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Abstract

Long context capability is a crucial compe-
tency for large language models (LLMs) as
it mitigates the human struggle to digest long-
form texts. This capability enables complex
task-solving scenarios such as book summariza-
tion, code assistance, and many more tasks that
are traditionally manpower-intensive. How-
ever, transformer-based LLMs face significant
challenges with long context input due to the
growing size of the KV cache and the intrin-
sic complexity of attending to extended inputs;
where multiple schools of efficiency-driven ap-
proaches — such as KV cache quantization,
token dropping, prompt compression, linear-
time sequence models, and hybrid architec-
tures — have been proposed to produce ef-
ficient yet long context-capable models. De-
spite these advancements, no existing work has
comprehensively benchmarked these methods
in a reasonably aligned environment. In
this work, we fill this gap by providing a
taxonomy of current methods and evaluating
10+ state-of-the-art approaches across seven
categories of long context tasks. Our work
reveals numerous previously unknown phe-
nomena and offers insights — as well as a
friendly workbench — for the future devel-
opment of long context-capable LLMs. The
source code is available at https://github.
com/henryzhongsc/longctx_bench.

1 Introduction

Large Language Models (LLMs) have gained sig-
nificant popularity and recognition due to their ex-
ceptional generalizability across a wide range of
intellectual tasks. Like any other tool, their most
precious utility is demonstrated when they enable
us to accomplish tasks beyond our innate capabili-
ties (Brown et al., 2020; Taylor et al., 2022; Yuan
et al., 2023). For instance, while driving nails with
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bare hands is impractical, a hammer makes it fea-
sible. Similarly, humans struggle with digesting
and retaining long information, making it essential
for LLMs to bridge this gap. The need for long-
context capable LLMs is almost universally agreed
upon, with different LLM service providers racing
to launch models with even greater context lengths.
For example, Google’s Gemini 1.5 supports a con-
text length of 128K tokens (Reid et al., 2024), and
Anthropic’s Claude 3 offers a context length of
200K tokens.

However, this powerful long context capability
comes with significantly higher costs. In long con-
text scenarios, the key-value cache (KV cache) —
which stores attention keys and values during gen-
eration to prevent re-computation — becomes the
new memory and speed bottlenecks, as its size
grows linearly with the number of tokens in the
batch. For instance, a 500B model with a batch
size of 128 and a context length of 8,192 typically
requires a 3TB KV cache, imposing a substantial
processing burden even on the most advanced hard-
ware solutions (Pope et al., 2023). Similarly, in
open-source models like QWen (Bai et al., 2023a),
the KV cache size for a 4K context is 0.91 GB,
whereas, for a 100K context, it is 22.8 GB (Fu,
2024) — which is a non-negligible growth regard-
less of the serving scenario. Given the limited
memory space available for serving the model, sup-
porting longer contexts usually requires reducing
the number of requests that can be processed, lead-
ing to higher inference costs.

Naturally, many efficiency-driven approaches
have been proposed to enable LLMs to handle long
contexts with reduced resource burdens, with a
healthy selection of them featured in Table 1. These
approaches range from quantizing the KV cache
into lower precision formats (Sheng et al., 2023;
Zhao et al., 2024; Liu et al., 2024b), evicting unim-
portant tokens to maintain a constant KV cache size
(Xiao et al., 2023; Zhang et al., 2024d), compress-
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Table 1: Featured methods in our benchmark. “KV Cache Complexity” is the complexity w.r.t. the number of input
tokens. “Sys. Supports” refers to the availability of custom CUDA kernels to support fast serving. “N/A” means it
can be directly accelerated by existing infrastructure. We note that the “No” system support for HoO (Zhang et al.,
2024d) means it lacks the FlashAttention (Dao et al., 2022) compatible CUDA kernels, making it unsuitable for
direct use in an online setting. However, it still offers performance benefits when used in the off-load setting.

Method Taxonomy KV Cache Complexity Sys. Supports?
Mamba (Gu and Dao, 2023) Yes
Mamba 2 (Dao and Gu, 2024) Linear-time Model KV cache free Yes
RWKYV (Peng et al., 2023) Yes
RecurrentGemma (Botev et al., 2024) Linear-time M(?del Constant Yes
+ Local Attention
StreamingLLM (Xiao et al., 2023) Yes
H>0 (Zhang et al., 2024d) Token Dropping Constant No
InfLLM (Xiao et al., 2024) Yes
LLMLingua2 (Pan et al., 2024) Prompt Compression Constant N/A
FlexGen (Sheng et al., 2023) . . Yes
KIVI (Liu et al., 2024b) Quantization Linear Yes

ing long prompt into a shorter input (Jiang et al.,
2023b; Pan et al., 2024; Chuang et al., 2024), or
exploring KV cache-free architectural designs (Gu
and Dao, 2023; Peng et al., 2023; Yang et al., 2023;
Qin et al., 2024) and its hybrids with transformers
(De et al., 2024; Lieber et al., 2024). However,
to the best of our knowledge, no prior art has
provided a comprehensive benchmark to ana-
lyze the performance retention of different long
context-capable compression methods' (which
is also non-trivial to setup; more on this in Sec-
tion 3.2). To fill this gap, we aim to answer the
following question:

How do different long context-capable ap-
proaches perform under different long context
tasks?

This benchmark offers an accessible and repro-
ducible pipeline to evaluate a diverse set of mod-
ern long-context compression methods from var-
ious schools of thought. It assesses these meth-
ods against multiple tasks requiring different long-
context capabilities. Our main contributions are
summarized as follows:

* Comprehensive benchmarking, detailed anal-
ysis, and actionable insights: We provide a com-
prehensive evaluation report that covers 10+ long
context-capable efficient approaches under 65
different settings, against 7 categories of long
context tasks (Mohtashami and Jaggi, 2023; Reid

"Due to the lack of directly related work, we provide a brief
walkthrough of loosely related arts — which are often long
context datasets evaluated on vanilla baseline models with
limited focus on compression methods — in Appendix C.

et al., 2024; Bai et al., 2023b). We then walk
through how to digest such mass results and pro-
vide analyses and discussion upon many previ-
ously unknown phenomena. Finally, we offer
several actionable insights for future research ad-
vancement.

» Minimalistic, reproducible, yet extensible plat-
form: Given the non-trivial effort to set up the
evaluation pipeline, we open source our bench-
mark implementations for future scholars. We
intensionally make our code base in a minimal-
istic fashion for easier hacking and reproducing
needs, yet we keep it extensible to include alter-
native or future-coming approaches that are not
under in our already extensive, but certainly not
exhaustive, benchmark coverage.

2 Reviewing Different Schools of Efficient
Long Context Handling Approcahes

Before going into the details of the experiment,
we will briefly introduce different schools of long
context-capable approaches and their correspond-
ing exemplary methods. In Table 1, we present
a comprehensive overview of the school of long
context optimization methods, including their KV
cache complexities and the current support for
system-level optimization. RNN-based models
do not have a KV cache. Mixed models, token
dropping methods, and prompt compression meth-
ods have fixed-size KV caches, which are indepen-
dently configured by each method. Quantization
methods compress the KV cache by a proportion;
thus, the KV cache complexity still increases lin-



early with sequence length. Regarding system sup-
port scenarios, to the best of our knowledge, most
methods have varying levels of system-level opti-
mization, whereas some token-dropping methods
are still under-optimized. More on this in Section 4.

2.1 Linear-Time Sequence Models and Mixed
Architecture

There is a growing body of recent works that have
developed linear-time sequence models, such as
Mamba (Gu and Dao, 2023), Mamba2 (Dao and
Gu, 2024), RWKYV (Peng et al., 2023), HGRN (Qin
et al., 2024), MEGA (Ma et al., 2022), GLA (Yang
et al., 2023), and RetNet (Sun et al.). The fun-
damental difference between linear-time sequence
models and transformers lies in how they handle
context. Linear-time sequence models compress
the context into a smaller state, whereas transform-
ers store the entire context within attention mecha-
nisms. During the auto-regressive inference, every
time the model generates a new token, transformers
will “review” all previous tokens by explicitly stor-
ing the entire context (i.e., KV cache). In contrast,
there is no “reviewing” mechanism in linear-time
sequence models, as they explicitly mix the input
tokens into finite states.

From the above analysis, it is expected that pure
linear-time sequence models are not well-suited for
retrieval-related tasks, as they mix key information
with other tokens. Thus, another line of work is
to combine the linear-time sequence models and
transformers. For example, Griffin (De et al., 2024)
and RecurrentGemma (Botev et al., 2024) combine
input-dependent RNNs with local attention; and
Jamba (Lieber et al., 2024) combines full attention
layers and Mamba layers.

