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ON THE SUBATOMICITY OF POLYNOMIAL SEMIDOMAINS

FELIX GOTTI AND HAROLD POLO

ABSTRACT. A semidomain is an additive submonoid of an integral domain that is closed under mul-
tiplication and contains the identity element. Although atomicity and divisibility in integral domains
have been systematically investigated for more than thirty years, the same aspects in the more general
context of semidomains have been considered just recently. Here we study subatomicity in the context
of semidomains, focusing on whether certain subatomic properties ascend from a semidomain to its
polynomial extension and its Laurent polynomial extension. We investigate factorization and divisibil-
ity notions generalizing that of atomicity. First, we consider the Furstenberg property, which is due to
P. Clark and motivated by the work of H. Furstenberg on the infinitude of primes. Then we consider
the almost atomic and quasi-atomic properties, both introduced by J. G. Boynton and J. Coykendall
in their study of divisibility in integral domains.

1. INTRODUCTION

A semidomain is an additive submonoid of an integral domain that is closed under multiplication and
contains a multiplicative identity element. Let S be a semidomain, and set S* := S\ {0}; that is, S*
is the multiplicative monoid of S. We say that S is atomic provided that every non-invertible element
of S* can be written as a finite product of atoms (i.e., irreducible elements). Factorizations in atomic
domains have been systematically studied for more than three decades, considerably motivated by the
landmark paper [3] by D. D. Anderson, D. F. Anderson, and M. Zafrullah. However, factorizations in
the more general context of atomic semidomains have been investigated just recently by N. R. Baeth,
S. T. Chapman, and the first author [4]. In the present paper, we investigate atomic properties that
are weaker than being atomic in the setting of semidomains. We put special emphasis on the ascent
of such properties from the semidomain S to its polynomial extension S[z] and its Laurent polynomial
extension S[z*!].

Special cases of polynomial semidomains and Laurent polynomial semidomains have been the focus of
a great deal of attention lately in the factorization theory community. For instance, methods to factorize
polynomials in the semidomain Ny[z] were investigated by H. Brunotte in [8] and, more recently, F.
Campanini and A. Facchini in [9] carried out a more systematic investigation of factorizations in Ny[z].
More generally, semigroup semirings were studied by V. Ponomarenko in [32] from the factorization
perspective. The arithmetic of polynomial semidomains with coefficients in the semidomain Rx>( has
also been considered: for instance, P. Cesarz, S. T. Chapman, S. McAdam, and G. J. Schaeffer in [10]
studied the elasticity of R>o[z].

Positive semirings, that is, subsemirings of R>¢, have also been actively studied in the last few
years. Factorizations in positive semirings consisting of rational numbers were considered in [11] by
S. T. Chapman, M. Gotti, and the first author, and then in [2] by S. Albizu-Campos, J. Bringas, and
H. Polo. The same semidomains were studied in [5] by Baeth and the first author in connection with
factorizations of matrices. This, in turn, motivated the paper [4] by Baeth, Chapman, and the first
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author, where several examples of positive semirings were constructed. Positive semirings can also be
produced as valuations of polynomial semidomains and Laurent polynomial semidomains, and such
valuations have also been investigated recently: the arithmetic of factorizations of Ny[a], where « is a
positive algebraic number, was studied recently for rational valuations in [11] by Chapman, Gotti, and
the first author and for algebraic valuations in [15] by J. Correa-Morris and the first author, and in [30]
by N. Jiang, B. Li, and S. Zhu. On the other hand, the atomic structure of the algebraic valuations of
the Laurent polynomial semidomain No[z*!] has been recently studied in [34] by Zhu.

Following the terminology introduced by P. L. Clark in [13], we say that the semidomain S is a
Furstenberg semidomain if every nonunit element in S* is divisible by an atom. It follows from the
definitions that each atomic semidomain is a Furstenberg semidomain. Furstenberg domains have been
studied by N. Lebowitz-Lockard in [31] in connection with the properties of almost atomicity and
quasi-atomicity, which we define in the next two paragraphs. In addition, Furstenberg domains have
been recently considered in [28] by the first author and Zafrullah in connection with idf-domains (i.e.,
integral domains whose elements have only finitely many irreducible divisors up to associates). Finally,
Furstenberg domains have been considered in [24, Section 5] by Li and the first author in the context of
integer-valued polynomials. In Section 3, we prove that the property of being Furstenberg ascends from
the semidomain S to both S[z] and S[z*!]. We also construct an example of a Furstenberg semidomain
that is neither an integral domain nor an atomic semidomain.

The semidomain S is said to be almost atomic provided that, for every nonunit b € S*, there
exist atoms a1, ...,ar of S* such that a;---arb factors into atoms in S*. Observe that each atomic
semidomain is almost atomic. The notion of almost atomicity was introduced in [7] by J. G. Boynton and
J. Coykendall, and it was later studied by Lebowitz-Lockard [31] in parallel to various other subatomic
properties. In Section 4, we study almost atomicity in the context of semidomains. Unlike the case of
the Furstenberg property, we do not know whether the property of being almost atomic ascends from the
semidomain S to either S[x] or S[z*1] (see Question 4.3). However, under certain divisibility hypothesis
on the coefficients of indecomposable polynomials, we are able to prove that almost atomicity ascends
from the semidomain S to both S[z] and S[z*]. We also provide in Section 4 an example of an almost
atomic semidomain that is neither an integral domain nor an atomic semidomain. Finally, we exhibit
an example of an antimatter semidomain that is not an integral domain whose polynomial extension is
almost atomic.

As the notion of almost atomicity, that of quasi-atomicity was introduced in [7] and further studied
in [31] in the context of integral domains. Following the terminology in [7], we say that the semidomain S
is quasi-atomic provided that, for every nonunit b € S*, there exists an element ¢ of S* such that be
factors into atoms in S*. It follows directly from the definitions that each almost atomic semidomain is
quasi-atomic. In Section 5, we investigate quasi-atomicity in semidomains. We begin by constructing a
quasi-atomic semidomain that is neither an integral domain nor an almost atomic semidomain. Then we
provide a simple ideal-theoretical characterization of quasi-atomic semidomains. As for the property of
being almost atomic, we could not determine whether the property of being quasi-atomic ascends from
the semidomain S to either S[z] or S[z*!]. However, under the same hypothesis used to prove the ascent

of almost atomicity, we prove that the property of being quasi-atomic ascends from the semidomain S
to both S[z] and S[z*1].

