Image courtesy of Mike Mareen@iStockphoto.com.

gov.

Headerimage courtesy of NASA.

SPOOFING

iy n =
3 i hr'ﬂ"‘*'q s"-‘
B L

Fi7 & S5bs

Breaking the Formation

The impact of GNSS spoofing on unmanned aerial vehicle swarms.
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[1,2] that GNSS-based localization

technologies are vulnerable to signal
jamming and spoofing/replay attacks,
where a receiver can be either denied
positioning [3] or deceived to compute
a forged PVT solution [4]. Today, it is
possible to spoof a GNSS receiver to any
arbitrary location and time in the world
with many incidents being reported in
the wild [5].

A recent work [6] explored the im-
pact of GNSS spoofing on unmanned
aerial vehicles (UAVs). UAVs rely on
multiple sensor modalities for critical
navigation decisions. The study con-
ducted experimental analysis to assess
the feasibility and requirements of ex-
erting complete control over a UAV’s
movements solely by spoofing GNSS
signals. The research described the

It has been widely demonstrated

challenges associated with achieving
a comprehensive takeover of a UAV
through GNSS spoofing, emphasizing
the necessity of intricate manipulations
of spoofing signals in real-time to ensure
controlled flight without collisions. In
other words, while off-the-shelf UAVs
remain susceptible to GNSS spoofing
attacks, achieving complete control
over a single UAV requires real-time
manipulation of spoofing signals, ne-
cessitating a sensing/actuation loop [7].

This work looked at the GNSS inter-
ference problem in the context of a single
UAV. Today, there is growing interest
in the use of autonomous swarms of
robots in safety- and security-critical
applications such as search and rescue
missions, emergency support, construc-
tion efforts and delivery [8]. Swarms
also have significant applications in the
military both from a tactical as well as
logistic perspective. Precise positioning,
navigation and communication systems
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are fundamental to the operations of
these applications and it is unclear how
spoofing and jamming attacks on lo-
calization systems impact the overall
swarm ecosystem. For instance, a spoof-
ing attack on a swarm of unmanned
aerial vehicles can potentially lead to
swarm collision and collapse or simply
displacing its course.

In this article, we take the first step
to investigate the vulnerabilities and
resilience of swarms to spoofing attacks
[9]. Given the increasing adoption of
distributed and decentralized algorithms
due to their effectiveness against rapidly
changing environments and elimina-
tion of a central control authority, this
analysis focuses on a specific distributed
and decentralized swarm architecture
with the goal to uniformly distribute a
drone swarm across a geographic region,
ensuring each drone covers an equal
area. This coverage task is essential in
a wide variety of swarm missions in-
cluding tracking, surveillance or simply
navigating an area.

We analyze popularly deployed
Voronoi tessellations [10] with Lloyd
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relaxation [11] aiming to understand
the attack vectors that a coverage mis-
sion can encounter. We evaluate the
behavior of swarms to GNSS spoofing
attacks using a custom-built distributed
swarm simulation framework that in-
cludes software like Gazebo, Ardupilot
and QGroundControl. We present the
key takeaways and offer suggestions for
future research opportunities.

Swarm Scenario and
Threat Assumptions
In this work, we focus on the impact
of GNSS spoofing attack on swarm
formation algorithms. We assume an
adversary with the ability to generate
and transmit GNSS signals. While the
attacker’s specific objective could vary
widely, ranging from forcing a drone
to collide with other drones to creating
a surveillance blackout area, we assert
the primary goal of the spoofing at-
tack is to force the swarm to behave
differently than originally intended.
We assume the UAVs fall within the
radio range of the attacker and can,
therefore, pick up these counterfeit
signals. In other words, we assume the
adversary has successfully spoofed the
UAVs’ GNSS receiver, either through a
seamless takeover technique [12,13] or
via a simple non-coherent overshadow
attack. The susceptibility of standalone
GNSS receivers to spoofing has been
thoroughly explored in previous stud-
ies [14,4]. We do not assume the avail-
ability of advanced spoofing mitigation
countermeasures [15] in these drones,
as the cost would significantly impact
the swarm's deployment and opera-
tional scalability. We do not consider
adversaries capable of injecting forged
positions directly over the communi-
cation links, as these links generally
have cryptographic security measures
in place. We do not consider jamming
attacks because while they might disrupt
communications, the main goal of the
attack is to manipulate the swarm into
behaving in a specific manner.
Swarm architectures can be catego-
rized as: centralized, decentralized
and hybrid. Centralized systems have
a single controller that coordinates
the swarm, making it efficient but the

controller becomes a single point of
failure. Decentralized architectures
distribute the decision making, thereby
enhancing robustness. Hybrid architec-
tures employ a hierarchical system that
allows for centralized decision-making
and autonomous local actions.

