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The impact of GNSS spoofing on unmanned aerial vehicle swarms.

Breaking the Formation are fundamental to the operations of 
these applications and it is unclear how 
spoofing and jamming attacks on lo-
calization systems impact the overall 
swarm ecosystem. For instance, a spoof-
ing attack on a swarm of unmanned 
aerial vehicles can potentially lead to 
swarm collision and collapse or simply 
displacing its course. 

In this article, we take the first step 
to investigate the vulnerabilities and 
resilience of swarms to spoofing attacks 
[9]. Given the increasing adoption of 
distributed and decentralized algorithms 
due to their effectiveness against rapidly 
changing environments and elimina-
tion of a central control authority, this 
analysis focuses on a specific distributed 
and decentralized swarm architecture 
with the goal to uniformly distribute a 
drone swarm across a geographic region, 
ensuring each drone covers an equal 
area. This coverage task is essential in 
a wide variety of swarm missions in-
cluding tracking, surveillance or simply 
navigating an area. 

We analyze popularly deployed 
Voronoi tessellations [10] with Lloyd 

It has been widely demonstrated 
[1,2] that GNSS-based localization 
technologies are vulnerable to signal 

jamming and spoofing/replay attacks, 
where a receiver can be either denied 
positioning [3] or deceived to compute 
a forged PVT solution [4]. Today, it is 
possible to spoof a GNSS receiver to any 
arbitrary location and time in the world 
with many incidents being reported in 
the wild [5].

A recent work [6] explored the im-
pact of GNSS spoofing on unmanned 
aerial vehicles (UAVs). UAVs rely on 
multiple sensor modalities for critical 
navigation decisions. The study con-
ducted experimental analysis to assess 
the feasibility and requirements of ex-
erting complete control over a UAV’s 
movements solely by spoofing GNSS 
signals. The research described the He
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challenges associated with achieving 
a comprehensive takeover of a UAV 
through GNSS spoofing, emphasizing 
the necessity of intricate manipulations 
of spoofing signals in real-time to ensure 
controlled flight without collisions. In 
other words, while off-the-shelf UAVs 
remain susceptible to GNSS spoofing 
attacks, achieving complete control 
over a single UAV requires real-time 
manipulation of spoofing signals, ne-
cessitating a sensing/actuation loop [7].

This work looked at the GNSS inter-
ference problem in the context of a single 
UAV. Today, there is growing interest 
in the use of autonomous swarms of 
robots in safety- and security-critical 
applications such as search and rescue 
missions, emergency support, construc-
tion efforts and delivery [8]. Swarms 
also have significant applications in the 
military both from a tactical as well as 
logistic perspective. Precise positioning, 
navigation and communication systems 
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relaxation [11] aiming to understand 
the attack vectors that a coverage mis-
sion can encounter. We evaluate the 
behavior of swarms to GNSS spoofing 
attacks using a custom-built distributed 
swarm simulation framework that in-
cludes software like Gazebo, Ardupilot 
and QGroundControl. We present the 
key takeaways and offer suggestions for 
future research opportunities.

Swarm Scenario and 
Threat Assumptions
In this work, we focus on the impact 
of GNSS spoofing attack on swarm 
formation algorithms. We assume an 
adversary with the ability to generate 
and transmit GNSS signals. While the 
attacker’s specific objective could vary 
widely, ranging from forcing a drone 
to collide with other drones to creating 
a surveillance blackout area, we assert 
the primary goal of the spoofing at-
tack is to force the swarm to behave 
differently than originally intended. 
We assume the UAVs fall within the 
radio range of the attacker and can, 
therefore, pick up these counterfeit 
signals. In other words, we assume the 
adversary has successfully spoofed the 
UAVs’ GNSS receiver, either through a 
seamless takeover technique [12,13] or 
via a simple non-coherent overshadow 
attack. The susceptibility of standalone 
GNSS receivers to spoofing has been 
thoroughly explored in previous stud-
ies [14,4]. We do not assume the avail-
ability of advanced spoofing mitigation 
countermeasures [15] in these drones, 
as the cost would significantly impact 
the swarm's deployment and opera-
tional scalability. We do not consider 
adversaries capable of injecting forged 
positions directly over the communi-
cation links, as these links generally 
have cryptographic security measures 
in place. We do not consider jamming 
attacks because while they might disrupt 
communications, the main goal of the 
attack is to manipulate the swarm into 
behaving in a specific manner. 