2.2 Quantization

A simple yet effective approach to reducing the
size of KV cache to enable a larger context is to
quantize the floating-point numbers (FPN) in the
KV cache using fewer bits. Specifically, the B-bit
integer quantization-dequantization process can be
expressed as:

Q) = |7

SX

where zx = min X is the zero-point, sx =
(max X — min X) /(28 — 1) is the scaling factor,
and | -] is the rounding operation.

FlexGen (Sheng et al., 2023) utilized group-
wise quantization, achieving 4bit quantization com-
pared to standard 16bit with minimal accuracy loss.

1, X'=Q(X)-sx + zx,

Following this, several other quantization meth-
ods have been proposed specifically for the KV
cache (Zhao et al., 2024; Yang et al., 2024; Dong
et al., 2024). Recently, KIVI (Liu et al., 2024b) and
KVQuant (Hooper et al., 2024) advanced KV cache
quantization to even lower bits by introducing per-
channel quantization, which involves grouping ten-
sor elements along the channel dimension, based
on the discovery of channel outliers in the key
cache. Following this finding, some other works
continue to optimize this process (Kang et al.,
2024; Duanmu et al., 2024; Zandieh et al., 2024).
Furthermore, based on these findings, the latest
research has pushed quantization to 1bit (Zhang
et al., 2024b). The transformer-based LLM infer-
ence workflow involves two stages: 1) prefill stage,
where the input prompt is used to generate KV
cache and the first output token; and ii) decoding
stage, where the model uses and updates KV cache
to generate the next token one by one. We empha-
size that for all KV cache quantization methods
evaluated in this paper, the quantized KV cache
is not used in prefill time. That means that KV
cache quantization only affects the decoding phase.

2.3 Token Dropping

Based on the observation that attention scores are
highly sparse, token dropping-based methods drop
the unimportant token — or similar attention com-
ponents — from the KV cache (Zhang et al., 2024d;
Xiao et al., 2023, 2024; Li et al., 2024a,c; Liu et al.,
2024a; Ge et al., 2023; Jiang et al., 2024). To-
ken dropping-based methods fall into two main
categories: dropping tokens during prefill or
dropping tokens after prefill. Dropping tokens
during prefill means that tokens are dropped while
generating the KV cache. In contrast, dropping
tokens after prefill means generating the full KV
cache first, then removing the unimportant tokens
from it. Given transformers inference process typi-
cally involves two phases, i.e., prefill and decoding,
while dropping tokens during prefill can typi-
cally enable longer sequence length and faster
prefill speed, we note that dropping tokens after
prefill consistently yields better results across
various settings. This is because many token-
dropping methods rely on accurate attention scores
to determine token importance, which benefits from
generating the full KV cache first. In our bench-
mark, methods that drop tokens during prefill in-
clude StreamingLLLM (Xiao et al., 2023) and In-
fLLM (Xiao et al., 2024), where HoO (Zhang et al.,



2024d) represents methods that drop tokens after
prefill. We closely follow the official or endorsed
implementation of each method, with more details
shared in Appendix B.3.

2.4 Prompt Compression

Soft Prompt Compression Most existing work
focuses on converting lengthy prompts into train-
able soft prompts optimized with specific LLMs.
One approach uses knowledge distillation to trans-
form hard prompts into soft prompts (Wingate et al.,
2022). Another leverages LLM summarization to
condense prompts by segmenting and compress-
ing information (Chevalier et al., 2023). Gist To-
ken (Mu et al., 2023) creates customized prefix
soft prompts via a virtual soft prompt predictor.
However, these methods are often model-or-even-
task-specific, requiring training tailored to specific
LLMs, and therefore come with limited adaptabil-
ity. In this work, we focus on general compression
methods for fair comparison with other KV cache
compression approaches.

Natural Language Prompt Compression Meth-
ods like LLMLingua family (Pan et al., 2024; Jiang
et al., 2023b) enhance LLM performance on long-
context tasks by converting long prompts into short
prompts while maintaining their natural language
format, and thus naturally adaptable (and often
even transferable) to all LLMs. LLMLingua em-
ploys a budget controller to dynamically allocate
compression ratios to different prompt parts, en-
suring semantic integrity. Unlike LLMLingua’s
general approach, some hard prompt compression
methods, like Nano-Capsulator (Chuang et al.,
2024), provide task-specific compression to pre-
serve long prompt performance and are therefore
excluded in our benchmark.

2.5 Other Schools of Thought: Linear
Attention, Merging, and More.

Other than the above-featured approaches, several
notable avenues for efficient long context handling
include linear attention and merging. Linear Atten-
tion is a well-explored area of transformer modifi-
cation with many impactful prior arts like LinearAt-
tention (Katharopoulos et al., 2020), MetaFormer
(Yuetal., 2022), LinFormer (Wang et al., 2020) and
more, with most of them mainly focus on vision or
natural language understanding tasks. To the best
of our knowledge, Infini-Attention by Munkhdalai
et al. (2024) is likely one of the most impactful
linear attention approaches under the LLM context.

KV cache merging is also a popular approach
due to the mainstream adaptation of GQA (Ainslie
et al., 2023), GQA and MQA (Shazeer, 2019) con-
duct merging at the transformer head dimension
to enable KV cache reuse. Similar cache-sharing
strategies have been developed at the layer or token
levels (Sun et al., 2024; Brandon et al., 2024; Wu
and Tu, 2024; Nawrot et al., 2024). Most of the
techniques proposed under this category require
intervention during the pre-training stage.

Unfortunately, we are unable to feature these
schools of thought, since our work requires scaled-
up open-source models in such designs to be avail-
able in the first place. With the lack of such avail-
ability, we cannot feature them per se in our eval-
uation. However, we are able to feature Mamba
2 (Dao and Gu, 2024) — a model family with a
generalized linear attention mechanism — at the
2.7B scale and thus provide some relevant results.
We also direct our readers’ attention to some recent
attention variants like MLA (DeepSeek-Al, 2024).

3 Benchmarking

Benchmarking such a variety of methods in a rea-
sonable manner requires significant effort in terms
of experiment design, execution, and computa-
tional resources. We first introduce the datasets
and methods covered, along with the justifications
for their selection. Then, we detail the experiment
setup and explain how to interpret our experiment
reports. Finally, we analyze the reported results by
highlighting some interesting phenomena and pro-
viding insights for future scholars. All experiments
are conducted on one or more 80G NVIDIA A100
GPUs under DGXA100 servers.

3.1 Coverage

Tasks and Models. We focus on 16 different
long context tasks under 7 major categories,
each requiring different long context handling abil-
ities and covering key application scenarios. We
provide a brief walkthrough of each task category
as follows: (1) Single-doc QA, which tests the long
context understanding ability with longer docu-
ments. (2) Multi-Doc QA, which needs to extract
and combine information from several documents
to obtain the answer; (3) Summarization, which
requires a global understanding of the whole con-
text; (4) Few-shot Learning, which is a practical
setting requiring long-context understanding over
provided examples; (5) Synthetic Task, which is



Table 2: Performance of KV cache quantization, token dropping, prompt compression, RNNs, and hybrid methods
on our benchmark. For methods with residual full precision inputs like KIVI, we calculate the “Comp. Ratio”
against 10k input length. “LLB Avg.” refers to the average results on LongBench. Results are abbreviated; please
refer to Appendix D for our full report.

Model | Method | Comp. Ratio | Single. QA Multi. QA Summ. Few-shot Synthetic Code | LB Avg. Needle