In our scenario, we consider a group
of drones tasked with surveilling a spe-
cific geographic region, each designated
to cover an equal area. To achieve this
uniform distribution, the system uses
Voronoi tessellation in conjunction
with Lloyd’s relaxation. Each drone
determines its location using GNSS
and broadcasts this position to its peers.
Every drone receives the locations of
its neighboring drones in real time
and computes its Voronoi tessellation
based on this localized information.
After determining its Voronoi cell,
each drone navigates to the centroid
of its designated cell and subsequently
broadcasts its updated location. Upon
receiving these new positions, the drones
recalibrate, recompute their tessella-
tions, and adjust again. This iterative
process continues until the variance
in the area covered by each drone falls
below a pre-defined threshold. Once this
condition is met, indicating a balanced
coverage, the system is considered to
have reached a stable state.

Impact of GNSS Spoofing on Swarm
Formation

In our analysis, we focus on the de-
centralized architecture and the criti-
cal spatial coverage problem, which is
fundamental to nearly every swarm
scenario. Take, for example, a swarm
of drones tasked with monitoring a
large public event—a classic spatial

organization challenge. These drones
must efficiently scan the area to identify
potential security threats or emergencies.
Essential to this task is ensuring agents
can effectively distribute themselves and
coordinate within their environment,
making the formation problem para-
mount in successful drone operations.
Although there are several algorithms
[16] addressing the spatial organization
problem, we focus on Voronoi diagrams
and Lloyd’s relaxation algorithm.

Voronoi Tessellation and
Lloyd’s Algorithm
Voronoi tessellation, also known as
Voronoi diagram, is a well-known
mathematical concept in computa-
tional geometry used in various fields. It
involves the partitioning of a plane with
'n’ generated seeds into convex polygons
called Voronoi cells with each polygon
containing exactly one seed. This ar-
rangement ensures for any given point
in a given cell it is the closest to its seed
than to any other. One might notice
the similarities with coverage algo-
rithms in unmanned vehicle swarms.
Constructing the Voronoi diagram
involves defining vertices and edges,
delimiting each region. Vertices are
points with three or more equally distant
regions. The fundamental property of
Voronoi cells is preserved by drawing
edges perpendicularly to the midpoint
between every pair of neighboring seeds
(Figure 1). Several efficient algorithms
have been proposed for constructing
Voronoi diagrams leveraging the
Delaunay triangulation.

Lloyd’s algorithm, or Voronoi re-
laxation, is an iterative computational
technique for redistributing points

Seeded plane

Voronoi Tessellation

FIGURE1 Example of the Voronoi diagram with n=5 seeds. Cells contain points in space that

are closer to the corresponding seed (in blue).
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evenly in a region and partitioning
subsets of Euclidean space into uni-
formly sized convex cells. After the
Voronoi tessellation has been com-
puted for the initial seed locations,
Lloyd’s algorithm iteration propagates
each seed to the centroid of its cor-
responding Voronoi cell resulting in
more evenly distributed and uniformly
shaped Voronoi cells.

This process minimizes variations in
cell size and optimizes spacing between
points. The algorithm continues iterat-
ing until the seed’s position is equal
to the centroid, ensuring guaranteed
convergence. To expedite convergence,
a degree of tolerance can be introduced
(Figure 2). The centroid of each Voronoi
cell is calculated at every iteration using
the vertices of the closed polygonal re-
gions formed by the Voronoi diagram
around each seed.

