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Abstract

While the recent literature has seen a surge in the study of constrained bandit problems, all existing

methods for these begin by assuming the feasibility of the underlying problem. We initiate the study of

testing such feasibility assumptions, and in particular address the problem in the linear bandit setting,

thus characterising the costs of feasibility testing for an unknown linear program using bandit feedback.

Concretely, we test if ∃x : Ax ≥ 0 for an unknown A ∈ R
m×d, by playing a sequence of actions xt ∈ R

d,

and observing Axt + noise in response. By identifying the hypothesis as determining the sign of the

value of a minimax game, we construct a novel test based on low-regret algorithms and a nonasymptotic

law of iterated logarithms. We prove that this test is reliable, and adapts to the ‘signal level,’ Γ, of any

instance, with mean sample costs scaling as Õ(d2/Γ2). We complement this by a minimax lower bound

of Ω(d/Γ2) for sample costs of reliable tests, dominating prior asymptotic lower bounds by capturing the

dependence on d, and thus elucidating a basic insight missing in the extant literature on such problems.

1 Introduction

While the theory of single-objective bandit programs is well established, most practical situations of interest
are multiobjective in character, e.g., clinicians trialling new treatments must balance the efficacy of the
doses with the extent of their side-effects, and crowdsourcers must balance the speed of workers with the
quality of their work. In cognisance of this basic fact, the recent literature has turned to the study of
constrained bandit problems, wherein, along with rewards, one observes risk factors upon playing an action.
For instance, along with treatment efficacy, one may measure kidney function scores using blood tests after
a treatment. The goal becomes to maximise mean reward while ensuring that mean scores remain high (e.g.
Nathan & DCCT/EDIC Research Group, 2014).

Many methods have been proposed for such problems, both in settings where constraints are enforced in
aggregate, or in each round (‘safe bandits’), see §1.1. However, every such method begins by assuming that
the underlying program is feasible (or more; certain safe bandit methods require knowing a feasible ball).
This is a significant assumption, since it amounts to saying that despite the fact that the risk factors are
not well understood (hence the need for learning), it is known that the action space is well founded, and
contains points that appropriately control the risk. This paper initiates the study of testing this assumption.
The result of such a test bears a strong utility towards such constrained settings: if negative, it would inform
practitioners of the inadequacy of their design space, and spur necessary improvements, while if positive, it
would yield a cheap certificate to justify searching for optimal solutions within the space. The main challenge
lies in ensuring that the tests are reliable and sample-efficient (since if testing took as many samples as finding
optima, the latter question would be moot).
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Concretely, we work in the linear bandit setting, i.e., in response to an action x ∈ X ⊂ R
d, we observe scores

S ∈ R
m such that E[S|x] = Ax, where A is latent, and with the constraint structured as Ax ≥ α for a

given tolerance vector α. We study the binary composite hypothesis testing problem of determining if there
exists an x : Ax ≥ α or not, with the goal of designing a sequential test that ensures that the probability
of error is smaller than some given δ. Such a test is carried out for some random time τ, corresponding
directly to the sample costs, which we aim to minimise. Effectively we are testing if an unknown linear
program (LP) is feasible, and we may equivalently phrase the problem as testing the sign of the minimax
value Γ := maxx∈X mini(Ax − α)i. Also note that by incorporating the objective as a constraint vector,
and a proposed optimal value as a constraint level, this test also corresponds to solving the recognition (or
decision) version of the underlying LP (e.g., Papadimitriou & Steiglitz, 1998, Ch. 15).

This problem falls within the broad purview of pure exploration bandit problems, and specifically the so-
called minimum threshold problem, which has been studied in the multi-armed case for a single constraint
(e.g. Kaufmann et al., 2018, also see §1.1). Most of this literature focuses on the asymptotic setting of δ ց 0,
and the typical result is of the form if the instance is feasible, then there exist tests satisfying lim Γ2

E[τ ]
2 log(1/δ) = 1.

Prima facie this is good news, in that there is a well-developed body of methods with tight instance specific
costs that do not depend on the dimension of the action set, d! However, this lack of dependence should give
us pause, since it does not make sense: if, e.g., X were a simplex, and only one corner of it were feasible, then
detecting this feasibility should require us to search along each of the axes of X to locate some evidence, and
so cost at least Ω(d) samples. The catch here lies in the limit, which implicitly enforces the regime δ = e−ω(d).
Of course, even for modest d, such small a δ is practically irrelevant. Thus, even in the finite-armed case,
the existing theory of feasibility testing does not offer a pertinent characterisation of the costs in scenarios
of rich action spaces with rare informative actions.

Our contributions address this, and more. Concretely, we

• Design novel and simple tests for feasibility based on exploiting low-regret methods and laws of iterated
logarithm to certify the sign of the minimax value Γ.
• Analyse these tests, and show that they are reliable and well-adapted to Γ, with stopping times scaling as
Õ(d2/Γ2+ d log(m/δ)/Γ2), thus demonstrating that the cost due to the number of constraints, m, is limited,
and that testing is possible far more quickly than finding near-optimal points.
• Demonstrate a minimax lower bound of Ω(d/Γ2) samples on the stopping time of reliable tests over feasible
instances, thus showing that this uncaptured dependence is necessary.

We note that while the design approach of using low-regret methods for feasibility testing has appeared
previously, their use arises either as subroutines in a complex method, or through modified versions of
Thompson Sampling that are hard to even specify for the linear setting. Instead, our approach is directly
motivated, and extremely simple, relying only on the standard technical tools of online linear regression
and laws of iterated logarithms (LILs), employed in a new way to construct robust boundaries for our test
statistics. Our results thus provide a new perspective on this testing problem, and more broadly on active
hypothesis testing.

1.1 Related Work

Minimum Threshold testing. The single-objective finite-armed bandit setup (Lattimore & Szepesvári,
2020) posits K < ∞ actions, or ‘arms,’ and in each round, a learner may ‘pull’ one arm k to obtain a
signal with mean ak ∈ R. The minimum threshold testing problem is typically formulated in this setup,
and demands testing if maxk∈[1:K] ak ≥ α or < α (notice that this is our problem, but with X finite and
mutually orthogonal, and m = 1; see §D.1). The asymptotic behaviour of this problem has an asymmetric
structure: if the instance is feasible, then lower bounds of the form lim infδ→0 log

E[τ ]
log(1/δ) ≥ 2

Γ2 hold, while
if the instance is infeasible, then the lower bound instead is

∑
k

2
(µk)2

, since each arm must be shown to
have negative mean. Kaufmann et al. (2018) proposed the problem, and a ‘hyper-optimistic’ version of
Thompson Sampling (TS) for it, called Murphy Sampling (MS), which is TS but with priors supported only
on the feasible instances, and rejection boundaries based on the GLRT. We note that the resulting stopping

2



times were not analysed in this paper. Degenne & Koolen (2019) proposed a version of track and stop for
this problem, but only showed asymptotic upper bounds on stopping behaviour; subsequently with Ménard
(Degenne et al., 2019), they proposed a complex approach based on a two player game, with one of the
players taking actions over the set of probability distributions on all infeasible or all feasible instances. The
resulting stopping time bounds are stated in terms of the regret of the above player, and explicit forms of
these for moderate δ are not derived. Further work has continued to study the single objective, finite-armed
setting as δ ց 0: Juneja & Krishnasamy (2019) extend the problem to testing if the mean vector (ak)k∈[1:K]

lies in a given convex set, and propose a track-and-stop method; Tabata et al. (2020) study index-based
LUCB-type methods; Qiao & Tewari (2023) study testing if 0 ∈ (min ak,max ak), and propose a method
that combines MS with two-arm sampling.1

Curiously, none of this work observes the simple fact that if only one arm were feasible, then searching for
this arm must induce a Ω(K/Γ2) sampling cost. This cost is significant when 1/δ = exp(o(K)), which is the
practically relevant scenario of moderate δ and large K. In §4, we show the the Ω(K/Γ2) lower bound using
the ‘simulator’ technique of Simchowitz et al. (2017). We note that while this method was previously applied
to minimum threshold testing by Kaufmann et al. (2018), they focused on generic bounds, and only recovered
a (log(1/δ) + 1/K)Γ−2 lower bound. Instead, we show a minimax lower bound, losing this genericity, but
capturing the linear dependence.

Along with demonstrating the above fact, the key distinction of our work is that we study a multiobjective
feasibility problem in the more challenging (§D.1) linear bandit setting. We further note that many of the tests
proposed for the finite-armed case are challenging to even define for the linear setting: MS requires sampling
from the set of feasible instances {A ∈ R

m×d : maxX mini(Ax)
i ≥ 0}, and the approach of Degenne et al.

(2019) needs a low-regret algorithm for distributions over this highly nonconvex set. In sharp contrast, the
tests we design are conceptually simple, and admit concrete bounds on sample costs. Thus, our work both
extends this literature, and provides important basic insights for its nonasymptotic regime. It should be
noted that one also expects statistical advantages: since the set of feasible instances is md dimensional,
regret bounds on the same would vary polynomially in md, and thus one should expect stopping times to
scale at best polynomially in md using the approach of Degenne et al. (2019), while our method admits
bounds scaling only as poly(d, logm).

In passing, we mention the parallel problem of finding either all feasible actions, called thresholding

bandits (e.g. Locatelli et al., 2016), and of finding one feasible arm, called good-arm identification (e.g.
Kano et al., 2017; Jourdan & Réda, 2023), assuming that they exist. Lower bounds in this line of work also
focus on the asymptotic regime for finite-armed single objective cases. Of course, these problems are clearly
harder than our testing problem, and so our lower bound also have implications for them.

Constrained and Safe Bandits. Multiobjective problems in linear bandit settings, amounting to bandit
linear programming, are formulated as either aggregate constraint satisfaction (e.g. Badanidiyuru et al., 2013;
Agrawal & Devanur, 2014, 2016) or roundwise satisfaction (called ‘safe bandits’, e.g. Amani et al., 2019;
Katz-Samuels & Scott, 2019; Moradipari et al., 2021; Pacchiano et al., 2021; Chen et al., 2022; Wang et al.,
2022; Camilleri et al., 2022). All such work assumes the feasibility of the underlying linear program to start
with, and certain approaches further require knowledge of a safe point in the interior of the feasible set. Our
study is directly pertinent to safe linear bandits, and to aggregate constrained bandits if X is convex.

Sequential Testing. Finally, some of the technical motifs in our work have previously appeared in the
sequential testing literature. Most pertinently, Balsubramani & Ramdas (2015) define a test using the LIL,
but without any actions (i.e., |X | = 1). In their work, as in ours, the LIL is used to uniformly control the
fluctuations of a noise process.

1While Qiao & Tewari (2023) define a very pertinent multiobjective problem, this is not analysed in their paper beyond an
asymptotic lower bound that again does not capture K.
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Figure 1: Illustration of the Signal Level. The ball is X , and lines with arrows indicate the feasible half spaces for each
constraint, and assuming that ‖Ai‖ = 1 for all i. Left. A feasible case; Γ > 0 is the distance of the marked point from the
constraints, i.e., the length of the red dash-dotted line. Right. An infeasible case with −Γ > 0 shown similarly.

2 Definitions and Problem Statement

Notation. For a matrix M,M i denotes the ith row of M , and for a vector z, zi is the ith component of z. For a
positive semidefinite matrix M, and a vector z, ‖z‖M :=

√
z⊤Mz Standard Big-O and Big-Ω are used, and Õ

further hides polylogarithmic factors of the arguments: f(u) = Õ(g(u)) if ∃c : lim supu→∞
f(u)

g(u) logc g(u) < ∞.

Setting. An instance of a linear bandit feasibility testing problem is determined by a domain X , a latent
constraint matrix A ∈ R

m×d, and a error level δ ∈ (0, 1), to test2

HF : ∃x ∈ X : Ax ≥ 0 vs. HI : ∀x ∈ X∃i : (Ax)i < 0,

where HF should be read as the ‘feasibility hypothesis’, and HI as the ‘infeasibility hypothesis’. We shall
also write A ∈ HF or ∈ HI if the corresponding hypothesis is true.

Information Acquisition proceeds over rounds indexed by t ∈ N. For each t, the tester selects some action
xt, and observes scores St ∈ R

m such that St = Axt + ζt, where ζt is assumed to be a subGaussian noise
process. The information set of the tester after acquiring feedback in round t is Ht := {(xs, Ss)}s≤t, and the

choice xt must be adapted to the filtration generated by Ht−1. We let X1:t :=
[
x1 x2 · · · xt

]⊤
, S1:t :=[

S1 S2 · · · St

]
denote the matrices whose rows are the xs and Ss up to t.