Baseline 1.00x 36.8 34.8 26.8 69.1 67.0 54.2 452 100.0
KIVI-2bit 5.05x 36.2 34.8 26.4 69.2 67.5 48.8 443 100.0
KIVI-4bit 3.11x 36.8 35.0 26.9 69.3 66.5 54.7 45.3 100.0
FlexGen-4bit 3.20% 36.5 324 26.4 68.6 65.5 55.2 44.5 100.0
InfLLM-2x 2.00x 31.8 30.8 25.7 67.6 57.5 55.8 42.5 22.7
- InfLLM-4x 4.00x 27.1 2477 25.0 63.9 37.5 57.6 38.3 20.7
E InfLLM-6x 6.00x 24.4 234 243 61.1 29.5 59.2 36.5 24.7
2 InfLLM-8x 8.00x 21.0 21.0 237 60.3 18.0 59.9 34.4 22.0
; StreamLLM-2x 2.00x 26.1 28.8 24.6 66.5 34.0 55.6 38.9 29.0
ﬁ StreamLLM-4x 4.00x 20.5 222 22.7 62.2 21.0 56.1 344 223
< StreamL.LM-6x 6.00x 17.4 18.7 21.4 60.1 14.5 59.0 323 18.0
E StreamL.LM-8x 8.00x 15.7 18.0 20.5 55.9 8.0 58.1 30.3 18.0
:.: Hy0-2x 2.00x 35.8 34.8 25.4 69.1 66.0 54.4 44.7 100.0
g Hy0-4x 4.00x 35.0 35.1 23.6 69.0 66.0 53.2 44.0 100.0
H,0-6x 6.00x 339 35.1 22.7 69.1 66.0 53.1 43.6 100.0
H,0-8x 8.00x 33.7 35.0 222 69.1 65.5 52.7 434 100.0
LLMLingua2-2x 2.00x 29.4 31.5 24.1 38.6 68.0 31.9 335 51.3
LLMLingua2-4x 4.00x 26.5 30.8 24.1 39.3 22.5 32.2 29.9 8.3
LLMLingua2-6x 6.00x 25.8 26.4 23.4 37.9 18.0 31.3 28.1 0.7
LLMLingua2-8x 8.00x 24.0 25.4 22.9 36.9 13.0 31.9 26.9 0.0
Baseline 1.00x 325 25.8 27.9 66.7 89.3 54.0 43.8 99.0
KIVI-2bit 5.05x 31.3 24.7 27.6 66.8 80.8 53.7 42.6 99.0
KIVI-4bit 3.11x 323 25.8 27.9 66.9 89.4 54.0 43.8 99.0
FlexGen-4bit 3.20x 33.0 24.4 27.8 66.2 83.0 53.7 43.0 98.3
InfLLM-2x 2.00x 30.7 24.8 26.8 65.1 65.8 54.2 41.1 64.3
InfLLM-4x 4.00x 25.4 2317 25.5 63.4 414 54.0 375 29.7
g InfLLM-6x 6.00x 23.8 21.0 25.0 61.6 32.6 53.4 35.6 323
z InfLLM-8x 8.00% 222 19.6 243 62.0 26.2 53.8 34.5 27.0
é StreamLLM-2x 2.00x 24.6 22.0 25.3 64.5 47.1 53.0 375 54.7
2 StreamLLM-4x 4.00x 20.1 19.9 23.3 61.3 31.6 539 342 32.0
; StreamL.LM-6x 6.00x 18.2 16.0 22.1 59.6 25.3 54.9 322 25.0
= StreamLLM-8x 8.00x 17.0 15.2 21.4 58.3 16.9 54.9 30.8 19.3
g H,0-2x 2.00x 319 254 26.8 66.8 87.7 53.8 432 97.3
s H20-4x 4.00x 30.4 23.9 25.1 67.2 82.9 53.1 41.9 93.3
Hy0-6x 6.00x 29.0 22.8 243 66.9 82.0 52.5 41.1 85.7
H,0-8x 8.00x 27.8 21.8 23.9 67.0 79.5 52.3 40.4 80.0
LLMLingua2-2x 2.00x 28.6 23.0 26.4 45.6 54.9 31.7 32.6 41.7
LLMLingua2-4x 4.00x 25.0 21.3 24.6 39.2 14.0 33.1 27.4 9.7
LLMLingua2-6x 6.00x 21.2 17.4 23.3 38.9 8.9 34.7 25.4 0.0
LLMLingua2-8x 8.00x 19.6 16.0 22.9 385 8.0 35.5 24.7 0.0
Mamba-2.8B - 7.3 6.3 19.1 39.0 1.2 47.6 20.8 10.7
Mamba | Mamba-Chat-2.8B - 9.2 6.9 21.2 37.5 3.7 47.7 21.6 10.7
Mamba2-2.7B - 7.5 6.7 21.0 40.5 4.1 49.9 22.1 9.0
RWKYV | RWKV-5-World-7B - 9.8 54 18.5 52.4 4.5 34.0 22.1 3.7
R-Gemma R-Gemma-2B-it - 18.1 8.3 20.9 46.3 4.0 53.7 26.1 23.3
R-Gemma-9B-it - 24.5 21.9 21.9 54.5 9.0 60.8 332 26.7

designed to test the model’s ability on specific sce-
narios and patterns; (6) Code Completion, which
is designed to test the model’s long-context abil-
ity in code auto-completion tasks; (7) Needle-in-
a-Haystack Test, which involves finding specific
information within a large volume of text.

For categories (1)-(6), we directly adopt them
from the LongBench dataset (Bai et al., 2023b).
For the (7) Needle-in-a-Haystack Test, we largely
follow the format of the original passkey retrieval

task (Mohtashami and Jaggi, 2023) while including
some modern modifications set forward by Arize-ai
and the technical report of Gemini 1.5 (Reid et al.,
2024). We refer our readers to Appendix A for
further details.

For models, we elect to cover 3 represen-
tative transformer-based LLMs and 3 pure
or hybrid linear-time sequence model families.
For transformer-based LLMs, we opt for Mistral-
7b-Instruct-v0.2 (Jiang et al., 2023a), Longchat-
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7B-v1.5-32k (Li et al., 2023a) and Llama-3-8B-
Instruct (Al@Meta, 2024) to provide a coverage
of SOTA long-context capable model as well as
the most recent progress of open-source LLMs.
For linear-time sequence models and their hybrids,
we evaluated Mamba-2.8B (Gu and Dao, 2023),
Mamba2-2.7b (Dao and Gu, 2024), Mamba-Chat-
2.8B (Mattern and Hohr, 2023), RWKV-5-World
(Peng et al., 2023), and RecurrentGemma-2b/9b-
Instruct (Botev et al., 2024). We refer readers to
Appendix B for more model-related details.

Methods and Hyperparameter Settings. As
shown in Table 1, we select representative methods
ranging from KV cache-free to linear complexity
KV cache. Apart from the linear-time sequence
models and their hybrids introduced above, we opt
for the following compression methods: For quanti-
zation, we adopt KIVI (Liu et al., 2024b), INT4 per-
token quantization in FlexGen (Sheng et al., 2023);
For Token dropping, we adopt Streamingl.LM
(Xiao et al., 2023), H5O (Zhang et al., 2024d), and
InfLLM (Xiao et al., 2024). For Prompt Compres-
sion, we adopt LLMLingua2 (Pan et al., 2024). We
note that although token dropping-based meth-
ods are usually designed with a constant KV
cache size in mind, we modify them to adapt
linear compression schemes for fair compari-
son with other methods. We share more method-
specific details in Appendix B.3.

3.2 Experiment Setup and Report Digestion

Given the vastly different design principles em-
ployed in different schools of long context han-
dling methods, it is, in fact, impossible to achieve
a global alignment where all covered methods are
considered fairly aligned against each other. For ex-
ample, while KV cache quantization methods like
FlexGen (Sheng et al., 2023) can adapt to different
data precision, they can never be aligned with any
KV cache-free approaches like Mamba (Gu and
Dao, 2023). Similarly, token dropping approaches
typically employ a constant size of kept tokens and
evict everything else, making their compression
gain dynamic against inputs of different lengths;
and, again, not alignable with KV cache quantiza-
tion methods nor KV cache-free approaches. Note
that the abovementioned issues are merely some
alignment hardships due to conflicts in different
long contexts when handling schools. In reality,
two long context-specific methods — even under
the same school — can also bring further compli-
cations: e.g., KIVI (Liu et al., 2024b) includes a
full precision sliding window for the most recent
tokens, while FlexGen (Sheng et al., 2023) doesn’t.
Further, known that models like Mamba (Gu and
Dao, 2023) and RWKYV (Peng et al., 2023) are typ-
ically pre-trained on open-source datasets, their
architecture potentials cannot be fairly evaluated
compared to models like Llama-3 — which are
pretrained upon proprietary data corpus and done
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tures. The best method in each school of approaches is featured with comparable compression ratios. The same
length of input might convert to different numbers of tokens per different models, as noted in the upper right corners.

so with an overtrained recipe that has proven to be
beneficiary. More on this in Appendix E.

As the best alternative, we opt to compress dif-
ferent methods towards a range of available target
compression ratios shown in Table 2. For KV cache
quantization methods, we derive such compression
ratios by referring to the reduction in KV cache
memory size against full precision KV cache. For
token dropping approaches, we forgo their typical
constant kept token setup and dynamically adjust
the amount of evicted tokens upon the length of
each input request. For hard prompt compression,
we simply compress the final hard prompt to or
below the target compression ratio. We keep KV
cache-free methods in their vanilla forms as they
often have a constant memory complexity. More in
Appendix B.3.

