption; we only make it to avoid carrying
floor and ceiling notation.
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Via a parallel argument, and introducing the objects

M̂WingIt,≤ζ(τ ; `) :=
1

n0

n0∑

j=1

M̂
(2τj−k)
τ,≤ζ for each ` = 0, . . . , 2τ − 1, (31)

we have

MSE(M̂WingIt,≤ζ(τ),Mπ,≤ζ) ≤
1

2τ

2τ−1∑

`=0

E

(
M̂WingIt,≤ζ(τ ; `)−Mπ,≤ζ

)2
. (32)

Our argument to prove Theorems 1 and 3 will proceed by establishing the following
proposition.

Proposition 5 If τ ≥ tmix ((Tmix/n) ∧ 1/4), then the following statements hold:
(a) There is an absolute positive constant C such that we have

E

(
M̂WingIt(τ ; `)−Mπ

)2
≤ C · τ

n
∧ 1 for all ` = 0, . . . , 2τ − 1. (33)

(b) There is an absolute positive constant C such that we have

E

(
M̂WingIt,≤ζ(τ ; `)−Mπ

)2
≤ C · (ζ + 1)τ

n
∧ 1 for all ` = 0, . . . , 2τ − 1. (34)

We prove part (a) of Proposition 5 in proving Theorem 1; see Section 7.2. We prove
part (b) of Proposition 5 in proving Theorem 3; see Section 7.4.

` = 1

` = 0

j = 2

j = 1

j = 3

j = 2

j = 1

j = 3

` = 3

` = 2

j = 2

j = 1

j = 3

j = 2

j = 1

j = 3

Figure 5. Schematic showing our estimator construction for n = 12 and τ = 2, so that
n0 = n/(2τ) = 3. For the various values j ∈ [n0] and ` = 0, 1, . . . , 2τ −1, the index 2τj− ` is
shown in black and the window of size τ − 1 on either size of it is excluded when computing

the estimator M̂
(2τj−`)
τ . The indices in color form the sets D2τj−` = Bj,`, while the indices

in white form the sets I2τj−` = Hj,`. For each `, the sets {Dj,`}j∈[n0] are non-overlapping.

Recall our index sets {Di}ni=1 and {Ii}ni=1 from Eq. (14). For j ∈ [n0] and ` =
0, 1, . . . , 2τ − 1, define the sets Bj,` := D2τj−` and Hj,` := I2τj−` as the “dependent” and
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“independent” indices, respectively, for the j-th window, or block, of size (at most) 2τ − 1.
Mnemonically, one should view Bj,` as the j-th block of indices and Hj,` = [n] \ Bj,` as the
set of indices having a hole at block j.

In the sequel, we will pay special attention to the case ` = 0 and analyze the estimator
M̂WingIt(τ ; 0). Consequently, we use the shorthand Bj := Bj,0 and Hj := Hj,0. See Figure 5
for an illustration of our notation.

Recall that X[n] = {X1, . . . , Xn} is the set (not sequence) of all random variables. In
the sequel, we use the shorthand EY ≡ EY∼π and EY ′ ≡ EY ′∼π, where Y, Y ′ are drawn
i.i.d. and independently of Xn. The notation E (without any subscript) is reserved for an
expectation taken over all the randomness in the problem.

7.2 Proof of Theorem 1

Owing to Eq (30), it suffices to establish Proposition 5(a). As will be clear from the

proof, our argument will apply to bound the MSE of the estimator M̂WingIt(τ ; `) for any
` = 0, . . . , 2τ − 1, so we concentrate on establishing that for an absolute positive constant
C and τ ≥ tmix ((Tmix/n) ∧ 1/4):

E

(
M̂WingIt(τ ; 0)−Mπ

)2
≤ C · τ

n
∧ 1. (35)

Recall the shorthand n0 = n/(2τ) and the notation Bj and Hj from above. Viewing Xn as

fixed for the moment and writing out our estimator M̂WingIt(τ ; 0) = 1
n0

∑n0
j=1 M̂

(2τj)
τ , we

have that 1
2 |M̂WingIt(τ ; 0)−Mπ(X

n)|2 is equal to

1

2
·

∣∣∣∣∣∣
1

n0

n0∑

j=1

I
{
X2τj /∈XHj

}
− E

Y∼π
Y⊥⊥Xn

I
{
Y /∈X[n]

}
∣∣∣∣∣∣

2

≤

∣∣∣∣∣∣
1

n0

n0∑

j=1

(
E

Y∼π
Y⊥⊥Xn

I
{
Y /∈XHj

}
− E

Y∼π
Y⊥⊥Xn

I
{
Y /∈X[n]

}
)∣∣∣∣∣∣

2

︸ ︷︷ ︸
T1

+

∣∣∣∣∣∣
1

n0

n0∑

j=1

(
I
{
X2τj /∈XHj

}
− E

Y∼π
Y⊥⊥Xn

I
{
Y /∈XHj

}
)∣∣∣∣∣∣

2

︸ ︷︷ ︸
T2

, (36)

where we have added and subtracted the term 1
n0

n0∑
j=1

E
Y∼π

Y⊥⊥Xn

I
{
Y /∈XHj

}
inside the expres-

sion |M̂WingIt(τ ; 0)−Mπ(X
n)| and used the inequality 1

2(a+ b)2 ≤ (a2 + b2).
We now bound E[T1] and E[T2], in turn.

7.2.1 Bounding E[T1]

Note that T1 resembles a conditional squared bias term. For each j ∈ [n0], define the
random variable Pj := I

{
Y /∈XHj

}
− I
{
Y /∈X[n]

}
. Applying Lemma 11, we have

Pj = I
{
Y ∈XBj

}
· I
{
Y /∈XHj

}
,
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which is the indicator that Y appears in the sequence only in block Bj .
Since all blocks {Bj}n0

j=1 are non-overlapping, we have

⊔

j′∈[n0]\j

Bj′ ⊂ Hj . (37)

Now suppose that for some j we have I
{
Y ∈XBj

}
· I
{
Y /∈XHj

}
= 1, which implies

I
{
Y /∈XHj

}
= 1 and I

{
Y ∈XHj

}
= 0. Then we must have

∑

j′∈[n0]\j

I

{
Y ∈XBj′

}
· I
{
Y /∈XHj′

} (i)

≤
∑

j′∈[n0]\j

I

{
Y ∈XBj′

}

≤ I

{
Y ∈X

⊔
j′∈[n0]\j

Bj′

}

(ii)

≤ I
{
Y ∈XHj

}
= 0,

where (i) follows because I

{
Y /∈XHj′

}
≤ 1 and (ii) follows by Eq. (37). Thus, we have

n0∑

j=1

Pj =

n0∑

j=1

I
{
Y ∈XBj

}
· I
{
Y /∈XHj

}
≤ 1,

pointwise for every sequence Xn. Said another way, the term
∑n0

j=1 Pj is equal to the
indicator that Y appears in exactly one block, and therefore must be at most equal to 1.

Putting together the pieces, we have

T1 =
1

n2
0


E

Y

n0∑

j=1

Pj




2

≤ 1

n2
0

,

and so E[T1] ≤ 1
n2
0
.
(
τ
n

)2 ∧ 1.