A Test is comprised of three components: (i) a (possibly stochastic) action selecting algorithm A : Ht−1 →
X , (ii) a stopping time τ adapted to Ht,and (iii) a decision rule D : Hτ → {HF,HI}. In each round, these
are executed as follows: we begin by executing A to determine a new action for the round, and update the
history with the feedback gained. We then check if τ = t to verify if we have accumulated enough information
to reliably test, and if so, we stop, and if not, we conclude the round. Upon stopping, we evaluate the decision
of D , and return its output as the conclusion of the test. The design of (A , τ,D) can of course depend on
(X , δ,m), but not on A. The basic reliability requirement for such a test is captured below.

Definition 1. A test (A , τ,D) is said to be reliable if for any instance (X , A, δ), and ∗ ∈ {F, I} if A ∈ H∗,
then it holds that P(D(Hτ ) 6= H∗) ≤ δ.

Signal level, and adaptive timescale. The hypotheses HF,HI can equivalently be defined according to
the sign of maxx mini∈[1:m](Ax)

i. We define the signal level of an instance as Γ := maxx mini(Ax)
i. This is

illustrated in Fig. 1. Notice that |Γ| must enter the costs of testing. Indeed, even if we revealed to the tester
the minimax (x∗, i∗), and the value of Γ, since the KL divergence between N (Γ, 1) and N (−Γ, 1) is Γ2, we
would still Ω(Γ−2 log(1/δ)) samples to determine the sign (Ax∗)i∗ (see, e.g., Lattimore & Szepesvári, 2020,
Ch. 13,14). Thus, Γ−2 determines the minimal timescale for reliable testing, motivating

2notice that we have dropped the tolerance levels α in this definition. Since α is known a priori, this is without loss of
generality: we can augment the dimension by appending a 1 to each action, and −αi to the ith row of the constraint matrix A.
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Definition 2. We say that a test is valid if it is reliable, and for any instance with signal level Γ > 0, the
test eventually stops, that is, P(τ < ∞) = 1. We further say that the test is well adapted to the signal level
if it holds that for fixed d, δ, E[τ ] = O(Γ−2polylog(Γ−2)).

Any well adapted and reliable test must be valid. Further, a well adapted test is fast compared to finding
near-optimal actions for safe bandit problems in feasible instances, since Γ is determined by the ‘most-feasible’
point in X . For instance, consider a crowdsourcing scenario where we want to maximise the net amount of
work done in a given time period, subject to meeting a quality score constraint of Q units. Since the number
of very high quality workers in the pool may be limited, optimal solutions would need to use relatively
low quality workers. However, verifying that such workers meet the constraint requires time proportional to
minw(Q

w−Q)−2, where Qw is the mean quality of worker w. In contrast, Γ is determined by maxw(Q
w−Q),

i.e., how good the best workers are, and so Γ−2 is much smaller than the time scale required to find an optimal
solution.

Standard Conditions. While briefly discussed above, we explicitly impose the following conditions, stan-
dard in the linear bandit literature (see, e.g., Abbasi-Yadkori et al., 2011). All results in this paper assume
the following.

Assumption 3. We assume that the instance is bounded,3 that is, X ⊂ {‖x‖ ≤ 1}, and {∀i, ‖Ai‖ ≤ 1}. We
also assume the noise ζt to be conditionally 1-subGaussian, i.e.,

E[ζt|Gt] = 0, ∀λ ∈ R
m,E[exp(λ⊤ζt)|Gt] ≤ exp(‖λ‖2/2),

where Gt is the filtration generated by Ht−1, xt, and any algorithmic randomness used by the test.

3 Feasibility Tests Based on Low-Regret Methods

We begin by heuristically motivating our test, and discussing the challenges arising in making this generic
and formal. This is followed by an explicit description of the tests, along with main results analysing their
performance.

3.1 Motivation

For simplicity, let us consider the case of m = 1, so that A = a⊤, for a vector a, and the signal level is
Γ = maxX a⊤x. Due to the duality between testing and confidence sets (Lehmann & Romano, 2005, §3.5),
a principled approach to testing the sign of Γ is to build a confidence sequence for it, i.e., processes ℓt ≤ ut

such that with high probability, ∀t,Γ ∈ (ℓt, ut). We naturally stop when ℓtut > 0, and decide on a hypothesis
using the sign of ℓt on stopping. Any such confidence set in turn builds an estimate of Γ itself, that is, some
statistic that eventually converges to Γ, at least if we did not stop. This raises the following basic question:
how can we estimate max a⊤x without knowing where the maximum lies? A simple resolution to this comes
from using low-regret methods for linear bandits.

The linear bandit problem is parameterised by an objective θ, and a domain X , and a method for it picks
actions xt sequentially with the aim to minimise the pseudoregret Rt :=

∑
maxx θ

⊤x − θ⊤xt, using feed-

back of the form θ⊤xt + noise. For ‘good’ algorithms, Rt scales as Õ(
√
d2t), at least in expectation (e.g.

Lattimore & Szepesvári, 2020, Ch.19). Now, notice that if we take A to be such an algorithm executed
with the feedback St = a⊤xt + ζt, then the statistic Tt/t, where Tt :=

∑
Ss, should eventually converge to

maxx a
⊤x = Γ. Indeed

Tt =
∑

s≤t

Ss =
∑

s≤t

a⊤xs +
∑

s≤t

ζs,

3If we are augmenting the dimension to account for nonzero α, these conditions apply only to the unaugmented A, x.
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and so the error in this estimate behaves as

Γ− Tt/t =
(
tΓ−

∑
a⊤xs

)
/t−

∑
ζs/t = (Rt + Zt)/t,

where Zt is a random walk, and so is typically O(
√
t). If Rt ∈ [0, Õ(

√
d2t)], we can recover the sign of Γ

reliably if tΓ ≫ Rt + Zt = Õ(
√
d2t) ⇐⇒ t ≫ d2/Γ2.

Formalising this heuristic approach, however, requires resolving two key issues. Firstly, we need to handle
the multiobjective character of our testing problem: if A ∈ HI, there may be actions with only one out of m
constraints violated, and detecting this may be nontrivial. Secondly, to get a reliable test requires explicit
statistics that can track the fluctuations in the noise, and in the pseudoregret (which is random due to the
choice of xt) in a reliable anytime way. These factors strongly influence the design of our tests.

3.2 Background on Online Linear Regression, and on Laws of Iterated Loga-

rithms

Before proceeding with describing our tests and results, we include a brief discussion of necessary background.

Online Linear Regression. We take the standard approach (Abbasi-Yadkori et al., 2011). The 1-regularised
least squares (RLS) estimate of A using Ht−1 is

Ât := S1:t−1X1:t−1(X
⊤
1:t−1X1:t−1 + I)−1. (1)

Let us define the signal strength as Vt :=
∑

s<t xsx
⊤
s + I, and for δ ∈ (0, 1), the m-confidence radius as

ωt(δ) = 1 +

√
1

2
log

m
√
det Vt

δ
.

The main results are based on the following two concepts, which we explicitly delineate.

Definition 4. For any time t, the RLS confidence set is

Ct(δ) := {Ã : ∀ rows i, ‖Ãi − Âi
t‖Vt

≤ ωt(δ)},

and the local noise-scale is ρt(x; δ) := 2ωt(δ)‖x‖V −1
t

.

Evidently, the set Ct captures the Ã that are plausible values of A given Ht−1, the information available at the
start of round t. We shall use the following standard results on the consistency of Ct (Abbasi-Yadkori et al.,
2011).

Lemma 5. For any instance and sequence of actions {xt},

P(∃t : A 6∈ Ct(δ)) ≤ δ.

Further, if A ∈ Ct(δ), then
∀Ã ∈ Ct(δ), x ∈ X : |Ãx−Ax| ≤ ρt(x; δ)1,

where the inequality is interpreted row-wise. Finally, for any sequence of actions {xt},
∑

s≤t

ρt(xt; δ) ≤
√
6dtωt(δ) log(1 + t/d).

Nonasymptotic Law of Iterated Logarithms. To the control the fluctuations introduced by the feedback
noise, we use the following LIL due to Howard et al. (2021).
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Algorithm 1 Ellipsoidal Optimistic-Greedy Test (eogt)

1: Input: δ ∈ (0, 1), N ≥ 2,X ,m.
2: Initialise: H0 ← ∅,T0 ← 0,B0 ← 0.
3: for t = 1, 2, . . . do

4: δt ← δt−N ,Dt ← Ct(δt/2). (Action Selection)
5: (xt, it) ← maxÃ∈Dt,x∈X mini(Ãx)

i.
6: Play xt, and observe St.
7: Update Ht ← Ht−1 ∪ {(xt, St)}.
8: Update Tt ←

∑
s≤t S

is
s ,Bt(δ) as per (4)

9: if |Tt| > Bt(δ) then

10: STOP (Stopping Rule)

11: Output Tt

HF

≷
HI

0 (Decision Rule)

Lemma 6. For t ∈ N, δ ∈ (0, 1), let

LIL(t, δ) :=

√
4t log

11max(log t, 1)

δ
.

If ηt ∈ R is a conditionally centred and 1-subGaussian sequence adapted to a filtration {Gt}, then for Ht :=∑
ηt,

P(∃t : |Ht| > LIL(t, δ)) ≤ δ.

3.3 The Ellipsoidal Optimistic-Greedy Test

We are now ready to describe our first proposed test, eogt which is specified in Algorithm 1. The test is
parametrised by δ, and a constant N , and the algorithm proceeds by constructing a confidence set Dt =
Ct(δt/2) for A, which is the standard confidence set, but with a decaying confidence parameter δt = δt−N .
It then selects both an action xt, and a measured constraint it by solving the program4

max
Ã∈Dt

max
x∈X

min
i∈[1:m]

(Ãx)i. (2)

The action xt is played, and the selected constraint it determines the main test statistic:

Tt :=
∑

s≤t

(Ss)
is . (3)

The test stops at τ := inf{t : |Tt| > Bt(δ)}, that is, when the magnitude of Tt crosses the boundary

Bt(δ) :=
∑

s≤t

ρs(xs; δs/2) + LIL(t, δ/2). (4)

This test can be interpreted in a game theoretic sense. Recall that Γ is the value of the zero-sum game
maxxmini(Ax)

i. We can interpret the max player as a ‘feasibility-biased player’, that moves first to pick an
x that makes Ax large, and the min player as an ‘infeasibility-biased’ player that counters with a constraint
that x does not meet well.

In eogt, action selection procedure is feasibility-biased: given the lack of knowledge of A, the feasibility
player chooses a plausible Ã that makes the value as high as possible, and the infeasibility player must abide

4Note that the order of optimisation is important in (2): since (x, Ã) 7→ Ãx is not quasiconvex, this value is in general not
the same as mini maxÃ,x(Ãx)i. Of course, it does hold that maxÃ maxx mini(Ãx)i = maxÃ mini maxx(Ãx)i.
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by this choice of Ã. This is countered by the infeasibility-biased statistic Tt, in which only the infeasibility
player’s choice of it is accounted for. This strikes a delicate balance: in the feasible case, as long as xt

converges to a feasible subset of X , Tt eventually grows large and positive, while under infeasibility, if
it captures which constraints the xts consistently violate, Tt eventually grows large and negative. Notice
that while the feasibility player hedges their lack of information with optimism over the confidence ellipsoid,
the infeasibility player acts greedily in the above test (and this structure inspires the name eogt). This
greediness is natural if we view the infeasibility player as learner in a contextual stochastic full-feedback
game, with context (Ãt, xt), action it, and noisy feedback of the losses {(Axt)

i}.
The reliability of the test depends strongly on the form of the boundary Bt(δ) above, which in turn arises
from the analysis of the approach, which we shall now sketch.

3.3.1 Analysis of Reliability

Naturally, the analysis differs if the problem is feasible or infeasible. Let us assume that A ∈ Dt for all t.
Since Dt ⊂ Ct(δ/2), this occurs with probability at least 1− δ/2.

Signal growth in the feasible case relies on the optimism of the feasibility player. Let (Ãt, xt, it) denote a
solution to (2). Since A was feasible for this program, it must hold that (Ãtxt)

it ≥ maxx mini(Ax)
i = Γ.