With such efforts, our experiment report should
be reasonably comparable among similar compres-
sion ratios. Though we emphasize that our addi-
tional alignment effort will not resolve the pretrain-
ing difference among different backbone models
— where an aligned comparison here can only be
done by training different models from scratch,
which will induce drastic computation costs and

can only provide coverage on fully transparent
transformer-based LLMs like Pythia (Biderman
et al., 2023), OpenLLaMA (Geng and Liu, 2023),
or LLM360 (Liu et al., 2023), where weight-only
open-source models like Llama (Touvron et al.,
2023; Al@Meta, 2024) and Mistral (Jiang et al.,
2023a) can not be included due to the lack of repro-
ducible training procedure and resource.

3.3 Results and Discussion

We showcase our main results in a category-based
fashion in Table 2 and refer our readers to Ap-
pendix D for many more additional results.
Table 2 highlights the per-task-category perfor-
mance of different long context-capable methods
on Meta-Llama-3-8B-Instruct (AI@Meta, 2024)
and Mistral-7B-Instruct-v0.2 (Jiang et al., 2023a),
as well as several other covered linear and mixed
models. Based on all of our obtained results, we
made the following observations.

OB O Keeping the prefill process uncompressed
is crucial for performance maintenance. This
is because the KV cache for all prompt tokens is
generated during the prefill stage. If we apply any
compression at this stage, it will make the represen-



tation of said prompt in later layers inaccurate due
to lossy forward() activation, leading to worse
results when generating the output tokens. For in-
stance, KIVI (Liu et al., 2024b), FlexGen (Sheng
et al., 2023), and HoO (Zhang et al., 2024d) do not
employ any compression operation during the pre-
fill stage, which often leads to much better results
than methods which do compress within (or even
before) the prefill stage, namely Streamingl.LM
(Xiao et al., 2023), InfLLM (Xiao et al., 2024), and
LLMLingua2 (Pan et al., 2024).

That being said, we note this observation is
likely limited to “long input” type of tasks, as all
evaluated tasks in our work are considered “long
input, short output” (like passkey retrieval from
Mohtashami and Jaggi (2023)), but not “long gen-
eration” (like multi-round conversation (Li et al.,
2023b; Wu et al., 2023), fiction writing (Yang et al.,
2022), or long code generation (Roziere et al.,
2023)), where compressing the input during the
prefill stage will naturally carry more influence
than compression during the decoding stage. More
on this in Section 5.

OB 0 Quantization methods can often achieve
reliable performance across all task categories,
yet token dropping approaches excel on some
specific types of tasks (e.g., coding). We find
that KV cache quantization techniques like Flex-
Gen (Sheng et al., 2023) and KIVI (Liu et al.,
2024b) tend to perform decently across all eval-
uated tasks. This is an intuitive finding, given quan-
tization techniques do not evict any token com-
pletely, avoiding the possibility of dropping task-
influential tokens by accident (e.g., one can imag-
ine forging tokens around the needle insertion in
the needle-in-the-haystack tasks (Mohtashami and
Jaggi, 2023) will surely be damaging, especially if
such eviction happens during the prefill stage). The
trade-off of such globally acceptable performance
of KV cache quantization methods is their mem-
ory footprints must grow with the sequence length,
unlike token dropping approaches or linear-time se-
quence models, where a constant memory footprint
is possible.

On the other hand, several featured token
dropping methods showcased excellent perfor-
mance on some specific subtasks. For exam-
ple, StreamingLLM (Xiao et al., 2023) and HyO
(Zhang et al., 2024d) tend to perform exceptionally
well on code-related tasks, with Figure 2 and Fig-
ure 26 demonstrating perfect performance retention

across various compression ratios upon the major-
ity of featured LLMs; whereas InfLLM (Xiao et al.,
2024) — another token dropping methods that ba-
sically does KV cache retrieval of middle tokens
on top of StreamingLL.M — tend to deliver a more
steady performance across all tasks without dras-
tic shortcoming, with an extra advantage of being
stronger under the needle test than StreamingLLM.

Conversely, hard prompt compression methods
like LLMLingua2 (Pan et al., 2024) perform the
worst on the needle test across all KV cache-
required methods — which is, once again, a well-
expected finding as if one deletes the needle infor-
mation within the input, the LLM will certainly not
be able to answer the retrieval-required question
correctly. LLMLingua2 performs modestly behind
all featured KV cache-required methods in terms of
LongBench (Bai et al., 2023b) tasks, though with
the advantage of being model agnostic and can be
theoretically applicable to black-box models with
limited access.

OB ® Mixing with attention can greatly im-
prove the long context capability of linear-time
sequence models. We observe that hybrid mod-
els like RecurrentGemma (Botev et al., 2024) can
result in good performance improvement over pure
linear-time sequence models like Mamba (Gu and
Dao, 2023) or Mamba-Chat (Mattern and Hohr,
2023) in terms of all evaluated tasks (Table 2). This
indicates the potential of hybrid architectures due
to the promising performance gain with an often
acceptable increase in memory footprint.

OB O Needle-in-a-haystack test remains chal-
lenging for KV cache-free or prefill time com-
pression methods. As demonstrated in Figure 3,
which features the best methods from each school
of approaches: KIVI by Liu et al. (2024b) (quan-
tization), InfLLM by Xiao et al. (2024) (token
dropping), LLMLingua2 by Pan et al. (2024)
(prompt compression), Mamba-2.8B by Gu and
Dao (2023) (linear-time sequence models), and
RecurrentGemma-9B-it by Botev et al. (2024)
(mixed architectures), we observe that compres-
sion during prefill or KV cache-free methods often
struggle to maintain good retrieval performance as
the baseline methods. While we believe different
architectural or method designs do play a role here,
we emphasize that unaligned pretraining recipes
among different models, as well as the disparity of
model sizes, are also certainly some strong influ-
encing factors. For example, while not featured in



our work, LongMamba (Zhang, 2024) — a fine-
tuned version of Mamba-2.8B (Gu and Dao, 2023)
with long context focuses - tends to have much
better needle performance.

Additionally, we note that we purposely decide
to feature InfLLM (Xiao et al., 2024) instead of
H50 (Zhang et al., 2024d) in Figure 3 as a represen-
tation of the token dropping school, despite HoO
having an objectively much better needle result in
Table 2 (100% vs 20.7% for 4 x compression). This
decision is made because our needle test requires
the model to correctly answer a 7-digit passkey,
where the ending of the instruction prompt is “What
is the pass key? The pass key is ” (Ap-
pendix A.2), leading the model-in-question likely
to answer the first several digits of the passkey as
the first generated token. This, combined with the
fact that H2O does not evict tokens during prefill
time, often means an HoO-powered model can get
the first several digits (usually at least three, due to
the design of tokenizers) of the passkey right for
free, as no compression has happened for decoding
the first token, and most transformer-based base-
line models — like the Llama-3-8B-Instruct fea-
tured in Figure 3 — are able to get the full 7-digit
passkey right under no compression. We confirmed
H50O’s perfect needle performance on Llama-3-8B-
Instruct showed in Table 2 and Figure 14 is indeed
more of a product of this prompt template and the
7-digit passkey task configuration instead of its in-
nate excellence in retrieval capability; as should we
expand the passkey length to 64-digit while keep-
ing everything else the same, HoO’s performance
drops drastically (from 100% to 35.0% for 4 x com-
pression), where methods like KIVI (Liu et al.,
2024b) and InfLLM (Xiao et al., 2024) tend not to
experience such significant of a performance drop
(100% to 91.0% for KIVI-2bit; 20.7% to 19.0% for
InfLLM 4 x compression), as shown in Figure 21,
22,and 23. Due to page limitations, we analyze
more observations in Appendix E.

4 Challenges and Opportunities

In this section, we share our insights regarding dif-
ferent long context challenges and highlight several
opportunities derived from our benchmarking ob-
servations.

How to effectively reduce prefill time and foot-
print? Based on our empirical observations,
most KV cache compression methods struggle to
make the prefill stage efficient without compro-

mising performance (OB @), which calls for in-
vestments in more performant prefill-time com-
pression methods. However, other than the per-
formance requirement on accuracy-like metrics,
prefill-time compression methods are entangled
with non-trivial technical comparability challenges.
Recall that FlashAttention (FA) (Dao et al., 2022)
is inevitable during the prefill stage to improve
hardware utility, with the key spirit of FA being
to avoid the generation of a full attention matrix.
Thus, methods that rely on the availability of a
full attention matrix cannot be easily integrated.
Therefore, we advocate future research on prefill-
time compression methods with FA compatibility
in mind.

How to build efficient yet long context-capable
architectures? We empirically observe that pure
linear-time sequence models that mix input tokens
together struggle with information retrieval (OB
®), where some sort of attention mechanism pro-
vides visible improvements (OB ). Therefore, an
important future direction is to explore how to ef-
ficiently combine attention layers with linear-time
sequence model layers and determine the optimal
number of attention layers needed to achieve an
ideal performance-efficiency balance.

