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Abstract

Fine-tuning is arguably the most straightforward way to tailor a pre-trained model
(e.g., a foundation model) to downstream applications, but it also comes with
the risk of losing valuable knowledge the model had learned in pre-training. For
example, fine-tuning a pre-trained classifier capable of recognizing a large number
of classes to master a subset of classes at hand is shown to drastically degrade
the model’s accuracy in the other classes it had previously learned. As such, it is
hard to further use the fine-tuned model when it encounters classes beyond the
fine-tuning data. In this paper, we systematically dissect the issue, aiming to answer
the fundamental question, “What has been damaged in the fine-tuned model?” To
our surprise, we find that the fine-tuned model neither forgets the relationship
among the other classes nor degrades the features to recognize these classes.
Instead, the fine-tuned model often produces more discriminative features for these
other classes, even if they were missing during fine-tuning! What really hurts the
accuracy is the discrepant logit scales between the fine-tuning classes and the other
classes, implying that a simple post-processing calibration would bring back the
pre-trained model’s capability and at the same time unveil the feature improvement
over all classes. We conduct an extensive empirical study to demonstrate the
robustness of our findings and provide preliminary explanations underlying them,
suggesting new directions for future theoretical analysis. Our code is available at
https://github.com/0SU-MLB/Fine-Tuning-Is-Fine-If-Calibrated.

1 Introduction

Pre-trained models (e.g., foundation models) have become an indispensable component in modern
Al development [2]. Building upon neural networks with millions if not billions of parameters and
trained with gigantic amounts of data, these models have led to groundbreaking results in various
domains [30, 32, 39] and shown several emerging capabilities not observed priorly [21, 27, 2].

Yet, to obtain superior downstream performance, fine-tuning is still often needed. Typically, fine-
tuning optimizes the model’s performance on the available downstream data. Taking image classifica-
tion as an example, end-users typically fine-tune the pre-trained classifier to maximize the accuracy
of a certain set of classes at hand, no matter whether they know up front that it is the complete set
of classes or not. As a result, it is hard to further apply the model to some other classes, even if the
model had learned about those classes in pre-training. (Please see Figure 1 for an illustration.)

A recent work by Tu et al. [49] systematically evidenced such a problem. They fine-tuned a pre-
trained classifier with a subset of classes it had learned (i.e., fine-tuning classes) and found this led to a
drastic accuracy drop in the other classes (i.e., absent classes). Tu et al. [49] viewed this as an instance
of catastrophic forgetting [12, 24, 7] and suggested two ways to address it: (1) identifying the model
updating direction that can improve both the fine-tuning and absent classes; (2) preserving class
relationships. They presented a strong baseline, combining a new stochastic gradient descent (SGD)
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strategy, feature rank regularization [6, 46], distillation [16], and frozen classifiers [29], achieving
decent results on preserving absent class accuracy while improving fine-tuning class accuracy.

We build upon [49] to further analyze the problem of fine-tuning a pre-trained model. Specifically,
we want to understand which part of the pre-trained classifier or what knowledge it had learned is
damaged after fine-tuning with a subset of classes.

We first analyze the feature extractor of the fine-tuned model. If the fine-tuned feature extractor forgets
the absent classes, the extracted features would exhibit poor discrimination among these classes
or confuse them with the fine-tuning classes. We apply the Nearest Class Mean (NCM) classifier
[5, 44, 55] to assess the feature quality after fine-tuning, using the hold-out data for calculating class
means. Surprisingly, the fine-tuned feature extractor does not degrade but often improves for the
absent classes! The resulting features could better separate absent-class data and raise the NCM
classification accuracy over all the classes. This finding suggests that fine-tuning with merely a subset
of classes can already holistically improve the feature extractor for the downstream domain.

To search for the root cause of accuracy drops, we analyze the fine-tuned classifier as a whole but
decompose its prediction rule into two parts: a binary classifier separating fine-tuning and absent
classes, followed by the multi-class classifier dedicated to each set of classes. We find that the
fine-tuned model can distinguish among the absent classes very well, implying that the absent-class
relationship in the fully connected layer is preserved. The only component that is damaged but ends
up failing the whole model is the binary classifier. Concretely, the biased logits towards fine-tuning
classes make most absent-class examples misclassified as fine-tuning classes.

The above findings are encouraging and have profound implications! They imply that a simple post-
processing calibration can potentially address the fine-tuned model’s inferior accuracy on the absent
classes, bringing back the pre-trained model’s capability while unveiling the improved feature quality
over all classes. Indeed, by adding a calibration bias factor to all the absent classes’ logits [4, 41],
the fine-tuned model can successfully reclaim the absent class accuracy and obtain decent overall
improvement in the downstream domain (Figure 2). The resulting performance even beats the
strong baseline [49] in many of the benchmarks, including ImageNet and its variants [8, 15, 54],
Office-Home [53], and VTAB [64], without complicated training and hyperparameter setting.

The “unexpected benign behaviors” of fine-tuning with a subset of classes raise several interesting
follow-up questions. For example, are there any specific setups in our experiment contributing to the
benign behaviors? If not, what are the explanations underlying these benign behaviors?

We consider different splits of fine-tuning and absent classes in terms of their distributions and
numbers. We find that the benign behaviors are robust to the number of fine-tuning classes. Even if
the fine-tuning and absent classes are semantically distinct (e.g., animals as fine-tuning and vehicles as
absent classes), the absent class accuracy after fine-tuning stays quite close to that of the pre-trained
model without suffering catastrophic forgetting. We further investigate different optimizers for
fine-tuning. When the SGD optimizer is used, the benign behaviors are robust to hyperparameters
such as learning rates and weight decay. When more advanced, adaptive optimizers like Adam [23]
are applied, we observe noticeable degradation with improperly selected hyperparameters. Still, with
smaller enough learning rates and weight decay, the benign behaviors show up and hold.



We conduct further analyses to understand the benign behaviors. Specifically, we investigate how
fine-tuning with a subset of classes impacts the other (i.e., absent) class features. Our derivation
shows that after each SGD step, the feature update of an absent-class example is governed by the
gradients w.r.t. its most similar fine-tuning class examples. Suppose the gradients w.r.t. fine-tuning
class data could effectively capture the downstream-specific information, our derivation offers a
preliminary explanation of why fine-tuning with a subset of classes could improve the other, absent
class features in the downstream domain. Please refer to section 6 for details and other analyses
regarding the class relationship, frozen classifiers, etc.

Remark. We systematically dissect the damage caused by fine-tuning a pre-trained classifier with a
subset of classes at hand. Our insights suggest that a simple post-processing calibration is sufficient
to mitigate the damage, reclaiming the pre-training model’s capability while holistically improving
the accuracy in the downstream domain. Our study also opens up several interesting questions worth
further exploration. For example, it is intriguing that end-to-end fine-tuning of the whole model
without additional regularization and intermediate supervision only degrades a part of the model.

We note that NCM and post-processing calibration are well-known machine learning techniques and
we certainly do not claim them as our novelties. Instead, we use them because we find their respective
properties and application scenarios suitable for our problem. We use NCM to assess feature qualities
because its performance solely depends on features, not the last fully connected layer. We identify
post-processing calibration as a promising solution because we find that the only major damage in
the fine-tuned model is the biased logits towards fine-tuning classes. In other words, if the fine-tuned
model also suffers from feature degradation or class relationship forgetting (to our surprise, it does
not), calibration alone is unlikely sufficient to address the problem.

2 Related Work

Fine-tuning. The basic methods are linear probing and full fine-tuning [26]. Parameter-efficient fine-
tuning (PEFT) [60, 35, 50] has attracted increasing attention lately (mainly for Transformers [52]),
aiming to update only a fraction of pre-trained parameters on top of linear probing. We focus on
full fine-tuning because it is model-agnostic and arguably still the most widely used method. That
said, we expect the insights and implications from our study not to be limited to full fine-tuning and
potentially transferable to other fine-tuning methods as well.

Risk in fine-tuning. When the downstream data is scarce, fine-tuning is prone to over-fitting and
needs certain forms of regularization [28]. Even with sufficient data to represent the downstream task,
fine-tuning may risk losing valuable knowledge the pre-trained model had learned. For example, [57]
showed that fine-tuning with data from a specific domain (e.g., ImageNet-1K real images) degrades
the pre-trained model’s generalizability to other domains (e.g., ImageNet-Sketch/Rendition). On an
orthogonal dimension, [49] showed that fine-tuning a pre-trained classifier with a subset of classes
it had learned led to a huge accuracy drop in the other classes. Similar phenomenons have been
observed in [66, 40]. Along with these findings come several proposed solutions. [57] showed that a
weight interpolation between the pre-trained and fine-tuned models reclaims the pre-trained model’s
generalizability. [49] investigated many approaches, including weight interpolation, but found they
are insufficient to preserve the accuracy in the other classes. They presented a novel SGD strategy
that helps identify the gradient direction benefiting both fine-tuning and other classes. [66] developed
dedicated solutions to CLIP-based vision-language models to preserve accuracy for absent classes.