2. BACKGROUND
2.1. General Notation. In this section, we introduce the notation and terminology necessary to follow

our exposition. Reference material on factorization theory and semiring theory can be found in the
monographs [18] by A. Geroldinger and F. Halter-Koch and [21] by J. Golan, respectively. Throughout
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this paper, we let P, Z,Q, and R denote the set of primes, integers, rational numbers, and real numbers,
respectively. Additionally, we let Ny and N denote the set of nonnegative integers and positive integers,
respectively. Given s € R and X C R, we set

Xes={reX|r>s} and Xs,={reX|r>s}.
For m,n € Z, we denote by [m,n] the closed discrete interval from m to n; that is,
[m,n] ={ke€Z|m<k<n}.

Observe that [m,n] is empty if m > n.

2.2. Monoids. A monoid' is defined here to be a semigroup with an identity element that is both
cancellative and commutative. Since our interest lies in the multiplicative structure of certain semirings,
we will use multiplicative notation for monoids unless we specify otherwise. For the rest of this section,
let M be a monoid with identity 1. We set M*® := M \ {1}, and we let Z (M) denote the group of
units (i.e., invertible elements) of M. In addition, we let M;.q denote the quotient M /% (M), which
is also a monoid. We say that M is reduced provided that % (M) is the trivial group, in which case,
the monoids M;eq and M can be naturally identified (and we do so). The Grothendieck group of M,
denoted here by (M), is the abelian group (unique up to isomorphism) satisfying the property that
any abelian group containing an isomorphic image of the monoid M also contains an isomorphic image
of the group ¢(M). The monoid M is called torsion-free provided that ¢ (M) is a torsion-free group.
For a subset S of M, we let (S) denote the smallest submonoid of M containing S, and if M = (S),
then we say that S generates M.

Puiseux monoids and positive monoids are used several time throughout this paper to construct
needed examples. Following [23], we call any additive submonoid of Q>¢ a Puiseuz monoid. The class
of Puiseux monoids is, therefore, a natural generalization of the class consisting of numerical monoids
(i.e., additive submonoids of Ny up to isomorphism). Puiseux monoids account up to isomorphism for
all rank-1 torsion-free monoids that are not groups (see [17, Theorem 3.12.1]). Following [22], we call
any additive submonoid of R>¢ a positive monoid. It follows directly from the definitions that every
Puiseux monoid is a positive monoid. The atomic structure of both Puiseux and positive monoids has
been actively investigated during the last few years: see the recent papers [12,27] as well as the references
therein).

For b,c € M, it is said that ¢ divides b in M if there exists d € M such that b = cd, in which case we
write ¢ | b, dropping the subscript precisely when M = (N, x). We say that b,c € M are associates
if b |ap ¢ and ¢ |pr b. The monoid M is called a valuation monoid if for all b,c € M either b |y ¢ or
¢|m b. An element p € M\ % (M) is called prime if for all b,c € M the relation p | be implies that
either p |as b or p |m ¢. A submonoid N of M is called divisor-closed if for each b € N and ¢ € M the
relation ¢ |5 b implies that ¢ € N. Let S be a nonempty subset of M. An element d € M is called a
common divisor of S provided that d |y s for all s € S. A common divisor d of S is called a greatest
common divisor of S provided that d is divisible by all common divisors of S. Also, a common divisor
of S is called a mazimal common divisor provided that every common divisor of the set

S/d:z{%‘sES}

belongs to % (M); that is, if d divides a common divisor d’ of S, then d and d’ are associates in M. We
let gedy, (S) (resp., medas(S)) denote the set consisting of all greatest common divisors (resp., maximal
common divisors) of S. The monoid M is called a GCD-monoid (resp., an MCD-monoid) if each finite
nonempty subset of M has a greatest common divisor (resp., a maximal common divisor). It is clear

IThe standard definition of a monoid does not assume the cancellative and the commutative conditions.
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that the inclusion gedy,(S) € medas(S) holds, whence every GCD-monoid is an MCD-monoid. The
converse does not hold in general, as the following example illustrates.

Example 2.1. Let M be the numerical monoid N\ {1}; that is, M = (2, 3). The set of common divisors
of {5,6} in M is {0,2,3}. As 2ty 3 and 3 {ps 2, it follows that ged,, (5, 6) is empty. However, the only
common divisor of both sets {5 — 2,6 — 2} and {5 — 3,6 — 3} is 0 and, therefore, medys(5,6) = {2, 3}.
More generally, one can readily argue that every numerical monoid is an MCD-monoid.

An element a € M\ % (M) is called an atom if for all b, ¢ € M the equality a = be implies that either
be % (M) orceZ(M). One can readily verify that every prime element is an atom. We let <7 (M)
denote the set consisting of all atoms of M. Following P. Cohn [14], we say that M is atomic if every
element of M \ % (M) can be written as a (finite) product of atoms, while following J. Coykendall, D.
Dobbs, and B. Mullins [16], we say that M is antimatter if o/ (M) is empty. One can readily check
that M is atomic (resp., antimatter) if and only if M;eq is atomic (resp., antimatter).

Assume throughout this paragraph that M is an atomic monoid. We let Z(M) denote the free
(commutative) monoid on the set & (Myeq). The elements of Z(M) are called factorizations, and if
z=ay---ag € Z(M) for some ay,...,as € o/ (Myeq), then £ is called the length of z, which is denoted
by |z|. Let m: Z(M) — Myea be the unique monoid homomorphism satisfying that w(a) = a for all
a € @/ (Myeq). For each b € M, the sets

(2.1) Zy(b) =7 0% (M) CZ(M)  and  La(b) = {|2| : z € Zps(b)} € No

are of crucial importance to study the atomicity of M. When there seems to be no risk of ambiguity,
we drop the subscript M from the notations in (2.1). We say that M is a unique factorization monoid
(UFM) provided that |Z(b)| = 1 for every b € M. In addition, we say that M is a bounded factorization
monoid (BFM) provided that 1 < |L(b)] < oo for every b € M. It follows from the corresponding
definitions that every UFM is a BFM.

Following the terminology in [13], we say that the monoid M is Furstenberg provided that every
nonunit element of M is divisible by an atom. It follows directly from the definitions that every
atomic monoid is Furstenberg. On the other hand, following the terminology in [7], we say that the
monoid M is almost atomic (resp., quasi-atomic) provided that, for every nonunit ¢ € M, there exists
ai,...,ax € (M) (resp., b € M) such that a; - - -agc (resp., be) can be written as a product of atoms
in M. It follows directly from the definitions that every atomic monoid is almost atomic and also that
every almost atomic monoid is quasi-atomic.