How to cash-in real-world efficiency? Different
methods often have varying levels of optimization
while being comparable in theoretical efficiency,
meaning whether a method is practically efficient
in real-world application is highly related to fac-
tors like the Ease of Optimization (e.g., quantiza-
tion is well-studied and easy to optimize, while
some unstructured methods will involve extra chal-
lenges (Liu and Wang, 2023)) and Compatibility
with Established Software or Hardware Frame-
works (e.g., compatibility with FlashAttention, as
mentioned above). Based on these factors, it is
challenging to provide a fair apple-to-apple com-
parison regarding efficiency. Researchers should
keep this challenge in mind and develop efficient
yet long context-capable methods.

5 Conclusion

Our benchmark fills a critical gap by evaluating
10+ methods across 65 settings, uncovering new
insights on long context-capable approaches. We
also provide a minimalistic and extensible package
for reproducible research.
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Limitations and Potential Risks

Despite our best efforts to cover a wide range of
long context-capable approaches across many back-
bone models, our benchmark work will inevitably
lack the inclusion of some eligible and interesting
methods, certain worthwhile tasks, or particular
setups that are reflective of our benchmarking goal
due to limited manpower and computing resources.
Specifically, we recognize that we only benchmark
on models with <10B parameters® and our tasks
are more focused on long input but not long genera-
tion, with the latter also being an important, though
less mature aspect of long context evaluation due
to the open-ended nature of prolonged generation
tasks.

In terms of potential risks, while we aim to pro-
vide a comprehensive view of feature methods and
tasks, we caution our readers to directly adopt our
empirical conclusion without proper evaluation un-
der high-stake scenarios.
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A Details about Datasets

A.1 Details Regarding LongBench

For the aforementioned task (1)-(6), we adopt the
implementation and benchmark setting of Long-
Bench (Bai et al., 2023b); here’s a more detailed
introduction of tasks.

The long context benchmarking tasks are cate-
gorized into several types: Multi-document QA,
Single-document QA, Summarization, Few-shot
learning, Synthetic tasks, and Code tasks. Each
task has specific metrics for evaluation, such as
the F1 score, ROUGE-L, and Accuracy. The av-
erage length of most tasks ranges from 5k to 15k,
and each task has 200 datapoints, except for Mul-
tiFieldQA (150), LCC (500), and RepoBench-P
(500).

Single-document QA tasks include Multi-
FieldQA, NarrativeQA, and Qasper, each requiring
the comprehension and extraction of information
from lengthy texts. Multi-document QA tasks like
HotpotQA, 2WikiMQA, and Musique require an-
swering questions based on multiple documents.
Summarization tasks, such as GovReport, Multi-
News, and QMSUM, involve condensing long
documents into concise summaries evaluated us-
ing Rouge-L. Few-shot tasks, including TriviaQA,
SAMSum, and TREC, provide limited examples to
guide the model in answering questions or catego-
rizing data. Synthetic tasks like PassageRetrieval
and PassageCount simulate real-world scenarios
where models must identify relevant paragraphs
or count distinct passages within a repetitive text.
Code tasks such as LCC and RepoBench-P assess
the model’s ability to predict subsequent lines of
code in various programming languages, emphasiz-
ing the use of cross-file dependencies.

Overall, LongBench’s diverse tasks are metic-
ulously designed to push the boundaries of long-
context processing, providing a robust benchmark
for assessing advanced language models.

In our benchmark, we purposely omit the results
of PassageCount, as LLMs often do not count cor-
rectly even in relatively short contexts (Golovneva
et al., 2024). All models and methods exhibit poor
performance (i.e., less than 10% accuracy), making
the average performance unreliable with such an
outlier included.
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A.2 Details Regarding Needle-in-a-Haystack
Test

Needle-in-a-haystack (NIAH) is a style of synthet-
ically generated stress test aiming to evaluate the
information retrieval capability of language models.
NIAH tasks often introduce a piece of key informa-
tion that is inserted into unrelated background texts
of various lengths and at various positions. To the
best of our knowledge, the first two widely adopted
versions of this task are proposed by Mohtashami
and Jaggi (2023) and Greg Kamradt. Specifically,
Mohtashami and Jaggi (2023) inserts a piece of
key information formatted like “The pass key
is <PASS KEY>. Remember it. <PASS KEY>
is the pass key” into the different lengths of
unrelated background texts filled by repetition of
“The grass is green. The sky is blue. The
sun is yellow. Here we go. There and
back again.” — this task is often known as the
passkey retrieval task. Yet, Greg Kamradt’s version
of NIAH inserts a sentence like “The best thing
to do in San Francisco is eat a switch and
sit in Dolores Park on a sunny day.” Under
both tasks, the LLM-in-question is then asked to
answer a question that would require it to retrieve
such a piece of inserted information successfully.
Given the vast variants of such NIAH tasks
(gkamradt, Arize-ai, Levy et al. (2024); Mo-
htashami and Jaggi (2023); Reid et al. (2024);
Hsieh et al. (2024)) existing in the community, we
clarify the formation of our needle task as the fol-
lowing, which largely follows the passkey retrieval
prompt template of Mohtashami and Jaggi (2023);
Wang et al. (2024a) but using 7-digit passkey and
Paul Graham Essays? as the background filler, as
set forth in Arize-ai and Reid et al. (2024):
There is an important info hidden inside a lot of
irrelevant text. Find it and memorize them. I will
quiz you about the important information there.
<prefix filled by Paul Graham Essays>
The pass key is <7-DIGIT PASS KEY>.
<7-DIGIT PASS KEY> is the pass key.
<suffix filler>

Remember it.

What is the pass key? The pass key is

B Detailed Experiment Setup
B.1 LongBench Setting

For baseline (no compression) performance, we
follow the truncation settings in the LongBench

Shttps://paulgraham.com/articles.html
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official implementation as below in Table 3.

Table 3: Maximal prompt length in LongBench of dif-
ferent benchmarks.

Model max_length
Meta-Llama-3-8B-Instruct 7,500
Mistral-7B-Instruct-v0.2 31,500
LongChat-7b-v1.5-32k 31,500

We note that following the official implementa-
tion of LongBench (Bai et al., 2023b), for prompts
that exceed the max_length specified in Table 3,
they will be middle-truncated by preserving the
first and last max_length/2 tokens.

For a fair comparison, the LongBench inputs
of prefill-time compression methods like InfLLLM
(Xiao et al., 2024) and StreamingLLM (Xiao et al.,
2023) are not truncated, but their maximum cache
budget is capped at the respective base model
max_length X compression ratio. Namely, sup-
pose InfLLM is evaluated on LongBench tasks with
a base model of Mistral-7B-Instruct-v(.2 and under
a compression ratio of 2, its maximum KV cache
budget would be equivalent to 31, 500/2 = 15, 750
tokens (or the full prompt length/compression ra-
tio, if such given prompt has a lower length than
31,500 tokens). The difference lies in that meth-
ods like InfLLM can decide where to allocate
such budget across the full, non-truncated prompt,
whereas methods like HoO (Zhang et al., 2024d)
and KIVI (Liu et al., 2024b) are only given the
middle-truncated prompt at the first place due to
such method do not conduct compression during
the prefill stage. We refer our readers to Appendix
B.3 for detailed settings regarding each compres-
sion method.

B.2 Needle-in-a-Haystack Setting

Following the designs of Mohtashami and Jaggi
(2023) and Hsieh et al. (2024), we adopt the
passkey retrieval task formulated in Appendix A.2
as our needle test. For granularity, we evaluate
the LLM-in-question against 10 different sequence
lengths uniformly spanning from 512 to 20480
words and in 10 different depths from the start to
the end of the input. For each length-depth combi-
nation, we iterate the test 3 times with 3 randomly
generated <7-DIGIT PASS KEY>. We highlight the
length of our needle test — 20480 — is in terms
of the number of words, but not the number of to-
kens, as different models might employ tokenizers
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with different efficiency, where an aligned input
construction should be maintained for proper cross
model comparison (which is inevitable given the in-
volvement of linear-time sequence models and their
hybrids). 20480 words in our needle test usually
converts to roughly 30.6k tokens with the tokenizer
utilized in models like LongChat-7b-v1.5-32k (Li
et al., 2023a), but only 27.2k tokens in models like
Meta-Llama-3-8B-Instruct (Al@Meta, 2024) with
a more efficient tokenizer.