We 1) consider the fine-tuning scenario studied in [49] and 2) use the standard neural network
classifier architecture with a fully connected layer on top. Our focus is not to propose a brand-new
solution and compete with existing ones, but to understand the underlying cause of the accuracy drop.

Continual learning and catastrophic forgetting. Fine-tuning a pre-trained model with a subset of
classes it had learned is related to continual learning [7] but has several differences. Class-incremental
learning [33, 36] aims to expand the model’s label space. In contrast, we suppose the pre-trained
model had learned a wide range of classes; fine-tuning is meant to tailor it to a downstream domain
(e.g., a different image style), not to learn extra categories. Compared to domain-incremental learning
[33, 31], we do not ask the fine-tuned model to retain its performance in the pre-training domain. That
said, the accuracy drop observed in our study and continual learning can all be considered certain
forms of catastrophic forgetting [37, 12]. Indeed, a recent survey by Wang et al. [56] argued that
forgetting is a common issue in various research fields, including foundation models, meta-learning,



test-time adaptation, and generative models, among others. We thus expect our findings to serve as a
valuable reference for addressing the forgetting issue resulting from fine-tuning.

Post-processing calibration. Training with class-imbalanced data is known to produce biased logits
towards major classes [61]. Such an issue not only appears in long-tailed recognition [20, 18] but also
few-shot learning [62, 45] and continual learning with replay buffers [48, 47, 34]. Post-processing
calibration [3, 38, 58, 59] is a widely applicable method to address this issue, which adjusts model
confidence during inference. Popular methods include normalizing classifier norms [20, 17] and
adjusting logits according to class sizes [61, 38, 22, 65]. Unlike the machine learning problems
above, whether or not post-processing calibration can address the accuracy drop in our problem is not
immediately clear. Without access to the absent class data, fine-tuning may have ruined the features or
linear classifiers corresponding to these classes. If so, simply performing post-processing calibration
cannot reclaim the accuracy of the absent classes. Our main contribution is therefore not merely the
solution, but the systematic study that identifies post-processing calibration as an effective solution.

Other paradigms. There are several other machine learning paradigms related to the fine-tuning
setting we study. We refer the readers to [49] for an in-depth discussion and comparison.

3 Background

Problem definition. We study the problem of fine-tuning a pre-trained classifier capable of recogniz-
ing C classes, using data from a subset of C'* classes at hand. The goal is to tailor the classifier to the
downstream domain (e.g., a different image style).

More formally, let us denote by Dy = {(x;,y; € S)}¥, the data set for fine-tuning, where S is a
strict subset of the pre-trained model’s label space Y, i.e., |S| = C* < C = |))|. Let us denote
a neural network classifier by § = argmax,..y w, fo(x), where x is an input sample, fg is the
feature extractor parameterized by 8, and W = {w.}<_, is the set of linear classifiers, a.k.a., the

fully-connected (FC) layer. We call {8, W'} the model parameters. The value w, fg(x) is often
referred to as the decision value or logit of class c.

Without loss of generality, we define Y = {1,--- ,C}and § = {1,--. ,C*}. That is, they share the
first C* classes. We call S the fine-tuning classes and use Y = {(C* + 1),--- ,C} to denote the
absent classes during fine-tuning, where SNUY =Pand SUU = .

Fine-tuning and its issue. Full fine-tuning updates the pre-trained model {6», W} by

N
{67, Wr} =argmingg yy Y £(:,3::0, W), with {6, W} initialized by {80, Wo},
i=1

where ¢ denotes the cross-entropy loss; {87, W} denotes the fine-tuned model.

Since Dy, only covers a subset of classes &, the fine-tuned model {87, W} was observed to degrade
drastically in classifying data from the absent classes U [49]. Figure 2 shows one example: the absent
class accuracy in the y-axis drops from ~ 23% (») to only ~ 3% (marked ) after fine-tuning, even
though the fine-tuning class accuracy in the x-axis increases hugely by roughly 60%.

Terminology. Tu et al. named the above setting Holistic Transfer (HT) [49]. The core challenge is
how to maintain and even improve the fine-tuned model’s ability to recognize the C' — C* absent
classes in the downstream domain. For ease of reference, we use the following terms interchangeably.

» fine-tuning classes & seen classes; absent classes & unseen classes;
* downstream domain & target domain; pre-training domain & source domain;
* fine-tuning & naive fine-tuning.

We emphasize that the “unseen” classes are indeed seen in pre-training but absent in fine-tuning.

4 A Systematic Study of Fine-Tuning (FT)

Seeing the ability to classify the absent classes “disappears” after fine-tuning, we are curious about

* how each component of the fine-tuned model {87, W} contributes to it;
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FIGURE 3. Accuracy gain after fine-tuning. We consider the neural network (NN) classifier with the FC
layer (section 3) and the NCM classifier using only features (Equation 2). We show the average accuracy gain on
fine-tuning classes (Accs,y) and ( ). While the NN classifier suffers drops in Accyy;y,
the NCM classifier enjoys a consistent gain, suggesting the holistic improvement of features after fine-tuning.

» whether the ability is “forgotten” forever or “buried” temporarily by some other damaging factors
emerging during fine-tuning.

To this end, we conduct a systematic analysis, aiming to dissect the degradation caused by fine-tuning.

4.1 Experiment setup: datasets, models, and evaluation metrics

We focus on two of the largest datasets used in [49]. We also consider the ImageNet Distribution
Shift benchmark widely used in out-of-distribution (OOD) generalization [57].

1. Office-Home [53]: a domain adaptation dataset with 65 classes and 4 domains. For each source-
target pair, we pre-train a ResNet-50 [14] using the source data and fine-tune it on 30 randomly
selected classes in the target domain. We evaluate the model on all 65 classes in the target domain.

2. VTAB [64]: a set of 19 visual recognition datasets. We follow [49] to use the 8 datasets provided
with text labels and use CLIP (ViT-B/32) [42] as the pre-trained model. We extract the class name
embedding to construct the FC layer and discard the CLIP text encoder afterward. We fine-tune
the model on the randomly selected 50% of classes in each dataset and test it on all the classes.

3. ImageNet-R [15] and ImageNet-S [54]: datasets for OOD detection and generalization [57].
ImageNet-R [15] consists of 200 ImageNet classes [8, 43] with renditions (paintings, cartoons,
etc.). ImageNet-S [54] consists of 1K ImageNet classes with sketching. We use ResNet-50 (ViT-
B/32 [9] results in Appendix D) pre-trained on ImageNet-1K. We fine-tune them on randomly
sampled 50% of classes (100/500 for ImageNet-R/S, respectively) and test them on all the classes.

By default, we use the cross-entropy loss and optimize the model using the SGD momentum optimizer.

Evaluation metric. Let Dy = {(@;,y; € YV)}., denote the downstream test set covering all the
classes, we define the accuracy of classifying data belonging to classes 4 into the label space B by

> 1y; € Al x 1[y; = argmax,cp w/] fo(a;)]
> Ly € A] '

For instance, Accs;y is the accuracy of classifying fine-tuning class data into all C classes; Accy/y
is the accuracy of classifying absent class data into all C classes. We note that these are the two
accuracies reported in [49] and depicted in Figure 2. In this paper, we further consider Accs,s and
Accyju, corresponding to classifying each set of data into their respective label space.

(1)

Accayp =

4.2 Is the fine-tuned feature extractor damaged?

We first investigate the feature extractor fg, i.e., whether the fine-tuned extractor fg, forgets the
discriminative ability to differentiate absent-class samples. We apply the NCM classifier [5, 44, 55],
whose accuracy is solely governed by the feature quality, to examine the feature extractor. Given a
test example x, the NCM classification rule is

for(x)

for @)l M

which outputs the class § € B whose feature mean g is the closest to fg (). We hold out a subset
of the downstream data to calculate the class mean, for both fine-tuning and absent classes.