2.3. Semirings. A semiring S is a nonempty set endowed with two binary operations denoted by ‘+’
and ‘-’ and called addition and multiplication, respectively, such that the following conditions hold:

(1) (S,+) is a monoid with its identity element denoted by 0;

(2) (S,-) is a commutative semigroup with an identity element denoted by 1;

(3) b-(c+d)=b-c+b-dforallbedeb.
With notation as in the previous definition and for any b, c € S, we write bc instead of b - ¢ when there
seems to be no risk of confusion. It follows from conditions (1) and (3) in the definition of a semiring S
that 0-b =0 for all b € S. A more general notion of a ‘semiring’ S does not assume that the semigroup
(S, ) is commutative. However, this more general type of algebraic objects is not of interest in the scope

of this paper. A subset S’ of a semiring S is a subsemiring of S if (S’,+) is a submonoid of (S, +) that
contains 1 and is closed under multiplication. Observe that every subsemiring of S is a semiring.

Definition 2.2. We say that a semiring S is a semidomain provided that S is a subsemiring of an
integral domain.
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Let S be a semidomain. We set S* := (S \ {0},-) and call it the multiplicative monoid of S. It is
worth emphasizing that a semiring S may not be a semidomain even if S* is a monoid; for instance,
consider {(0,0)} U (N x N) under the usual component-wise addition and multiplication. Following
standard notation from ring theory, we refer to the units of the multiplicative monoid S* simply as
units of S, and we denote the set of units of S by S*. We never consider in this paper the units of the
monoid (S,+), so the use of the term ‘unit’ in the context of the semidomain S should not generate
any ambiguity. We write 27 (S) instead of 27 (S*) for the set of atoms of the multiplicative monoid S*,
while we let <7, (S) denote the set of atoms of the additive monoid (S, +). In addition, for any b,c € S
such that b divides ¢ in S*, we write b |g ¢ instead of b |g+ ¢. Finally, for any nonempty subset T' of S*,
we write gedg(T') (resp., medg(T)) instead of gedg. (T) (resp., medg«(T')). As for the notion of units,
throughout this paper we never consider divisibility in the additive monoid of any semidomain.

Lemma 2.3. For a semiring S, the following conditions are equivalent.
(a) The multiplication of S extends to 4(S) turning 4(S) into an integral domain.

(b) S is a semidomain.

Proof. (a) = (b): This is clear.

(b) = (a): Let S be a semidomain, and suppose that S is embedded into an integral domain R.
We can identify the Grothendieck group ¢(S) of (S,+) with the subgroup {r — s | r,s € S} of the
underlying additive group of R. It is routine to verify that ¢(S) is closed under the multiplication it
inherits from R, and it contains the multiplicative identity because 0,1 € S. Hence ¥4(S) is an integral
domain having S as a subsemiring. ([l

We say that the semidomain S is atomic (resp., Furstenberg, almost atomic, quasi-atomic, a GCD-
semidomain) if its multiplicative monoid S* is atomic (resp., Furstenberg, almost atomic, quasi-atomic,
a GCD-monoid). Similarly, we say that S is a unique factorization semidomain (UFS) provided that S*
is a UFM, and we say that S is a bounded factorization semidomain (BFS) provided that S* is a BFM.
A subset I of S is an ideal? of S provided that (I, +) is a submonoid of (S, +) and IS C I. We say that
an ideal I is prime if I # S and, for all b, ¢ € S, the containment bc € I implies that either b € [ or ¢ € I.
Although the semidomain S can be embedded into an integral domain R, the former may not inherit
any (sub)atomic property from the latter as, after all, the integral domain Q] is a UFD but it contains
as a subring the integral domain Z + zQ[z], which is not even quasi-atomic (see [31, Lemma 17]).

Let S be a semiring. The set consisting of all polynomial expressions with coefficients in the semiring S
is also a semiring, which we denote by S[x] and call the semiring of polynomials over S. Additionally, if S
is a semidomain embedded into an integral domain R, then it is clear that S|[x] is also a semidomain, and
the elements of S[x] are, in particular, polynomials in R[z]. Consequently, when S is a semidomain all the
standard terminology for polynomials can be applied to elements of S[x], including constant polynomial,
degree, order, and leading coefficient. Observe that S* is a divisor-closed submonoid of S[z]* and,
therefore, S[z]* = S* and &7 (S[z]) NS = & (S). Following [33], we say that a nonzero polynomial in
S[z] is indecomposable if the polynomial cannot be written as a product of two nonconstant polynomials
in S[x].

Following the terminology introduced by Baeth, Chapman, and the first author in [4], we call a
subsemiring of R consisting of nonnegative numbers a positive semiring. The fact that underlying
additive monoids of positive semirings are reduced makes them more tractable. The reader can check [4]
for several examples of positive semirings. The class of semidomains clearly contains those of integral
domains and positive semirings.

2Golan [21] defines an ideal in a more restrictive way: if I is an ideal of a semiring S, then by definition I # S.
Consequently, any result we cite from [21] is interpreted here as a statement about the proper ideals of a semiring.
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3. FURSTENBERGNESS

The Furstenberg property is a relaxation of the property of being atomic, and the reader can find
interesting examples of non-atomic Furstenberg domains in [24, Section 5] and [31, Section 4]. We now
construct an example of a Furstenberg positive semiring that is not atomic. In the construction, we use
Lindemann-Weierstrass Theorem from transcendental number theory (see [6, Chapter 1]), which states
that, for distinct algebraic numbers aq, ..., ay,, the set {e®*,... e*} is linearly independent over the
field of algebraic numbers.

Example 3.1. Consider the Puiseux monoid P = <% | p € IP’>, and set M := PUQ>;. It is clear
that M is also a Puiseux monoid. It is well known and not difficult to argue that o/ (P) = {% | p € P}

(see, for instance, [1, Theorem 4.5]). This, along with the fact that no element of Q> divides any of
the elements of {% | p € P} in M, implies that {% | p € P} C &/(M). In addition, observe that for

any g € M>; we can pick p € P large enough so that % |ar ¢. Putting the two previous observations
together, we can conclude that

o (M) = {% ‘ pe IP’}.
This implies that M is not atomic as, for instance, % cannot be written as a sum of atoms in M. On
the other hand, it follows from our previous observations that M is a Furstenberg monoid.

Now consider the additive monoid E(M) = (¢™ | m € M), which is free on the set {e™ | m € M}
by Lindemann-Weierstrass Theorem. It is clear that E(M) C R>¢. Also, observe that E(M) contains 1
and is closed under multiplication. As a consequence, E(M) is a positive semiring. In addition, the fact
that M C R>q guarantees that min E(M)* = 1, which in turn implies that the multiplicative monoid
E(M)* is reduced.

We proceed to argue that F(M) is a Furstenberg semidomain that is not atomic. It is clear that
e(M) = {e™ | m € M} is a multiplicative submonoid of E(M)* and also that e(M) is isomorphic
to the Puiseux monoid M. Since M is not atomic, e(M) is not atomic. As M consists of algebraic
numbers, it follows from [4, Lemma 2.7]% that e(M) is a divisor-closed submonoid of E(M)*. Therefore
the semidomain E(M) is not atomic.