Further, since Ã ∈ Dt, using Lemma 5, it holds that (Ãtxt)
it ≤ (Axt)

it + ρt(xt; δt/2), and so (Axt)
it ≥

Γ− ρt(xt; δt/2). Defining the noise process Zt =
∑

s≤t ζ
is
s lets us conclude that

Tt ≥ tΓ−
∑

s≤t

ρs(xs; δs/2) + Zt.

Signal growth in the infeasible case instead relies on the extremisation in it given xt. Let imin(x) :=
argmini(Ax)

i. Since i is the innermost optimised variable, and since imin(xt) is feasible for the pro-
gram (2), it must hold that (Ãtxt)

it ≤ (Ãtxt)
imin(xt). But, again, using Lemma 5, (Ãtxt)

imin(xt) ≤
(Axt)

imin(xt) + ρt(xt; δt/2), and further, (Axt)
imin(xt) = mini(Axt)

i ≤ maxx mini(Ax)
i = Γ < 0. Therefore,

in the infeasible case,

Tt ≤ tΓ +
∑

ρs(xs; δs/2) + Zt.

Boundary design and reliability. Finally, the boundary design follows from control on the term Zt above.
Notice that since it is a predictable process, and ζt is conditionally 1-subGaussian, it follows that ηt := ζitt
constitutes a centred, conditionally 1-subGaussian process, and thus invoking the LIL (Lemma 6) immedi-
ately yields

Lemma 7. eogt ensures that, with probability at least 1− δ, simultaneously for all t ≥ 1,

feasible case: Tt ≥ tΓ− Bt(δ) ≥ −Bt(δ),

infeasible case: Tt ≤ −t|Γ|+ Bt(δ) ≤ Bt(δ).

Since we stop when |Tt| > Bt(δ), under the above event, upon stopping, TτΓ > 0, making the test reliable.

This leaves the question of the validity of the test, and the behaviour of E[τ ], which we now address.

3.3.2 Control on Stopping time

Next, we describe our main result on the validity eogt, and the behaviour of E[τ ]. To succinctly state this,
we define

T (Γ; δ,N) := inf
{
t ≥ 2d : t|Γ| > 2LIL(t, δ/2)

+ 4dt1/2 log(2t/d) + 2(dt log(2t/d) log
2m

δt−N
)
1/2

}

Our main result, shown in §B, is
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Theorem 8. For any δ and N > 1, the eogt is valid and well adapted. In particular,

E[τ ] = O(T (Γ/2; δ,N) + δ/|Γ|).

To interpret this result, in §B.1, we employ worst-case bounds on
∑

s≤t ρs(xs; δs) to control T (Γ; δ,N).

Lemma 9. For any fixed N , T (Γ; δ,N) is bounded as

O

(
d2 log2(d2/Γ2)

Γ2
+

d log(m/δ) log(d log(m/Γ2δ))

Γ2

)
.

Implications. The main point that the above results make is that in the moderate δ regime of log 1/δ = o(d),
the typical stopping time of eogt is bounded as d2/Γ2 up to logarithmic factors. The factor of d2 in
this bound is deeply related to the analysis of online linear regression, and also commonly appears in the
regret bounds (both in the worst case,

√
d2t, as well as in gapped instance-wise cases (Dani et al., 2008;

Abbasi-Yadkori et al., 2011)).

Next, we note that the d2/Γ2 time-scale is typically much faster than that needed to approximately solve a
feasible safe bandit instance: the best known method for finding a ε-optimal action for safe bandits requires
Ω(d2/ε2) samples (Camilleri et al., 2022). However, as discussed after Definition 2, Γ is driven by the ‘safest’
feasible action, while, since the optima lie at a constraint boundary, obtaining reasonably safe solutions
requires setting ε ≪ Γ, making d2/Γ2 significantly smaller than d2/ε2. We also note that the above bound
may be considerably outperformed by any run of the test: because Bt adapts to the trajectory, its growth
can be much slower than the worst case bound that enters the definition of T (Γ; δ,N), allowing for fast
stopping.

Finally, observe that the dependence of this time scale on the number of constraints, m, is very mild,
demonstrating that from a statistical point of view, many constraints are almost as easy to handle as one
constraint.

3.4 Tail Behaviour, and the Tempered eogt

While the expected stopping time of eogt is well behaved, its tail behaviour may be much poorer. Indeed,
the best tail bound we could show, as detailed in §B.3, is

Theorem 10. For every (X , A, δ), and η ∈ (0, δ), eogt executed with parameters (δ,N) satisfies

P(τ > T (Γ; δ,N)) ≤ δ, and further,

P

(
τ > (2 + 1/|Γ|)

⌈
(δ/η)1/N

⌉
+ T (Γ/2; η,N)

)
≤ η.

Notice that the tail bound above is heavy, and the η-th quantile is only bounded as O(1/|Γ|η−1/N ). It is
likely that such behaviour is unavoidable due to (2), due to which, if m = 1, eogt directly exploits the
OFUL algorithm of Abbasi-Yadkori et al. (2011), and the pseudoregret for this method is also heavy-tailed
(Simchi-Levi et al., 2023).

One way to avoid this poor behaviour is to instead select actions using variants of OFUL-type methods that
achieve light-tailed pseudoregret. As summarised in Algorithm 2, we use the recently proposed approach of
Simchi-Levi et al. (2023) to construct such a test. The main difference is in selecting (xt, it) according to
the program

max
x∈X

min
i∈[1:m]

(Âtx)
i +Radt(x), (5)

where Radt(x) := (t/d)1/2‖x‖2
V −1
t

+
√
d‖x‖2

V −1
t

.
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As a point of comparison, the selection rule (2) can roughly be understood as (5), but with Rad′t =
√
d log t‖x‖2

V −1
t

.
Thus, the effect of Radt is to make the method more prone to exploration than (2) if t is large and
‖x‖V −1

t
≫ d/

√
t. So, the rule (5) has the effect of tempering the tendency to exploitation of (2), lead-

ing to the name ‘tempered eogt’ (t-eogt). Importantly, observe that the selection rule (5) makes no
explicit reference to δ.

The remaining algorithmic challenge is to define a boundary that can lead to a reliable test based on the
above approach. In order to do this, we refine the techniques of Simchi-Levi et al. (2023) to construct the

following anytime tail bound, shown in §C.1, for T̃t. We note that this also yields an anytime tail bound for
the regret of (5) for linear bandits.

Lemma 11. For δ ∈ (0, 1/2), let

Q
F

t (δ) := 45

√
dt log4 t(d+ log(8m/δ)) + LIL(t, δ/2),

Q
I

t(δ) := 27

√
dt log3 t(

√
d+ log(8m/δ)) + LIL(t, δ/2).

Then, for T̃t :=
∑

s≤t S
is
s with actions picked via (5),

P(∀t, T̃t ≥ tΓ− Q
F

t (δ)) ≥ 1− δ (feasible case)

P(∀t, T̃t ≤ tΓ + Q
I

t(δ)) ≥ 1− δ (infeasible case)

Naturally, we can reliably test via the stopping times

τ̃ = inf{t : T̃t < −Q
F

t (δ) or T̃t > Q
I

t(δ)},

deciding for HF if T̃τ > 0. Using this, in §C, we show the following bounds along the lines of §3.3.1.

Theorem 12. t-eogt is valid and well adapted, with

E[τ̃ ] = Õ(d3/Γ2 + d/Γ2 log(8m/δ))

where the Õ hides logarithmic dependence on d/Γ2, and log(m/δ). Further, there exists a C scaling polyloga-
rithmically in d/Γ2 and log(m/η) such that for all η ≤ δ,

P(τ̃ ≥ Cd3/Γ2 + Cd/Γ2 log(1/η)) ≤ η.

To contextualise the result, as well as this tempered test, let us consider the tradeoffs expressed in the
above result. Compared to eogt, the procedure of t-eogt suffers two main drawbacks: firstly, we see that
the bound on the stopping time is significantly weaker, scaling as d3/Γ2 instead of d2/Γ2, indicating a loss
of performance. While this result may just be an artefact of the analysis, a more important drawback is
that the test boundaries QF,QI do not adapt to the sequence of actions actually played by the method,
unlike Bt, and instead are just deterministic processes that can be seen to essentially dominate

∑
ρs(xs; δs).

Even if these bounds had tight constants (which they do not), such a nonadaptive stopping criterion cannot
benefit from possible discovery of good actions early in the trajectory (accumulating on which would lead
to contraction of ρt, and thus decelaration of Bt), and so cannot benefit from early termination that eogt

may exploit in practice.

However, this weakness is balanced by considerably stronger tail behaviour: indeed, instead of the polynomial
decay in tail probabilities for eogt, the above demonstrates exponential decay in the tails, with the decay
scale further behaving as d/Γ2 ≪ d2/Γ2, meaning that typical fluctuations in the stopping time must be
considerably smaller than the typical stopping time. The choice of test must depend the setting, and t-eogt

should be preferred over eogt if rare but extreme testing delays yield strong penalties.
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Algorithm 2 Tempered eogt (t-eogt)

1: Input: δ ∈ (0, 1/2),X ,m.

2: Initialise: H0 ← ∅, T̃0 ← 0
3: for t = 1, 2, . . . do

4: Compute Ât. (Arm Selection)
5: (xt, it) ← maxx∈X mini(Âtx)

i +Radt(x).
6: Play xt, and observe St.
7: Update Ht ← Ht−1 ∪ {(xt, St)}.
8: Update T̃t ←

∑
s≤t S

is
s , and QF,QI.

9: if T̃t > QF

t (δ) or T̃t < −QI

t(δ) then

10: STOP (Stopping Rule)

11: Output T̃t

HF

≷
HI

0. (Decision Rule)

Finally, we would be remiss not to mention the curious difference in the boundaries QF and QI, and in
particular the weakness in QF which is inherited in the bounds on E[τ ] in Theorem 12. This difference arises
because when controlling T̃t from below in the feasible case, we need the means (Axt)

it to not be too far
below the minimax value Γ, which is attained at some x∗ 6= xt. Ensuring this requires us to have control on
both the noise scale at xt and that at x∗. The latter is hard to accommodate in the analysis, which instead
uses a lossy application of the AM-GM inequality to avoid it, but at the cost of the extra factor of d1/2 in

QF. On the other hand, when controlling T̃t from above in the infeasible case, we only need to ensure that it
cannot do too poor a job of locating constraints that xt violates, which can be achieved by just considering
the noise scale at xt itself. It may be possible to improve the analysis to reduce QF down to QI, which we
leave as a direction for future work.

4 Minimax Lower Bounds

We conclude the paper by discussing minimax lower bounds that capture the necessity of the dependence on
Γ−2, as well as at least a linear dependence on d in generic bounds on stopping times for reliable tests. As
we previously discussed in §1 and §1.1, the main point of comparison for these results are the corresponding
instance-wise lower bounds in the literature on the minimum threshold problem, which take essentially5 the
following form (Kaufmann et al., 2018)

E[τ̃ ] ≥ 2 log(1/δ)/Γ2 + 1/KΓ2 (feasible case),

E[τ̃ ] ≥ 2 log(1/δ)
∑

k

(µk)−2 + 1/KΓ2 (infeasible case).

Notice that in the feasible case, the lower bound decays with K. While the instance specific nature of the
above bounds is desirable, we focus on minimax bounds capturing a linear dependence on K (or, in our case,
d) in specific instances.

Our lower bound is based on a reduction to a finite action case, through the use of a simplex. The ar-
gument underlying this bound relies on the ‘simulator’ technique of Simchowitz et al. (2017) for best arm
identification (BAI). In fact, our main point, that the extant bounds for feasibility testing do not capture
the dependence on d, is much the same as the observation of Simchowitz et al. (2017) that the analyses of
‘track-and-stop’ BAI methods do not capture the right dependence on K in BAI, again due to a focus on
δ → 0.

5the terms containing log(1/δ) are always valid. The secondary terms behaving as 1/(KΓ2) are upper bounds on the auxiliary
terms appearing in the results of Kaufmann et al. (2018).
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The construction underlying the bound is natural: we take X to be the simplex {x ≥ 0 :
∑

xi = 1}, and
consider a single constraint matrix a⊤ for a vector a ∈ [−1/2, 1/2]d. The noise process is as follows: upon
playing an action xt, we sample Kt ∼ xt, and supply the tester with aKt

+N (0, 1/2). The vector a is
selected as a uniform permutation of the entries of (Γ,−ε,−ε, · · · ,−ε), the intuition being that in order to
detect the feasibility of such an instance, the test must sample the single ‘informative’ extreme direction of
the simplex at least 1/(Γ + ε)2 times. However, since this is selected uniformly at random, no method can
generically identify this direction faster that just sampling uniformly, and so on average across the instances,
τ = Ω(d/Γ2). Concretely, in §D we show the bound in a finite-armed case, and argue that the instance above
must face the same costs. A technically interesting observation is that our argument relies on two uses of
the simulator technique: we first compare the instance against an infeasible instance to argue that the arm
with large signal must be played often, and we then use this result along with the simulator technique again
to show that arms with poor signal must also be played often in an average sense across the permutations.
Leaving the details to §D, this yields the following result.