. 2)

2

§ = argmin,ep
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We compute the NCM accuracy (with B = ) on the fine-tuning class and absent class data using
the fine-tuned (FT) feature extractor fg,, i.e., Accs;y(fe;) and Accyy(fe, ). We also apply the
pre-trained feature extractor fg., and obtain Accs;y(feo) and Accyy(feo ). We report the NCM
accuracy gap between the two feature extractors in Figure 3. As one may expect, the FT extractor
fe, improves the fine-tuning class accuracy. However, surprisingly, it also improves the absent class
accuracy without catastrophic forgetting. This result sharply contrasts the accuracy obtained by the
full neural network (NN) classifier (cf. section 3). As shown in Figure 3, the absent class accuracy
by the NN classifier drops by 15 ~ 40% after fine-tuning. In short, we find that fine-tuning with a
subset of classes can adapt the feature extractor holistically to the downstream domain to improve
both the fine-tuning and absent classes, capturing the gradient direction of the domain shift [49].

Remark. We use NCM only to assess feature qualities, not as the final classifier. After all, we do not
have absent class data to compute the class means. This contrasts the use of NCM in continual or
few-shot learning, where the prior- or few-shot class data are accessible (e.g., through replay buffers).

We emphasize that the feature improvement here is not as trivial as observed in conventional transfer
or few-shot learning. In these learning problems, the pre-trained model typically had not learned
about the absent classes; thus, there is no risk of forgetting them. Besides, the fine-tuning and absent
classes are often treated as two separate tasks in evaluation; thus, it is unclear whether the fine-tuned
feature extractor improves the overall classification accuracy. In contrast, in our fine-tuning setting,
the pre-trained model had already learned about the absent classes. Fine-tuning thus risks forgetting
them. However, as shown in Figure 3, fine-tuning improves absent class accuracy, in the context
where the fine-tuning and absent classes are evaluated together in a single task.

4.3 What is damaged in the fine-tuned neural network classifier?

The findings in subsection 4.2 eliminate the feature extractor 87 from the candidate root causes of the
degraded FT model {07, Wy }. The drastic drop of absent class accuracy thus must come from the
FC layer W or its alignment with the feature extractor. To analyze what goes wrong, we decompose
the softmax probability induced by the neural network classifier as follows,

gy = (Wi fo@) (@)
plele) Y ceyexp (wg fo(x)) Zc’e(SUU} zer () @
— Ec’EM Ze! (:B) % zc(:}::) )

Yoes e (T) + Xaauze(®) Yoy ze ()
where z.(z) = exp (w/ fo(x)). Let c be an absent class, the 1% term stands for the predicted
probability that = belongs to the absent classes U, not the fine-tuning classes S the 2™ term stands
for the probability that within the absent classes U,  belongs to class ¢. Correctly classifying an
absent class example (x,y € U), i.e., y = argmax,.y p(c|x), thus requires 1) obtaining a high
probability in the 1* term and 2) correctly classifying the example among absent classes.

Building upon this insight, we analyze the accuracy of taking arg max of the 2™ term to classify
absent class examples. We note that this is exactly the Accy;; defined in subsection 4.1. As shown
in Figure 4, Accy, 14 does not degrade but improves in the first few epochs of fine-tuning and stays
stable afterward. This result implies two key messages. First, the FT model does not forget its ability
to distinguish among absent classes. Second, the drastic accuracy drop of Accy/y results from the
1% term in Equation 4 — the binary classifier separating fine-tuning and absent classes.

As shown in Figure 5, the predicted probability that absent class examples belong to absent classes
(i.e., the average of the 1 term over absent class examples) reduces notably along with the fine-tuning



| ImageNet-{R, S} | VTAB | Office-Home

Metrics (%) |Accy,y |Accsy |Accu y|Accy y|Accs jy |Accy y |Accy /y |Aces ry [Accuy
Pre-trained 236 | 235 | 238 | 583 | 593 | 574 | 638 | 618 | 655
Fine-tuning 433 | 813 | 35 | 628 | 8.4 | 301 | 535 | 883 | 224
Tu er al. [49] 475 | e21 | 231 | 638 | 839 | 435 | 720 | 782 | 666
Fine-uning + yarg| 559 | 803 | 30.5 | 668 | 853 | 482 | 650 | 7.7 | 449
Fine-uning +ypcy | 7.1 | 601 | 540 | 574 | 471 | 678 | 722 | 823 | 631
Fine-tuning + v+ | 60.8 | 736 | 476 | 693 | 756 | €28 | 727 | 791 | 669
Oracle | 711 | 724 | 98 | 806 | 798 | 813 | 821 | 812 | 829

TABLE 1. Post-processing calibration can effectively bring back the pre-trained model’s capability in recogniz-
ing absent classes. Oracle is based on a classifier fine-tuned with both fine-tuning and absent class data.

epochs, suggesting the tendency to misclassify an absent class sample as fine-tuning classes. Indeed,
as shown in Figure 6, for most of the absent class samples, the FT model ends up producing a lower
value of max,cy w, fg(x) than max.cs w, fg(x), misclassifying them into fine-tuning classes. In
short, the main factor that damages the FT model’s ability to correctly classify absent class examples
is the biased logit values towards fine-tuning classes.

5 Post-Processing Calibration for the Rescue

The systematic study in section 4 highlights several key characteristics of the FT model {61, W }.
First, the model retains and even improves the accuracy of classifying absent class samples when
the label space is limited to absent classes (i.e., Accy y)- Second, the model tends to assign much

higher decision values 'w;,r fo(x), ak.a. logits, to the fine-tuning classes, ending up misclassifying
most absent class samples into fine-tuning classes and thus hurting Accyy/y.

These characteristics suggest that a simple, post-processing calibration of the FT model’s logits could
potentially bring back the pre-trained model’s ability to classify absent classes correctly. To this end,
we apply the calibration approach proposed in a different context of zero-shot learning [4], which
adds a factor -y uniformly to the logits of all absent classes, leading to a new classification rule

)

This calibration factor lifts the logits of absent classes to a level comparable with those of fine-tuning
classes. Suppose an absent class example is correctly classified among absent classes but misclassified
into fine-tuning classes, adding a sufficiently large - could reclaim the correct prediction.

§=argmax.ey w] fol@) +y1lc € U]

We design two approaches to properly set y without accessing g
the absent class data. Average logit gap (ALG) estimates v 3~ -
by the average logit gap between non-ground-truth fine-tuning ﬁ jg | \ .
classes and absent classes in the fine-tuning data D,;. Pseudo ?":30 N 1Y _
cross-validation (PCV) partitions Dy, into pseudo-fine-tuning 8.,

and pseudo-absent classes and finds ~ that can balance the =
pseudo-fine-tuning and pseudo-absent class accuracy. We also

ImageNet - ImageNet-R (50% Fine-tuning)

*
< 0 20 B0

investigate a “‘cheating’ ~yx based on the test data to estimate
the upper-bound results. More details are in Appendix B.

Performance. Table 1 shows the results on ImageNet-({R,
S}, VTAB, and Office-Home, averaged over datasets within
each benchmark. Despite its simplicity, calibration effectively
boosts the FT model’s accuracy on the absent classes, achieving
comparable accuracy to the SOTA method proposed in [49].
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On ImageNet-{R, S}, both calibration approaches outperform the SOTA by a notable margin.

Compatibility of calibration. Post-processing calibration is
potentially applicable to any model. In Figure 7, we extend the
calibration approach to the pre-trained model and the SOTA
model [49] with varying . Calibration can effectively balance
Accsyy and Accy;y and trade one for the other. Interestingly,
we find the curve of the FT model, in most cases, can well cover
those of the other models. To characterize this, we follow [4]

AUSUC  [IN-{R, S}|VTAB| O-H
Pre-trained | 0.083 |0.444/0.499
Tueral. [49] 0.317 |0.553[0.618
Fine-tuning | 0.439 |0.5860.632

TABLE 2. Results in AUSUC.
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FIGURE 8. The performance gain on AUSUC and NCM Accy, /sy (from the pre-trained model to the FT model),
under different data splits and fine-tuning class sizes. The hierarchical split of ImageNet-S contains dog (118
classes), mammal (218 classes), and animal (398 classes) as the fine-tuning classes.

to calculate the Area Under the Seen-Unseen ((Fine-tuning / Absent)) Curve (AUSUC) to summarize
the overall performance of each model across the entire spectrum of . Table 2 reports the AUSUC.
The FT model notably outperforms the other methods, showing its robustness in learning from a
subset of classes.

Remark. Many post-processing calibration methods have been proposed (cf. section 2). Our study
is not meant to compare them, but to show that calibration can effectively address the issue caused
by fine-tuning. We also note that Tu et al. [49] has investigated many solutions, including weight
interpolation [57], but found them less effective them their proposed SOTA method.