To argue that E(M) is Furstenberg, take a nonunit r € E(M)* (that is, r € E(M)* \ {1}) and write
r=cre? +---+cre?*, where cy,...,cp € Nand qi,...,qx € M. We split the rest of the argument into
the following two cases.

CASE 1: There exists a positive common divisor d of the elements g1, ...,qr in M. In this case, we
can factor r in E(M)* asr = e¥(cie® =9+ . .4 ce? ). Because d > 0 and M is a Furstenberg monoid,
there exists a € o/ (M) such that a |p d. Therefore the fact that e(M) is a divisor-closed submonoid of
E(M)* guarantees that e is an atom of E(M) such that e® g 7.

CASE 2: The only common divisor of the elements g1,...,qr in M is 0. In this case, we can choose
nonunits s, ..., 8y, € E(M)* satisfying that = s1 -+ - s,,. For each i € [1,m], let ¢; be the length of s;
in the underlying free commutative monoid of E(M). Since no element of the form e? with d € M*
divides any of the factors s1,..., sy, in E(M)*, we see that 2 < ¢; < s; for every ¢ € [1,m]. Hence from
the fact that 2™ < s1---s,, = r, we deduce that m < log,r. Now, we can assume that m has been
taken as large as it can possibly be to conclude that s; is an atom of E(M) such that s1 [g(ar) 7

In any case, r is divisible by an atom in E(M). Thus, we can conclude that E(M) is a Furstenberg
semidomain that is not atomic.

Next we prove that the Furstenberg property ascends from a semidomain to both its polynomial
extension and its Laurent polynomial extension.

3Although [4, Lemma 2.7] is stated for positive monoids, its proof requires the use of Lindemann-Weierstrass Theorem
and, therefore, it requires that the positive monoid M consists of algebraic numbers.



ON THE SUBATOMICITY OF POLYNOMIAL SEMIDOMAINS 7

Theorem 3.2. For a semidomain S, the following statements are equivalent.
(a) S is Furstenberg.
(b) S|x] is Furstenbery.
(c) S[z*1] is Furstenbery.

Proof. (a) = (b): Suppose that S is a Furstenberg semidomain. Take a nonzero nonunit f € S[z].
Suppose first that f € S. Then the fact that S* is a Furstenberg monoid guarantees the existence of
a € /(S) with a |s f. As S* is a divisor-closed submonoid of S[z]*, it follows that a is also an atom
of S[x], and so f is divisible by an atom in S[z]. Suppose now that deg f > 1. Take the largest m € N
such that f = rgy--- g for some r € S* and g1, ..., gm € Slx] with degg; > 1 for every i € [1,m]. If
g1 € </ (S[x]) we are done. If g1 is reducible, then the maximality of m guarantees that g1 = s(g1/s) for
some nonunit element s € S* dividing ¢g; in S[z]*. Because s is a nonunit of S* and S* is a Furstenberg
monoid, s must be divisible by an atom b in S*. Since S* is a divisor-closed submonoid of S[z]*, we see

that b is an atom of S[z] that divides f in S[z]*. Hence S|x] is also a Furstenberg semidomain.

(b) = (c): First, observe that every atom a in S[z] with orda = 0 (i.e., every atom not in the set
{uz | uw € S*}) is an atom in S[z*!]. Now take a nonzero nonunit g € S[z*!], and write g = 2¢h for
some d € Z and h € S[z] with ordh = 0. As g is not a unit in S[z*!], we see that h is not a unit in
S[z], and so there is an a € #7(S[z]) such that a |g[;) h. Note that orda = 0 because the same holds
for h. Thus, a is an atom in S[zx*!] dividing g. Therefore S[z*!] is also a Furstenberg semidomain.

(c¢) = (a): This follows from the fact that {sz™ | s € S* and n € Z} is a divisor-closed submonoid of
S[z*!]* whose reduced monoid is isomorphic to that of S*. O

Observe that Theorem 3.2 can help us identify Furstenberg semidomains that are not atomic. For
instance, M. Roitman [33] provided the first example of an atomic domain D such that D[z] is not
atomic. By virtue of Theorem 3.2, we can now assert that D[z] is a non-atomic Furstenberg domain.

4. ALMOST ATOMICITY

In this section, we focus on the property of being almost atomic which, as that of being Furstenberg,
is a property weaker than being atomic. As the next example illustrates, there are almost atomic
semidomains (indeed positive semirings) that are not atomic. The notion of a greatest-divisor submonoid
will play a useful role in the next example. Let M be a monoid and let N be a submonoid of M. For
each m € M, a greatest divisor of m in N is an element d € N such that d |ps m and if d’ | m for
some d’' € N, then d’ |y d. Following [25], we say that N is a greatest-divisor submonoid of M provided
that every element of M has a greatest divisor in V.

Example 4.1. Let (p,)n>1 be the strictly increasing sequence consisting of all primes greater than 4,
and then consider the following sets:

1 1 1 1 1
Now set M := (AU B), and let us argue the following claim.
Claim 1: o/ (M) = A.

Proof of Claim 1: It is clear that none of the elements of B is an atom of M. Therefore o/ (M) C A.
Before arguing the reverse inclusion, set

, 11 1

ap:=— and a, :=
" Pn " 2n+2+2 Dn
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for every n € N. Fix m € N. First, write a,,, = Ele(ciai + cla;) for some k € N>, and coefficients
€1y, ChyChye .oy c), € Ng. Since p,, > 4, it follows that al,, > a,, and, therefore, ¢, = 0. Now, after
applying p,-adic valuation to both sides of the equality a,, = Zle(ciai + cia;), we find that ¢, > 1,
which implies that ¢, = 1 and ¢; = ¢} = 0 for every i € [1,k] \ {m}. Hence a,, € &/ (M). Now write
a,, = Zle(diai + dja;) for some ¢ € N>, and coefficients di,...,ds, dy,...,d, € Ng. If d/, = 0, then
we can write

1 1 1+d,,
(4.1) i dm

gm+2 + 5 Dm

i€[1,e]\{m}

After applying p,,-adic valuation to both sides of the equality (4.1), we find that p,, | 1 + d,,, which
is not possible as 3=, cry g\ (my (diai + djaj) > 0. Therefore d;, > 1, which implies that dj,, = 1 and
the rest of the coefficients in Zle(diai + d}a;) equal 0. Hence a], € &/ (M). As a result, the inclusion
A C o/ (M) also holds, and the claim follows.