Theorem 13. For any Γ, δ ∈ (0, 1/2) and any reliable (A , τ,D), there exists a feasible instance (X , A, δ)
with m = 1 and signal level Γ on which E[τ ] ≥ (1−2δ)3

79 · d
Γ2 .

Note that utilising the existing results of Kaufmann et al. (2018) for the infeasible case, we can also recover
a lower bound of d/Γ2 log(1/δ) if |Γ| ≤ 1/

√
d, by taking the instance (−|Γ|,−|Γ|, · · · ,−|Γ|). Thus the linear

dependence on d is necessary over both feasible and infeasible cases.

We comment that the lower bound of Ω(d/Γ2) remains far from the upper bounds of O(d2/Γ2) in Theorem 8.
This linear in d gap in the lower bound is a persistent occurrence in the theory of linear bandits, and shows up
in any instance-specific control on the same, including in known regret lower bounds. As a result, resolving
this is a task beyond the scope of the present paper. Nevertheless, our main point that the costs of testing
depend strongly on d, unlike prior analysis suggsets, is well made by the above result.

5 Simulations

We conclude the paper by describing a heuristic implementation of eogt, and its behaviour on the simple
case of testing the feasibility of two linear constraints over the unit ball.

L1 Confidence set. Implementing eogt is challenging task, since the maximin program (2) is difficult to
solve quickly. Indeed, even if m = 1, i.e., there were only a single constraint, (2) requires us to implement
the OFUL iteration, which is well known to be NP-hard due to the nonconvex objective A1x (Dani et al.,
2008).

To handle this, we begin with the standard relaxation used to implement OFUL, specifically by replacing
the confidence ellipsoid Ct(δ) by the L1-confidence set

C̃t(δ) := {Ã : for all rows i, ‖(Ãi − Âi
t)V

1/2
t ‖1 ≤

√
dω}.

Since ‖ · ‖2 ≤ ‖ · ‖1 ≤
√
d‖ · ‖2, C̃t ⊃ Ct, and thus C̃t is consistent w.h.p. Further, C̃t is in turn contained

in a scaling of Ct by a
√
d-factor, and thus the noise-scales over Ct carries over, up to a loss of a

√
d factor.

This suggests that tests based on C̃t should use Õ(d3/Γ2) samples.

The main advantage, however, is that due to the L1 structure, the set C̃t(δ) only has (2d)m extreme points.
This enables optimisation by a simple search over these extreme points, which at least for small m, leads to
an implementable algorithm. In the following, we will only work with m = 2.

Solving the Maximin Program. Of course, even for a given A, maxxminiA
ix is nonobvious to solve

since i is discrete. We take the natural approach via convexifying:

max
Ã∈C̃t(δ),x∈X

min
i

Ãix = max
Ã∈C̃t(δ)

max
x∈X

min
π∈∆

π⊤Ãx,

12



Figure 2: Behaviour of the stopping time as d is varied for fixed Γ = 1/
√
2 (left) and Γ is varied for fixed d = 4 (right) over

the unit ball with m = 2. Averages and one-sigma error bars over 50 runs are reported. The test never returned an incorrect
hypothesis. Notice the sharp advantage of τearly in feasible cases, in that it is about a factor of 10 smaller than τ . (best viewed

zoomed-in)

where ∆ is the simplex in R
m. Now, for a fixed Ã, the maximin program over (x, π) can be solved efficiently.

The resulting x, Ã can be used to directly minimise (Ãx)i.

Procedure. Throughout the following, we will restrict attention to X = {‖x‖2 ≤ 1}. This enables a further
simplification by using the minimax theorem for a fixed Ã:

max
x∈X

min
π∈∆

π⊤Ãx = min
π∈∆

max
x∈X

π⊤Ãx = min
π∈∆

‖π⊤Ã‖2.

Overall, this yields the following procedure: we enumerate the extreme points of C̃t, and for each, we solve
for the minimising π above, while keeping track of the maximum such value as we move over the extreme
points. Upon conclusion, this yields a πt and a Ãt that solve the above. xt is then computed directly as
π⊤
∗ Ã∗/‖π⊤

∗ Ã∗‖. Given xt, Ãt, we finally direclty solve for it by minimising (Ãtxt)
i.6

Early Stopping for Feasible Instances. Notice that in the feasible case, if we can ever argue that for
some x, min

C̃t(δ)
mini(Ãx)i > 0, then the test can already conclude. A natural candidate for such an x is

simply the running mean over the choices of xt played by eogt. The potential advantage of such a procedure
is that it bypasses the possibly slow growth of Tt when initial exploration chooses infeasible actions (which
lead to a direct decrease in Tt, but do not affect the quality of the noise estimate at xt much). We also
implement this early stopping procedure, and we will call the resulting stopping time τearly.

Settings We study two scenarios: varying d for a fixed Γ, and varying Γ for a fixed d. In each case we study
both feasible and infeasible instances.

In the varying d scenario, we pick the feasible instance x1 ≥ 0, x2 ≥ 0, and the infeasible instance x1 ≥
1/

√
2, x1 ≤ −1/

√
2. Notice that in either case, Γ = 1/

√
2. With these constraints, the simulation is run for

d ∈ [2 : 10]. In the varying Γ scenario, we fix d = 4, and impose the constraints x1 ≥ 1/
√
2−Γ, x2 ≥ 1/

√
2−Γ

for the feasible setting, and the constraints x1 ≥ Γ, x1 ≤ −Γ in the infeasible case. The range Γ ∈ [0.2, 1] is
studied at a grid of scale 0.1.

Throughout, the feedback noise is independent Gaussian with standard deviation σ = 0.1 (the value of σ is
used in the confidence radii, and in general, τ should be proportional to σ2). The parameter δ is set to 0.1,
N = 1, and all results are averaged over 50 runs. The code was implemented in MATLAB, and executed on
a consumer grade Ryzen 5 CPU, with no multithreading, and took about 4 hours to run.

Observations As a basic observation, we find that in all runs, the test returns the correct hypothesis.
Notice that this suggests that the testing boundary is overly conservative, and a finer analysis of the same

6For nonzero α, the objective is modified to ‖π⊤Ã‖2−π⊤α, and the final minimisation to discover it then studies (Ãtxt−α)i.
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is thus of interest. The main observation of Figure 2 is that for feasible instances τearly is typically < τ/10,
across all dimensions d and signal level Γ studied, indicating that this early stopping is very powerful. While
the validity of stopping at time τearly is easy to see from the consistency of confidence sets, nothing in our
analysis indicates the sample advantage of this procedure, and the resolving this is a natural open question.

6 Discussion

The feasibility testing problem is a natural first step prior to executing constrained bandit methods, and
by initiating the study of the same, our work extends the applicability of this emerging field. We presented
simple tests based on existing technology of online linear regression and LILs that are effective for such
problems, and further pointed out key deficiencies in the extant work on the single-constraint finite-armed
theory of this problem. Naturally, this is only a first step: the real power of the finite-armed theory, and
in particular the tests proposed therein, is its strong adaptation to the explicit structure of the instance at
hand. A parallel theory, both in the small and moderate δ regimes, in the linear setting is critical to develop
efficient tests. Naturally, the computational question of how one can implement such tests efficiently is also
critical. We hope that our work will spur study on these interesting and important issues.
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A Tools from the Theory of Online Linear Regression and Linear

Bandits

As is standard in the setting of linear bandits, we shall exploit tools from the theory of online linear regression
to enable learning and exploration. The main tool we use is Lemma 5, stated previously in the main text,
which asserts that the confidence sets Ct are consistent with high probability, and control the deviations of
Ãx−Ax for Ã ∈ Ct to the level ρt(x; δ) if A ∈ Ct(δ). The latter result is almost trivial: by the triangle and
Cauchy-Schwarz inequalities, for any Ã ∈ Ct(δ), i ∈ [1 : m],

|(Ã−A)x)i| ≤ |(((Ã−Ât)x)
i| ≤ 2 sup

Ã∈Ct(δ)

|(Ãi−Ât)
⊤x| ≤ sup

Ã∈Ct(δ)

|Ãi−Âi
t‖Vt

‖x‖V −1
t

≤ ωt(δ)‖x‖V −1
t

= ρt(x; δ),

where the final inequality is by definition of the confidence set Ct(δ).

The principal way to use this bound is through the following generic control on the behaviour of detVt and
on

∑
s≤t ρs(xs; δ). We again refer to Abbasi-Yadkori et al. (2011), although the result is older. See their

paper for a historical discussion.

Lemma 14. For any sequence of actions {xt} ⊂ {‖x‖ ≤ 1}, and any t ≥ 0, it holds that

log detVt+1 ≤
t∑

s=1

‖xs‖2Vs
−1 ≤ 2 log detVt+1 ≤ 2d log(1 + (t+ 1)/d).

As a consequence,

∑

s≤t

ρs(xs; δ)
2 ≤ 2ωt(δ)

2d log(1 + (t+ 1)/d) ≤ 3d2 log2(1 + (t+ 1)/d) + 6d log(1 + (t+ 1)/d)(1 + log(m/δ)),

and ∑

s≤t

ρs(xs; δ) ≤
√
t
∑

ρs(xs; δ)2 ≤
√
2dt log(1 + (t+ 1)/d)ωt(δ)2.

We will also find it useful to state the consistency of the confidence set in the following dual way

Lemma 15. For any sequence of actions {xt}, and any v > 0, it holds that

P

(
∃t, i : ‖Âi

t −Ai‖Vt
≥ 1 +

√
d

4
log

(
1 +

t

d

)
+

1

2
logm+

v

2

)
≤ exp(−v).

Proof. Since, by the first statement of Lemma 14, log detVt = log detV(t−1)+1 ≤ d log(1 + t/d), it follows
that

ωt(δ) = 1 +

√
1

2
log

m

δ
+

1

4
log detVt ≤ 1 +

√
d

4
log(1 + t/d) +

1

2
logm+

1

2
log(1/δ) =: ω̃t(δ).

Now the claim follows by just noting that

P(∃t, i : ‖Ai − Âi
t‖Vt

≥ ω̃t(δ)) ≤ P(∃t, i : ‖Ai − Âi
t‖ ≥ ωt(δ)) ≤ δ,

and inverting the form of the upper bound obtained after expressing ω̃t(δ) as we have above.

B Analysis of eogt.

We will proceed to flesh out the analysis sketched in §3.3.1, and show the relevant results.
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B.1 Adpting the LIL to the Noise Process of eogt, and Control on the Rejec-

tion Timescale Bound.

We begin arguing the following simple observation that extends the LIL to our situation.

Lemma 16. For it as chosen in eogt or t-eogt, it holds that {ηitt } forms a conditionally centred and
1-subGaussian process with respect to the filtration generated by {(is, xs, Ss)}s≤t ∪ {(xt, it)}. Therefore, for
Zt :=

∑
s≤t ζ

is
s , and any δ ∈ (0, 1), it holds that P(∃t : |Zt| > LIL(t, δ)) ≤ δ.

Proof. We simply observe that (xt, it) are predictable given Ht−1 = ({(xs, Ss)}s≤t−1). Thus, the sigma
algebra generated by {(xs, is, Ss)s≤t ∪ {(xt, it)} is the same as that generated by Ht−1, and ζt is assumed to
be conditionally centred and 1-subGaussian with respect to this filtration, and thus its predictable projection
ζitt inherits this property. The second claim is then immediate from Lemma 6.

We further add the proof of the upper bound on T (Γ; δ,N), which bounds the timescale of rejection for
eogt.

Proof of Lemma 9. We note that we shall make no efforts to optimise the constants in the following argument.
Recall that

T (Γ; δ,N) = inf

{
t ≥ 2d : t|Γ| > 2LIL(t, δ/2) + 4d log(2t/d)

√
t+ 2

√
dt log(2t/d) log

2m

δt−N

}
.