7.2.2 Bounding E[T2]

We note that T2 resembles a conditional variance term. Define as shorthand the random
variables Zj := I

{
X2τj /∈XHj

}
− EY I

{
Y /∈XHj

}
for all j ∈ [n0]. Then we have

T2 =
1

n2
0

n0∑

j,k=1

ZjZk ≤
1

n0
+

1

n2
0

n0∑

j=1

n0∑

k=1
k 6=j

ZjZk,

where the inequality follows since Zj ∈ [−1, 1] for all j ∈ [n0]. Therefore, it suffices to
bound the cross terms when j 6= k. For each j, k ∈ [n0] with j 6= k, define the random
variables

Qj,k = I
{
Y /∈XHj∩Hk

}
− I {Y /∈XHk

} (38)

The following lemma relates the expectation of the cross terms to expectations of the random
variables defined above.
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Lemma 6 Suppose τ ≥ tmix(ε). Then for each j 6= k, we have

E[ZjZk] ≤
5

2
E[Qj,k] +

5

2
E[Qk,j ] + 16ε,

where the random variables {Qj,k} are as defined in Eq. (38).

We take Lemma 6 as given for the moment and prove it in Section 7.2.3. Let us now use it to

bound E[T2]. Applying Lemma 11, we may write Qj,k = I

{
Y ∈XHk\Hj

}
·I
{
Y /∈XHj∩Hk

}
.

Now consider some fixed k ∈ [n0]. Since the sets {Bj}n0
j=1 are non-overlapping, we have

Hk \ Hj = Bj , and
Hj ∩Hk ⊃

⊔

j′∈[n0]\{j,k}

Bj′ .

If for some j 6= k, we have

I

{
Y ∈XHk\Hj

}
· I
{
Y /∈XHj∩Hk

}
= 1,

then

∑

j′∈[n0]\{j,k}

I

{
Y ∈XHk\Hj′

}
· I
{
Y /∈XHj′∩Hk

}
≤

∑

j′∈[n0]\{j,k}

I

{
Y ∈XBj′

}

≤ I
{
Y ∈XHj∩Hk

}
= 0.

Consequently, we have ∑

j∈[n0]\k

Qj,k ≤ 1.

Essentially, we have shown that
∑

j∈[n0]\k
Qj,k is at most the indicator that Y appears in

exactly one block (other than Bk), which is at most 1.

Applying Lemma 6 and using the linearity of expectation then yields

n0∑

j=1

n0∑

k=1
k 6=j

E[ZjZk] ≤ 5n0 + 16n2
0ε.

Consequently, we have E[T2] .
1
n0

+ ε. Substituting ε = Tmix

n and noting that τ ≥ Tmix by
assumption, we obtain E[T2] ≤ C · τn ∧ 1.

Putting together our bounds on E[T1] and E[T2] establishes Theorem 1. It remains to
prove Lemma 6.

7.2.3 Proof of Lemma 6

Define

Q̃j,k := E
Y
[Qj,k] = E

Y
[I
{
Y /∈XHj∩Hk

}
− I {Y /∈XHk

}] (39)

24



Just Wing It: Near-Optimal Estimation of Missing Mass in a Markovian Sequence

for convenience. Note that by Lemma 11, we have Q̃j,k = EY [I
{
Y ∈XHk\Hj

}
·I
{
Y /∈XHj∩Hk

}
],

so that Q̃j,k ∈ [0, 1]. We have the decomposition

ZjZk

=
(
I
{
X2τj /∈XHj

}
− E

Y
[I
{
Y /∈XHj∩Hk

}
] + Q̃k,j

)
·
(
I {X2τk /∈XHk

} − E
Y ′

[I
{
Y ′ /∈XHj∩Hk

}
] + Q̃j,k

)

≤
(
I
{
X2τj /∈XHj

}
− E

Y
[I
{
Y /∈XHj∩Hk

}
]
)
·
(
I {X2τk /∈XHk

} − E
Y ′

[I
{
Y ′ /∈XHj∩Hk

}
]
)

︸ ︷︷ ︸
Uj,k

+ Q̃j,k + Q̃k,j + Q̃j,k · Q̃k,j

(i)

≤ Uj,k +
3

2
(Q̃j,k + Q̃k,j).

Here step (i) follows by the following sequence of algebraic inequalities: Given that every

Q̃j,k is bounded in the range [0, 1], we have Q̃j,k · Q̃k,j ≤
√

Q̃j,k · Q̃k,j ≤ 1
2(Q̃j,k + Q̃k,j).

It remains to establish that E[Uj,k] ≤ EXn [Q̃j,k] +EXn [Q̃k,j ] + 16ε. We have the further
decomposition

E[Uj,k] = E[I
{
X2τj /∈XHj

}
· I {X2τk /∈XHk

}]︸ ︷︷ ︸
U1

− E
Xn

[
I
{
X2τj /∈XHj

}
· E
Y ′

[I
{
Y ′ /∈XHj∩Hk

}
]
]

︸ ︷︷ ︸
U2

− E
Xn

[
I {X2τk /∈XHk

} · E
Y
[I
{
Y /∈XHj∩Hk

}
]
]

︸ ︷︷ ︸
U3

+ E
Xn

[
E
Y
[I
{
Y /∈XHj∩Hk

}
] · E

Y ′

[I
{
Y ′ /∈XHj∩Hk

}
]
]

︸ ︷︷ ︸
U4

(40)

We now bound each of the above terms in turn.

To begin, we notice that I
{
X2τj /∈XHj

}
≤ I

{
X2τj /∈XHj∩Hk

}
and I {X2τk /∈XHk

} ≤
I
{
X2τk /∈XHj∩Hk

}
to bound U1 as

U1 ≤ E[I
{
X2τj /∈XHj∩Hk

}
· I
{
X2τk /∈XHj∩Hk

}
]

(i)

≤ E[I
{
Y ′ /∈XHj∩Hk

}
· I
{
Y /∈XHj∩Hk

}
] + 8ε

(ii)
= E

Xn

{
E
Y ′
[I
{
Y ′ /∈XHj∩Hk

}
] · E

Y
[I
{
Y /∈XHj∩Hk

}
]

}
+ 8ε. (41)

Here, step (i) uses Lemma 14 (applied with i1 = 2τ min{j, k}, i2 = 2τ max{j, k}, and noting
that i2 − i1 ≥ 2τ for all j 6= k) and step (ii) follows because Y and Y ′ are independent of
everything else.