6 Ablation Study and Additional Analysis

Data split and fine-tuning class size. In the default setup of [49], fine-tuning classes and absent
classes are uniformly randomly sampled and have each portion close to 50%. In practice, however,
end-users may have a smaller number of classes at hand or collect data from semantically or
conceptually similar classes whose appearances are positively correlated. To explore such practical
situations, we investigate how 1) a biased sampling such that the fine-tuning classes are conceptually
or distributionally similar to each other than the absent classes and 2) a smaller size of fine-tuning
classes would impact the performance of fine-tuning. Specifically, for Office-Home, classes that
are similar in the pre-trained model’s feature space are selected as fine-tuning classes, leaving the
rest as absent ones. We also vary the number of fine-tuning classes. For ImageNet-S, we leverage
the WordNet [11] hierarchy to select coherent groups, such as dog (118 classes) and mammal (218
classes) as the fine-tuning classes. Please see Appendix A for details.

Figure 8 illustrates the performance gain on AUSUC and NCM Accyy (from the pre-trained
model to the FT model). Notably, the hierarchical split poses a greater challenge for fine-tuning
in transferring domain knowledge from fine-tuning classes to absent classes, as evidenced by its
relatively minor AUSUC improvements compared to the random split. This difficulty is attributed to
the inherent challenge of transferring features learned from dogs or animals to distinctly different
classes like TVs and trucks. Furthermore, smaller fine-tuning class sizes present additional difficulties,
leading to less pronounced improvements, especially in Office-Home. In summary, our analysis
suggests that the benign behaviors of fine-tuning are robust in more practical and difficult splits but
its performance requires further improvement when the fine-tuning class size is exceptionally small.
Detailed experimental setup and additional results are available in Appendix D.

Optimizer. Prior work [49] predominantly used the SGD optimizer. To investigate optimizers’
influence in fine-tuning, we scrutinize six popular optimizers including SGD with Momentum,
Adam [23], AdaBelief [67], Adadelta [63], AdaGrad [10] and RMSprop. Our study includes 1) a
variation across learning rates (LR), adjusted as multipliers of the default ones, i.e., [10,1,0.1,0.01] x
default LR, and 2) three distinct weight decays: [0, 5e — 4, 5e — 3]. The AUSUC, as illustrated in
Figure 9, reveal the robustness of the benign behaviors to different hyperparameter settings of the
SGD optimizer. Conversely, more advanced, adaptive optimizers show higher sensitivity when
hyperparameters are not properly chosen. Nevertheless, under small enough learning rates (and
weight decay), they perform similarly to SGD and notably improve the pre-trained model (whose
AUSUC is around 0.5 in Office-Home).

Why is absent class relationship preserved? To elucidate the preservation of the absent class
relationship, we analyze how classifier weights W change within the fine-tuning and absent classes.
We commence by calculating the L2 normalized weight changes between fine-tuning and the pre-
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FIGURE 10. Classifier update direction similarity within fine-tuning (left) and absent (right) classes for
ImageNet-S. The update directions are highly similar within absent classes, thus preserving the inter-class
relationships among absent classes.

W —Wpa

trained model AW = W —Woll" . Visualizing the cosine similarity of the change within fine-tuning

and absent classes, i.e. AWY(AWY)T and AWU(AWY)T allows us to assess the directional
similarities in classifier updates. As depicted in Figure 10, there exists a pronounced dissimilarity in
the update directions among fine-tuning classes since the gradients aim to separate fine-tuning classes
during fine-tuning. Conversely, a notable similarity in the update directions is observed among absent
classes. The absence of positive signals from absent class data results in nearly uniform updates
of absent classifiers, thereby preserving the class relationships among absent classes throughout
fine-tuning. More results for other datasets can be found in Appendix D.
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Absent Features and linear classifier Alignment in fine-tuning. section 4 has demonstrated that
the alignment between absent features and the linear classifier (i.e., the FC layer) remains intact during
fine-tuning, as evidenced by the stable or improved Accy 4, despite the absence of absent class data.
This indicates that fine-tuning retains, and even enhances, its capacity to differentiate among absent
classes. To delve deeper into this phenomenon, we scrutinize the behavior of ground-truth class (GT)
vs. the largest non-GT absent logits for absent test samples. As depicted in Figure 12, although both
sets of logits exhibit a decline throughout the training process— attributable to the lack of absent data
during fine-tuning—the relative difference between them persists, underlining a consistent and stable
alignment between the features and the linear classifier. Future work may delve into the theoretical
understanding of this observed alignment between features and classifiers for absent classes.

Why do absent class features improve after fine-tuning? During fine-tuning, the pre-trained
model is updated solely by gradients derived from the fine-tuning class data. Surprisingly, the
fine-tuned feature extractor does not forget but improves its ability to differentiate the absent class
data. Here, we explain it by considering a two-layer line ar neural network ) = arg max, w] (Uz) =

arg max, w, z. Let us denote by D = {(@i,u: € S)}Y., a mini-batch during SGD, and denote
by V¢ ‘the gradlent w.r.t. z; = Ux; using the cross- entropy loss. The gradient w.r.t. the feature
extractor U is thus Vyf = £ 3°,(Vz.0)z . Suppose we apply SGD with a learning rate 7, the
updated feature extractor is U « U — £ 3°.(V,£)x; . Building upon this formula, we can further
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derive how the feature z = Ux of an absent class data = changes after the model update

n T n T
z (U N Zﬁ:(vzif)s{:i ) T=2z- Z,: Ve bz, x). (6)

Namely, the update of z is governed by its similar training examples — those x; with high inner
products .  with 22 — and their corresponding feature gradients V ,£. Suppose the domain shift
affects similar classes similarly and the gradients w.r.t. the fine-tuning class data and features could
effectively overcome the domain shift, Equation 6 offers a preliminary explanation of why fine-tuning
could improve the absent class features in the downstream domain.

To further illustrate this, we design a toy example with four classes, visually depicted by different
colors in Figure 11. Blue and cyan denote the fine-tuning class data; red and magenta denote the
absent class data. The dimensionality of x and z are set to be 2; the size of U is thus 2 x 2. We
deliberately set x to be non-negative to simulate the output of a ReLU operation. We create the
pre-training dataset and the fine-tuning dataset by performing local translations to the data. We
then pre-train a two-layer multi-layer perceptron (MLP) on the pre-training data with four classes
while keeping the first layer’s weight (i.e., U) frozen as an identify matrix to ease visualization (i.e.,
z = x). After pre-training, we then fine-tune the model on the downstream fine-tuning data with
only two classes without freezing U. (Please find more details about the data creation and the model
architecture in Appendix A.) As shown in Figure 11, after fine-tuning, the update of the absent class
features (from o to ) follows the update of their closest fine-tuning class features, even though the
absent class data is not involved in fine-tuning. Moreover, different classes stay quite distinguishable
in the fine-tuned feature space, suggesting that fine-tuning with a subset of classes would not degrade
but improve the feature quality.

More analysis. Due to the page limit, we leave more analyses including frozen classifiers and frozen
backbones in fine-tuning, the investigation of biased logits toward fine-tuning classes, and absent
class relationship analysis in Appendix C.

7 Conclusion

“What happens if one fine-tunes a pre-trained classifier with a subset of classes?” Prior work showed
that while it improves the fine-tuning class accuracy in the downstream domain, it drastically degrades
the model’s ability to recognize the other classes the model had previously learned. Our systematic
study, however, provides a different opinion. We found that fine-tuning does not degrade but often
improves the model’s ability to recognize the other classes, if the classifiers’ logits are well-calibrated.
We expect our study to serve as a valuable reference for practical fine-tuning of pre-trained models.

2Suppose a and ;, V7, are all non-negative vectors (for instance, coming from a ReLU operation on top of
the prior neural network layers), their inner products will be non-negative as well.
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Appendix
We provide details omitted in the main paper.

» Appendix A: experiment and dataset details

* Appendix B: additional details for calibration

* Appendix C: additional analysis of fine-tuning

* Appendix D: detailed results of different architectures, datasets, and splits.

Our study is built upon [49]. Tu et al. [49] named the above the setting Holistic Transfer (HT). For
ease of reference, we use the following terms interchangeably.

» fine-tuning classes & seen classes; absent classes & unseen classes;
* downstream domain & target domain; pre-training domain & source domain;
* fine-tuning & naive fine-tuning.

We emphasize that the “unseen” classes are indeed seen in pre-training but absent in fine-tuning.