We evaluated our needle test against three pop-
ular transformer-based language models (Mistral-
7b-Instruct-v0.2 (Jiang et al., 2023a), LongChat-
7B-v1.5-32K (Li et al., 2023a), Llama-8B-Instruct
(Al@Meta, 2024)) as well as several other liner-
time sequence models and hybrid architectures
mentioned in Section 3.1. Given that Mistral-7b-
Instruct-v0.2 and LongChat-7B-v1.5-32K come
with a context window of 32k tokens, we feed our
needle inputs into such models in a vanilla fash-
ion, whereas for Llama-8B-Instruct, we enlarge its
ROPE base theta (6) (Su et al., 2024) setting to 32 x
of its original size due to its limited 8k off-the-shelf
context window.

B.3 Method-specific Setting

Linear-time sequence models and mixed archi-
tecture In our paper, we benchmark five pure or
hybrid linear-time sequence models. While such
models can theoretically achieve infinite context
lengths, model performance is still expected to de-
grade when the context length exceeds the effec-
tive context length, which is typically the length
used during the pretraining phase. The context
lengths used in benchmarking LongBench (Bai
et al., 2023b) are provided in Table 4. For our
Needle-in-a-Haystack task (Mohtashami and Jaggi,
2023; Hsieh et al., 2024) defined in Appendix A.2,
we uniformly set the maximum context length to
20480 words to ensure consistency and fair com-
parison across tasks.

Table 4: Effective context length and model size of the
five linear time sequence models benchmarked in our

paper.

Model Eff. context length
Mamba-2.8B 2k
Mamba2-2.7B 2k
Mamba-Chat-2.8B 2k
RWKV-5-World-7B 4k
RecurrentGemma-2B-it 8k
RecurrentGemma-9B-it 8k




Quantization We benchmark two popular KV
cache quantization methods: one 2bit quantization
(KIVI-2) and two 4bit quantizations (KIVI-4 and
FlexGen). For KIVI (Liu et al., 2024b), we use the
official implementation®, and for FlexGen (Sheng
etal., 2023), we follow the group-wise quantization
in the official codebase’. The group size for both
KIVI and FlexGen is set to 32. We further set the
residual length, which is unique to KIVI, as 128.

Token Dropping We evaluate three popular to-
ken dropping methods used for handling long
contexts: Streamingl.LLM (Xiao et al., 2023), In-
fLLM (Xiao et al., 2024), and HoO (Zhang et al.,
2024d). In HO, there are two parameters for con-
trolling the token dropping ratio: the heavy ratio
and the recent ratio. The recent ratio controls the
number of tokens preserved within the local win-
dow, while the heavy ratio controls the number of
heavy-hitter tokens outside the local window. We
set both the heavy ratio and recent ratio to the same
values of 25%, 12.5%, 8.3%, and 6.25% of the total
token length to achieve compression gains of 2,
4x, 6%, and 8x, respectively, following the set-
ting® set forth in HyO’s official implementation’.

We emphasize that under this linear compres-
sion scheme utilized in HyO, the KV cache size
scales linearly with the input prompt length. On the
other hand, Streamingl.LM maintains a constant
window size of “attention sinks” (i.e., front-most
tokens) and recent tokens, making the size of the
KV cache constant at all times (irrelevant to input
length) in its original design. Thus, to hit a consis-
tent compression rate that is reasonably comparable
to other methods, we modify the total number of
tokens retained in the StreamingLLLM pipeline as
the product of the target compression rate and the
input length — i.e., for a prompt of 1,000 tokens,
a StreamingL.LLM-empowered LLM with 2x com-
pression rate would have a 500 tokens KV cache
budget to distribute among its attention sink and
most recent tokens. We ensure the ratio of attention
sinks to recent tokens within the KV cache matches
the ratio of 2% and 98%, according to its official
configurations®.

In addition to the attention sink and recent to-

*https://github.

Shttps://github.

®https://github.
h2o_hf/README . md

7https://github.com/FMInference/HZO

Xag” https://github.com/thunlp/InfLLM/blob/
main/config/mistral-stream-11lm.yaml

com/jy-yuan/KIVI
com/FMInference/FlexGen
com/FMInference/H20/blob/main/

16

kens, InfLLM (Xiao et al., 2024) incorporates the
most relevant tokens from the middle of the context
into the kept KV cache. We, therefore, preserve the
ratio of attention sinks, middle tokens, and recent
tokens as 2%, 32%, and 66%, respectively, again
being faithful to its official configurations®.

We borrowed our implementations of
Streamingl.ILM and InfLILM from InfLLM’s
(Xiao et al., 2024) official repository'® as this is
the official implementation of InfLLM, yet it is
endorsed by the lead author of StreamingLLLM due

to overlapped authorships.

Prompt Compression We evaluate LLMLin-
gua!! (Pan et al., 2024) on four different compres-
sion rates. Kx for K € {2,4,6,8} denotes that
the compressor is restricted to compress the length
into 1/K of the original length of long inputs.

C Related Works

The evaluation of LLM has been well studied (Chi-
ang et al., 2024; Wang et al., 2024b). Given the
importance of long context-capable LLMs, many
related works try to quantify such capabilities, usu-
ally via means of purposing new, long context-
focused datasets. For example, LongBench (Bai
et al., 2023b) — which is also utilized in our
work — provides a bilingual, multitask bench-
mark for long context understanding. Datasets
like InfiniBench (Zhang et al., 2024c), Longl-
CLBench (Li et al., 2024b), Marathon (Zhang et al.,
2024a), and Ruler (Hsieh et al., 2024) all contribute
their perspective in terms of long context evalua-
tion via different collections of real or synthetic
tasks.

Our work differs from the abovementioned prior
arts as such arts mainly focus on producing long
context evaluation datasets, where the included
benchmarks — if any — are mostly evaluated on
vanilla baseline models without any compression
methods applied; where our work presents compre-
hensive results primarily highlighting the compar-
ison among different efficient but long context-
capable approaches. We cover 10+ long context-
capable approaches under 60+ different settings. To
the best of our knowledge, no prior art has bench-
marked similar coverage of compression methods
under a long context scenario as we do.

Q&gq https://github.com/thunlp/InfLLM/blob/
main/config/llama-3-inf-11m.yaml

Yhttps://github.com/thunlp/InfLLM

"https://github.com/microsoft/LLMLingua
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D Extended Experimental Results

In this section, we present additional experimental
results for LongBench and the needle tasks.

Table 5 shows all the LongChat-7B results on
LongBench and the needle experiment. We present
FlexGen (Sheng et al., 2023) results on three differ-
ent LLMs in Figure 7. Additional HyO (Zhang
et al., 2024d) results for different compression
ratios on Llama-3-8B, LongChat-7B-v1.5, and
Mistral-7B-v0.2 can be found in Figure 14, 15
and 16 respectively.

We provide more visualization results on the
needle task. For baseline performance for the three
models in Figure 5. For InfLLM results on the
LongChat and Mistral models, the results are listed
in Figure ?? and 10. Figure 24 and 25 show the
performance of quantization, token dropping, and
prompt compression on Mistral and LongChat, re-
spectively. Figure 26, 27 and 28 illustrates the
effectiveness of different compression ratios across
various subtasks in LongBench.

Finally, Table 6, 7, 8 and 9 show the detailed
results for each task in LongBench.

We additionally have Figure 21, 22, and 23 to
showcase the performance drop of HoO (Zhang
et al., 2024d) under the needle test with a 64-digit
passkey as mentioned in OB @, in comparison to
other methods.

E Extended Results and Discussion

A note on the “overtraining” recipe. In sec-
tion 3.2, we briefly mentioned an “overtrained
recipe.” This is mostly referring to Llama-3-8B,
which is trained on 15T tokens and is way beyond
the optimal point according to Chinchilla scaling
law (Hoffmann et al., 2022). This overtraining
recipe is considered a main contributor to Llama-
3’s performance improvement.

We highlight it because most RNN/hybrid archi-
tectures are trying to outperform some fully trans-
parent LLMs (ones we can reproduce the pretrain-
ing, in contrast to just having access to the trained
weights) at a certain parameter scale with an iden-
tical training recipe — e.g., Mamba (Gu and Dao,
2023) to Pythia (Biderman et al., 2023) — where
such LL.Ms-in-comparison do not employ this over-
training ingredient. This presents a gap in directly
comparing the performance of weight-only open-
sourced LL.Ms with fully transparent RNN/hybrids,
and we alert our readers to be vigilant in drawing
direct numerical comparisons.
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A note on LLMLingua2 and coding tasks.
LLMLingua2 (Pan et al., 2024) performs signif-
icantly worse in LCC compared to RopeBench-
P, despite both being coding tasks (Table 6, Ta-
ble 7, and Table 8). We hypothesize this is because
LCC is a single file code completion task, where
RopeBench-P prefixes the code modules according
to the important statements of a certain file at a
repository level. This potentially gives RopeBench-
P a natural “outline,” which can be favorable cues
for hard prompt compression approaches like LLM-
Lingua?2 as these cues may drive the compression
of different parts accordingly.