Swarm architectures can be catego-
rized as: centralized, decentralized 
and hybrid. Centralized systems have 
a single controller that coordinates 
the swarm, making it efficient but the 

controller becomes a single point of 
failure. Decentralized architectures 
distribute the decision making, thereby 
enhancing robustness. Hybrid architec-
tures employ a hierarchical system that 
allows for centralized decision-making 
and autonomous local actions. 

In our scenario, we consider a group 
of drones tasked with surveilling a spe-
cific geographic region, each designated 
to cover an equal area. To achieve this 
uniform distribution, the system uses 
Voronoi tessellation in conjunction 
with Lloyd’s relaxation. Each drone 
determines its location using GNSS 
and broadcasts this position to its peers. 
Every drone receives the locations of 
its neighboring drones in real time 
and computes its Voronoi tessellation 
based on this localized information. 
After determining its Voronoi cell, 
each drone navigates to the centroid 
of its designated cell and subsequently 
broadcasts its updated location. Upon 
receiving these new positions, the drones 
recalibrate, recompute their tessella-
tions, and adjust again. This iterative 
process continues until the variance 
in the area covered by each drone falls 
below a pre-defined threshold. Once this 
condition is met, indicating a balanced 
coverage, the system is considered to 
have reached a stable state.

Impact of GNSS Spoofing on Swarm 
Formation 
In our analysis, we focus on the de-
centralized architecture and the criti-
cal spatial coverage problem, which is 
fundamental to nearly every swarm 
scenario. Take, for example, a swarm 
of drones tasked with monitoring a 
large public event—a classic spatial 

organization challenge. These drones 
must efficiently scan the area to identify 
potential security threats or emergencies. 
Essential to this task is ensuring agents 
can effectively distribute themselves and 
coordinate within their environment, 
making the formation problem para-
mount in successful drone operations. 
Although there are several algorithms 
[16] addressing the spatial organization 
problem, we focus on Voronoi diagrams 
and Lloyd’s relaxation algorithm. 

Voronoi Tessellation and 
Lloyd’s Algorithm
Voronoi tessellation, also known as 
Voronoi diagram, is a well-known 
mathematical concept in computa-
tional geometry used in various fields. It 
involves the partitioning of a plane with 
'n' generated seeds into convex polygons 
called Voronoi cells with each polygon 
containing exactly one seed. This ar-
rangement ensures for any given point 
in a given cell it is the closest to its seed 
than to any other. One might notice 
the similarities with coverage algo-
rithms in unmanned vehicle swarms. 
Constructing the Voronoi diagram 
involves defining vertices and edges, 
delimiting each region. Vertices are 
points with three or more equally distant 
regions. The fundamental property of 
Voronoi cells is preserved by drawing 
edges perpendicularly to the midpoint 
between every pair of neighboring seeds 
(Figure 1). Several efficient algorithms 
have been proposed for constructing 
Voronoi diagrams leveraging the 
Delaunay triangulation.

Lloyd’s algorithm, or Voronoi re-
laxation, is an iterative computational 
technique for redistributing points 

FIGURE 1 Example of the Voronoi diagram with n=5 seeds. Cells contain points in space that 
are closer to the corresponding seed (in blue).
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evenly in a region and partitioning 
subsets of Euclidean space into uni-
formly sized convex cells. After the 
Voronoi tessellation has been com-
puted for the initial seed locations, 
Lloyd’s algorithm iteration propagates 
each seed to the centroid of its cor-
responding Voronoi cell resulting in 
more evenly distributed and uniformly 
shaped Voronoi cells. 

This process minimizes variations in 
cell size and optimizes spacing between 
points. The algorithm continues iterat-
ing until the seed’s position is equal 
to the centroid, ensuring guaranteed 
convergence. To expedite convergence, 
a degree of tolerance can be introduced 
(Figure 2). The centroid of each Voronoi 
cell is calculated at every iteration using 
the vertices of the closed polygonal re-
gions formed by the Voronoi diagram 
around each seed. 