A Experiment and Dataset Details

A.1 Main Investigation (cf. section 3.1 in the main paper)
A.1.1 Dataset Details

ImageNet-Variants includes ImageNet-R(endition) [15] and ImageNet-S(ketch) [54]. ImageNet-
R comprises 30,000 images across 200 ImageNet classes with various renditions (e.g., paintings,
embroidery, etc.) while ImageNet-S consists of 50,000 sketch-like images for 1K ImageNet classes.
Each class is randomly divided into training and testing sets following an 8:2 split. 50% of the classes
are randomly selected as fine-tuning classes (100 for ImageNet-R and 500 for ImageNet-S), with the
remainder as absent. The downstream test set encompasses all the 200 classes for ImageNet-R and
1K classes for ImageNet-S to evaluate model performance across the full class spectrum.

Office-Home [53] is a popular domain adaptation dataset, comprising 65 classes from 4 domains
(Art, Clipart, Real, and Product). Following the setup in [49], Art and Real are used as pre-trained
domains and each pre-trained model is then transferred to each of the three remaining downstream
domains individually, resulting in six (pre-training, downstream) pairs. Within each downstream
domain, each class is randomly split into training and testing sets following a 7:3 split. 30 classes are
randomly selected as fine-tuning classes; the remaining 35 classes are absent classes. The downstream
test set contains all the 65 classes in each downstream domain.

VTAB [64] encompasses a diversity of image classification tasks. To enable zero-shot predictions
with CLIP, Tu et al. [49] only uses the tasks that provide text names for classes: Caltech101,
CIFAR100, DTD, EuroSAT, Flowers102, Pets, Resisc45, SVHN, and SUN397. Notably, the SVHN
dataset was excluded from our experiments due to CLIP’s difficulty in accurately predicting numerical
labels as shown in [49]. Adhering to the practice in [49], we randomly sample half of the classes as
tine-tuning and the remaining as absent. The downstream training set only includes images of the
fine-tuning classes; the test set contains images from all classes.

Table 3 summarizes the statistics of all the datasets used in this paper.

A.1.2 Training Details

For the ImageNet-Variants benchmark, we use an ImageNet-1K pre-trained ResNet-50 (results in the
main paper) and ViT-B/32 (results in the appendix) as pre-trained models. The pre-trained model is
fine-tuned on downstream tasks for 50 epochs using the SGD optimizer with a learning rate le-3,
momentum 0.9, weight decay le-4, and batch size 64. For the compared method proposed in [49], we
set the hyper-parameters Lgisrin = 10 and Lpan = 100 for ImageNet-R and Lgisin = 1 and Lok = 5
for ImageNet-S.



TABLE 3. A statistic summary of the datasets used in this paper.

Dataset ‘ Pre-training | Downstream ‘ #Classes ‘ #Fine-tuning | #Downstream | #Downstream
domain domain classes training test
ImageNet- | ImageNet- ‘ imagetiet- ‘ 200 ‘ 100 ‘ 12567 ‘ 5924
! endition
Variants 1K
‘ ‘ ImageNet- ‘ 1000 ‘ 500 ‘ 20444 ‘ 10000
Sketch
Clipart 1,471 1,330
Art Product 65 30 1,265 1,361
Office- Real 1,413 1,335
Home Art 857 750
Real Clipart 65 30 1,493 1,330
Product 1,459 1,361
Caltech101 102 51 1,371 6,084
CIFAR100 100 50 22,513 10,000
DTD 47 23 920 1,880
EuroSAT 10 5 8,424 5,400
VTAB CLIP Flowers102 102 51 510 6,149
Pets 37 18 1,445 3,669
Resisc45 45 22 9,159 6,300
SUN397 397 198 37,542 21,750

For the VTAB benchmark, we use the ViT-B/32 CLIP models as the backbone. Specifically, we
extract the class name embedding to construct the FC layer and disregard the CLIP text encoder
afterward. The pre-trained model is fine-tuned on downstream tasks for 20 epochs using the SGD
optimizer with a learning rate le-5, momentum 0.9, weight decay 0.0, and batch size 64. For the
compared method proposed in [49], we follow their paper and set the hyper-parameters Lgisin = 1
and Ly = 5.

For the Office-Home dataset, we follow the training recipe of [49]. Firstly, the pre-trained classifier
is obtained by fine-tuning an ImageNet-1K pre-trained ResNet-50 with the source domain data for
20 epochs using the SGD optimizer with a learning rate le-3, momentum 0.9, weight decay 5e-4,
and batch size 64. After that, we fine-tuned the resulting model on each target domain for 20 epochs
using the SGD optimizer with a learning rate 1e-4, momentum 0.9, weight decay Se-4, and batch size
64. For the compared method proposed in [49], we follow their paper and set the hyper-parameters
.Cdjsml =10 and ,Cﬁmk = 100.

Computational resources. We use a combination of NVIDIA RTX A6000 and NVIDIA 2080Ti
GPUs. Since we worked on fine-tuning, the computation is quite manageable.

A.2 Ablation Study (cf. section 5 in the main paper)

In section 5 of the main paper, we investigate how 1) a biased sampling of fine-tuning and absend
classes and 2) a smaller size of fine-tuning classes would impact the performance of fine-tuning.
Here, we provide details of how we split the data.

In the Office-Home dataset, we strategically select fine-tuning classes that are similar in the pre-
trained model’s feature space, aiming to create a meaningful distinction between fine-tuning and
absent classes. To identify classes that are closely related, we apply the metric of total intra-group
distance: a lower value indicates higher similarity among classes within a group. This ensures finding
fine-tuning classes that exhibit tight clustering in the feature space. We employ a greedy strategy
to grow the fine-tuning class set towards a pre-defined size. Figure 13 ad Figure 14 present t-SNE
visualizations that illustrate the distribution of chosen fine-tuning and absent classes for varying
fine-tuning class sizes across two distinct pre-trained domains.

For the ImageNet-S dataset, we leverage the WordNet [11] hierarchy to select coherent groups as
fine-tuning classes. Specifically, we explore two different hierarchical splits. The details are shown in
Table 4.
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FIGURE 13. (A) shows the t-SNE of the class mean features for 65 classes in the Art domain with their
corresponding class names. (B) shows the fine-tuning and absent classes split for different fine-tuning class
sizes.
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FIGURE 14. (A) shows the t-SNE of the class mean features for 65 classes in the Real-World domain with
their corresponding class names. (B) shows the fine-tuning and absent classes split for different fine-tuning class
sizes.



TABLE 4. Two hierarchical splits for ImageNet-S.

Hierarchical Split One
Split Group Name Dog Mammal Animal
Split Group Size (Classes) 118 218 398
Hierarchical Split Two
Split Group Name Device | Instrumentality | Artifact
Split Group Size (Classes) 124 350 522
8_
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FIGURE 15. Visualization of pre-training and target domain data in the toy example, with distinct
colors indicating different classes. The symbol L1 represents data from the pre-training phase, while
(O denotes those of the target domain (only blue and cyan are fine-tuning during fine-tuning).

A.3 Toy Example (cf. section 6 in the main paper)

To elucidate the impact of similar fine-tuning training data on the feature representation of absent
data, in section 6 and figure 12 of the main paper, we construct a toy example featuring four classes of
2-dimensional data, each represented by distinct colors (blue, cyan, red, magenta). Figure 15 shows
the same data. In this example, pre-training data (L) are generated from Gaussian distributions with
a standard deviation of 0.2 and four different means: (10, 2), (10, 3), (10, 8), and (10, 7). To simulate
domain shift, the target domain data (()) undergoes a horizontal shift, with the cyan and magenta
classes moving to the right and the blue and red classes to the left by an identical distance. This setup,
intentionally restricting data to non-negative values, mirrors the effect of a ReLU activation.

We employ a two-layer multi-layer perceptron (MLP) with a configuration of 2-2-4 (input dimension:
2, hidden layer dimension: 2, and output dimension: 4). The MLP is initially pre-trained on the
four-class pre-training dataset, with the first layer weights set as an identity matrix to simplify
visualization. Subsequent fine-tuning on target domain data incorporates only two classes (blue and
cyan), without the constraint of freezing the first layer. Both the pre-training and fine-tuning phases
utilize the SGD optimizer, applying a learning rate of 0.01 for 100 epochs with cross-entropy loss as
the objective.

B Additional Details for Calibration (cf. section 4 in the main paper)

We provide details for the calibration methods in section 4 of the main paper.