Now, if t ≥ max(50, 2d), then

2LIL(t, δ/2)√
t

= 4

√
log(11 log t) + log

2

δ
< 4

√
log t+ log

2

δ

≤ 4
√
N log t+ log(2m/δ)

≤ 4
√
d log(2t/d) log(2m/δt−N),

where we have used N ≥ 1, that log(11 log(u)) < log(u) for u ≥ 50, and that d log(2t/d) > 1 when
2t/d > 4 > e. Thus absorbing the LIL term into the last term defining T , we conclude that

T (Γ; δ,N) ≤ inf
{
t ≥ max(50, 2d) : t|Γ| > 4d

√
t log t+ 6

√
dt log(2t/d)(log(2m/δ) +N log t)

}

≤ inf
{
t ≥ max(50, 2d) : t|Γ| > max

(
12d

√
t log t, 18

√
dt log(2t/d) log(2m/δ), 18

√
dtN log t

)}

≤ inf

{
t ≥ max(50, 2d) :

t

log2 t
>

122max(d2, 9/4Nd)

Γ2
and

2t/d

log(2t/d)
>

2 · 182 log(2m/Γ)

Γ2

}
,

where in the second step we used the facts that for u, v, w ≥ 0,
√
u+ v ≤ √

u +
√
v and (u + v + w) ≤

3max(u, v, w).

Now, we observe the following elementary properties.

1. The map u 7→ u/ log(u) is increasing for u ≥ 3. Thus, if t > 2z log 2z for some z ≥ 1.5 (which implies
2z log 2z ≥ 3), then

t

log t
>

2z log(2z)

log 2z + log log(2z)
≥ z,

where we have used that 2z > 1 for z ≥ 1.5. Since 2·122 log(2m/δ)
Γ2 > 2 · 122 · log(2) > 1.5,

2t/d >
4 · 182 log(2m/δ)

Γ2
log

4 · 182 log(2m/δ)

Γ2
=⇒ 2t/d

log(2t/d)
>

2 · 182 log(2m/δ)

Γ2
.
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2. For u > 1, v > 0,

u

log2 u
≥ v ⇐⇒

( √
u

2 log
√
u

)2

≥ v ⇐⇒
√
u

log
√
u
≥

√
4v.

But, as detailed above, if
√
4v > 3/2 ⇐⇒ v > 9/16, then it holds for any u such that

√
u > 2 ·

√
4v log(2 ·

√
4v) ⇐⇒ u > 4v log2(16v).

Setting u = t, v = 122 max(d2,9/4Nd)
Γ2 > 9/16, we conclude that

t >
4 · 122max(d2, 9/4Nd)

Γ2
log2

16 · 122max(d2, 9/4Nd)

Γ2
=⇒ t

log2 t
>

122max(d2, 9/4Nd)

Γ2
.

Incorporating the above analysis into the bound on T (Γ; δ,N), we conclude that

T (Γ; δ,N) ≤ max

(
50, 2d,

576max(d2, 9/4Nd)

Γ2
log2

2304max(d2, 9/4Nd)

Γ2
,
648d log(2m/δ)

Γ2
log

1296 log(2m/δ)

Γ2

)
.

B.2 Signal growth under consistency of confidence sets, and reliability

The growth of Tt was detailed in the main text in §3.3.1, the only informal aspect of this section being the
treatment of Zt, which can be accounted for immediately using Lemma 16. Thus, we have already shown
Lemma 7. As briefly mentioned in the main text, this immediately yields reliability.

Proposition 17. eogt is reliable.

Proof. Suppose that HF is true, and the event of Lemma 7 holds. Then since τ = inf{t : |Tt| > Bt(δ)}, and
since Tt ≥ −Bt(δ), it follows that upon stopping, Tτ > Bt(δ). Since D(Hτ ) = HF if Tτ > 0, it follows that
this decision is correct. Hence, the only way for the decision to be incorrect is if ∃t : Tt < tΓ−Bt(δ), which
can occur with probability at most δ. The same argument can be repeated mutatis mutandis for HI.

B.3 Control on the Stopping Time of eogt in Mean and Tails

We shall prove the stronger result, Theorem 10. Note that expectation result follows from this directly.

Proof of Theorem 8 assuming Theorem 10. The reliability has already been shown in Proposition 17. To
control the expectation, let us define, for naturals k ≥ 2, Tk = T (Γ/2; δ/2k

3−1;N) + ⌈2(k3−1)/N⌉(2 + 1/|Γ|),
and define T1 = T (Γ; δ,N). Then by Theorem 10, P(τ > Tk) ≤ 2−(k3−1)δ. As a consequence,

E[τ ] =
∑

t≥0

P(τ > t)

≤
∑

t≤T1

P (τ > t) +

∞∑

k=2

∑

t∈[Tk−1+1:Tk]

P(τ > t)

≤ T1 + 1 +

∞∑

k=2

δ21−(k−1)3(Tk − Tk−1) ≤ T1 + 1 + δ

∞∑

k=2

Tk2
1−(k−1)3 .

To control the above, we shall show that T (Γ; δk
3

, N) is bounded from above by k6T (Γ; δ,N) for k ≥ 2. To
this end, recall that

T (Γ; η,N) = inf

{
t ≥ 2d : t|Γ| > 4

√
t log log t+ t log

22m

δ
+ 4d

√
t log(2t/d) +

√
2dt log(2t/d) log(2m/δt−N)

}
.
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Now, first observe that if t ≥ 16, and k ≥ 2, then log log(k6t) ≤ k6 log log t. Indeed, if k ≥ t, then7

log log(k6t) ≤ log log(k7) ≤ k < k6. If instead k ≤ t, then log(7) < 2 < (k6 − 1) =⇒ log log t7 =
log 7 + log log t < k6 − 1 + log log t < k6 log log t, which exploits that log log t > 1 for t ≥ 16 > ee.

Next, if t ≥ 2d, and k ≥ 2, then log(2k6t/d) ≤ k3 log(2t/d). Again, if 2t/d < k, then8 log(k7) < 7(k −
1) < k3 log(4) < k3 log(2t/d), and if 2t/d ≥ k, then 7 log(2t/d) < k3 log(2t/d) since k3 ≥ 8. Similarly, if
k ≥ 2, t ≥ 16 then log(k6t) ≤ k3 log t.

It follows from the above that if t ≥ max(2d, 16), and t ≥ T (Γ; δ,N), then k6t ≥ T (Γ; δ/2k
2−1, N). Indeed,

since t > T (Γ; δ,N), we have

t|Γ| > 4
√
t log log t+ log(22m/δ) + 4d

√
t log(2t/d) +

√
(2d log(2t/d)(log(2m/δ) +N log t).

Multiplying through by k6, and using t ≥ max(2d, 16), we observe that

k6t|Γ| > 4

√
k6t(k6 log log t+ k6 log

22m

δ
) + 4d

√
k6t · k3 log(2t/d)

+
√
2d(k6t) · k3 log(2t/d)(k3 log(2m/δ) + 2Ndk3 log t)

≥ 4

√
(k6t) log log(k6t) + log

22m

δk6 + 4d
√
k6t log(2k6t/d)

+
√
2d(k6t) log(2k6t/d)(log(2m/δk3) + 2Nd log(k6t)),

where we have used that m ≥ 1. Since δ ≤ 1/2,

δk
6 ≤ δk

3

= δ · δk3−1 ≤ δ · 2−(k3−1).

Thus, we conclude that for k ≥ 2,

Tk − ⌈2(k3−1)/N ⌉(2 + 1/|Γ|) = T (Γ/2; δ/2k
3−1, N) ≤ max(2d, 16, k6T (Γ/2; δ;N)).

Plugging this into the bound on E[τ ], we conclude using numerical estimates of the quickly converging series∑
k≥2 2

1−(k−1)3 ≤ 1.01 and
∑

k≥2 k
621−(k−1)3 ≤ 70 that

E[τ ] ≤ T1 + 1 + δ
∑

k≥2

21−(k−1)3Tk

≤ T1 + 1 + δ
∑

k≥2

21−(k−1)3(2d+ 16) + δT (Γ/2; δ,N)
∑

k≥2

k621−(k−1)3

+ δ(2 + 1/|Γ|)


∑

k≥2

2−((k−1)3−1−(1−1/N)k3) + 21−(k−1)3




≤ T (Γ; δ,N) + 1 + 70δT (Γ/2; δ,N) + (20 + 3d)δ +O(1)δ(3 + 1/|Γ|),

where the O(1) term is ≤ 1.01 +
∑

k≥2 2
1−(k−1)3+(k3(1−1/N)), which is summable since N > 1.

Let us now proceed with the

Proof of Theorem 10. First notice by Lemma 14, if t ≥ 2d, then

∑

s≤t

ρs(xs; δs/2) ≤
∑

s≤t

ρs(xs; δt/2) ≤ ωt(δt/2)
√
2dt log(1 + (t+ 1)/d) ≤ ωt(δt/2)

√
2dt log(2t/d).

7log log k7 = log 7 + log log k ≤ log 7 + log k − 1 ≤ log 7− 2 + k, and e2 > 7.3.
8k3 − 7k + 7 is growing for k ≥

√

7/3 ≈ 1.52, and 23 − 14 + 7 = 1 > 0. Of course, log(4) > 1.
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Consequently, we have that for t ≥ 2d,

Bt(δ) ≤ ωt(δt/2)
√
2dt log(1 + (t+ 1)/d) ≤ ωt(δt/2)

√
2dt log(2t/d).

If HF is true, then we know by Lemma 7 that with probability at least 1− δ,

∀t,Tt ≥ tΓ− Bt(δ),

and so we conclude that under this event,

τ = inf{t : tΓ > 2Bt(δ)}.

But due to the deterministic upper bound on Bt(δ) under the same event,

τ ≤ inf{t : tΓ > 2ωt(δt/2)
√
2dt log(2t/d) + 2LIL(t; δ/2)}.

But, for t ≥ 2d,N > 1, ωt(δt/2) ≤ 1 +
√

1
2 log(2m/δt−N) + d

4 log(2t/d), and so,

2ωt(δt/2)
√
2dt log 2t/d ≤ 2

√
2dt log(2t/d) + 2

√
d2

2
t log2(2t/d) + 2

√
(dt log(2t/d))(log(2m/δt−N))

≤ (
√
8/ log(4)d+

√
2d)

√
t log(2t/d) + 2

√
(d log(2t/d))(log(2m/δt−N))

< 4d
√
t log(2t/d) + 2

√
(d log(2t/d))(log(2m/δt−N)),

where the first line uses
√
u+ v ≤ √

u +
√
v, and the final line uses the fact that t ≥ 2d =⇒ log(2t/d) ≥

log(4), and that for u ≥ 1,
√
8u/ log 4 +

√
2u < 4u. But this implies that

τ ≤ inf

{
t : t|Γ| > 2LIL(t, δ/2) + 4d

√
t log(2t/d) + 2

√
d log(2t/d) log

2m

δt−N

}
= T (Γ; δ,N).

In fact, this is precisely why T (Γ; δ,N) was so defined. Thus, in the feasible case, with probability at least
1− δ,P(τ > T (Γ; δ,N)) ≤ δ. The argument is identical in the infeasible case, barring sign flips.

Control on the tail can be obtained by essentially bootstrapping the above result along with our choice of
Dt = Ct(δt), the key idea being that since δt → 0, for large enough t, A ∈ Dt must actually occur with
near-certainty. Formally, let us define Tη = inf{t : δt < η} = ⌈(δ/η)1/N ⌉. Then notice that for every t ≥ Tη,
it holds that Dt ⊂ Ct(η), and so P(∀t ≥ Tη, A ∈ Dt) ≥ 1− η. Therefore, repeating the proof of Lemma 7, we
conclude that in the feasible case, for all t ≥ Tη,

Tt ≥ −Tη + (t− Tη)Γ−
∑

Tη≤s≤t

ρs(xs; δs)− LIL(t, η/2),

where we have used the fact that ‖x‖ ≤ 1, ‖Ai‖ ≤ 1 to conclude that |(Ax)it | ≤ 1 in order to handle the
times t ∈ [1 : Tη − 1]. In particular, if t > 2Tη + Tη/Γ, then Tt ≥ tΓ2 − Bt(η).

But we know that we must stop before time t if Tt ≥ Bt(δ), and since Bt(δ) ≤ Bt(η) uniformly, we conclude
that under the event that A ∈ Dt for all t ≥ Tη, then it must hold that

τ ≤ max ((2 + 1/Γ)Tη, T (Γ/2, η,N)) .