Proceeding to the next term, note that U2 may be viewed as the expectation over Xn

of

f(X2τj ;XHj
) := I

{
X2τj /∈XHj

}
· E
Y
[I
{
Y /∈XHk∩Hj

}
],
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which is bounded in the range [0, 1]. Since τ ≥ tmix(ε), we may apply Lemma 13 (applied
with i = 2jτ) to obtain |E[f(X2τj ;XHj

)]− E[f(Y ′;XHj
)]| ≤ 4ε. Thus,

U2 ≥ E
Xn

[
E
Y ′
[I
{
Y ′ /∈XHj

}
] · E

Y
[I
{
Y /∈XHj∩Hk

}
]

]
− 4ε

(i)

≥ E
Xn

[
E
Y ′
[I
{
Y ′ /∈XHj∩Hk

}
] · E

Y
[I
{
Y /∈XHj∩Hk

}
]

]
− E

Xn
[Q̃k,j ]− 4ε, (42)

where step (i) follows because

E
Y ′
[I
{
Y ′ /∈XHj

}
] · E

Y
[I
{
Y /∈XHj∩Hk

}
]

= E
Y ′
[I
{
Y ′ /∈XHj∩Hk

}
] · E

Y
[I
{
Y /∈XHj∩Hk

}
] + E

Y ′
[I
{
Y ′ /∈XHj

}
] · E

Y
[I
{
Y /∈XHj∩Hk

}
]

− E
Y ′
[I
{
Y ′ /∈XHj∩Hk

}
] · E

Y
[I
{
Y /∈XHj∩Hk

}
]

= E
Y ′
[I
{
Y ′ /∈XHj∩Hk

}
] · E

Y
[I
{
Y /∈XHj∩Hk

}
]− Q̃k,j E

Y
[I
{
Y /∈XHj∩Hk

}
]

≥ E
Y ′
[I
{
Y ′ /∈XHj∩Hk

}
] · E

Y
[I
{
Y /∈XHj∩Hk

}
]− Q̃k,j

with the last inequality holding because of the inclusion EY [I
{
Y /∈XHj∩Hk

}
] ∈ [0, 1].

By an identical argument to the above, we have

U3 ≥ E
Xn

[
E
Y ′
[I
{
Y ′ /∈XHj∩Hk

}
] · E

Y
[I
{
Y /∈XHj∩Hk

}
]

]
− E

Xn
[Q̃j,k]− 4ε. (43)

Putting Eqs. (41), (42) and (43) together with the definition of U4 and performing the
requisite cancellations, we have

E[Uj,k] = U1 − U2 − U3 + U4 ≤ E
Xn

[Q̃j,k] + E
Xn

[Q̃k,j ] + 16ε,

as claimed. �

7.3 Proof of Theorem 2

Since the best constant predictor of a random variable is its expectation, we have

var(Mπ(X
n)) ≤ E(Mπ(X

n)− E M̂WingIt(τ))
2

= E

(
(Mπ(X

n)− M̂WingIt(τ)) + (M̂WingIt(τ)− E M̂WingIt(τ))
)2

(i)

≤ 2MSE(M̂WingIt(τ),Mπ) + 2 var(M̂WingIt(τ)), (44)

where step (i) follows by using (a+ b)2 ≤ 2a2 + 2b2. Throughout the rest of this proof, we
will choose τ = tmix ((Tmix/n) ∧ 1/4) . Tmix · log(1 + n/Tmix) (see Eq. (6)).

Bounding MSE: Applying Theorem 1 yields the direct bound

MSE(M̂WingIt(τ),Mπ(X
n)) . τ/n .

Tmix

n
· log(1 + n/Tmix).

It remains to bound the variance term on the RHS of Ineq. (44).
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Bounding variance of estimator: To bound the variance, we make use of the fact that
the estimator M̂WingIt(τ) satisfies a bounded differences property (Doob, 1940; McDiarmid,
1989) with respect to the variables (X1, . . . , Xn). This allows us to obtain a sub-Gaussian
concentration inequality, which in turn is used to bound variance. We state this result as a
lemma that may be of independent interest.

To set up some notation, let X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xn) denote the sequence
without its i-th entry, and letX(i)(x) = (X1, . . . , Xi−1, x,Xi+1, . . . , Xn) denote the sequence
with x at the i-th position and X−i in the remaining positions. The maximum difference
witnessed by a function f : X n → R at its i-th index is given by

δi(f) := max
X−i∈Xn−1

δi(f ;X
−i), where δi(f ;X

−i) := max
x,x′∈X

|f(X(i)(x))− f(X(i)(x′))|.

For a positive (nonrandom) scalar bi, the function f is said to satisfy a bi bounded differences
inequality at index i if δi(f) ≤ bi.

Lemma 7 Define the shorthand M̂ τ
WingIt := M̂WingIt(τ) for convenience. For every τ ∈

[n], the function xn 7→ M̂ τ
WingIt(x

n) satisfies a 4τ
n bounded differences property on all indices,

in that maxi∈[n] δi(M̂
τ
WingIt) ≤ 4τ

n .

We prove Lemma 7 shortly. For the moment, applying it in conjunction with Corollary 2.10
and Remark 2.11 of Paulin (2015), we obtain that for all t ≥ 0,

Pr
{
|M̂WingIt(τ)− E[M̂WingIt(τ)]| ≥ t

}
≤ 2 exp

(
−c · nt2

Tmixτ

)

for some universal constant c > 0. Integrating the tail bound and using E[Z] =
∫∞
0 Pr(Z ≥

z)dz for the non-negative random variable Z = |M̂WingIt(τ) − E[M̂WingIt(τ)]|2 yields that

for any τ ∈ [n], we have var(M̂WingIt(τ)) .
τ ·Tmix

n .

Using Ineq. (44), setting τ � Tmix log(1 + n/Tmix), and putting together the bounds on
MSE and variance yields

var(Mπ(X
n)) ≤ C · Tmix

2

n
· log(1 + n/Tmix) ∧ 1,

as desired. �

7.3.1 Proof of Lemma 7

We will show that δi(M̂
τ
WingIt;X

−i) ≤ 4τ
n for a fixed i ∈ [n] and any X−i ∈ X n−1, which

directly implies the desired result. Consider the sequences X(i)(x) and X(i)(x′). Recall

from Eq. (16) that we defined M̂ τ
WingIt(X

n) = 1
n

∑n
i′=1 M̂

(i′)
τ (Xn), where M̂

(i′)
τ (Xn) =

I
{
Xi′ /∈XIi′

}
. From this, applying the triangle inequality yields

δi(M̂
τ
WingIt;X

−i) ≤ max
x,x′∈X

∑n
i′=1 I

{
M̂

(i′)
τ (X(i)(x)) 6= M̂

(i′)
τ (X(i)(x′))

}

n
.
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Thus, it suffices to show that for any x, x′ ∈ X , the total number of indices i′ ∈ [n] for

which M̂
(i′)
τ changes when we switch Xi from x→ x′, i.e. the quantity

V (x, x′) :=
n∑

i′=1

I

{
M̂ (i′)

τ (X(i)(x)) 6= M̂ (i′)
τ (X(i)(x′))

}
,

is less than or equal to 4τ .

Let Zi′ = I

{
M̂

(i′)
τ (X(i)(x)) 6= M̂

(i′)
τ (X(i)(x′))

}
. On the one hand, if Xi′ /∈ {x, x′}, then

Zi′ = 0 because changing Xi from x to x′ has no impact on the indicator I
{
Xi′ /∈XIi′

}
.

On the other hand, if there are at least 2τ + 1 occurrences of x in the sequence Xn, and if
Xi′ = x, then I

{
Xi′ /∈XIi′

}
= 0 for any i′ because Di′ has at most 2τ − 1 elements and

some x remains in XIi′ . So, Zi′ = 0. An analogous argument holds if there are at least
2τ + 1 occurrences of x′ in the sequence Xn.