B.1 Average Logit Gap (ALG)

In a well-calibrated pre-trained model, the scale of average non-Ground-Truth (non-GT) logits is
expected to be similar across different classes. Figure 16 demonstrates that using the pre-trained
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model, the non-GT logits exhibit comparable magnitudes for both fine-tuning and absent class groups.
However, the fine-tuning class group’s non-GT logits become notably higher after fine-tuning, since
fine-tuning tends to assign much higher logits to see classes due to the absence of absent data. This
disparity inspires an estimation of  based on the non-GT logit differences between fine-tuning and
absent classes, as delineated in Equation 7. Concretely, for each training example, we calculate 1)
the average of non-GT fine-tuning class logits and 2) the average of non-GT absent class logits. We
then average the difference between them over all the training examples as an estimate of . The
calculation is also visually summarized in Figure 17. Since this approach is based on the average
non-GT logit difference between fine-tuning and absent classes, we call this method the Average
Logit Gap (ALG).
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’YAm=|D— Z [m Z w;rfe(mﬁ)—m Z w, fo(@:)] )
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FIGURE 16. Office-Home absent test data’s FIGURE 17. Average Logit Gap (ALG) calibration
average non-GT logits within the fine-tuning and method: the calibration factor ~y is calculated based on
absent groups. In the pre-trained model, they are the difference of non-GT logits between fine-tuning
similar but the fine-tuning class non-GT logits and absent groups.

become notably higher after fine-tuning.

B.2 Pseudo Cross-Validation (PCV)

To address the challenge of selecting v without access to target validation data, which ideally
encompasses both fine-tuning and absent classes, we introduce a novel Pseudo Cross-Validation
(PCV) method, demonstrated in Figure 18. Specifically, we partition the target training dataset
Dy, into pseudo training data Dpseudo-rr and pseudo validation data Dypseudo-val: Dpseudo-tr 18 further
divided into two subsets with disjoint label spaces, simulating pseudo-fine-tuning data Dyscudo-rt and
pseudo-absent data Dpseudo-absent: We then naively fine-tune the pre-trained model on Dpgudo-absent and
evaluate Accsy and Accyy using Dpseudoval- We select a -y by balancing these two accuracies. To
enhance the robustness of -y estimation, we employ bootstrapping, repeating the pseudo-splitting and
fine-tuning process three times with varying partitions. The selected +y is applied to the fine-tuning
model {671, W}, which is fine-tuned from the pre-trained model {8¢, W} on the entire target
training data Dj;.

C Additional Analysis of Fine-tuning (cf. section 3.4 and section 6 in the main
paper)

In this section, we provide more analysis including an analysis of feature improvements, an investi-

gation of the tendency for logits to be biased toward fine-tuning classes, and the effects of freezing

the classifier and backbone during fine-tuning. Additionally, we quantitatively examine the class

relationship change between the pre-trained and fine-tuning models. Finally, we extend our analysis
to examine the impact of fine-tuning on the iWildCam dataset [1].

C.1 Feature Improvement by the Fine-Tuned Model
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FIGURE 20. L2 norm of classifier weights for fine-tuning and absent classes during fine-tuning.
This illustrates a significant increase in weight magnitude for fine-tuning classes compared to absent,
potentially resulting in fine-tuning’s biased logits towards fine-tuning classes.

TABLE 6. The performance comparison between the neural network (NN) classifier with the FC layer and the
cosine classifier.

| Benchmarks | Classifier | AUSUC | Accy,y | Accs;y | Accyyy |
| mageNet-varianis | _ NN | 044 | 4335 | 129 | 353 |
| | Cosine | 043 | 4265 | 7968 | 377 |
| oficetiome | NN | 063 | 5325 | 878 | 2237 |
| | Cosine | 063 | 5726 | 87.97 | 2083 |

To further understand the i d NCM absent cl NOM Accund PT | FT | A
o further understand the improve absent class accuracy

NCM Accy/y(fay ), we plot the -SNE embedding [51] in Fig- (%5} [40.3%|61.9%[21.6%
ure 19. We find that the FT feature extractor fo, does not super- VTAB  |83.7%|87.2%]| 3.5%
ficially raise Accy/y by creating an artificial “margin” between  office-Home 180.1%[81.5%] 1.4%
the fine-tuning and absent class features * and destroying their
semantic relationship. We further report the NCM accuracy of
classifying absent class data into one of the absent classes, i.e.,
Accyy with B = U. As summarized in Table 5, FT indeed
improves the feature quality to distinguish among absent classes.

TABLE 5. NCM Accy; ;4 using
the pre-trained (PT) and FT
features. FT improves the fea-
ture quality for absent classes.

C.2 Biased Logits Towards fine-tuning Classes

section 4 of the main paper highlights how fine-tuning generates logits biased towards fine-tuning
classes due to the lack of absent data during training. To delve deeper into this, we analyze the L2
norm of the classifier weights Wi for Office-Home and ImageNet-Variants. Figure 20 reveals a
pronounced increase in the weight magnitude for fine-tuning classes relative to absent classes during
fine-tuning, which could potentially result in fine-tuning’s biased logits towards fine-tuning classes.

To determine whether the magnitude of classification weights is solely responsible for the biased
logits, we apply the cosine classifier [13], which normalizes the weights to ensure uniform magnitude
across all classes. According to the results shown in Table 6, employing a cosine classifier does yield
a slight improvement in absent class accuracy (Accy/y); however, the outcome remains suboptimal.
This indicates that both the magnitude of the linear classifiers and their angles (i.e., cosine similarity)
with the features contribute to the biased logits. These findings lay the groundwork for our proposed
calibration approach, which seeks to directly adjust the logits, bypassing the limitations associated
with modifying either the magnitude or the angle of the classification weights.

3Doing so would shrink the label space from ) to /. We note that Accy 4 > Accyy: the former eliminates
the errors of classifying absent class samples into fine-tuning classes.
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TABLE 7. Linear classifier CKA analysis results.

Dataset Fine-tuning Classes CKA | Absent Classes CKA
ImageNet-Varaints 0.969 0.999
Office-Home 0.979 0.998

C.3 Should We Freeze the Linear Classifier or Feature Backbone?

Adhering to the practice in source-free DA [29], Tu et al. [49] advocate for freezing the linear
classifier W during fine-tuning (termed the frozen classifier approach) to preserve the absent class
relationship and hence accuracy Accy/y. Surprisingly, our analysis reveals that while preserving
class relationships within the FC layer, the frozen classifier leads to a worse AUSUC score and NCM
absent accuracy compared to fine-tuning, as evidenced in Table 8. This suggests a deterioration in the
feature quality of the frozen classifier.

We hypothesize that the underlying issue arises from fine-tuning with only fine-tuning class data,
which inadvertently biases the model towards classifying all samples as fine-tuning classes. While
fine-tuning can adapt to this bias by adjusting the FC layer to reduce absent logits, the frozen classifier
must alter its features to achieve such a goal, potentially compromising the quality of absent features.

We also investigate freezing the feature extractor backbone 8o and only fine-tuning the FC layer
(a.k.a. linear probing). Since the feature representations remain unchanged, the NCM Accyyy mirrors
that of the pre-trained model, indicating no improvement in feature quality, as evidenced in Table 8.
As a result, it achieves a lower NCM accuracy and lower AUSUC score than fine-tuning. In sum,
neither the frozen classifier nor the frozen backbone are effective strategies in HT.

C.4 Absent Class Relationship Analysis

Inspired by the finding in [19]—the similarity among vectors in the FC layer can reflect the semantic
relationships between their corresponding classes—we investigate if such class relationships are
maintained during fine-tuning. To quantitatively capture the class relationships, we compute the
cosine similarity between each pair of vectors in the FC layer. Specifically, the matrices W5 (W§) "
and WY (WY) T capture the class relationships among fine-tuning and absent classes, respectively,
within the pre-trained model. Similarly, W£(W£)T and W¥ (WY)T reflect these relationships in
fine-tuning. Here, W represents the L2-normalized linear classification weights, with superscripts
indicating whether the weights are for fine-tuning S or absent I classes, and subscripts differentiating
between the pre-trained and the fine-tuning model.

To assess how fine-tuning affects class relationships, we employ the linear Centered Kernel Alignment
(CKA) [25], to compare the class relationships before and after fine-tuning. Specifically, we compute
CKA scores for fine-tuning and absent classes:

Fine-tuning Classes CKA = CKA(W§(W§) T, W£(W£)T)
Absent Classes CKA = CKA(WY(W¥)T, WH(WIHT)

Higher CKA scores signify a more robust preservation of class relationships through the transition
from a pre-trained model to fine-tuning. As demonstrated in Table 7, class relationships among absent
classes are substantially more preserved than those among fine-tuning classes. This observation aligns
with insights discussed in section 6 of the main paper. The distinction arises because fine-tuning
with fine-tuning class data prompts the classifier to differentiate between fine-tuning classes more
distinctly. In contrast, without direct training signals for absent classes, updates to absent classifiers
tend to be more uniform, thus maintaining the original class relationships among absent classes
throughout the fine-tuning process.