Since this occurs with probability at least 1 − η, the conclusion follows for the feasible case. Again, the
argument is identical for the infeasible case, barring sign flips.
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C Analysis of t-eogt

The main result follows simply from the key control offered in Lemma 11, and showing the latter will form
the bulk of this section. We proceed by first showing the stopping time bounds.

Proof of Theorem 12. Let us consider the feasible case; the infeasible case follows similarly. For reliability,
observe that via Lemma 11, it holds with probability at least 1− δ that for all t,

T̃t ≥ tΓ− Q
F

t (δ) > −Q
F

t (δ).

Since the stopping time is

τ̃ = inf{t : T̃t < −Q
F

t (δ) or T̃t > Q
I

t(δ)},
it follows that if the preceding event occurs, then if the test stops, it must be correct. But, since QI + QF

grows sublinearly in t, under the same event the test must eventually stop. Therefore, the probability that
we stop and make an error is bounded by δ, making the test reliable.

It remains to control the behaviour of τ̃ . To this end, again observe that for any η ∈ (0, 1), with probability
at least 1− η, it holds for all time that

T̃t ≥ tΓ− Q
F

t (η).

Thus, we conclude that with probability at least 1− η,

τ ≤ inf{t : tΓ ≥ Q
F

t (η) + Q
I

t(δ)} ≤ Tη := inf{t : tΓ ≥ Q
F

t (η) + Q
I

t(η)}.

But notice that

Q
F

t (η) + Q
I

t(η) ≤ 50t
1/2 log2(t)

(
d3/2 + d1/2 log(8m/η)

)
+ 2LIL(t, η/2).

Following the approach in the proof of Lemma 9 as presented in §B.1,9 we immediately get that there exists
a constant C such that with probability at least 1− η,

τ ≤ C log(C log(Γ−2)/δ)

Γ2
+

Cd3

Γ2
log4

Cd3

Γ2
+

Cd log(8m/η)

Γ2
log4

d log(8m/η)

Γ2
.

The expectation bound is immediate upon integrating the tail.

It remains then to show Lemma 11, which is the subject of the next section.

C.1 Proof of Anytime Behaviour of T̃t

We begin with setting up some notation, and then proceed by explicitly describing key observations un-
derlying the argument, encapsulated as lemmata. The key aspects of this argument follow the analysis of
Simchi-Levi et al. (2023).

C.1.1 Notation

Let (x∗, i∗) denote any solution to the program maxxmini(Ax)
i, which we shall fix for the remainder of this

section. Of course, (Ax∗)i
∗

= Γ. Recall that imin(x) = argmini(Ax)
i. We further define

it(x) = argmin
i

(Âtx)
i, and i∗t = it(x

∗).

9the only new information needed being that 4 log log z ≤ log z for all z ≥ 2
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We denote the estimation error in Ât as
Bt = Ât −A.

Next, we define the random quantity

∆t = (Γ− (Axt)
it)sign(Γ) =

{
Γ− (Axt)

it if Γ > 0, i.e., under feasibility

(Axt)
it − Γ if Γ < 0, i.e., under infeasibility.

,

and the cumulative pseduoregret-like object

Rt =
∑

s≤t

∆s.

The point here is that we may decompose

T̃t =
∑

s≤t

(Axs)
is + Zt = tΓ− Rt + Zt, (feasible case)

T̃t =
∑

s≤t

(Axs)
is + Zt = tΓ + Rt + Zt, (infeasible case)

and thus in either case, if we show that Rt is not too large, then T̃t has favourable behaviour. Observe that if
we were working in a single objective setting, m = 1, then in the feasible case Rt would be the pseudoregret
of a linear bandit instance.

Since these quantities will appear often in the argument, we further define

Nt = ‖xt‖2V −1
t

and N∗
t = ‖x∗‖2

V −1
t

,

and for v ≥ 0,

Wt(v) := 1 +

√
d

4
log(1 + t/d) +

1

2
logm+

v

2

Finally, notice that with the above notation, Lemma 15 can be expressed as

∀v > 0,P
(
∃t, i : ‖Bi

t‖Vt
≥ Wt(v)

)
≤ e−v.

Further,

Radt(xt) = (t/d)
1/2Nt +

√
dNt, and Radt(x

∗) = (t/d)
1/2N∗

t +
√
dN∗

t .

C.1.2 Structural Observations

The following two results constitute basic structural observations due to Simchi-Levi et al. (2023) that enable
the subsequent analysis. The first argues that in each round, some quantity of the form (Btx)

i for some
(x, i) is large in absolute value.

Lemma 18. For the sequence of actions {xt} selected by t-eogt, the following hold.

• In the feasible case, at each time, either the first or the second of the following hold:

(Btxt)
it ≥ ∆t/2− (t/d)

1/2Nt −
√
dNt

or − (Btx
∗)i

∗

t ≥ ∆t/2 + (t/d)
1/2N∗

t +
√
dN∗

t

• In the infesible case, at each time t, either the first or the second of the following hold:

−(Btxt)
it ≥ ∆t/2

or (Btxt)
imin(xt) ≥ ∆t/2.
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Proof. In the feasible case, due to the optimistic selection, it must hold that

(Âtxt)
it +Radt(xt) ≥ (Âtx

∗)i
∗

t +Rad∗t .

Now, we may write Ât = A+Bt, and so get

(Btxt)
it +Rad(xt) ≥

(
(Ax∗)i

∗

t − (Axt)
it
)
+Radt(x

∗).

But note that (Ax∗)i
∗

t ≥ mini(Ax
∗)i = Γ, and so (Ax∗)i

∗

t − (Axt)
it ≥ ∆t in the feasible case. Thus, we have

(Btxt)
it +Rad(xt) ≥ ∆t + (Btx

∗)i
∗

t +Radt(x
∗).

But, since if A ≥ B + C, then either A ≥ B/2 or −C ≥ B/2, it follows that at least one of the following
must hold:

(Btxt)
it ≥ ∆t/2− Radt(xt) or − (Btx

∗)i
∗

t ≥ ∆t/2 + Radt(x
∗).

The conclusion follows upon incorporating the form of Radt(xt) and Radt(x
∗) indicated before the statement

of the lemma.

In the infesible case, we note that it must hold that

(Âtxt)
it ≤ (Âtxt)

imin(xt) ⇐⇒ (Btxt)
it − (Btxt)

imin(xt) ≥ (Axt)
it) − (Axt)

imin(xt).

But, (Axt)
imin(xt) = mini(Axt)

i ≤ maxxmini(Ax)
i = Γ, and so noting that ∆t = (Axt)

it −Γ in the infeasible
case, we have

(Btxt)
it − (Btxt)

imin(xt) ≥ ∆t,

which again yields the conclusion.

The next observation essentially yields a condition for low Rt in terms of (∆t, Nt), and forms a refinement
of the key observation of Simchi-Levi et al. (2023) that allows us to extend their results to yield anytime
bounds.

Lemma 19. For any nondecreasing sequence of positive reals ut, it holds that

{∃t : Rt > ut(1 + log(t+ 1))} ⊂ {∃t : ∆t ≥ ut/3t, Nt < d/t} ∪ {∃t : ∆t/Nt ≥ ut/3d,Nt ≥ d/t}.

Proof. Suppose that for all t, Nt < d/t =⇒ ∆t < ut/3t and Nt ≥ d/t =⇒ ∆t/Nt < ut/3d. Then

Rt =
∑

s≤t

∆s =
∑

s≤t

∆s1{Ns < d/t}+
∑

s≤t

∆s

Ns
·Ns1{Ns ≥ d/t}

<
∑

s≤t

us/3s+
∑

s≤t

us

3d
Ns

≤ ut

3

∑

s≤t

1/s+
ut

3d

∑

s≤t

Ns

≤ ut(log(t) + 1)

3
+

ut

3d
· 2d log(1 + t/d)

≤ ut(1 + log(t+ 1)),

where the second inequality is because us ≤ ut for all s ≤ t, and the third uses the bound on
∑

s≤t Ns =∑
s≤t ‖xs‖2V −1

s
from Lemma 14, and the standard bound on harmonic numbers

∑
s≤t 1/s ≤ log(t) + 1.

This sets up the basic approach: the two events in Lemma 18 along with the two events in Lemma 19 set
up four potential ways that high Rt can arise in either the feasible or the infeasible case. We will separately
bound the probabilities of these events by repeated reduction to the key result of Lemma 15.
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C.1.3 Controlling the Chance of Poor Events

We now proceed to execute the strategy we described at the end of the previous section. We will separate
the arguments for the feasilbe and the infeasible cases.

Feasible Case We shall further separate the analysis into two cases, depending on if we control the event
with |(Btxt)

it | being large, or |(Btx
∗)i

∗

t | being large.

Lemma 20. For any v ≥ 0, define

UF,A
t (v) := 6

√
dt+ 6d

√
t+ 6

√
dtWt(v).

Then both of the following inequalities hold true:

P(∃t : ∆t ≥ UF,A
t (v)/3t, Nt < d/t, (Btxt)

it ≥ ∆t/2− (t/d)
1/2Nt −

√
dNt) ≤ e−v,

P(∃t : ∆t/Nt ≥ UF,A
t (v)/3d,Nt ≥ d/t, (Btxt)

it ≥ ∆t/2− (t/d)
1/2Nt −

√
dNt) ≤ e−v.

Proof. We argue the two inequalities using slightly different, but ultimatly similar approaches. The key
observation we will need is that by the Cauchy-Schwarz inequality, and since Nt = ‖xt‖2V −1

t

, |(Btxt)
it | =

|(Bit
t V

1/2
t V

−1/2
t xt)| ≤ ‖Bit

t ‖Vt

√
Nt. Throughout, we will let ut denote an arbitrary nondecreasing sequence,

and derive the form of UF,A
t at the end.

Case (i). Suppose ∆t ≥ ut/3t and Nt < d/t. Then

(Btxt)
it ≥ ∆t

2
−
√

t

d
Nt −

√
dNt

≥ ut

6t
−
√

d

t
− d√

t

=⇒
√
Nt‖Bit

t ‖Vt
≥ ut − 6

√
dt− d

√
t

6t

=⇒ ‖Bit
t ‖Vt

≥ ut − 6
√
dt− 6d

√
t

6
√
dt

.

Case (ii). If instead, ∆t/Nt ≥ ut/3d and Nt ≥ d/t, then

(Btxt)
it ≥ ∆t

2
−
√

t

d
Nt −

√
dNt

⇐⇒ (Btxt)
it/Nt ≥

∆t

2Nt
−
√

t

d
−
√
d/Nt

=⇒ ‖Bit
t ‖Vt

/
√
Nt ≥

∆t

2Nt
−
√

t

d
−
√
d/Nt

=⇒ ‖Bit
t ‖Vt

≥ ut

6d
·
√
d/t− 1−

√
t

=
ut − 6

√
dt− 6d

√
t

6
√
dt

.

Now observe that due to the form of UF,A
t , it holds that

UF,A
t (v)− 6

√
dt− 6d

√
t

6
√
dt

= Wt(v),
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and so we have

P

(
∃t : ‖Bit

t ‖Vt
≥ UF,A

t (v)− 6
√
dt− 6d

√
t

6
√
dt

)
≤ P

(
∃t, i : ‖Bi

t‖Vt
≥ Wt(v)

)
,

and the claim follows by Lemma 15.

Lemma 21. For any v ≥ 0, define

UF,B
t (v) :=

3
√
dt

2
(Wt(v)−

√
d)2+,

where (z)2+ = (max(z, 0))2. Then it holds that

P(∃t : ∆t ≥ UF,B
t (v)/3t, Nt < d/t,−(Btx

∗)i
∗

t ≥ ∆t/2 +
√
t/dN∗

t +
√
dN∗

t ) ≤ e−v

P(∃t : ∆t/Nt ≥ UF,B
t (v)/3d,Nt ≥ d/t,−(Btx

∗)i
∗

t ≥ ∆t/2 +
√
t/dN∗

t +
√
dN∗

t ) ≤ e−v

Proof. As in the proof of Lemma 20, let ut ≥ 0 be any sequence. Then observe that ∆t/Nt ≥ ut/3d,Nt ≥
d/t =⇒ ∆t ≥ ut/3t. Further, by the AM-GM inequality,

ut

6t
+

√
t

d
N∗

t ≥ 2

√
ut

6
√
dt
N∗

t .

But, if ∆t ≥ ut/3t, then

−(Btx
∗)i

∗

t ≥ ut

6t
+

t

d
N∗

t +
√

dN∗
t ≥ 2

√
ut

6
√
dt
N∗

t +
√
dN∗

t

=⇒ ‖Bi∗t
t ‖Vt

≥
√

2ut

3
√
dt

+
√
d.