Thus, the number of indices i′ for which Zi′ = 1 can be at most 2τ + 2τ = 4τ . This
proves the bound V (x, x′) ≤ 4τ for any pair (x, x′), as claimed. �

Remark 8 The upper bound in Lemma 7 is tight up to a factor 4. To see this, fix x 6= x′ ∈
X , the index i = 2τ + 1 and form the sequence Xn = (X1, . . . , Xn) by setting

Xi′ =

{
x if i′ ∈ {1, . . . , τ}
x′ otherwise.

Then, for all the indices i′ ∈ {1, . . . , τ} we have M̂
(i′)
τ (X(i)(x)) = 0 but M̂

(i′)
τ (X(i)(x′)) = 1.

Moreover, for all other indices i′ > τ we have M̂
(i′)
τ (X(i)(x)) = M̂

(i′)
τ (X(i)(x′)) = 0. This

directly implies that

δi(M̂WingIt(τ);X
−i) =

∣∣∣ τ
n
− 0
∣∣∣ = τ

n
.

7.4 Proof of Theorem 3

The structure of this proof parallels the proof of Theorem 1; the reader is advised to read
that proof first. It is also useful to recall the notation for index sets that was defined in
Section 7.1.

Owing to Eq (32), it suffices to establish Proposition 5(b). As in the case before, our

argument will apply to bound the MSE of the estimator M̂WingIt,≤ζ(τ ; `) for any ` =
0, . . . , 2τ − 1, so we concentrate on establishing that for an absolute positive constant C
and τ ≥ tmix ((Tmix/n) ∧ 1/4):

E

(
M̂WingIt,≤ζ(τ ; 0)−Mπ

)2
≤ C · (ζ + 1)τ

n
∧ 1. (45)

We next proceed via a series of steps that resembles the proof of Theorem 1. Recall the
notation Nx(XP ) (and Nx(XP )) that we defined in Section 5, denoting the number of occur-
rences of x in the subset XP (and subsequence XP ). Viewing Xn as fixed for the moment
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and writing out our estimator M̂WingIt,≤ζ(τ ; 0) :=
1
n0

∑n0
j=1 M̂

(2τj)
τ,≤ζ , a parallel argument to

Eq. (36) yields that 1
2 |M̂WingIt,≤ζ(τ ; 0)−Mπ,≤ζ(X

n)|2 is equal to

1

2
·

∣∣∣∣∣∣
1

n0

n0∑

j=1

I
{
NX2τj (XHj

) ≤ ζ
}
− E

Y∼π
Y⊥⊥Xn

I
{
NY (X[n]) ≤ ζ

}
∣∣∣∣∣∣

2

≤

∣∣∣∣∣∣
1

n0

n0∑

j=1

(
E

Y∼π
Y⊥⊥Xn

I
{
NY (XHj

) ≤ ζ
}
− E

Y∼π
Y⊥⊥Xn

I
{
NY (X[n]) ≤ ζ

}
)∣∣∣∣∣∣

2

︸ ︷︷ ︸
T ′
1

+

∣∣∣∣∣∣
1

n0

n0∑

j=1

(
I
{
NX2τj (XHj

) ≤ ζ
}
− E

Y∼π
Y⊥⊥Xn

I
{
NY (XHj

) ≤ ζ
}
)∣∣∣∣∣∣

2

︸ ︷︷ ︸
T ′
2

.

As in the proof of Theorem 1, we upper bound E[T ′
1] and E[T ′

2].

7.4.1 Bounding E[T ′
1]

As in the proof of Theorem 1, T ′
1 resembles a conditional squared bias term. For each

j ∈ [n0], we now define the random variable P ′
j := I

{
NY (XHj

) ≤ ζ
}
− I
{
NY (X[n]) ≤ ζ

}
.

It is easy to see that T ′
1 =

1
n2
0

(
EY

∑n0
j=1 P

′
j

)2
. We will bound the term

∑n0
j=1 P

′
j pointwise.

Applying Lemma 12, we have P ′
j ≤ I

{
Y ∈XBj

}
· I
{
NY (XHj

) ≤ ζ
}
. As also argued in

Section 7.2.1, since the blocks {Bj}n0
j=1 are non-overlapping, we have

⊔

j′∈[n0]\j

Bj′ ⊂ Hj .

Now, suppose that for some j we have I
{
Y ∈XBj

}
· I
{
NY (XHj

) ≤ ζ
}
= 1. This means

that Y occurs at least once in Bj , but its number of occurrences outside of Bj is at most ζ.
Then, we must have

∑

j′∈[n0]\j

I

{
Y ∈XBj′

}
· I
{
NY (XHj′

) ≤ ζ
}
≤

∑

j′∈[n0]\j

I

{
Y ∈XBj′

}
≤ NY (XHj

) ≤ ζ.

Putting these together yields
∑n0

j=1 P
′
j ≤ ζ + 1 pointwise. Ultimately, this yields

T ′
1 =

1

n2
0


E

Y

n0∑

j=1

P ′
j




2

≤
(
ζ + 1

n0

)2

,

and so E[T1] .
(
(ζ+1)τ

n

)2
∧ 1.
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7.4.2 Bounding E[T ′
2]

As in the proof of Theorem 1, T ′
2 resembles a conditional variance term. We now define, for

all j ∈ [n0], the random variables

Z ′
j := I

{
NX2jτ (XHj

) ≤ ζ
}
− E

Y∼π
Y⊥⊥Xn

I
{
NY (XHj

) ≤ ζ
}
.

Then, we have

T ′
2 =

1

n2
0

n0∑

j,k=1

Z ′
jZ

′
k ≤

1

n0
+

1

n2
0

n0∑

j=1

n0∑

k=1
k 6=j

Z ′
jZ

′
k,

where the inequality follows since Z ′
j ∈ [−1, 1] for all j ∈ [n0]. Therefore, it suffices to

bound the cross terms when j 6= k. For each j, k ∈ [n0] with j 6= k, define the random
variables

Q′
j,k = I

{
NY (XHj∩Hk

) ≤ ζ
}
− I {NY (XHk

) ≤ ζ}. (46)

The following lemma, which is analogous to Lemma 6, relates the expectation of the cross
terms to the expectations of these random variables.

Lemma 9 Suppose τ ≥ tmix(ε). Then, for each j 6= k, we have

E[Z ′
jZ

′
k] ≤

5

2
E[Q′

j,k] +
5

2
E[Q′

k,j ] + 16ε,

where the random variables {Q′
j,k} are defined as in Eq. (46).

We take Lemma 9 as given for the moment and prove it in Section 7.4.3. We now use it to

bound E[T ′
2]. Applying Lemma 12, we have Q′

j,k ≤ I

{
Y ∈XHk\Hj

}
·I
{
NY (XHj∩Hk

) ≤ ζ
}
.

Now, consider some fixed k ∈ [n0]. As described in Section 7.2.2, since the sets {Bj}n0
j=1 are

non-overlapping, we have Hk \ Hj = Bj , and

Hj ∩Hk ⊃
⊔

j′∈[n0]\{j,k}

Bj′ .