Spoofing Impact 
on Swarm Spatial Coverage
GNSS spoofing distorts the location 
perceived by drones. Also, it’s reason-
able to assume such spoofing would 
impact only a subset of a drone swarm. 
This is largely due to the challenges 

of spoofing over a broad geographical 
region that a swarm might occupy. 
Targeted drones will then estimate 
and broadcast incorrect locations, 
leading to f lawed positional data 
being incorporated into the Voronoi 
tessellation calculations of neigh-
boring drones. The consequences of 
this are multifaceted. For one, the 
a lgor it hm may fa i l  to converge, 
potentially causing drones to remain 
in motion for extended durations and 
depleting their batteries. Furthermore, 
this can create uneven surveillance 
patterns, with some drones cover-
ing areas too vast for them, leading 
to surveillance blind spots. If anti-
collision measures are absent, drones 
might even collide. The algorithm’s 
dynamics become particularly intrigu-
ing when multiple drones, affected by 
spoofing, report identical locations. 
In such cases, the algorithm has to 
interpret this as two drones occupying 
the same spot, introducing additional 
complexities and potential system 
discrepancies.

In our analysis, we explore three 
distinct spoofing strategies to under-
stand their impact on swarm behavior: 

i) “Fixed Spoofing,” where the false 
location remains constant through-
out the spoofing duration, ii) “Relative 
Spoofing,” in which the deceitful 
location is set as a subtle deviation from 
the drone’s genuine location, and iii) 
“Random Spoofing,” where the mis-
leading location is chosen arbitrarily. 

By examining these strategies, we 
capture a broad spectrum of potential 
threats, providing valuable insights 
into the swarm formation algorithm’s 
resilience. Naturally, the depth of this 
study goes beyond these strategies, as 
several other parameters merit atten-
tion for their potential influence on the 
outcome, such as the choice of the drone 
targeted, the spoofed location, and the 
swarm’s physical configuration at the 
time of the attack. Another important 
variable is spoofing duration. We would 
like to highlight the distinction between 
continuous spoofing, where false signals 
are sent during the entire algorithm’s op-
eration, and intermittent spoofing. Our 
initial hypothesis suggests continous 
spoofing might prevent the algorithm 
from converging, leaning more toward a 
denial-of-service attack. Moreover, con-
stant spoofing signal transmission could 
reveal the attacker’s location, potentially 
making it an important choice for the 
adversary. Given these considerations, 
our analysis focuses largely on the effects 
of partial spoofing.

Experimental Analysis and Results
Simulation Testbed
For our experimental analysis, we em-
ploy two distinct setups: a custom-built 
swarm simulation testbed (Figure 3) and 
a python-based algorithm simulator. 
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FIGURE 2 Results of Lloyd’s Algorithm on a plane with n=5 nodes and L iterations. The initial 
location of the nodes (in blue) is the seed to the next iteration of the algorithm, which produces 
a new target position for the nodes (×) as the centroid of the newly computed Voronoi cell.

FIGURE 3 Our custom-built swarm simulation framework architecture (left) capable of emulating fully decentralized swarm architectures and 
complex mission scenarios. (Right) A snapshot of a converged spatial coverage mission with fi ve drones surveilling over a city.



28 M A Y / J U N E  2 0 2 4 www.insidegnss.com

Our custom-built swarm testbed can 
emulate a detailed model for each 
vehicle, linked to its own autopilot 
software. We use Docker to keep each 
vehicle’s software separate, essentially 
acting like its own computer within the 
swarm. These vehicles continuously 
transmit location and mission data to 
the Monitor server and are all connected 
through a bridge interface, which lets 
them communicate with each other and 
the main computer, truly simulating a 
distributed and decentralized environ-
ment. There's also a special interface to 
set up and start simulations, allowing for 
complex mission planning. This setup 
includes a mission planner in the flight 
control systems that can handle detailed 
multi-layered mission instructions. This 
testbed allows testing against real-world 
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FIGURE 6 Example case illustrating the impact of spoofi ng on the ultimate spatial formation 
with and without spoofi ng for the same initial seed location for the swarm.
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scenarios and accounting for various en-
vironmental factors. The python-based 
algorithm simulator offers an interactive 
platform, focusing predominantly on 
the algorithm’s intricacies. This simula-
tor enables systematic iteration of the 
algorithm and analysis of the swarm’s 
behavior, eschewing detailed environ-
mental or drone modeling. 

At each iteration, we can choose 
the spoofed vehicle and the spoof-
ing location, i.e., absolute or relative. 
Additionally, the simulator can operate 
in a non-interactive mode, taking in 
parameters at the start, such as spoof-
ing duration, vehicle ID and spoofing 
location. A practical simulator feature 
is its ability to provide visual feedback 
on how spoofing affects the swarm’s 
behavior.