We can argue now that M is almost atomic but not atomic. To show that M is not atomic, first
observe that for every n € N the fact that p, > 4 implies that a/, > 271% + % > %. As a result, % cannot
be divisible in M by a!, for any n € N. Therefore, if M were atomic, then % € <p% | ne N>, which is
not possible because every element in <ln |ne N> has nonnegative 2-adic valuation. Thus, M cannot
be atomic. Let us show now that M is almost atomic. To do so, fix a nonzero ¢ € M. Now write

q= c# + ¢ for some ¢ € Ng, n € N, and ¢’ € M such that ¢’ can be written as a sum of atoms in M.
Thus,

c+q=2c ! —|—l +q =2clap +al) +4q
q= 2n+2 2 q = n n q -

Therefore ¢+ ¢ can be written as a sum of atoms in M. It is clear, on the other hand, that if ¢ # 0, then
¢ € NC M can also be written as a sum of atoms in M: indeed, ¢ = (¢pn)a,. As a consequence, M is
almost atomic.

Now set N := (B), and observe that N is a valuation monoid: indeed, N = Ny [%] Fix ¢ € M. Since
M = (AU B), we can write each ¢ as follows:

(4.2) qg=co+ Z(Cnan +clal),

neN
for some ¢y € N and sequences (¢, )n>1 and (¢, )n>1 of nonnegative integers, where all but finitely many
terms of each sequence equal 0. Among all decompositions as the one in (4.2), assume we have chosen
one minimizing >, _n(cn + ;). We claim that c,,c;, € [0,p, — 1] for every n € N. To argue this,
note that if ¢; > p; for some j € N, then we could replace in (4.2) the terms ¢o and c;ja; by the terms
¢o + pja; and (¢; — pj)a;, respectively, to obtain another decomposition of ¢ whose existence violates
the minimality of ) _\(cn +¢,) (note that pja; € N). A similar argument shows that there cannot be
any j € N with ¢; > p;. Thus, a decomposition of ¢ as in (4.2) with ¢y, ¢;, € [0,p, — 1] for every n € N
exists. We call such a decomposition a canonical decomposition of ¢ and we call ¢y the dyadic summand
of the same canonical decomposition.
Claim 2: Each g € M has finitely many canonical decompositions.
Proof of Claim 2: This is clear when ¢ = 0. Now pick an arbitrary nonzero element ¢ € M, and assume
that ¢ has a canonical decomposition as that shown in (4.2). Take ¢ € N such that p, is greater than
any prime dividing the denominator of ¢. Fix j € N, and observe that the summand c;a; + cjaj is
nonzero if and only if the p;-adic valuation of ¢ is negative if and only if p; divides the denominator of ¢:
this is because the p;-adic valuation of ¢,a, + ¢} a), is nonnegative for every n # j. Therefore we can
write the canonical decomposition in (4.2) as ¢ = ¢ + Zizl(cnan + chal). Since ¢y € N is completely

determined by the sum Zflzl(cnan + cl,al,), the restrictions ¢,, ¢, € [0, p, — 1] for every n € [1, ] now
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imply the existence of only finitely many canonical decompositions for q. As g was arbitrarily chosen,
the claim is established.

Claim 3: N is a greatest-divisor submonoid of M.

Proof of Claim 3: Fix g € M. Observe that if d € N divides g in M, then after adding d to any canonical
decomposition of ¢ — d, we obtain a canonical decomposition of ¢ whose dyadic summand is at least d,
and so divisible by d in N in light of the fact that the Puiseux monoid N is a valuation monoid. Thus,
every element of N dividing ¢ in M also divides the dyadic summand of some canonical decomposition
of g. As a result, the fact that ¢ has only finitely many dyadic summands (by Claim 2) now implies
that the maximum of all such dyadic summands is the greatest divisor of ¢ in N (once again we are

using that N is a valuation monoid). Hence N is a greatest-divisor submonoid of M, and the claim is
established.

It is worth emphasizing that the fact that M is a reduced monoid guarantees that every element of M
has a unique greatest divisor in V.

Claim 4: M is an MCD-monoid.

Proof of Claim 4: First, let us argue that if ¢ € M and d € N such that d is the greatest divisor of ¢
in N, then the element g — d has finitely many factorizations in M. Fix ¢ € M and let d € N be the
greatest divisor of ¢ in N. The statement follows immediately if ¢ € N. So assume that ¢ € M \ N,
which implies that ¢ —d > 0. Fix j € N such that p; does not divide the denominator of ¢ — d, and let
cja; + c;a; be a divisor of ¢ — d in M maximizing the sum c; + ¢}. As a; +a} € N*®, the maximality
of d guarantees that cjc;- = 0. Thus, if ¢; > 1, then as the pj-adic valuation of ¢ — d is nonnegative,
it follows that p; | ¢; and so ¢ja; = (¢; — pj)a; + pja; € (¢; —pj)a; + N°®, which is not possible given
the maximality of d. In the same way, we can argue that the inequality c; > 1 is not possible. Hence
cj = ¢ = 0, and so the maximality of c; + ¢ ensures that neither a; nor a’; divide g—d in M. Thus, ¢—d
is divisible by only finitely many atoms in M, which implies that ¢ — d has finitely many factorizations
in M.

We are in a position now to show that M is an MCD-monoid. To do this, suppose that q1, ..., g, are
pairwise distinct nonzero elements in M. Now let dy,...,d,, € N be the greatest divisors of g1,...,qm
in N, respectively. After relabeling if necessary, we can assume that d; = min{d; | ¢ € [1,m]}. Since N
is a valuation monoid, it is clear that d; is a common divisor of ¢1,..., ¢y, in M. In addition, as d; is
the greatest divisor of ¢; in N, the element ¢; — d; is not divisible by any elements of N in M. This,
together with the fact that ¢ — d; has only finitely many factorizations in M, implies that ¢; — d; has
only finitely many divisors in M. Thus, after setting

dy :=max{de€ M| d|y g —dy forevery ic [1,m]},

we find that dy +d] is a maximal common divisor of g1, . .., Gm in M. Therefore M is a an MCD-monoid,
and the claim is established.

Finally, we will prove that the positive semiring E(M) := (™ | m € M) (constructed as in Ex-
ample 3.1) is almost atomic but not atomic. Since M consists of algebraic numbers, it follows from
[1, Lemma 2.7] that e(M) := {e™ | m € M} is a divisor-closed submonoid of the multiplicative monoid
E(M)*. Since e(M) is isomorphic to M, which is not an atomic monoid, we find that F(M) is not an
atomic semidomain.

It only remains to prove that E(M) is an almost atomic semidomain. To do so, let r be a nonunit
element in E(M)*, and write r = c1e? + -+ + cxe?, where ¢1,...,¢; € N and ¢1,...,qx € M with
q1 < -+ < qx. We split the rest of our argument into the following two cases.