If for some j 6= k, we have

I

{
Y ∈XHk\Hj

}
· I
{
NY (XHj∩Hk

) ≤ ζ
}
= 1,

it means that Y occurs at least once in the block Bj , but at most ζ times in the set Hj ∩Hk.
This implies that

∑

j′∈[n0]\{j,k}

I

{
Y ∈XHk\Hj′

}
· I
{
NY (XHj′∩Hk

) ≤ ζ
}
≤

∑

j′∈[n0]\{j,k}

I

{
Y ∈XBj′

}

≤ NY (XHj∩Hk
) ≤ ζ.

30



Just Wing It: Near-Optimal Estimation of Missing Mass in a Markovian Sequence

Consequently, we have
∑

j∈[n0]\k

Q′
j,k ≤ ζ + 1.

Applying Lemma 9 and using the linearity of expectation then yields

n0∑

j=1

n0∑

k=1
k 6=j

E[Z ′
jZ

′
k] ≤ 5(ζ + 1)n0 + 16n2

0ε.

Consequently, we have E[T ′
2] .

ζ+1
n0

+ ε. Substituting ε = Tmix

n and noting that τ ≥ Tmix by

assumption, we obtain E[T ′
2] ≤ C · τ(ζ+1)

n ∧ 1.

Combining our bounds on E[T ′
1] and E[T ′

2] completes the proof of Theorem 3. It remains
to prove Lemma 9.

7.4.3 Proof of Lemma 9

The structure of this proof closely resembles the proof of Lemma 6. Define

Qj,k := E
Y
[Q′

j,k] = E
Y

[
I
{
NY (XHj∩Hk

) ≤ ζ
}
− I {NY (XHk

) ≤ ζ}
]

(47)

for convenience. Note that by Lemma 12, we have

Qj,k ≤ E
Y

[
I

{
Y ∈XHk\Hj

}
· I
{
NY (XHj∩Hk

) ≤ ζ
}]
≤ 1,

and moreover Q′
j,k ≥ 0 pointwise so Qj,k ≥ 0. Therefore, Qj,k ∈ [0, 1]. We then have the

decomposition

Z ′
jZ

′
k

=
(
I
{
NX2τj

(XHj
) ≤ ζ

}
− E

Y
[I
{
NY (XHj∩Hk

) ≤ ζ
}
] +Qk,j

)
·

(
I {NX2τk

(XHk
) ≤ ζ} − E

Y ′

[I
{
NY ′(XHj∩Hk

) ≤ ζ
}
] +Qj,k

)

≤
(
I
{
NX2τj

(XHj
) ≤ ζ

}
− E

Y
[I
{
NY (XHj∩Hk

) ≤ ζ
}
]
)
·
(
I {NX2τk

(XHk
) ≤ ζ} − E

Y ′

[I
{
NY ′(XHj∩Hk

) ≤ ζ
}
]
)

︸ ︷︷ ︸
U ′

j,k

+Qj,k +Qk,j +Qj,k ·Qk,j

(i)

≤ U ′
j,k +

3

2
(Qj,k +Qk,j).

Here step (i) follows due to the following algebraic inequalities: Since each Qj,k ∈ [0, 1], we

have Qj,k ·Qk,j ≤
√
Qj,k ·Qk,j ≤ 1

2(Qj,k +Qk,j).
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It remains to establish that E[U ′
j,k] ≤ EXn [Qj,k] +EXn [Qk,j ] + 16ε. We have the further

decomposition

E[U ′
j,k]

= E[I
{
NX2τj

(XHj
) ≤ ζ

}
· I {NX2τk

(XHk
) ≤ ζ}]︸ ︷︷ ︸

U ′

1

− E
Xn

[
I
{
NX2τj

(XHj
) ≤ ζ

}
· E
Y ′

[I
{
NY ′(XHj∩Hk

) ≤ ζ
}
]
]

︸ ︷︷ ︸
U ′

2

− E
Xn

[
I {NX2τk

(XHk
) ≤ ζ} · E

Y
[I
{
NY (XHj∩Hk

) ≤ ζ
}
]
]

︸ ︷︷ ︸
U ′

3

+ E
Xn

[
E
Y
[I
{
NY (XHj∩Hk

) ≤ ζ
}
] · E

Y ′

[I
{
NY ′(XHj∩Hk

) ≤ ζ
}
]
]

︸ ︷︷ ︸
U ′

4

(48)

We now bound each of the above terms in turn.
First, we bound U ′

1 as

U ′
1 ≤ E[I

{
NX2τj (XHj∩Hk

) ≤ ζ
}
· I
{
NX2τk

(XHj∩Hk
) ≤ ζ

}
]

(i)

≤ E[I
{
NY ′(XHj∩Hk

) ≤ ζ
}
· I
{
NY (XHj∩Hk

) ≤ ζ
}
] + 8ε

(ii)
= E

Xn

{
E
Y ′
[I
{
NY ′(XHj∩Hk

) ≤ ζ
}
] · E

Y
[I
{
NY (XHj∩Hk

) ≤ ζ
}
]

}
+ 8ε, (49)

where step (i) uses Lemma 14 (applied with i1 = 2τ min{j, k}, i2 = 2τ max{j, k}, and
noting that i2 − i1 ≥ 2τ as j 6= k), and step (ii) follows because Y and Y ′ are independent
of everything else.

Proceeding to the next term, note that U ′
2 may be viewed as the expectation over Xn

of
f ′(X2jτ ;XHj

) := I
{
NX2τj (XHj

) ≤ ζ
}
· E
Y
[I
{
NY (XHk∩Hj

) ≤ ζ
}
],

which is bounded in the range [0, 1]. Since τ ≥ tmix(ε), we may now apply Lemma 13 (for
the choice i = 2τj) to obtain |E[f ′(X2τj ;XHj

)]− E[f ′(Y ′;XHj
)]| ≤ 4ε. Thus,

U ′
2 ≥ E

Xn

[
E
Y ′
[I
{
NY ′(XHj

) ≤ ζ
}
] · E

Y
[I
{
NY (XHj∩Hk

) ≤ ζ
}
]

]
− 4ε

≥ E
Xn

[
E
Y ′
[I
{
NY ′(XHj∩Hk

) ≤ ζ
}
] · E

Y
[I
{
NY (XHj∩Hk

) ≤ ζ
}
]

]
− E

Xn
[Qk,j ]− 4ε. (50)

By an identical argument to the above, we have

U ′
3 ≥ E

Xn

[
E
Y ′
[I
{
NY ′(XHj∩Hk

) ≤ ζ
}
] · E

Y
[I
{
NY (XHj∩Hk

) ≤ ζ
}
]

]
− E

Xn
[Qj,k]− 4ε. (51)

Putting Eqs. (49), (50) and (51) together with the definition of U ′
4 and performing the

requisite cancellations, we have

E[U ′
j,k] = U ′

1 − U ′
2 − U ′

3 + U ′
4 ≤ E

Xn
[Qj,k] + E

Xn
[Qk,j ] + 16ε.

This completes the proof of the lemma and so the proof of Theorem 3. �
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8. Discussion

We presented the WingIt estimator for estimating the stationary mass missing from a
Markovian sequence. While the vanilla Good–Turing estimator can suffer constant bias
in the Markovian setting, our estimator achieves (near) minimax optimal mean-squared
error over mixing Markov chains. It can also be computed with a linear-time algorithm,
and performs favorably in our experiments, even in language text applications in which
the Markovian assumption is clearly violated. We also presented a variant of WingIt for
estimating the small-count probability in a Markov sequence and established mean squared
error bounds for this task.