D More Results

D.1 ImageNet-Variants with ViT

In the main paper, our findings for ImageNet-Variants were based on experiments with a ResNet-
50 model pre-trained on ImageNet-1K. To broaden our analysis, this section reports on extended
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ImageNet-Varaints Office-Home
Method AUSUC | NCM Accyy;y [ AUSUC | NCMAccy,y
Pre-trained 0.083 325 0.499 73.7
Fine-Tuning 0.439 50.5 0.632 75.8
Frozen Classifier 0.356 36.3 0.603 69.5
Linear Probing 0.218 32.5 0.595 73.7

TABLE 8. AUSUC and NCM Accy, /) demonstrate that fine-tuning outperforms frozen classifier and
linear probing.

TABLE 9. Performance comparison between ResNet-50 and ViT-B/32 in ImageNet-R with 50% fine-tuning
classes (100 classes).

Architecture Method AUSUC | Accysy Accspy Accuyy Accuu NCM Accsy NCM Accuyy
Pre-trained 0.09 23.79 2342 24.19 24.61 37.07 32.68
ResNet-50 fine-tuning 0.46 4370 81.97 1.70 37.92 73.00 51.63
A 0.37 19.91 58.55 -22.49 13.31 3593 18.95
Pre-trained 0.09 24.63 24.87 24.36 24.93 41.03 37.89
ViT-B/32 fine-tuning 0.49 48.75 82.10 12.15 43.24 71.68 51.42
A 0.40 2412 57.23 -12.21 1831 36.65 13.53

experiments that employ the ImageNet-1K pre-trained Vision Transformer (ViT-B/32) as an alternative
pre-trained model. Our objective is to ascertain whether the observations regarding fine-tuning remain
consistent when applied to a larger and more advanced model architecture.

Results, as detailed in Table 9 and Table 10, indicate that both the ResNet-50 and ViT-B/32 architec-
tures yield consistent improvements across AUSUC, Accyy i, and NCM metrics. This consistency
underscores the inherent robustness of fine-tuning’s benign behaviors, independent of the model
architecture. Notably, the ViT-B/32 model exhibits a significantly milder decline in absent class
accuracy Accyy/y compared to ResNet-50. This finding suggests that the ViT-B/32 model is more
robust in partial target data fine-tuning.

D.2 Detailed Results for Each Dataset

In the main paper, due to space constraints, we summarized the findings by presenting average
performance metrics across all datasets within each benchmark. This section expands upon that
summary by providing in-depth results for each pretraining-downstream domain pair within the Office-
Home dataset and for individual datasets in VTAB, detailed in Table 11 and Table 12, respectively.
Across the board, fine-tuning exhibits consistent enhancements in AUSUC scores, reinforcing its
efficacy in diverse settings. In ImageNet-Variants, fine-tuning consistently improves the absent class
feature (an increase of NCM absent accuracy Accy,/y) as mentioned in subsection D.1. In the context
of Office-Home, while the majority of domain pairs witnessed improvements in NCM Accy/y,
exceptions such as Rw-Pr and Ar-Rw experienced a decline. Some exceptions are also observed
within VTAB, such as Flower102 and SUN397. These findings suggest that certain datasets may
benefit from more sophisticated approaches to bolster absent class features.

D.3 The Fine-tuning / Absent Accuracy Curve For All Datasets

Owing to the space constraints within the main document, our presentation of the Fine-tuning/ Absent
Accuracy Curve was limited to ImageNet-R and the Art-Product domain pair from Office-Home. This
section expands our analysis by presenting the Fine-tuning/ Absent Accuracy Curves for all datasets
within each benchmark. This comprehensive display aims to offer a more detailed understanding of
the performance dynamics between fine-tuning and absent classes across the diverse range of datasets
evaluated in our study.

TABLE 10. Performance comparison between ResNet-50 and ViT-B/32 in ImageNet-S with 50% fine-tuning
classes (500 classes).

Architecture Method AUSUC Accyyy Accspy Accuyy Accuu NCM Accsy NCM Accuyy
Pre-trained 0.08 23.48 23.60 23.36 29.58 31.70 32.38
ResNet-50 fine-tuning 0.41 42.97 80.60 534 55.22 64.80 49.40
A 0.33 19.49 57.0 -18.02 25.64 33.1 17.02
Pre-trained 0.06 21.33 20.78 21.88 27.32 30.98 30.46
ViT-B/32 fine-tuning 0.39 46.34 73.38 19.30 56.92 641.30 49.24
A 0.33 25.01 52.60 -2.58 29.60 33.32 18.78

24



TABLE 11.

Detailed results of six pretraining-downstream domain pairs in the Office-Home benchmark.

Office-Home Method AUSUC AOC}! /v ACCS /v ACCMJ;); ACCU Ju NCM ACCS /¥ NCM AOCMJ,.’}!
Pre-trained 0.30 47.07 43.65 50.29 56.14 57.43 64.04
Ar—Cl fine-tuning 0.45 44,06 81.58 8.63 59.94 7245 66.67
A 0.16 -3.01 37.93 -11.67 3.80 15.02 2.63
Pre-trained 0.53 67.52 61.32 71.88 76.5 80.39 80.25
Ar— Pr fine-tuning 0.69 51.87 93.05 23.00 76.88 87.17 83.13
A 0.17 -15.65 31.73 -18.88 0.38 6.77 2.88
Pre-trained 0.62 72.73 70.67 74.54 80.87 77.88 71.78
Ar — Rw fine-tuning 0.70 59.33 89.74 32.63 81.15 82.21 77.50
A 0.09 -13.41 19.07 -AT.91 0.28 433 -0.28
Pre-trained 0.51 65.60 63.06 68.19 73.32 69.39 72.24
Rw — Ar fine-tuning 0.60 55.47 B81.2T 29.11 T6.28 T2.30 T412
A 0.09 -10.13 18.21 -39.08 2.96 2.90 1.89
Pre-trained 0.33 51.13 53.22 49.12 58.70 64.88 60.77
Rw — Cl fine-tuning 0.53 46.47 87.88 6.64 64.16 78.83 64.60
A 0.20 -1.66 34.66 4248 5.46 13.96 3.83
Pre-trained 0.70 78.91 78.60 79.19 83.38 84.19 87.01
Rw — Pr fine-tuning 0.77 62.31 93.49 34.22 83.94 88.06 86.45
A 0.07 -16.61 14.88 4497 0.56 3.88 -0.56
TABLE 12. Detailed results of eight datasets in the VTAB benchmark.
Dataset Method AUSUC AOC}!};)J ACCS;’)J ACCMII,ry ACCuj.ru NCM ACCS /¥ NCM AOCMII,.’}!
Pre-trained 0.70 78.65 87.97 70.43 74.85 86.67 84.23
Caltech101 fine-tuning 0.82 82.27 97.19 69.10 85.22 90.18 88.31
A 0.12 3.62 9.23 -1.33 10.36 351 408
Pre-trained 0.51 64.17 65.94 62.40 72.16 65.68 66.50
CIFAR100 fine-tuning 0.68 65.00 B0.70 42.60 T8.82 §2.00 T408 |
A 0.17 1.73 23.26 -19.80 6.66 16.32 7.58
Pre-trained 0.26 43.19 39.13 47.08 53.85 59.67 65.00
DTD fine-tuning 0.35 4532 75.98 15.94 50.73 65.22 65.52
A 0.10 2.13 36.85 -31.15 -3.13 5.54 0.52
Pre-trained 0.14 3222 43.10 20.34 32.86 T76.02 T77.88
EuroSAT fine-tuning 0.46 52.22 98.94 1.20 47.46 96.77 87.52
A 0.33 20.00 5584 -19.14 1461 20.75 0.65
Pre-trained 0.28 46.71 44.32 49.08 55.50 69.12 72.00
SUN397 fine-tuning 0.36 A9.31 64.04 35.60 57.33 T1.07 T0.75
A 0.08 3.09 19.72 -13.40 1.83 1.95 -1.24
Pre-trained 0.37 53.95 55.24 52.68 58.83 81.25 81.67
Resisc45 fine-tuning 0.60 58.48 93.74 23.66 66.18 89.14 81.33
A 0.23 4.52 38.50 -20.02 7.35 7.89 -0.35
Pre-trained 0.5 63.72 59.34 68.35 74.11 88.13 92.14
Flowers102 fine-tuning 0.55 64.16 78.29 49.21 71.40 77.82 88.53
A 0.05 0.44 18.96 -19.14 -2 -10.32 -3.61
Pre-trained 0.80 83.97 79.03 88.60 94.41 79.93 77.84
Pets fine-tuning (k] 8444 U380 T5.67 93.93 85.34 88.34
A 0.08 0.46 14.77 -12.93 -0.48 541 10.50
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FIGURE 24. ImageNet-R: the performance gain on AUSUC and NCM Accy y(from pre-trained model
to fine-tuning) under different data splits and fine-tuning class sizes using ImageNet-1K pre-trained models
ResNet50 and ViT-B/32.
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FIGURE 25. Animal hierarchical split for ImageNet-S: the performance gain on AUSUC and NCM
Accyyyy(from pre-trained model to fine-tuning) under different data splits and fine-tuning class sizes using
ImageNet-1K pre-trained models ResNet50 and ViT-B/32. This split contains dog (118 classes), mammal (218
classes), and animal (398 classes) as the fine-tuning classes.