CASE 1: k = 1. From the linear independence of the set {em | m € M} over the field of algebraic

numbers (due to Lindemann-Weierstrass Theorem), we can readily deduce that every (standard) prime
is an atom of E(M)*. Hence ¢; can be written as a product of atoms in E(M)*. In addition, we can
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use the fact that M is almost atomic to pick an element b € (&7 (M)) so that the element b+ ¢; can
be written as a sum of atoms in M. Therefore e’ factors into atoms in E(M)* and, moreover, we can
write e’r = e?(c1e?') = c;ebt % as a product of atoms in E(M)*.

CASE 2: k > 2. Since every (standard) prime is an atom of E(M)*, we can assume, without loss of
generality, that ¢, ..., ¢, are relatively prime positive integers. As M is an MCD-monoid by Claim 4,
we can take d € medps(qa, ..., qr). Now write

r= ed(cle‘“*d 4+ 4 ckeqk*d) =e%s1 s

for some m € N and s1,...,8, € E(M)*\ e(M) (this is possible because k > 2). Since no element of
the form e with d’ € M* divides any of the factors s1,..., sy, in E(M), the inequality 2 < s; holds
for every i € [1,m]. Therefore 2™ < s;---s,, = e~%r, which implies that m < log, e~%r. Now, we can
assume that m has been taken as large as it can possibly be to obtain that si,...,s, € & (E(M)).
Since M is almost atomic, there exists b € (&7 (M)) such that b+ d can be written as a sum of atoms
in M. As a consequence, both e® and e’r = e**ds; - .. s, factor into atoms in E(M). Hence we conclude
that F(M) is almost atomic.

It was proved by Roitman in [33, Proposition 1.1] that the property of being atomic ascends from
an integral domain to its polynomial extension provided that the coefficients of any indecomposable
polynomial have a maximal common divisor (Roitman also proved in the same paper that the property
of being atomic does not ascend, in general, from integral domains to their corresponding polynomial
extensions). This result by Roitman was recently generalized by the authors to the context of semido-
mains (see [26, Theorem 3.1]). Under the same hypothesis, we can prove that the property of being
almost atomic ascends from a semidomain to both its polynomial extension and its Laurent polynomial
extension.

Theorem 4.2. For a semidomain S, each of the following statements implies the next one.
(a) S is almost atomic and, for any indecomposable polynomial of the form >\ c;x* € S[z]*, the
set mcdg(co, ... ,cn) is nonempty.
(b) S[x] is almost atomic.
(c) S[z*'] is almost atomic.
Moreover, conditions (b) and (c) are equivalent.

Proof. (a) = (b): Let f be a nonunit element of S[x]* such that deg f = n for some n € Nyg. Assume
first that n = 0, which means that f € S*. In light of the almost atomicity of S, we can take
an element by € S* that factors into atoms in S such that by f also factors into atoms in S. Since
(o(S)) C ((S[z])), both by and byf factor into atoms in S[z]. Assume now that n > 1. Write
f=/fi-fm, where f; € S[z] and deg f; > 1 for each i € [1,m]. Suppose, without loss of generality,
that m is as large as it can possibly be. Fix an arbitrary j € [1,m]. By the maximality of m, the
polynomial f; is indecomposable in S[z]. Now write f; = Y ¢z’ with coefficients c,...,c, € S.
Take d; € med(co,...,c,), which exists by the assumed hypothesis, and note that dj_lfj € o (S[x)).
Since S is almost atomic, there exists b € S*, which factors into atoms in S, such that bd; - - - d,, also
factors into atoms in S. As (&/(5)) C (&7 (S[x])), both b and bd; ---d,, factor into atoms in Sx].
Therefore bf = (bdy -+~ dm) [[1~, d; ' f;, and so bf factors into atoms in S[z]. Hence S[z] is almost
atomic.

(b) = (c): First, observe that o7 (S[z]) \ {ux | v € $*} C &(S[z*!]). Now let f be a nonunit
element of S[z*']*, and write f = aFg for some k € Z and g € S[x] such that ordg = 0. Since S[z]
is almost atomic, there exists b € S[z]*, which factors into atoms in S[z], such that bg also factors
into atoms in S[z]. Because z is a prime element in S[z], we can assume, without loss of generality,
that ordb = 0. Since both b and bg factor into atoms in S[z] and ordb = ordbg = 0, the fact that
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o (S[z]) \ {ux | u € S*} is a subset of &7 (S[z*!]) guarantees that both b and bg also factor into atoms
in S[z*1]. As a consequence, S[x*!] is almost atomic.

(c) = (b): Let f be a nonunit element in S[z]*. First, assume that ord f = 0. Because S[zT!] is
almost atomic, there exists b € S[z*!], which factors into atoms in S[z*!] such that bf is also factors
into atoms in S[z*!]. As ¥ € S[z*1]* for every k € Z, we may assume ord b = 0, which implies that
ordbf = 0. If b € S[z*]*, then b € S*, which trivially implies that b factors into atoms in S[z].
Otherwise, we can write b = ay - --a, for some ay,...,a, € </(S[z*!]). Because ordb = 0, we can
assume, without loss of generality, that orda; = 0 for every i € [1,n]. Therefore ay,...,a, € o7 (S[z]),
and so b factors into atoms in S[z]. As ordbf = 0, we can repeat the same argument to see that bf
factors into atoms in S[z].

Finally, assume that ord f = k > 1. In this case, by the argument given in the previous paragraph,
there exists b € S[x], which factors into atoms in S[z], such that bz~ f also factors into atoms in S[z].
Since € 7 (S[x]), both b and bf = x*(bx=F f) factor into atoms in S[z].

Hence we conclude that S[z] is almost atomic. O

As a consequence of Theorem 4.2, we see that, in the class consisting of all GCD-semidomains, the
property of being almost atomic ascends to both polynomial extensions and Laurent polynomial exten-
sions. In general, we do not know whether the polynomial extension of an almost atomic semidomain
is almost atomic, so we pose the following question.

Question 4.3. Is there an almost atomic semidomain S such that S[z] is not almost atomic?

We conclude this section by providing an example of an antimatter semidomain S whose polynomial
extension S[z] is almost atomic.

Example 4.4. Consider the positive semiring S = {0}UQ>1, which is antimatter (see [4, Example 3.10]).
We shall prove that S[x] is almost atomic. Take an arbitrary nonunit element f € S[z]*, and observe
that we can write f = cg, where ¢ € Q>1 and g = > ¢;2' € S[z]* with ¢; = 1 for some j € [0,n].
Therefore proving that S[x] is almost atomic amounts to arguing that every element of Q> and every
nonconstant polynomial Y. ¢;z* € S[z]* with ¢; = 1 for some j € [0, n] can be expressed as quotients
of two finite products of atoms of S[z]. Let us start with the latter case. To do so, fix a nonconstant
polynomial g = > ¢;a’ € S[z|* with ¢; = 1 for some j € [0,n]. Then write g = fi -+ fm as a product
of indecomposable polynomials fi,..., fm € S[z]. Since ¢; = 1 for some j € [0,n], the only element of
S* = Q> that divides all coefficients of g must be 1, and so the same follows for each of the factors
fi,-.., fm. This, along with the fact that the polynomials f1, ..., f,, are indecomposable, ensures that
fi,-- oy fm € & (S[x]). To tackle the former case, fix ¢ € Q>1, and then write

(cx +1)(xz+¢)
224 (c+ Dz +17
where each of the polynomials in (4.3) factors into atoms in S[z] by the previous argument. Hence we
conclude that S[z] is almost atomic.