Spoofing Impact

on Swarm Spatial Coverage

GNSS spoofing distorts the location
perceived by drones. Also, it’s reason-
able to assume such spoofing would
impact only a subset of a drone swarm.
This is largely due to the challenges

of spoofing over a broad geographical
region that a swarm might occupy.
Targeted drones will then estimate
and broadcast incorrect locations,
leading to flawed positional data
being incorporated into the Voronoi
tessellation calculations of neigh-
boring drones. The consequences of
this are multifaceted. For one, the
algorithm may fail to converge,
potentially causing drones to remain
in motion for extended durations and
depleting their batteries. Furthermore,
this can create uneven surveillance
patterns, with some drones cover-
ing areas too vast for them, leading
to surveillance blind spots. If anti-
collision measures are absent, drones
might even collide. The algorithm’s
dynamics become particularly intrigu-
ing when multiple drones, affected by
spoofing, report identical locations.
In such cases, the algorithm has to
interpret this as two drones occupying
the same spot, introducing additional
complexities and potential system
discrepancies.

In our analysis, we explore three
distinct spoofing strategies to under-
stand their impact on swarm behavior:

Iteration 0

Iteration 1

Iteration L

V2
x®

@ seed X centroid

FIGURE2 Results of Lloyd’s Algorithm on a plane with n=5 nodes and L iterations. The initial
location of the nodes (in blue) is the seed to the next iteration of the algorithm, which produces

a new target position for the nodes () as the centroid of the newly computed Voronoi cell.

i) “Fixed Spoofing,” where the false
location remains constant through-
out the spoofing duration, ii) “Relative
Spoofing,” in which the deceitful
location is set as a subtle deviation from
the drone’s genuine location, and iii)
“Random Spoofing,” where the mis-
leading location is chosen arbitrarily.

By examining these strategies, we
capture a broad spectrum of potential
threats, providing valuable insights
into the swarm formation algorithm’s
resilience. Naturally, the depth of this
study goes beyond these strategies, as
several other parameters merit atten-
tion for their potential influence on the
outcome, such as the choice of the drone
targeted, the spoofed location, and the
swarm’s physical configuration at the
time of the attack. Another important
variable is spoofing duration. We would
like to highlight the distinction between
continuous spoofing, where false signals
are sent during the entire algorithm’s op-
eration, and intermittent spoofing. Our
initial hypothesis suggests continous
spoofing might prevent the algorithm
from converging, leaning more toward a
denial-of-service attack. Moreover, con-
stant spoofing signal transmission could
reveal the attacker’s location, potentially
making it an important choice for the
adversary. Given these considerations,
our analysis focuses largely on the effects
of partial spoofing.

Experimental Analysis and Results
Simulation Testbed

For our experimental analysis, we em-
ploy two distinct setups: a custom-built
swarm simulation testbed (Figure 3) and
a python-based algorithm simulator.

Aobatics Simutatar
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Monitor Sarver

hitectures and

complex mission scenarios. (Right) A snapshot of a converged spatial coverage mission with five drones surveilling over a city.
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Our custom-built swarm testbed can
emulate a detailed model for each
vehicle, linked to its own autopilot
software. We use Docker to keep each
vehicle’s software separate, essentially
acting like its own computer within the
swarm. These vehicles continuously
transmit location and mission data to
the Monitor server and are all connected
through a bridge interface, which lets
them communicate with each other and
the main computer, truly simulating a
distributed and decentralized environ-
ment. There's also a special interface to
set up and start simulations, allowing for
complex mission planning. This setup
includes a mission planner in the flight
control systems that can handle detailed
multi-layered mission instructions. This
testbed allows testing against real-world

scenarios and accounting for various en-
vironmental factors. The python-based
algorithm simulator offers an interactive
platform, focusing predominantly on
the algorithm’s intricacies. This simula-
tor enables systematic iteration of the
algorithm and analysis of the swarm’s
behavior, eschewing detailed environ-
mental or drone modeling.

At each iteration, we can choose
the spoofed vehicle and the spoof-
ing location, i.e., absolute or relative.
Additionally, the simulator can operate
in a non-interactive mode, taking in
parameters at the start, such as spoof-
ing duration, vehicle ID and spoofing
location. A practical simulator feature
is its ability to provide visual feedback
on how spoofing affects the swarm’s
behavior.
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FIGURE4 Impact of spoofing on algorithm convergence time for fixed, random and relative
spoofing attacks. The plots show results for 10 different, randomly drawn, initial locations
of the drones.
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FIGURE5 Impact of spoofing on distance traveled by the swarm entities before convergence

for fixed, random and relative spoofing attacks. The plots show results for 10 different,
randomly drawn initial locations of the drones.
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FIGURE6 Example case illustrating the impact of spoofing on the ultimate spatial formation
with and without spoofing for the same initial seed location for the swarm.