Now, UF,B
t is chosen so that √

2UF,B
t (v)

3
√
dt

+
√
d = Wt(v),

therefore, both of the probabilities in the claim are bounded from above by P(∃t, i : ‖Bi
t‖Vt

≥ Wt(v)), and
we may conclude using Lemma 15.

Infeasible Case Turning now to the infeasible case, we have the somewhat simpler bound below.

Lemma 22. For v ≥ 0, let
U I

t(v) := 6
√
dtWt(v).

It holds that

P(∃t, i : ∆t ≥ U I

t(v)/3t, Nt < d/t, |(Btxt)
i| ≥ ∆t/2) ≤ e−v

P(∃t, i : ∆t/Nt ≥ U I

t(v)/3d,Nt ≥ d/t, |(Btxt)
i| ≥ ∆t/2) ≤ e−v

Proof. The argument is similar to that underlying Lemma 20. Let ut be any positive real. Then

Case (i) If ∆t ≥ ut/3t, Nt < d/t, then for any i,

|(Btxt)
i| ≥ ∆t/2

=⇒ ‖Bi
t‖Vt

√
Nt ≥

ut

6t

=⇒
√
d/t‖Bi

t‖Vt
≥ ut

6t
⇐⇒ ‖Bi

t‖Vt
≥ ut

6
√
dt
.
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Case (ii) If instead ∆t ≥ ut/3d,Nt ≥ d/t, then note that

∆t/
√
Nt = ∆t/Nt ·

√
Nt ≥

ut

3d
·
√
d/t =

ut

3
√
dt
,

and thus

|(Btxt)
i| ≥ ∆t

2
=⇒ ‖Bi

t‖Vt
≥ ut

6
√
dt
.

Since U I

t(v) = 6
√
dtWt(v), it again follows that either of the probaiblities in the claim are bounded by

P(∃t, i : ‖Bi
t‖Vt

≥ Wt(v)), and we are done upon applying Lemma 15.

C.2 Proof of Tail Bounds

We are now ready to prove the claim. We begin by summarising the previous section through the lemma
below. Note that setting m = 1, the bound for the feasible instance yields an anytime regret bound for the
tempered action selection rule (5) over linear bandit instances.

Lemma 23. For any δ ∈ (0, 1), the following hold for the actions of t-eogt

• For any feasible instance,

P(∀t,Rt ≤ log(t+ t) ·max(UF,A
t (log(8/δ)), UF,B

t (log(8/δ))) ≥ 1− δ/2.

• For any infeasible instance,

P(∀t,Rt ≤ U I

t(log(8/δ))(1 + log(t+ 1))) ≥ 1− δ/2.

Proof. In the feasible case, let ut := max(UF,A
t (log(8/δ)), UF,B

t (log(8/δ)). Since Wt is nondecreasing, and

the UF,·
t are defined as nondecreasing functions of Wt, it follows that ut is nondecreasing. By Lemma 19, it

follows that

P(∃t : Rt > UF

t · (1 + log(t+ 1))) ≤ P(∃t : ∆t ≥ ut/3t, Nt < d/t) + P(∃t : ∆t/Nt ≥ ut/3d,Nt ≥ d/t).

But since the events in Lemma 18 must occur with certainty, we have

P(∃t : ∆t ≥ ut/3t, Nt < d/t) ≤ P(∃t : ∆t ≥ ut/3t, Nt < d/t, (Btxt)
it ≥ ∆t/2− (t/d)

1/2Nt −
√
dNt)

+ P(∃t : ∆t ≥ ut/3t, Nt < d/t, (Btx
∗)i

∗

t ≥ ∆t/2 + (t/d)
1/2N∗

t +
√
dN∗

t ).

But, since ut ≥ UF,A
t (log(8/δ)), by Lemma 20, the first term is at most δ/8, and similarly since ut ≥

UF,B
t (log(8/δ0)), by Lemma 21, the second term is at most δ/8, controlling the above to δ/4. Of course, the

same argument may be repeated to bound P(∃t : ∆t/Nt ≥ ut/3d,Nt ≥ d/t), giving the first bound. The
infeasible case follows the same template, but uses the alternate result in Lemma 18, and Lemma 22 to
control probabilities instead. We omit the details.

To concretise the bounds above, we next show an auxiliary lemma controlling the sizes of UF,A
t , UF,B

t and U I

t.

Lemma 24. Suppose δ ≤ 1/2. Then

UF,A
t (log(8/δ)) ≤ 12d

√
t log(t+ 1) + 15

√
dt log(8m/δ)

UF,B
t (log(8/δ)) ≤ 2d3/2

√
t log2(t+ 1) + 3

√
dt log(8m/δ)

U I

t(log(8/δ)) ≤ 6
√
d2t(1 + log(t+ 1)) + 2dt log(8m/δ)
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Proof. First, we note that if δ ≤ 1/2, then 1
2 log(8/δ) ≥ 3 log(2) > 1. Thus, we have

Wt(log(4/δ)) = 1 +

√
d

4
log(1 + t/d) +

1

2
(logm+ log(8/δ))

≤ 2

√
d

4
log(1 + t) +

1

2
log

8m

δ

≤
√
d log(t+ 1) + 2 log(8m/δ)

≤
√
d log(t+ 1) +

3

2

√
log(8m/δ).

Thus,
UF,A
t (log(8/δ)) ≤ 6

√
dt+ 6d

√
t+ 6d

√
t(1 + log(t+ 1)) + 9

√
dt log(8m/δ),

and further,

UF,B
t (log(8/δ)) ≤ 3

√
dt

2
·
√
d log(t+ 1) + 2 log(8m/δ),

and finally,
U I

t(log(4/δ)) ≤ 6
√
dt ·

√
d log(t+ 1) + 2 log(8m/δ),

yielding the claimed bounds.

With these in hand, we can conclude.

Proof of Lemma 11. We shall only show the feasible case; the infeasible is identical, and thus the details are
omitted. Recall from §C.1.1 that in the feasible case,

T̃t ≥ tΓ− Rt + Zt.

By Lemma 16, with probability at least 1 − δ/2, Zt ≥ LIL(t, δ/2) for all t. Further, by Lemma 23, with
probability at least 1− δ/2, at all times

Rt ≤ (1 + log(t+ 1)) ·max(UF,A
t (log(8/δ)), UF,B

t (log(8/δ)).

Finally, opening up the form of the same via , we have

(1 + log(t+ 1)) ·max

(
12d

√
t log(t+ 1) + 15

√
dt log(8m/δ), 2d3/2

√
t log2(t+ 1) + 3

√
dt log(8m/δ)

)
,

and 1 + log(t + 1) ≤ 3 log(t + 1) for t ≥ 1 But note that d3/2
√
t log2(t+ 1) ≥ d

√
t(1 + log(t+ 1)), and√

dt log(8m/δ) ≥
√
dt log(8m/δ) since δ ≤ 1/2. So, we may simply adjust the constants, and conclude that

with probability at least 1− δ/2,

Rt ≤ 36d3/2
√
t log2(t+ 1) + 45

√
dt log2(t+ 1) log(8m/δ) ≤ Q

F

t (δ)− LIL(t, δ/2).

But now the result is obvious.

D Proof of the Lower Bound

We conclude the appendix by presenting the proof of the lower bound of Theorem 13. We will first show that
it suffices to show a Ω(K/Γ2) lower bound for the minimum threshold problem (which we shall also formally
specify) in order to show the claimed result. We then give a brief summary of the ‘simulator’ technique of
Simchowitz et al. (2017), and proceed to show the aforementioned bound.
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D.1 The Finite-Armed Single Objective Feasibility Testing Problem, and a Re-

duction to Feasibility Testing of LPs over a Simplex

We start by explicitly defining the finite-armed single objective feasibility testing problem, also known as
the minimum threshold testing problem as discussed in §1

Problem Definition An instance of this problem is defined by a natural K < ∞, and a set of K probability
distributions, {Pk}k∈[1:K], each supported over R, and a real δ ∈ (0, 1). Let ak := ES∼Pk

[S], and let a denote
the K-dimensional vector collecting these means. We will assume that a ∈ [−1/2, 1/2]K. The aim of the
test is to distinguish the hypotheses

HK
F

: max
k

ak > 0 versus HK
I

: max
k

ak < 0.

The tester chooses an arm Kt in round t, and if Kt = k, then it observes in response a score S ∼ Pk,
independently of the history. We shall assume that each Pk is σ2-subGaussian about its mean, with σ2 ≤ 1.
As in the linear setting considered in the main text, a test for this finite-armed single objective setting
consists of an arm selection policy, a stopping time, and a decision rule, which we summarise as (A , τ,D)
in line with §2. The goal is reliability in the sense of Definition 1, and a good test should be valid and well
adapted in the sense of Definition 2.

We now specify reductions of the above problem to the linear feasibility testing problem that is the subject
of our paper. The key observation is that the finite-armed problem can either be directly interpreted as a
LP feasibility testing problem over a discrete action set, or can, with a small loss in the noise strength, be
expressed as a LP feasibility testing problem over a continuous X , the critical implication being that lower
bounds for the finite-armed setting extend to our problem of testing feasibility of linear programs. This
enables us to only concentrate on showing a lower bound for the finite-armed single objective problem in the
subsequent.

Reduction to General LP Feasibility Testing Note that in effect, the problem above reduces to
feasibility testing for the linear case if we set d = K, A = a⊤ ∈ R

1×d and set X = {ei}di=1, where the

ei are the standard basis elements for R
d: ei =

(
0 · · · 0 1 0 · · · 0

)⊤
, where the 1 occurs in the

ith position. Indeed, in this case, upon playing x = ei, we observe feedback S ∼ Pk. But we can write
S = E[S] + (S − E[S]) = ak + ζ = Ax + ζ, where ζ = S − E[S] is conditionally σ2-subGaussian due to our
assumption that each Pk is σ2-subGaussian, so the reduction is valid if σ2 ≤ 1.

Reduction to LP Feasiblity Testing Over the Simplex We further observe that if σ2 ≤ 1/2, then
the finite case also reduces to single constraint feasibility testing over the simplex. Indeed, suppose that we
set d,A as above, and take X = {x ∈ [0, 1]d :

∑
xi = 1}, and let (A , τ,D) be a reliable test for this instance

over 1-subGaussian noise. Then we can get a corresponding reliable test for the d-armed setting as follows:

• At each t, we first execute A to obtain a putative action xt.

• Next, we draw a random index Kt ∼ xt, which is meaningful since xt lies in the simplex, and so is a
distribution over [1 : d].

• Then, we pull arm Kt in the finite-armed instance and we supply the feedback St to the linear algorithm
to enable testing.

To argue that the ensuing test is reliable, we need to verify that the feedback obeys the structure we demand,
in particular, that St = Axt + ζt for 1-subGaussian ζt. But notice that

St = aKt
+ ηt
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for ηt σ
2-subGaussian, and further,

E[St] = E[aKt
] =

∑
xk
t ak = a⊤xt = Axt,

as required. Further, since each Pk is supported on [−1/2, 1/2], the random variable aKt
is also supported

on [−1/2, 1/2], and so is 1/2-subGaussian by Hoeffding’s inequality. Due to the independence of Kt and ηt,
it follows that the feedback noise is (1/2 + σ2)-subGaussian, and so the reduction holds if σ2 ≤ 1/2.

Improved Costs for Finite Arms. Prima facie the above reduction implies an Õ(K2/Γ2) stopping cost

for our test employed on finite-armed settings. However, if K < d2, then this may be improved to Õ(K/Γ2),
either by coupling the eogt approach with direct UCB-based constructions as commonly employed for
finite arm bandits, or by directly analysing eogt whilst exploiting standard analyses that enable proofs of
improved costs for the OFUL scheme over finite-armed settings (Lattimore & Szepesvári, 2020).

D.2 The Simulator Argument

For an execution of a feasibility test over a finite-armed setting, let Nk
t denote the number of times arm k has

been pulled up to time t, and correspondingly let Nk
τ be the number of times the arm k has been pulled at

stopping. Notice that in a distributional sense, we can view the behaviour of the tester over a fixed transcript,
defined as a set of K sequences {Sk

i }∞i=1, one for each k, each comprising of values drawn independently and
identically from Pk, the idea being that for each t such that Kt = k, we can just supply the learner with
Sk
Nk

t

in response. This maintains the feedback distributions, and thus the probability of any event in the

filtration induced by {Ht}t≥1. The main utility of the transcript view is that it allows manipulation of the
distributions underlying an instance after some number of arm pulls, and exploiting such distribution shifts
is the key insight of the simulator argument of Simchowitz et al. (2017).