Our work leaves open several important and intriguing questions aside from the conjec-
tured improvement of Theorem 2. First, while Theorem 1 provides a complete picture—up
to a logarithmic factor—for stationary missing mass estimation from the point of view of
MSE, it would be interesting to complement this result with a concentration inequality.
Such a concentration result could, for instance, be used to provide a provable guarantee
on the validation procedure that we outlined in Section 6. Second, we reiterate that our
estimator is only optimal up to a logarithmic factor in n/Tmix, and removing this factor
to match the minimax lower bound—possibly by designing an alternative estimator—is an
interesting open problem.

Third, we believe that the Markov property may not be central to our main results, and
that Theorem 1 could be extended to more general α-mixing sequences (Rosenblatt, 1956).
This extension would capture, for instance, other classes of interesting temporal processes
such as some hidden Markov models. Fourth, a related point is that the assumption (5) of
geometric ergodicity itself is central to the design and analysis of our estimator; designing
estimators that do not require ergodicity—perhaps just irreducibility (Fried, 2023)—would
be of great interest and likely require new ideas.

Finally, it would be interesting to estimate other functionals of the Markov chain other
than the stationary missing mass and solve related estimation problems such as competitive
distribution estimation of the stationary measure. Our extensions to estimating the mass
of elements occurring at most ζ times in Section 5 might be a useful starting point as in the
i.i.d. case (Drukh and Mansour, 2005; Acharya et al., 2013), but several questions remain,
such as obtaining a bound on the error of estimating all such quantities uniformly over
ζ ∈ {0, 1, . . . , n}.
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Appendix A. Technical lemmas

In this section, we collect technical lemmas that were stated and used in the main paper.
We first collect lemmas that were used to formalize basic calculations for the Good–Turing
estimator, and next lemmas that were used in the proofs of the main results (Theorems 1
and 2).

A.1 Elementary lemmas

Our first lemma shows a tight characterization of the mixing time Tmix = tmix(1/4) for the
class of sticky Markov chains, defined in Eq. (10).

Lemma 10 Suppose |X | ≥ 2 and p ∈ (0, 1/2]. For any sticky Markov chain as defined in
Eq. (10), we have

1

2p
≤ Tmix ≤

2

p
. (52)
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Proof We proceed by exactly calculating the total variation distance maxx∈X ‖e>xP
t −

π>‖TV. For any starting state x ∈ X we would reach the stationary distribution π in a
number of steps that is a geometric random variable, i.e. τ = Geom(p). This means that
Pr{τ ≥ t} = (1− p)t, directly implying that

max
x∈X

‖e>xP
t − π>‖TV = max

x∈X

1

2
‖(1− p)t · (ex − π)‖1

=
(1− p)t

2
·max
x∈X

‖ex − π‖1.

Since (1− p)t ·maxx∈X ‖ex − π‖TV is monotonically decreasing in t, we have

Tmix = tmix(1/4) =
log(2 ·maxx∈X ‖ex − π‖1)

log(1/(1− p))
.

But

‖ex − π‖1 = (1− πx) +
∑

y∈X\{x}

πy = 2− 2πx,

and if |X | ≥ 2, then we have 1 ≤ maxx∈X ‖ex − π‖1 ≤ 2. Furthermore, if p ∈ (0, 1/2], then
p ≤ log(1/(1− p)) ≤ p log 4. Putting together the pieces, we obtain the sandwich bound

1

2p
≤ Tmix ≤

2

p
,

as desired.

For any set P ⊆ [n], recall that XP = {Xk}k∈P denotes the set of random variables
in Xn restricted to the index set P . The following lemma is a deterministic statement
regarding indicator random variables.

Lemma 11 Consider the sequence Xn and any random variable Y defined on the space X .
Let P ⊆ Q ⊆ [n] denote two index sets, and let R := Q \ P . We have

I {Y /∈ XP } − I {Y /∈ XQ} = I {Y ∈ XR} · I {Y /∈ XP }.

Proof Since P ⊆ Q, we have that XP ⊆ XQ. Consequently, if Y /∈ XQ, then Y cannot be
included in the subset XP . Therefore, I {Y /∈ XP }−I {Y /∈ XQ} = 1 if and only if Y /∈ XP

and Y ∈ XQ. Since R = Q \ P , this is equivalent to saying that Y ∈ XR and Y /∈ XP .
Thus, we have shown that

I {Y /∈ XP } − I {Y /∈ XQ} = I {Y ∈ XR} · I {Y /∈ XP },

as claimed.

We also define an extension of Lemma 11 to the slightly more complicated indicator
random variables involving the count of an element in index sets.
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Lemma 12 Consider the sequence Xn and any random variable Y defined on the space X .
Let P ⊆ Q ⊆ [n] denote two index sets, and let R := Q \ P . Then, for any ζ ≥ 0, we have

I {NY (XP ) ≤ ζ} − I {NY (XQ) ≤ ζ} ≤ I {Y ∈ XR} · I {NY (XP ) ≤ ζ}.

Proof Since P ⊆ Q, we have that XP ⊆ XQ. Then, if Y occurs less than ζ times
in XQ, i.e. NY (XQ) ≤ ζ, then Y must occur less than ζ times in the subset XP , i.e.
NY (XP ) ≤ ζ. Consequently, I {NY (XP ) ≤ ζ} − I {NY (XQ) ≤ ζ} = 1 if and only if the
number of occurrences of Y in XP is less than or equal to ζ, i.e. NY (XP ) ≤ ζ; but the
number of occurrences of Y in XQ is greater than ζ, i.e. NY (XQ) > ζ. Further, we
have NY (XP ) ≤ ζ and NY (XQ) > ζ only if NY (XP ) ≤ ζ and there exists at least one
occurrence of Y in XR, i.e. NY (XR) ≥ 1. This gives us

I {NY (XP ) ≤ ζ} − I {NY (XQ) ≤ ζ} ≤ I {Y ∈ XR} · I {NY (XP ) ≤ ζ}.

A.2 Lemmas on surrogate processes

We next present two important consequences of mixing. In all the lemmas below, let
(X1, . . . , Xn) denote a Markov chain with unique stationary distribution π and X1 ∼ π.
Let tmix(ε) denote its mixing time in the sense of Eq. (5), with ε ∈ (0, 1/2].

Lemma 13 Fix a positive scalar ε ≤ 1/2, and let τ ≥ tmix(ε) be an integer. For each
i ∈ [n], define the stochastic processes

Zi = (X1, X2, . . . , Xi−τ , Xi, Xi+τ , Xi+τ+1, . . . , Xn), (53)

Z ′
i = (X1, X2, . . . , Xi−τ , X

′
i, Xi+τ , Xi+τ+1, . . . , Xn), (54)

where X ′
i ∼ π is drawn independently of everything else. Then dTV(Zi, Z

′
i) ≤ 4ε.