(4.3) c=

5. QUASI-ATOMICITY

In this section, we provide an ideal-theoretical characterization of quasi-atomic semidomains, and
then we study when quasi-atomicity ascends from a semidomain to its polynomial extension and its
Laurent polynomial extension. Finally, we use quasi-atomicity to offer a stronger version of the known
fact that every atomic GCD-domain is a UFD.

The fact that almost atomic semidomains are quasi-atomic follows immediately from the correspond-
ing definitions. We proceed to construct a quasi-atomic semidomain that is neither an integral domain
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nor an almost atomic semidomain (the provided construction is based on that given in [31, Example 7]
for integral domains). In our construction, we need the notion of a semifield. A semifield is a semido-
main in which every nonzero element has a multiplicative inverse. For instance, the semidomains Q>¢
and R>( are both semifields.

Example 5.1. Let S be a BFS that is not a semifield (for instance, Np). Let K be a field properly
containing the field of fractions of ¢(S), and then consider the semidomain

R:= S[z] + 2’ K[z] = S 4 Sz + 2*K|x].

Observe that R is an integral domain if and only if S is an integral domain. Take an arbitrary polynomial
F=>w c;x' € R*, and set m := ord f. We shall prove that f factors into atoms in R if and only if
cm € S.

For the direct implication, assume that c,, ¢ S, and write f = ¢1---g¢ with ¢1,...,9¢ € R*. As
cm & S, we see that for some j € [1,£] the coefficient corresponding to the term z°™49 in g; is not
an element of S. This implies that ordg; > 2. Thus, g; ¢ S and every element of S* divides g; in R.
Observe that R* = S*. Since S is not a semifield, some nonunit of S divides g; in R, and so g; ¢ <7 (R).
Hence we conclude that f cannot factor into atoms in R.

To argue the reverse implication, assume that ¢,,, € S, and then write f = g1 - - - g¢, where g; ¢ R* for
any i € [1,¢]. Since S is a BFS, we see that if m = 0 (resp., m = 1), then the inequality ¢ < n+max L(co)
(resp., £ < n + maxL(cq)) holds: indeed, for each i € [[1,], either degg; > 1 or g; is a divisor of ¢
(resp., ¢1) in S that is not a unit. Consequently, if m € {0,1}, then f factors into atoms in R. On the
other hand, suppose that m > 2. Then write f = 2™ '¢,,g, where g := x + %12 + -+ (f—;x”fmﬂ.
Since ordg = 1, we can mimic our previous argument to conclude that g factors into atoms in R. In
addition, because S* is a divisor-closed submonoid of R* and S is a BFS, ¢,, factors into atoms in R.
These two last observations, together with the fact that z € &/(R), allow us to conclude that f factors
into atoms in R.

Observe now that if ¢, ¢ S, then % f factors into atoms in R. This, along with the fact that f
factors into atoms when ¢, € S, implies that R is quasi-atomic. On the other hand, if ¢,, is not in
the field of fractions of ¢4(S5), then for any ai,...,ar € </(R) the element h := a1 ---arf does not
factor into atoms in R as the constant coefficient of 27°"4" ] does not belong to S. Consequently, the
semidomain R is not almost atomic.

We turn to provide a characterization of quasi-atomic semidomains. To do so, we mimic the proof of
[31, Theorem 8].

Theorem 5.2. A semidomain S is quasi-atomic if and only if every nonzero prime ideal of S contains
an atom.

Proof. For the direct implication, suppose that S is quasi-atomic. Let P be a nonzero prime ideal
of S. Take a nonzero r € P (clearly, »r ¢ S*). Since S is quasi-atomic, there exist b € S* and
ai,...,an € &7 (S) such that ay ---a, = br € P. Because P is a prime ideal, a; € P for some i € [1,n].
Thus, each nonzero prime ideal of S contains an atom.

For the reverse implication, suppose that every nonzero prime ideal of S contains an atom. Now
assume towards a contradiction that S is not quasi-atomic. Let A be the multiplicative subset of S
consisting of all the elements that can be factored into atoms (this set includes all the units of S). As S
is not quasi-atomic, we can pick r € S* such that none of the elements in Sr factors into atoms in S.
Thus, Sr is a nonzero ideal of S disjoint from A. Among all the ideals of S disjoint from A, let P
be maximal and, therefore, a nonzero ideal. By virtue of [21, Proposition 7.12], the ideal P is prime.
Since P is disjoint from A, it contains no atoms, which is a contradiction. O

It turns out that under the same divisibility condition stated in Theorem 4.2 for the ascent of al-
most atomicity, the property of being quasi-atomic also ascends from a given semidomain to both its
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polynomial extension and its Laurent polynomial extension. This assertion is included in the following
result.

Theorem 5.3. For a semidomain S, each of the following statements implies the next one.
(a) S is quasi-atomic and, for any indecomposable polynomial of the form Y ., c;z* € S[z]*, the
set mcdg(co, - ,cn) is nonempty.
(b) S|x] is quasi-atomic.
(c) S[z*1] is quasi-atomic.

Moreover, conditions (b) and (c) are equivalent.

Proof. (a) = (b): Let f be a nonunit element in S[z]*, and set n := deg f. We will argue the existence
of b € S[z]* such that bf factors into atoms in S[x]. If n = 0, then our result follows immediately as S
is quasi-atomic and S* is a divisor-closed submonoid of S[x]*. Therefore we assume that n > 1. Write
f=fi-fm, where f; € S[z] and deg f; > 1 for every i € [1,m]. Without loss of generality, assume
that m has been taken as large as it can possibly be. Fix an arbitrary j € [1,m]. It follows from
the maximality of m that the polynomial f; is indecomposable. Now write f; = >, ¢;z* for some
coefficients co, ..., ¢, € S. By the assumed hypothesis, we can take d; € medg(co,...,c,). Observe that
dj_lfj € o/ (S[z]). Since S is quasi-atomic, there exists b; € S* such that b;d; factors into atoms in S.
Now set b := by -+ - byy,. It is clear that b € S[z]* and, moreover, the equality bf = [/~ (bid;)(d; " f;)
illustrates that bf factors into atoms in S[z]. Hence S[x] is quasi-atomic.