A note on Mamba-Chat. While Mamba-Chat
(Mattern and Hohr, 2023) is presented as an
instruction-tuned version of Mamba (Gu and Dao,
2023), it does not deliver much better performance
than the original Mamba. Though much of this
can be attributed to the particular instruction tuning
recipe of Mamba-Chat, it suggests that supervised
finetuning SSM models might require some extra
considerations and careful monitoring.

A note on InfLLM with models utilizing con-
densing rotary embeddings. We noticed a sig-
nificant performance improvement in InfLLM
(Xiao et al., 2024) on models utilizing condens-
ing rotary embeddings (e.g., InfLLM on LongChat
(Li et al., 2023a) in Table 5 between the first
and current version of our work). Upon in-
vestigation, we realize that the original InfLLM
implementation does not take into account of
the condensing rotary embedding technique'?
(namely, position_ids/ratio) — a simple RoPE-
variant (Su et al., 2024) with long context handling
in mind, often utilized in LongChat and Vicuna
(Chiang et al., 2023) family of models — as In-
fLLLLM authors then shifted their focus out of the
Vicuna family in their later versions. Upon updated
implementation, we observe a decent performance
boost on InfLLM with LongChat (Table 5).

A note on measured peak memory usage reports.
During the rebuttal of this work, we promised our
reviewers that we’d include real, code-measured,
peak memory usage reports in the camera-ready.
We then realized that HuggingFace Transformers
involves some significant KV cache implementa-
tion changes around v4.42'3, resulting in up to 2x

Zhttps://1msys.org/blog/2023-06-29-LongChat/
13https: //github.com/huggingface/transformers/
pull/30536
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saving in memory consumption just by changing
its versions. Transformers v4.42 is not available by
the time of our submission and is in conflict with
some of the environment requirements of our fea-
tured methods. For this reason, we will postpone
sharing this report. We aim to provide an update
in our repository once we are able to bring some
of our featured methods to Transformers v4.45+
(where another major memory-related update'* has
been done.

A note on having an alternative visualization
than radar chart. Our work mainly employs
radar charts to demonstrate the LongBench-related
results. This decision is made based on the original
choice of visualization utilized in the LongBench
paper (Bai et al., 2023b), and the fact that radar
chart is one of the most space-efficient visualiza-
tion options — a welcoming character when we
are trying to feature multiple methods under dif-
ferent compression ratios against various datasets.
That being said, we recognize that radar charts can
sometimes be misleading due to amplifying the
delta between different readings, as each apex of
the radar chart is defined by the highest number in
that regard.

Typically, a bar chart is the next best option and
is free from the abovementioned concerns. How-
ever, a full bar chart plot for all the experiments we
conducted would be too massive, as we are looking
at roughly 20 method-compression ratio settings
per LLM, where each method is tested against 7
categories of datasets. Here, we provide Figure 4,
a bar chart plot of Table 2. Specifically, the Long-
Bench result was compared across different meth-
ods on Llama-3 and other model architectures.

14https ://github.com/huggingface/transformers/
pull/31292
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LongBench Average

Table 5: Performance of KV cache quantization, token dropping, and prompt compression methods on LongChat-7B
in our benchmark.

Model | Method | Comp. Ratio | Single. QA Multi. QA Summ. Few-shot Synthetic Code | LB Avg. Needle
Baseline 1.00x 311 23.9 26.7 63.8 305 549 | 385 963
KIVI-2bit 5.05% 30.3 23.1 26.5 63.6 322 539 | 380 853
KIVI-4bit 3.11x 311 242 26.8 63.9 35, 543 | 385 963
FlexGen-4bit 3.20% 313 238 27.0 62.8 315 534 | 382 947
InfLLM-2x 2.00% 29.2 233 25.8 51.8 195 519 | 342 587
InfLLM-4x 4.00x 242 24.0 244 497 95 468 | 314 340

~ | InfLLM-6x 6.00x 21.1 235 235 48.9 100 465 | 302 350

& | InfLLM-8x 8.00% 20.1 21.7 22.6 453 60 462 | 285 257

2| StreamLLM-2x 2.00x 23.9 21.8 24.2 512 250 493 | 325 477

Z | StreamLLM-4x 4.00x 19.9 22.1 223 49.0 135 520 | 305 @ 323

T | StreamLLM-6x 6.00x 19.6 214 20.7 475 105 514 | 294 213

£ | StreamLLM-8x 8.00% 175 214 195 44.4 100 519 | 282 197

2 | HyO-2x 2.00x 27.6 22.1 24.6 62.6 305 578 | 371 567

= | HyO-4x 4.00x 262 219 21.9 61.9 285 552 | 357 287
H,0-6x 6.00x 25.7 21.3 21.0 62.1 280 533 | 350 197
H,0-8x 8.00% 25.1 21.0 19.8 61.6 285 515 | 343 143
LLMLingua2-2x |  2.00x 25.7 223 254 35.4 195 326 | 274 287
LLMLingua2-4x |  4.00x 23.8 20.6 235 31.6 55 319 | 245 33
LLMLingua2-6x |  6.00x 22.6 202 22.6 323 50 319 | 241 0.6
LLMLingua2-8x |  8.00x 213 195 21.9 32.9 65 325 | 239 0.0
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Figure 4: Performance of KV cache quantization, token dropping, prompt compression, and other architectures on
LongBench.
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Figure 5: Baseline performance under needle test on three commonly used LLMs
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Figure 6: KIVI performance under needle test on three commonly used LLMs with 2-bit and 4-bit quantization
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Figure 7: FlexGen performance under needle test on three commonly used LLMs
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Figure 8: InfLLM on Llama-3-8B-Instruct with 4 different compression rates under needle test
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Figure 9: InfLLM on LongChat-7B-v1.5-32k with 4 different compression rates under needle test
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Figure 10: InfLLM on Mistral-7B-v0.2-Instruct with 4 different compression rates under needle test

21



20K words = 27K tokens

20K words = 27K tokens

20K words = 27K tokens

20K words = 27K tokens
| L]
= 0:44
B I e e R A
Word Count Word Count Word Count
(a) 2x Compression (b) 4x Compression

Word Count
(c) 6x Compression (d) 8x Compression
Figure 11: StreamingL. LM on Llama-3-8B-Instruct with 4 different compression rates under needle test
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Figure 12: StreamingL.LM on LongChat-7B-v1.5-32k with 4 different compression rates under needle test
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Figure 13: StreamingLLM on Mistral-7B-v0.2-Instruct with 4 different compression rates under needle test
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Figure 14: H2O on Llama-3-8B-Instruct with 4 different compression rates under needle test
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Figure 15: HoO on LongChat-7B-v1.5-32k with 4 different compression rates under needle test
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Figure 16: HoO on Mistral-7B-v0.2-Instruct with 4 different compression rates under needle test
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Figure 17: LLMLingua on LongChat-7B-v1.5-32k with 4 different compression rates under needle test
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Figure 18: LLMLingua on Mistral-7B-v0.2-Instruct with 4 different compression rates under needle test
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Figure 19: LLMLingua on Llama-3-8B-Instruct with 4 different compression rates under needle test
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Figure 20: Linear-time sequence models under needle test
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Figure 21: Llama-3-8B-Instruct with no compression, as well as with 4bit and 2bit KIVI under needle test with
64-digit passkey. Overall accuracies are noted within parentheses.
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Figure 22: HyO on Llama-3-8B-Instruct with 4 different compression rates under needle test with 64-digit passkey.
Overall accuracies are noted within parentheses.
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Figure 23: InfLLM on Llama-3-8B-Instruct with 4 different compression rates under needle test with 64-digit
passkey. Overall accuracies are noted within parentheses.
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Figure 24: Mistral-7B-v0.2-Instruct with different compression methods (a) with Quantization; (b) with Token
Dropping (c) with prompt compression.
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Figure 25: LongChat-7B-v1.5-32K with different compression methods (a) with Quantization; (b) with Token
Dropping (c) with prompt compression.
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Figure 26: Streamingl.LM with different compression ratios on three commonly used LLM:s.
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Figure 27: InfLLM with different compression ratios on three commonly used LLMs.
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Figure 28: LLMLingua with different compression ratios on three commonly used LLMs.
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Table 6: Full report of different compression methods on meta-llama/Meta-Llama-3-8B-Instruct across 15 datasets

in LongBench

Dataset Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code
LLM . P > > o & o o » o o ¥ Ave
o & X o o o° S SR o o C o ¢