Consequently, for any function f : X n−(2τ−2) → [0, 1], we have

|E[f(Zi)− f(Z ′
i)]| ≤ 4ε.

Proof Let Ai = (Xi−τ , Xi, Xi+τ ) and A′
i = (Xi−τ , X

′
i, Xi+τ ). By the Markov property, we

have dTV(Zi, Z
′
i) = dTV(Ai, A

′
i). We now define the notation p(t)(y|x) = Pr{Xi+t = y|Xi =

x} for any t ≥ 1 and any x, y ∈ X . Owing to the time invariant nature of the process, the
distributions of these triples can be written explicitly as

Pr{Ai = (x, y, z)} = Pr{(Xi−τ , Xi, Xi+τ ) = (x, y, z)} = πx · p
(τ)(y|x) · p(τ)(z|y) and

Pr{A′
i = (x, y, z)} = Pr{(Xi−τ , X

′
i, Xi+τ ) = (x, y, z)} = πx · πy · p

(2τ)(z|x).

For each tuple of indices (x, y, z) ∈ X × X × X and any choice t ≥ 1, define

δ(t)x,y := πy − p(t)(y|x) and

δ
(t)
x,y,z := p(2t)(z|x)− p(t)(z|y).
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Below, we use the shorthand δx,y := δ
(τ)
x,y and δx,y,z := δ

(τ)
x,y,z for convenience. Owing to our

total variation mixing assumption (5) and the choice τ ≥ tmix(ε), we have that the `1-norm
of each of these errors is bounded for any t ≥ τ as:

max
x∈X

∑

y∈X

|δ(t)x,y| ≤ 2ε and (55a)

max
x,y∈X

∑

z∈X

|δ
(t)
x,y,z| ≤ 2ε+ 2ε2. (55b)

With this shorthand notation, we may define

Pr{Ai = (x, y, z)} = πx · p
(τ)(y|x) · p(τ)(z|y) and

Pr{A′
i = (x, y, z)} = πx · (p

(τ)(y|x) + δx,y) · (p
(τ)(z|y) + δx,y,z)

and we can write the desired total variation explicitly as

dTV(Ai, A
′
i)

=
1

2

∑

x,y,z∈X

|πx · p
(τ)(y|x) · p(τ)(z|y)− πx · (p

(τ)(y|x) + δx,y) · (p
(τ)(z|y) + δx,y,z)|

=
1

2

∑

x,y,z∈X

|πx · p
(τ)(y|x) · δx,y,z + πx · p

(τ)(z|y) · δx,y + πx · δx,y · δx,y,z|

≤
∑

x,y,z∈X

1

2
|πx · p

(τ)(y|x) · δx,y,z|+
∑

x,y,z∈X

1

2
|πx · p

(τ)(z|y) · δx,y|+
∑

x,y,z∈X

1

2
|πx · δx,y · δx,y,z|

(i)

≤ (ε+ ε2) + ε+ (ε+ ε2) = 3ε+ 2ε2 ≤ 4ε, (56)

where we claim that the bound in step (i) holds term by term and the last inequality uses
the fact that ε ≤ 1/2. It remains to prove step (i). The first term can be bounded as

∑

x,y,z∈X

|πx · p
(τ)(y|x) · δx,y,z| =

∑

x,y∈X

πx · p
(τ)(y|x)

∑

z∈X

|δx,y,z| ≤
∑

x,y∈X

πx · p
(τ)(y|x) · (2ε+ 2ε2)

= 2ε+ 2ε2.

The remaining terms can be bounded using similar logic, so we omit the steps for brevity.
The consequence of the TV bound for expectations of bounded functions follows by the

definition of total variation distance.

Lemma 14 Fix a positive scalar ε ≤ 1/2, and let τ ≥ tmix(ε) be an integer. For each
i1 < i2 ∈ [n] with i2 − i1 ≥ 2τ , define the stochastic sub-processes

Zi1,i2 = (X1, X2, . . . , Xi1−τ , Xi1 , Xi1+τ , . . . , Xi2−τ , Xi2 , Xi2+τ , . . . , Xn), (57)

Z ′
i1,i2 = (X1, X2, . . . , Xi1−τ , X

′
i1 , Xi1+τ , . . . , Xi2−τ , X

′
i2 , Xi2+τ , . . . , Xn), (58)

where X ′
i1
, X ′

i2
∼ π are drawn independently of each other and of everything else. Then we

have dTV(Zi1,i2 , Z
′
i1,i2

) ≤ 8ε.
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Consequently, for any function f with range [0, 1], we have

|E[f(Zi,j)− f(Z ′
i,j)]| ≤ 8ε.

Proof We prove the bound on total variation, noting that the consequence for bounded
functions follows as a corollary.

As in the proof of Lemma 13, define the sub-processes

Ai1,i2 = (Xi1−τ , Xi1 , Xi1+τ , Xi2−τ , Xi2 , Xi2+τ ),

A′
i1,i2 = (Xi1−τ , X

′
i1 , Xi1+τ , Xi2−τ , X

′
i2 , Xi2+τ ).

(Note that in the special case where i2 − i1 = 2τ , we have i1 + τ = i2 − τ and so the
above definition remains valid — the sub-process in this case contains a duplicated random
variable Xi1+τ = Xi2−τ .)

We also define an intermediate sub-process Ãi1,i2 = (Xi1−τ , X
′
i1
, Xi1+τ , Xi2−τ , Xi2 , Xi2+τ )

for convenience. Then, simplifying the expression for total variation over the entire Markov
chain and noting that the stochastic processes Zi1,i2 , Z

′
i1,i2

follow identical transition laws
over the indices {1, . . . , i1 − τ} ∪ {i1 + τ + 1, . . . , i2 − τ} ∪ {i2 + τ + 1, . . . , n}, we have

dTV(Zi1,i2 , Z
′
i1,i2) = dTV(Ai1,i2 , A

′
i1,i2)

(i)

≤ dTV(Ai1,i2 , Ãi1,i2) + dTV(Ãi1,i2 , A
′
i1,i2),

where step (i) follows by the triangle inequality. We proceed to upper bound each of the
terms dTV(Ai1,i2 , Ãi1,i2) and dTV(Ãi1,i2 , A

′
i1,i2

) by 4ε each, using a similar argument to the
proof of Lemma 13. We denote ρy2,w1 = Pr[Xi2−τ = y2|Xi1+τ = w1] as shorthand, noting
that for each w1 ∈ X , we have

∑
y2∈X

ρy2,w1 = 1. (Note that in the special case where
i2 − i1 = 2τ , we have Xi1+τ = Xi2−τ and this conditional distribution takes on the special
form ρy2,w1 = I {y2 = w1}.)

We begin with the first term dTV(Ai1,i2 , Ãi1,i2) and characterize the distributions of

Ai1,i2 , Ãi1,i2 as below:

Pr{Ai1,i2 = (y1, z1, w1, y2, z2, w2)}

= πy1 · p
(τ)(z1|y1) · p

(τ)(w1|z1) · ρy2,w1 · p
(τ)(z2|y2) · p

(τ)(w2|z2)

Pr{Ãi1,i2 = (y1, z1, w1, y2, z2, w2)}

= πy1 · πz1 · p
(2τ)(w1|y1) · ρy2,w1 · p

(τ)(z2|y2) · p
(τ)(w2|z2).