Evaluation Metrics and Results
In our study, we primarily focused 
on two evaluation metrics: i) the 
percentage change in the number of 
iterations required for the algorithm 
to converge, and ii) the percentage 
change in the total distance traveled 
by the drones. For our experiments, 
we varied the starting positions of the 
swarm’s drones, referred to as initial 
seed locations, and applied each of the 
three spoofing techniques: fixed, rela-
tive and random location manipula-
tion. Furthermore, we investigated 
the consequences of manipulating the 
location for 1, 2, and 3 iterations of the 
algorithm’s execution time, considering 
each initial seed location and spoof-
ing method. It’s noteworthy that each 
simulation was executed 75 times for 
every initial seed location. During each 
run, the drone being spoofed and the 
exact spoofed location were varied in 
accordance with the chosen spoofing 
technique.

Impact on Algorithm Convergence Time
Our analysis results regarding the ef-
fects of location manipulation within 
the Voronoi/Lloyd’s relaxation algo-
rithm for swarm formation is shown 
in Figure 5. It’s evident that manipu-
lating drone locations does influence 
the algorithm’s convergence time for 
all the initial seed locations analyzed. 
A key highlight from these results is 
that for certain initial location seeds, 
spoofing can unexpectedly expedite 
the algorithm’s convergence. This phe-
nomenon can be attributed to the fact 
some inherent swarm configurations 
naturally lead to a prolonged conver-
gence and location manipulation and, 
in these instances, might inadvertently 
streamline the process. However, notice 
this faster convergence might not yield 
to a desirable formation, and instead 
one the attacker designed. This pres-
ents a potential strategy for adversaries, 
recognizing and consistently spoofing 
locations of specific drones in such con-
figurations. It is worth noting that for 
certain seed locations, the algorithm’s 
convergence time increased by more 
than 200%, even with location spoofing 
limited to a single iteration. 
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Impact on Travel Distance
In a subsequent analysis, we shifted our 
focus to evaluate the impact of spoofing 
location on the distance traveled by the 
swarm entities. The results, illustrated 
as a box plot, represent the percentage 
change in the cumulative distance cov-
ered by the entire swarm. It’s observable 
from the data that spoofing typically 
results in an extended travel distance 
compared to the baseline distance in 
the absence of spoofing. 

Notably, certain swarm configurations, 
when subjected to spoofing, led to a near 
400% increase in the distance traveled by 
the swarm entities, amounting to roughly 
five times the typical distance. When con-
sidering relative spoofing, the impact is 
more restrained, with the distance traveled 
not exceeding twice the usual amount. This 
outcome aligns with expectations, given 
that relative spoofing introduces only a 
marginal location offset, as opposed to a 
more drastic location change.

Impact on Final Spatial Organization
In our experimental analysis, we ob-
served the final spatial configuration 
upon convergence could differ based on 
location manipulations for specific dura-
tions during the algorithm’s execution. 
As illustrated in Figure 6, the ultimate 
regions designated to each drone vary, 
depending on the presence or absence 
of spoofing. This observation suggests 
the potential for an attacker to craft 
and time spoofing signals, aiming to 
influence the swarm’s spatial orienta-
tion post-convergence. For instance, 
it’s conceivable that a compromised 
drone might be manipulated to moni-
tor a particular area, thereby inducing 
a surveillance blind spot. Similarly, an 
adversary could aim to allocate a vast 
region to a drone, placing its centroid 
at a distance from the drone’s surveil-
lance scope, which would result in a 
coverage gap. Such findings indicate an 
avenue for further research, exploring 

the prospect of achieving specific out-
comes by merely spoofing the GNSS 
signals within a swarm.

Conclusion 
In our study, we were guided by previ-
ous research highlighting the challenges 
of GNSS spoofing and the nuances of 
controlling individual UAVs. However, 
the broader impact of GNSS spoofing on 
drone swarms remained less explored. 
Our work sought to understand this 
area, particularly focusing on the swarm 
formation algorithms, as formation is 
an essential precursor to many swarm 
tasks. 

Using our custom-designed simula-
tion frameworks, we examined the ef-
fects of GNSS spoofing. Some significant 
findings include: spoofing led to nearly a 
3× increase in convergence time, caused 
more than a 5× surge in the cumulative 
distance traveled by the drones, and 
notably inf luenced the swarm’s final 
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spatial formation. Moving forward, we 
need to further explore the practical 
considerations for adversaries aiming to 
exploit GNSS spoofing. Additionally, a 
thorough evaluation of various swarm 
algorithms against potential adversarial 
tactics is warranted to develop more 
robust solutions.
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