(b) = (c): Let f be a nonunit element of S[z*1]*, and write f = x¥g for some k € Z and g € S[z] such
that ord g = 0. As S[z] is quasi-atomic, there exists b € S[z]* such that bg can be written as a product
of atoms in S[z]. Because x is a prime element in S[x], we can assume, without loss of generality, that
ord b = 0, which implies that ord bg = 0. Therefore the fact that </ (S[z]) \ {uz | u € S*} is a subset of
o/ (S[x*1]) ensures that bg factors into atoms in S[z*!]. Hence S[z*!] is quasi-atomic.

(c) = (b): Let f be a nonunit element in S[x]*. Assume first that ord f = 0. Since S[z™!] is quasi-
atomic, there exists b € S[x*1]* such that bf factors into atoms in S[z*!]. As z* € S[z*!]* for every
k € Z, we may assume ordb = 0, which implies that ordbf = 0. If bf € S[z*']*, then bf € S*, and
so bf can be trivially written as a product of atoms in S[z]. Otherwise, we can write bf = a1---a,
for some ay,...,a, € &/(S[x*']). Since ordbf = 0, we can assume, without loss of generality, that
orda; = 0 for every ¢ € [1,n]. This implies that a; € <7 (S[z]) for every i € [1,n]. Hence bf factors into
atoms in S[z]. Finally, we can reduce the case where ord f > 1 to the case where ord f = 0 as we did
in the proof of Theorem 4.2. Hence S[z] is quasi-atomic. O

As for the property of almost atomicity, we do not know in general whether the polynomial extension
of a quasi-atomic semidomain is again quasi-atomic.

Observe that, as an immediate consequence of Theorem 5.3, inside the class of all GCD-semidomains
quasi-atomicity ascends to both polynomial extensions and Laurent polynomial extensions. It is well
known that a monoid is a UFM if and only if it is an atomic GCD-monoid. The following proposition
gives another similar characterization of a UFM using quasi-atomicity.

Proposition 5.4. Let M be a monoid. Then M is a UFM if and only if M is a quasi-atomic GCD-
monoid.

Proof. The direct implication follows immediately. As for the reverse implication, it is well known
that an atomic GCD-monoid is a UFM (see, for example, [29, Section 10.7]). Thus, it suffices to show
that M is atomic. To do so, let b be a nonunit element of M. Since M is quasi-atomic, there exists
¢ € M* such that be factors into atoms in M. Write bc = p;y - --p,, for some p1,...,p, € F(M). It
follows from [19, Theorem 6.7(2)] that p1,...,p, are primes. Thus, for each i € [1, n], either p; |a b or
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pi |m ¢ Therefore b must be the product of some of the factors p1,...,p, up to associates. Hence M
is atomic. O

Corollary 5.5. Let S be a semidomain. Then S is a UFS if and only if it is a quasi-atomic GCD-
semidomain.

To ensure that a GCD-monoid is a UFM, some sort of subatomic property needs to be imposed.
However, the property of being Furstenberg is not enough to guarantee that a GCD-semidomain is a
UFS. This is illustrated in the following example.

Example 5.6. * Let M be the nonnegative cone of the totally ordered (additive) group (Z2, <), where <
denotes the lexicographical order with priority on the second coordinate:

M := (Ng x {0})U(Z x N).

Since M is the nonnegative cone of Z2, it is reduced. Moreover, for all b, ¢ € M the divisibility relation
b |ar ¢ holds if and only if b < ¢ in Z2. Therefore the only atom of M is the minimum of M*; that is,
o (M) ={(1,0)}. Set a := (1,0). Because every element of M* is divisible by a in M, it follows that M
is a Furstenberg monoid. On the other hand, Noa = Ny x {0} C M, and so M is not atomic. Since M
is a valuation monoid, it is a GCD-monoid: indeed, ged(b, ¢) = min{d, ¢} for all b,c € M.

Let Q[z; M] denote the monoid ring of M over Q, that is, the ring consisting of all the polynomial
expressions with exponents in M and coefficients in Q (with addition and multiplication defined as
for standard polynomials). Since M is a torsion-free monoid, Q[z; M] is an integral domain and so a
semidomain. Moreover, as M is a GCD-monoid, it follows from [20, Theorem 6.4] that Q[x; M] is a
GCD-domain.

Let us prove that Q[z; M] is also a Furstenberg domain. To do so, define a function ¢: Q[z; M]* — Ny
as follows: if f:= > | giz(¢) € Q[x; M], where (b1, c1) < -+ < (bn,¢,) (and so ¢ < -+ < ¢,), then
set ©(f) := ¢,. Observe that the set

R:={f € Qlz; M]" | o(f) = 0}

is a divisor-closed submonoid of the multiplicative monoid Q[x; M|* that is isomorphic to the mul-
tiplicative monoid of the polynomial ring Q[z] (via the monoid homomorphism given by the natural
assignments 20 - 2° for every b € Ny). Since Q[z] is a UFD, it follows that R is a UFM. Now fix
a nonunit f € Q[z; M]*, and set ¢ := ¢(f). Suppose first that f is divisible in Q[z; M] by a nonunit
element g with ¢(g) = 0. As ¢ is also a nonunit in R, it follows that ¢ is divisible in R by some
h € o/(R), and so the fact that R is a divisor-closed submonoid of Q[z; M]* implies that h is also an
atom in Q[z; M]. Thus, h is an atom of Q[z; M| dividing f in Q[z; M]. Now we can suppose that f is
not divisible by any nonunit g € Q[z; M| with ¢(g) = 0. Write f = f1 - - f for some nonunit elements
fis--oy fr € Qla; M]. Observe that k < Zle o(fi) = @(f). As a consequence, after assuming that k has
been taken as large as it can possibly be, we obtain that fi,..., fx are atoms in Q[z; M]. Therefore f is
divisible by the atom f; in Q[z; M]. Putting all together, we can conclude that Q[x; M] is a Furstenberg
domain.

Finally, let us show that the monoid ring Q[z; M] is not a UFD. To do this, first observe that
N = {gz™ | q € Q* and m € M} is a divisor-closed submonoid of the multiplicative monoid Q[x; M]*.
Since the reduced monoid of N is isomorphic to M, which is not atomic, it follows that IV is not atomic.
Now the fact that N is a divisor-closed submonoid of Q[x; M|* implies that Q[z; M] is not atomic.

4n this arXiv version, we have replaced the example discussed in the original paper, as published in Proceedings of
the 2021 Graz Conference on Rings and Polynomials. The current example discusses the multiplicative structure of a
semidomain, while the original example discusses the additive structure of a semidomain, which is less appropriate given
the content of the paper. This is the only replacement in this arXiv version.
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Summarizing, we have constructed a monoid ring Q[z; M] that is a Furstenberg GCD-domain but
not a UFD.
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