Recalling the shorthand notation δx,y, δx,y,z defined in the proof of Lemma 13, we can write
the above as

Pr{Ai1,i2 = (y1, z1, w1, y2, z2, w2)}

= πy1 · p
(τ)(z1|y1) · p

(τ)(w1|z1) · ρy2,w1 · p
(τ)(z2|y2) · p

(τ)(w2|z2)

Pr{Ãi1,i2 = (y1, z1, w1, y2, z2, w2)}

= πy1 · (p
(τ)(z1|y1) + δy1,z1) · (p

(τ)(w1|z1) + δy1,z1,w1) · ρy2,w1 · p
(τ)(z2|y2) · p

(τ)(w2|z2).

Next, we note that ρy2,w1 · p(τ)(z2|y2) · p
(τ)(w2|z2) = Pr[Xi2−τ = y2, Xi2 = z2, Xi2+τ =

w2|Xi1+τ = w1] which is a conditional probability distribution that is identical for the
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stochastic processes Ãi1,i2 and Ai1,i2 . Therefore, we have
∑

y2,z2,w2∈X
ρy2,w1 · p(τ)(z2|y2) ·

p(τ)(w2|z2) = 1 for any value of w1 ∈ X . This yields

dTV(Ai1,i2 , Ãi1,i2)

=
1

2

∑

y1,z1,w1∈X
y2,z2,w2∈X

∣∣∣πy1 · p(τ)(z1|y1) · p(τ)(w1|z1) · ρy2,w1 · p
(τ)(z2|y2) · p

(τ)(w2|z2)

− πy1 · (p
(τ)(z1|y1) + δy1,z1) · (p

(τ)(w1|z1) + δy1,z1,w1) · ρy2,w1 · p
(τ)(z2|y2) · p

(τ)(w2|z2)
∣∣∣

=
∑

y1,z1,w1∈X

1

2

∣∣∣πy1p(τ)(z1|y1)p(τ)(w1|z1)− πy1(p
(τ)(z1|y1) + δy1,z1)(p

(τ)(w1|z1) + δy1,z1,w1)
∣∣∣.

We have thus arrived at an expression for dTV(Ai1,i2 , Ãi1,i2) that is identical to Equa-

tion (56), which is upper bounded by 4ε. Therefore, we have dTV(Ai1,i2 , Ãi1,i2) ≤ 4ε.

We now use a similar technique to bound the other term dTV(Ãi1,i2 , A
′
i1,i2

). In particular,
we have

Pr{Ãi1,i2 = (y1, z1, w1, y2, z2, w2)}

= πy1 · πz1 · p
(2τ)(w1|y1) · ρy2,w1 · p

(τ)(z2|y2) · p
(τ)(w2|z2)

Pr{A′
i1,i2 = (y1, z1, w1, y2, z2, w2)}

= πy1 · πz1 · p
(2τ)(w1|y1) · ρy2,w1 · (p

(τ)(z2|y2) + δy2,z2) · (p
(τ)(w2|z2) + δy2,z2,w2).

This time, we note that πy1 · πz1 · p
(2τ)(w1|y1) · ρy2,w1 = Pr[Xi1−τ = y1, X

′
i1

= z1, Xi1+τ =

w1, Xi2−τ = y2] and therefore
∑

y1,z1,w1∈X
πy1 · πz1 · p

(2τ)(w1|y1) · ρy2,w1 = Pr[Xi2−τ = y2] =
πy2 . Using a similar series of steps to the preceding calculation, we obtain

dTV(Ãi1,i2 , A
′
i1,i2)

=
∑

y2,z2,w2∈X

1

2

∣∣∣πy2p(τ)(z2|y2)p(τ)(w2|z2)− πy2(p
(τ)(z2|y2) + δy2,z2)(p

(τ)(w2|z2) + δy2,z2,w2)
∣∣∣

≤ 4ε

by an identical argument to Eq. (56). Putting these together yields dTV(Zi1,i2 , Z
′
i1,i2

) ≤ 8ε.

Appendix B. Intuition for data-dependent tuning of window size τ

In this section, we provide some simple intuition to justify the data-dependent tuning pro-
cedure for the window size τ that we described in Section 6.1. Assuming that8 n � Tmix, we
have that Z(1) and Z(2) are near-independent since they are significantly separated within
the sequence. Thus, conditioned on Z(1), the sequence Z(2) should be thought of as an inde-
pendent Markov chain started at the stationary distribution π. Consequently, the random
variable M̃(Z(1)) ought to be close to the estimand Mπ(Z

(1)), and this can be formalized

8. If n . Tmix, it is impossible to obtain consistent estimation anyway, at least in a minimax sense.
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via a bounded differences inequality for mixing Markov chains (Paulin, 2015). Indeed, if
independence between Z(1) and Z(2) held exactly, then it is straightforward to show that
with high probability over the randomness in Z(2), we have

|M̃(Z(1))−Mπ(Z
(1))|2 .

Tmix log(n/Tmix)

n
. (59)

Now Theorem 1 guarantees that for some τ0 � Tmix log(n/Tmix), we must have the inequal-
ity9∣∣∣M̂WingIt(Z

(1); τ0)−Mπ(Z
(1))

∣∣∣
2
. τ

n . Combining this observation with Ineq. (59) and not-

ing that τ0 � Tmix log(n/Tmix), we have

∣∣∣M̂WingIt(Z
(1); τ0)− M̃(Z(1))

∣∣∣
2
≤ 2

∣∣∣M̂WingIt(Z
(1); τ0)−Mπ(Z

(1))
∣∣∣
2
+ 2

∣∣∣Mπ(Z
(1))− M̃(Z(1))

∣∣∣
2

.
τ0
n
.

Thus, we see that Ineq. (28) is a reasonable validation criterion since it is satisfied for
some choice of window size at most τ0, for a suitable choice of constant Ctune on the RHS.
Conversely, if Ineq. (28) holds for some smaller window size τ = τ̂ ≤ τ0, then combining
this with Ineq. (59) yields

1

2

∣∣∣M̂WingIt(Z
(1); τ̂)−Mπ(Z

(1))
∣∣∣
2
≤

∣∣∣M̂WingIt(Z
(1); τ̂)− M̃(Z(1))

∣∣∣
2
+
∣∣∣Mπ(Z

(1))− M̃(Z(1))
∣∣∣
2

.
τ̂

n
+

Tmix log(n/Tmix)

n

≤
τ0
n

+
Tmix log(n/Tmix)

n
.

Tmix log(n/Tmix)

n
.

Putting together the pieces, we see that our validation procedure is reasonable since (a) It
is satisfied by the window size τ0 prescribed by Theorem 1, and (b) It always produces a
good value of tuning window size τ̂ , in that this choice of window size leads to the optimal
rate of estimation of the functional Mπ(Z

(1)).
It is important to note that the above sketch does not constitute a rigorous argument. In

order to make it rigorous, one would have to formally establish Eq. (59) and also a version
of Theorem 1 that holds with high probability, both of which are interesting directions for
future work.

9. Note that this step of the argument is heuristic, since Theorem 1 only gives such a guarantee in expec-

tation.
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