Let us succinctly denote a transcript as {Sk
i }k∈[1:K],i∈[1:∞). Further, let us write P = (P1, · · · ,Pk) to com-

pactly denote an instance, and write P(·) to denote the probability of an event when the instance is P.
Throughout, we work with the natural filtration of the tester Ft, which is the sigma algebra over Ht and
any algorithmic randomness used by the tester. A simulator S is a randomised map from transcripts to
transcripts. Notice that this induces a new distribution over the behaviour of the algorithm, which we denote
by PS. Let us say that an event W ∈ Fτ is truthful for an instance P under a simulator S if it holds that
for every E ∈ Fτ ,

P(W ∩ E) = PS(W ∩E).

In words, given any truthful event, the simulator does not modify the behaviour of the test up to the time it
stops. We shall succinctly specify the simulator and distribution with respect to which an event is truthful
by saying that ‘W is (P,S)-truthful.’

The simulator approach to lower bounds, presented in Proposition 2 of Simchowitz et al. (2017), is sum-
marised through the following bound. Fix an algorithm, and consider a pair of instances P

1 and P
2. Then,

if W1 is (P1,S)-truthful, and W2 is (P2,S)-truthful, it holds that

P
1(W c

1 ) +P
2(W c

2 ) ≥ sup
E∈Fτ

|P1(E)−P
2(E)| − TV(P1

S
,P2

S
), (6)

where TV is the total variation distance TV(µ‖ν) := supE µ(E)−ν(E). The idea thus is that if we construct
a simulator that makes the algorithm behave similarly in either instance, i.e., such that TV(P1

S
‖P2

S
) ≈ 0,

but the instances themselves are fundamentally quite different, so that supE∈Fτ
|P1(E) − P

2(E)| is large,
then we can show lower bounds on how likely truthful events are to not occur.

The bound itself is easy to show: for any E ∈ Fτ , we have

|P1(E)−P
2(E)| ≤ |P1

S
(E)−P

2
S
(E)|+ |P1

S
(E)−P

1(E)| + |P2
S
(E)−P

2(E)|.
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Since W1 is (P1,S)-truthful, the second term may be refined as

|P1
S(E)−P

1(E)| = |P1
S(E∩W1)−P

1(E∩W1)+P
1
S(E∩W c

1 )−P
1(E∩W c

1 )| = |P1
S(E∩W c

1 )−P
1(E∩W c

1 )|,

and we may similarly bound |P2
S
(E) − P

2(E)|. The difference |P1
S
(E) − P

2
S
(E)| can in turn be bounded

by the total variation distance. We conclude that

2∑

i=1

sup
E∈Fτ

|Pi
S(E ∩W c

i )−P
i(E ∩W c

i )|+TV(P1
S,P2

S) ≥ sup
E∈Fτ

|P1(E)−P
2(E)|,

and the left hand side can be resolved by just taking E = W c
i ∈ Fτ .

We will utilise the above twice in our argument below, with the main trick being that if we only modify the
transcript to affect arm k after T pulls, that is, we only change Sk

i for i > T , then the event {Nk
τ ≤ T } is

truthful under this simulator, letting us lower bound the probability that Nk
τ is small in some instance. We

shall succinctly call such simulators post-T simulators.

D.3 A Lower Bound for Finite-Armed Single Constraint Feasibility Testing

We shall show the following

Theorem 25. For any Γ ∈ (0, 1/2], δ ≤ 1/4, and K < ∞, and for any reliable test, there exists a finite-armed
single objective feasibility testing instance that is feasible, with signal level at least Γ, σ2 = 1/2-subGaussian
noise, and

∑
a2k ≤ 1, on which the algorithm must admit

E[τ ] ≥ (1− 2δ)3K

79Γ2
.

Theorem 13 is immediate from the above.

Proof of Theorem 13. Setting K = d, and constructing either of the reductions from the finite-armed case
to the linear program feasibility testing problem detailed in §D.1, which is possible because σ2 = 1/2 and
since ‖a‖2 ≤ 1. But then the lower bound of Theorem 25 must apply.

Without further ado, let us launch into proving the finite-armed lower bound.

Proof of Theorem 25. Fix Γ ∈ (0, 1/2], and for k ∈ [0 : K], and an ε ∈ (0,
√
1− Γ2/4K), define the following

instance
P

k = (Pk
1 , · · · ,Pk

K),

where

P
k
ℓ =

{
N (−ε, 1/2) ℓ 6= k

N (Γ, 1/2) ℓ = k
.

Observe that for k > 0, in instance P
k, the kth arm is the only feasible action, while the rest are infeasible,

while in instance P
0, all arms are infeasible, with the tiny signal level −ε. Of course, each P

k defines an
instance for us. We implicitly reveal to the test that the instance must lie in one of the P

k as the argument
does not change even if the test is allowed to use this fact. Notice that the mean vector for P

k is some
permutation of (Γ,−ε, · · · ,−ε), and so has 2-norm Γ2 +(K − 1)ε2 ≤ Γ2 +(1−Γ2)/4 ≤ 1, since Γ ∈ (0, 1/2].
We shall, at the end of the proof, send ε → 0, so the precise size of it is not important to the argument.

Now, the first key observation is that since P
k is feasible for each k > 0, but P

0 is infeasible, it must be the
case that under P

k for arm k > 0, the test verifies the feasibility of the instance by pulling arm k at least
Ω(Γ−2) times. We will need a slightly refined form of this statement, as seen below.
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Lemma 26. Under the above instance structure, for every k ∈ [1 : K] and any T ∈ N, it holds that

P
k(Nk

τ > T ) ≥ 1− 2δ −
√
T (Γ + ε)2/2.

Proof. Consider a post-T simulator S
k such that {Ŝk

i } = S
k({Sk

i }), has the form

Ŝk′

i =

{
Sk′

i k′ 6= k or i ≤ T
i.i.d.∼ N (−ε, 1/2) k′ = k and i > T

.

First notice that for the KL divergence10 KL(Pk
Sk‖P0

Sk), using the data processing inequality, this is bounded
by the KL-divergence between the laws of the transcript under the two distrubtions, which in turn is only
driven by the the first T entries of the transcript for T. Since, by a standard calculation,11

KL(N (µ, 1/2)‖N (ν, 1/2)) = (µ− ν)2,

we conclude that
KL(Pk

Sk‖P0
Sk) ≤ T (Γ + ε)2,

and in turn by an application of Pinsker’s inequality12 (see, e.g., Lattimore & Szepesvári, 2020, Chs.13, 14),

TV(Pk
Sk ,P

0
Sk) ≤

√
T (Γ + ε)2/2.

Next, observe that the event Wk := {Nk
τ ≤ T } is (Pk,Sk)-truthful since the transcript for arm i is only

modified after T pulls, and further, every event is (P0,Sk)-truthful since the simulator does not modify the
arm distributions for P

0, and so in particular W0 = {Nk
τ ≤ ∞} is truthful (and of course P

0(Nk
τ > ∞) = 0

trivially).

Finally, observe that since the instance P
k is feasible, and since the test is reliable, it holds that Pk(D(Hτ ) =

HK
F
) ≥ 1− δ. But by the same coin, since P

0 is infeasible, P0(D(Hτ ) = HK
I
) ≤ δ. Of course, {D(Hτ ) = HK

F
}

is an Fτ -event.

So, we may proceed to populate the inequality (6) with the above selections to conclude that

P
k(NK

τ > T ) + 0 ≥ |1− δ − δ| −
√
T (Γ + ε)2/2.

With the above in hand, observe that since τ =
∑K

k=1 N
k
τ , the above already shows that EPk [τ ] = Ω(Γ−2).

To extend this, we employ the following result.

Lemma 27. Under the same setting as Lemma 26, for any k, k′ ∈ [1 : K],

P
k(Nk′

τ > T ) +P
k′

(Nk
τ > T ) ≥ 1− 2δ

2
− 1 + 1/

√
2

2

√
T (Γ + ε)2.

Proof. If k = k′, the claim is true due to Lemma 26. Without loss of generality, let us set k = 1, k′ = 2.
Define the simulator S

1→2 so that {Ŝk
i } = S

1→2({Sk
i }) has the form

Ŝk
i =

{
Sk
i k 6∈ {1, 2} or i ≤ T

i.i.d.∼ N (Γ, 1/2) k ∈ {1, 2} and i > T
.

As in the proof of Lemma 26, the only difference between P
1
S1→2 and P

2
S1→2 is induced by the first T entries

of the k = 1 and k = 2 rows, and thus

KL(P1
S1→2‖P2

S1→2) ≤ 2 · T (Γ + ε)2.

10which we measure in nats, i.e., KL(P‖Q) =
∫

dP
dQ

log dP
dQ

dQ, where the logarithm is natural

11
∫

e−(x−µ)2

√
π

((x− ν)2 − (x− µ)2)dx =
∫

e−(x−µ)2

√
π

(µ− ν)(2x − µ− ν)dx = (µ − ν) · (2µ − µ − ν)
12which says TV(P,Q) ≤

√

KL(P‖Q)/2.
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Further, again, W1 := {N2
τ ≤ T } is (P1,S1→2)-truthful, since for P

1, the simulator S1→2 only modifies the
the law of arm 2, and does this only after T pulls of the same. Similarly, W2 := {N1

τ ≤ T } is (P2,S1→2)-
truthful. Now set E = {N2

τ > T }. Then by (6), we have

P
1(N2

τ > T ) +P
2(N1

τ > T ) ≥ |P1(N2
τ > T )−P

2(N2
τ > T )| −

√
T (Γ + ε)2.

Now observe that if P1(N2
τ > T ) ≥ P

2(N2
τ > T ), then we are already done since by Lemma 26,

P
2(N2

τ > T ) ≥ 1− 2δ −
√
T (Γ + ε)2/2 >

1− 2δ

2
− 1 + 1/

√
2

2

√
T (Γ + ε)2.

So, we may assume that P
1(N2

τ > T ) ≤ P
2(N2

τ > T ). But then we conclude that

2P1(N2
τ > T ) +P

2(N1
τ > T ) ≥ P

2(N2
τ > T )−

√
T (Γ + ε)2 ≥ 1− 2δ − (1 + 1/

√
2)
√
T (Γ + ε)2,

and the conclusion follows since 2P1(N2
τ > T ) +P

2(N1
τ > T ) ≤ 2P1(N2

τ > T ) + 2P2(N1
τ > T ).

With the above in hand, observe that since an arm is pulled at each t, τ =
∑

k N
k
τ . Thus, for any T > 0,

1

K

∑

k

EPk [τ ] =
1

K

∑

k

∑

k′

EPk [Nk′

τ ]

≥ 1

K

∑

k

∑

k′

TPk′

(Nk
τ > T )

=
T

K


∑

k

P
k(Nk

τ > T ) +
1

2

∑

k,k′ 6=k

P
k(Nk′

τ > T ) +P
k′

(Nk
τ > T )


 .

Now employing Lemma 26 and Lemma 27, we have

1

K

∑

k

EPk [τ ] ≥ T

K

(
1− 2δ −

√
T (Γ + ε)2/4

)
+

TK(K − 1)

2K

(
1− 2δ

2
− 1 + 1/

√
2

2

√
T (Γ + ε)2

)

≥ TK

4

(
(1 − 2δ)− (1 + 1/

√
2)
√
(T (Γ + ε)2).

)

Since the bound holds for every T , we can optimise the same13 to conclude that

max
k

EPk [τ ] ≥ 1

K

∑

k

EPk [τ ] ≥ (1− 2δ)3

27(1 + 1/2 +
√
2)

· (1 − 2δ)3K

(Γ + ε)2
≥ (1− 2δ)3K

79(Γ + ε)2
.

If δ ≤ 1
4 , this can be further lower bounded by K

632(Γ+ε)2 . Since the above inequality holds true for every

ε > 0 small enough, the claimed result follows upon sending ε → 0.

13For f(x) = ux− vx3/2, the derivative is u− 3v
2

√
x, while the second derivative is negative over [0,∞), yielding the global

maxima at (2u/3v)2 , with the maximum evaluating to 4u3/9v2 −8u3/27v2 = 4u3

27v2 . Setting u = (1−2δ), v = (1+1/
√
2)(Γ+ε),

this evaluates to 4
27

· (1−2δ)3

(1+1/
√

2)2(Γ+ε)2
.
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