D.4 More Split Results

In the main manuscript, due to limitations on space, we restricted our presentation of data splits and
fine-tuning class size-related ablation studies to ImageNet-S and Office-Home. This section extends
our analysis to encompass ImageNet-R, as well as additional hierarchical splits for ImageNet-S,
utilizing two distinct ImageNet-1K pre-trained models: ResNet50 and ViT-B/32.

Figure 24 delineates the outcomes for ImageNet-R where different fine-tuning class sizes are randomly
chosen. Furthermore, we delve into hierarchical splits based on WordNet within ImageNet-S.
Figure 25 reveals the findings from the animal hierarchical split, which encompasses dogs (118
classes), mammals (218 classes), and broader animal categories (398 classes) as fine-tuning classes.
Similarly, Figure 26 presents the results from the device hierarchical split, involving devices (124
classes), instrumentality (350 classes), and artifacts (522 classes) as fine-tuning classes. Across
different datasets, splits, and model backbones, the enhancements attributed to fine-tuning manifest
as robust and consistent.

D.5 Classifier Update Direction Similarity

Due to page limitations in Section 6 of the main paper, our discussion on the similarity of classifier
update directions was confined to ImageNet-S. To further substantiate the universality of our findings,
this section extends the analysis to the Office-Home dataset, featuring the Art-Real World domain

REsNel{ﬂ AUSUC A 5 ResNet-50 [ NCM Acc, . ViT-Bi32 [ AUSUC A ViT-Bi32 [ NCM 20.0
0.24 I:z H 5.64 H 0.33 15 18 [
I:: 124 350 522 200
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Num of Fne—lunmg Class Mum of Fine-tuning Class Mum of Fine-funing Class

124
Mum of Fr\e—h.nng Class

FIGURE 26. Device hierarchical split ImageNet-S: the performance gain on AUSUC and NCM Accyy,y (from
pre-trained model to fine-tuning) under different data splits and fine-tuning class sizes using ImageNet-1K
pre-trained models ResNet50 and ViT-B/32. This split contains device (124 classes), instrumentality (350
classes), and artifact (522 classes) as the fine-tuning classes.
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FIGURE 27. Classifier update direction similarity within fine-tuning (left) and absent (right) classes for
Office-Home. The update directions are highly similar within absent classes, thus preserving the inter-class
relationships among absent classes.

TABLE 13. A noticeable performance gap exists between our proposed calibration methods, ALG and PCV,
and the theoretical upper limit represented by fine-tuning + ~*, which leverages target test data for  selection.
This discrepancy highlights a valuable opportunity for further advancements in calibration techniques to bridge
this gap.

| ImageNet-{R, S} | VTAB | Office-Home
Metrics (%) |Accyl,fy |ACC5;); |Accu;y |Accyll.fy |ACC3;); |Accull.fy |Accy v |ACCS.-")" |ACC3,; IaY
Pre-trained 23.6 235 23.8 58.3 59.3 574 63.8 61.8 65.5
fine-tuning 433 81.3 35 62.8 86.4 39.1 53.5 88.3 22.4
fine-tuning + yarg| 55.9 80.3 30.5 66.8 85.3 48.2 65.0 871.7 44.9
fine-tuning +ypey | 57.1 60.1 54.0 574 47.1 67.8 722 82.3 63.1
fine-tuning + ~* 60.8 73.6 47.6 69.3 75.6 62.8 727 79.1 66.9
Oracle | 711 | 724 | 69.8 | 80.6 | 79.8 | 81.3 | 82.1 | 81.2 | 82.9

pair, as detailed in Figure 27. This pattern of update direction similarity is similarly evident across
other pretraining-downstream pairings within the Office-Home dataset.

D.6 Using Target Test Set For ~ Selection

Theoretically, utilizing the target test set for + selection contradicts standard practices, as it introduces
data leakage that can be considered as cheating. However, for comparison purposes, we leverage the
target test set to select v, thereby denoting fine-tuning + ~* as an upper bound for calibration methods.
As indicated in Table 13, while our introduced calibration methods, ALG and PCV, demonstrate
substantial improvements over fine-tuning, they do not fully reach the performance of fine-tuning +
~*. This gap underscores a direction for future research to focus on more sophisticated calibration
strategies for fine-tuning.

D.7 iWildCam

Another realistic benchmark proposed in [49] is iWildCam, which considers abundant camera trap
images from various geographical locations as pre-trained domains, with images from a new camera
trap location serving as the target domain. The uniqueness of this benchmark lies in the use of data
collected within a limited time frame (e.g., the first month) at the new location as the target training
set. Given the unlikely presence of all animal species within this initial period, the target training
data inherently exhibits a class bias towards the species that are detected.

Contrary to other benchmarks, as depicted in Table 14, fine-tuning shows a decline in both AUSUC
and Accy . This performance drop is atiributed to the natural data collection bias caused by time in
iWildCam. Unlike conventional benchmarks that assume training and test sets come from the same
distribution, iWildCam’s unique structure—where training and testing sets originate from different
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TABLE 14. Performance of fine-tuning on iWildCam benchmark.

Method AUSUC Aocyly Accsy Accuyy Accuju NCM Accsy NCM Accujy
Pre-trained 0.156 3579 36.347 25.888 33.881 43.965 31.986
fine-tuning 0.13 36.5 53.52 0.595 27.256 44.075 31.778

A -0.026 0.71 17.173 -25.293 -6.625 0.11 -0.208

time periods—introduces a natural discrepancy in data distribution due to seasonal changes or animal
migration.

To investigate this further, we selected four target locations from the benchmark and identified the
pre-trained and test data corresponding to the same target training classes for each location. By
extracting features using a pre-trained model, we aimed to determine whether significant changes
occurred within the same classes across pre-trained data, target training data, and target testing
data. The findings, illustrated in Figure 28, reveal notable differences in the data distributions
among the same classes across the pre-trained domain, target training, and target testing sets. This
discrepancy introduces further complexity in HT. Addressing this challenge, future research may
focus on enhancing fine-tuning with strategies capable of bridging the data distribution gap.
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FIGURE 28. iWildCam t-SNE visualization of the same group of classes (target training classes) in pre-trained
domain data, target training data, and target testing data, demonstrating significant distribution differences. This
variation presents an additional challenge in HT. The finding is consistent across 4 different target locations.



NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper’s main contribution is a systematic study of fine-tuning. Both the
abstract and the introduction accurately reflect the paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

+ The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

+ Itis fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We provide multiple remarks to describe the scope of the study. We also
conduct further analysis (e.g., section 6) to analyze the limitation.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

» The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
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Answer: [NA]

Justification: Not a theoretical paper.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provided detailed experimental setups in the main paper and the appendix.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No

Justification: The data used in the paper is publicly accessible. Our code will be released in
the near future.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

+ At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provided detailed experimental setups in the main paper and the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

*» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No
Justification: No error bar is provided. We study fine-tuning on already pre-trained models.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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10.
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» The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

+ If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Yes, we discussed this in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

*» The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

+ If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper studied a fundamental machine-learning problem of fine-tuning. If
successful, it will make fine-tuning much easier and more practical. To our knowledge, at the
current stage, our paper does not make any additional negative societal impacts compared to
existing papers on fine-tuning.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

+ If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

+ If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA ]
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

+ Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The data we used are all publicly available and we cited the original papers.
Guidelines:

» The answer NA means that the paper does not use existing assets.

+ The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

+ If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

» If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA ]

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA ]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA ]

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

+ For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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