Evaluation Metrics and Results

In our study, we primarily focused
on two evaluation metrics: i) the
percentage change in the number of
iterations required for the algorithm
to converge, and ii) the percentage
change in the total distance traveled
by the drones. For our experiments,
we varied the starting positions of the
swarm’s drones, referred to as initial
seed locations, and applied each of the
three spoofing techniques: fixed, rela-
tive and random location manipula-
tion. Furthermore, we investigated
the consequences of manipulating the
location for 1, 2, and 3 iterations of the
algorithm’s execution time, considering
each initial seed location and spoof-
ing method. It’s noteworthy that each
simulation was executed 75 times for
every initial seed location. During each
run, the drone being spoofed and the
exact spoofed location were varied in
accordance with the chosen spoofing
technique.

Impact on Algorithm Convergence Time
Our analysis results regarding the ef-
fects of location manipulation within
the Voronoi/Lloyd’s relaxation algo-
rithm for swarm formation is shown
in Figure 5. It’s evident that manipu-
lating drone locations does influence
the algorithm’s convergence time for
all the initial seed locations analyzed.
A key highlight from these results is
that for certain initial location seeds,
spoofing can unexpectedly expedite
the algorithm’s convergence. This phe-
nomenon can be attributed to the fact
some inherent swarm configurations
naturally lead to a prolonged conver-
gence and location manipulation and,
in these instances, might inadvertently
streamline the process. However, notice
this faster convergence might not yield
to a desirable formation, and instead
one the attacker designed. This pres-
ents a potential strategy for adversaries,
recognizing and consistently spoofing
locations of specific drones in such con-
figurations. It is worth noting that for
certain seed locations, the algorithm’s
convergence time increased by more
than 200%, even with location spoofing
limited to a single iteration.
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Impact on Travel Distance

In a subsequent analysis, we shifted our
focus to evaluate the impact of spoofing
location on the distance traveled by the
swarm entities. The results, illustrated
as a box plot, represent the percentage
change in the cumulative distance cov-
ered by the entire swarm. It’s observable
from the data that spoofing typically
results in an extended travel distance
compared to the baseline distance in
the absence of spoofing.

Notably, certain swarm configurations,
when subjected to spoofing, led to a near
400% increase in the distance traveled by
the swarm entities, amounting to roughly
five times the typical distance. When con-
sidering relative spoofing, the impact is
more restrained, with the distance traveled
notexceeding twice the usual amount. This
outcome aligns with expectations, given
that relative spoofing introduces only a
marginal location offset, as opposed to a
more drastic location change.

Impact on Final Spatial Organization

In our experimental analysis, we ob-
served the final spatial configuration
upon convergence could differ based on
location manipulations for specific dura-
tions during the algorithm’s execution.
Asillustrated in Figure 6, the ultimate
regions designated to each drone vary,
depending on the presence or absence
of spoofing. This observation suggests
the potential for an attacker to craft
and time spoofing signals, aiming to
influence the swarm’s spatial orienta-
tion post-convergence. For instance,
it’s conceivable that a compromised
drone might be manipulated to moni-
tor a particular area, thereby inducing
asurveillance blind spot. Similarly, an
adversary could aim to allocate a vast
region to a drone, placing its centroid
at a distance from the drone’s surveil-
lance scope, which would result in a
coverage gap. Such findings indicate an
avenue for further research, exploring

the prospect of achieving specific out-
comes by merely spoofing the GNSS
signals within a swarm.

Conclusion

In our study, we were guided by previ-
ous research highlighting the challenges
of GNSS spoofing and the nuances of
controlling individual UAVs. However,
the broader impact of GNSS spoofing on
drone swarms remained less explored.
Our work sought to understand this
area, particularly focusing on the swarm
formation algorithms, as formation is
an essential precursor to many swarm
tasks.

Using our custom-designed simula-
tion frameworks, we examined the ef-
fects of GNSS spoofing. Some significant
findings include: spoofing led to nearly a
3x increase in convergence time, caused
more than a 5x surge in the cumulative
distance traveled by the drones, and
notably influenced the swarm’s final
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spatial formation. Moving forward, we
need to further explore the practical
considerations for adversaries aiming to
exploit GNSS spoofing. Additionally, a
thorough evaluation of various swarm
algorithms against potential adversarial
tactics is warranted to develop more
robust solutions. 1@
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