Method @b((%\\ ot ‘(\\3\\&\ \’\0\\"0 q)’t“\é\ W 0\‘\$ Q‘(é N\“\‘\\A e SP'\J\ ?&5&& 3 V@Qe%
‘ Baseline 21.7 44.3 44.5 46.6 36.4 21.5 299 226 27.7 74.0 90.6 427 67.0 572 51.2 452
KIVI-2bit 214 43.1 442 46.8 37.0 20.6 29.8 221 275 74.5 90.5 425 67.5 50.8 46.7 443
‘ KIVI-4bit 21.0 44.8 44.6 47.0 36.5 214 30.1 225 28.0 745 90.3 43.1 66.5 573 520 45.3
FlexGen-4bit 20.9 44.0 44.5 433 335 20.5 29.7 220 27.7 73.0 90.5 422 65.5 59.7 50.7 44.5
‘ InfLLM-2x 19.7 385 373 40.9 209 29.9 20.7 26.5 69.0 91.2 42.5 57.5 57.6 54.0 42.5
- InfLLM-4x 18.1 28.0 35.1 36.6 144 29.6 19.8 255 61.0 88.8 42.0 375 56.9 583 383
E ‘ InfLLM-6x 19.3 24.1 29.8 359 15.0 28.8 19.4 24.6 56.0 85.4 41.8 29.5 60.2 58.3 36.5
2 InfLLM-8x 14.2 22.0 27.0 33.1 9.3 275 19.1 244 58.0 82.0 40.9 18.0 61.4 584 344
E ‘ StreamLLM-2x 17.3 335 27.6 37.0 19.0 28.1 20.1 255 68.0 90.4 41.1 34.0 55.0 56.2 389
ﬁ StreamLLM-4x 17.4 23.0 21.1 29.8 12.0 25.9 19.5 22.6 60.5 85.7 40.5 21.0 55.0 57.2 344
] ‘ StreamLLM-6x 157 18.7 17.8 26.1 10.7 24.7 18.6 20.7 58.0 822 40.2 14.5 59.4 585 323
E StreamLLM-8x 13.1 16.6 17.4 25.7 9.8 234 182 19.9 555 723 399 8.0 60.4 558 30.3
';] ‘ Hy0-2x 21.5 42.6 432 46.4 215 28.1 22.1 26.0 74.0 90.6 42.8 66.0 572 51.6 44.7
g Hy0-4x 21.8 41.2 41.8 46.8 215 254, 214 237 74.0 90.6 424 66.0 55.1 512 44.0
‘ H,0-6x 215 383 41.8 46.8 21.7 245 21.1 225 74.0 90.5 42.6 66.0 55.1 511 43.6
Hy0-8x 21.3 378 42.1 46.6 S 23.7 21.1 21.9 74.0 90.5 429 65.5 54.6 50.8 434
‘ LLMLingua2-2x 8.0 39.1 41.0 425 18.1 25.8 19.8 26.6 155 63.9 36.5 68.0 258 379 335
LLMLingua2-4x 13.0 332 333 43.8 244 253 224 24.7 4.4 79.1 344 225 199 44.6 299
‘ LLMLingua2-6x 17.1 34.0 26.2 40.2 18.5 250 21.7 23.6 2.8 76.8 34.1 18.0 17.5 45.2 28.1
LLMLingua2-8x 19.8 28.9 234 352 175 24.1 21.6 229 0.0 76.1 34.6 13.0 16.1 471.7 26.9

Table 7: Full report of

different compression methods on mistralai/Mistral-7B-Instruct-v0.2 across 15 datasets in

LongBench
Dataset Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code
5 NS
LLM e 5 S Q> Q> o & & e ¢ Q> N O & Ave
Method s = @\x\*‘?\a\ ‘<\°‘QQ\ 5 «ﬂ'\*\‘h s 00&‘? Q‘“%Q o S & < (-\«%Q %Py\c-’ - PO Ny o Q&‘“
| Baseline 210 204 471 36.4 219 19.1 325 242 271 710 862 430 89.3 55.1 530 438
KIVI-2bit 206 284 449 355 207 179 325 235 267 710 860 45 80.8 547 528 26
| KIVI-4bit 210 25 466 362 217 196 329 240 269 710 862 434 89.4 549 530 438
FlexGen-4bit 22 209 410 34.8 216 169 324 240 269 695 864 426 83.0 544 53.0 £0
| InfLLM-2x 216 242 46.1 35.0 20.9 18.3 31.0 234 259 615 867 412 65.8 54.8 53.6 411
InfLLM-4x 209 168 384 339 192 182 296 22 247 605 883 413 414 528 55.3 375
o | InfLLM-6x 199 146 36.9 31.8 164 147 201 2.1 238 570 874 404 326 532 53.6 356
% InfLLM-8x 209 128 330 2.1 162 133 279 212 238 600 860 40.1 262 54.1 535 345
g | StreamLLM-2x 207 206 326 323 190 147 209 216 244 665 870 400 471 523 53.7 375
2 StreamLLM-4x 197 15.1 254 277 174 146 274 202 21 610 837 39.2 316 518 55.9 342
& | StreamLLM-6x 17.8 12.8 24.1 247 13.2 10.0 254 203 205 590 818 38.0 253 529 56.8 322
T StreamLLM-8x 168 13 29 238 120 107 246 193 197 565 796 388 169 538 56.0 308
£ | H02x 214 274 410 36.1 208 193 312 235 258 710 862 432 87.7 547 529 432
S mO4x 216 249 448 350 19.0 17.5 286 28 242 710 867 438 82.9 53.9 523 419
| HyO-6x 215 27 29 34.5 172 166 27.1 25 232 710 864 435 82.0 53.1 519 4Ll
HyO-8x 209 214 411 32.8 168 159 262 26 230 710 863 33 79.5 528 518 404
| LLMLingua2-2x 202 26.8 38.9 347 16.8 17.7 299 236 258 190 812 365 549 219 415 326
LLMLingua2-4x 180 2.1 350 316 164 159 269 27 24.1 35 800 340 140 189 413 274
| LLMLingua2-6x 157 184 295 257 155 110 260 212 27 20 807 340 8.9 19.1 503 254
LLMLingua2-8x 15.3 167 26.9 239 15.1 8.9 252 214 2.1 05 85 335 8.0 193 517 247

Table 8: Full report of different compression methods on Imsys/longchat-7b-v1.5-32k across

15 datasets in

LongBench
Dataset Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code
Y

LLM R S Q> GO o o« o ¢ o o o0 & Ave

Method SN e R e
‘ Baseline 20.9 29.4 43.1 33.0 24.1 14.7 30.8 22.8 26.6 66.5 84.0 40.9 30.5 56.8 385
KIVI-2bit 20.9 29.0 41.0 328 228 137 30.7 224 26.4 66.5 832 412 322 554 38.0
‘ KIVI-4bit 21.0 289 433 33.1 249 147 311 227 26.5 67.0 83.9 40.8 315 56.3 385
FlexGen-4bit 20.5 304 432 337 238 13.9 317 229 26.5 66.0 815 40.9 315 56.3 382
‘ InfLLM-2x 19.1 28.4 40.0 30.1 26.6 132 311 21.7 24.6 60.0 84.1 113 19.5 549 342
ﬁ InfLLM-4x 17.6 21.2 339 324 254 144 294 215 223 55.0 843 9.9 9.5 521 314
@ ‘ InfLLM-6x 16.5 17.0 29.8 30.6 24.6 152 284 21.0 21.1 555 824 8.7 10.0 516 30.2
ht InfLLM-8x 14.9 16.5 29.1 264 231 154 26.6 20.7 205 48.5 78.8 8.7 6.0 50.8 285
_Z ‘ StreamLLM-2x 18.8 263 26.6 29.1 24.8 1.5 285 20.8 233 61.0 829 9.6 25.0 54.6 325
i StreamLLM-4x 18.1 19.1 224 29.5 25.1 11.6 255 20.9 204 545 81.1 11.4 13.5 542 30.5
5 ‘ StreamLLM-6x 17.7 17.7 233 26.0 26.8 115 234 204 182 545 78.1 9.9 10.5 534 29.4
20 StreamLLM-8x 13.9 16.7 219 243 26.4 13.6 21.6 19.8 17.1 49.0 739 10.4 10.0 514 282
S ‘ Hy0-2x 20.9 27.1 35.0 30.8 22,6 12.8 28.0 21.9 24.0 66.0 82.1 39.8 30.5 56.0 371
Hy0-4x 214 253 321 30.6 229 122 23.0 217 21.1 65.5 80.6 39.7 285 543 357
‘ H,0-6x 21.1 237 32.1 29.7 21.6 12.7 215 214 19.9 65.5 81.0 39.7 28.0 534 35.0
Hy0-8x 20.4 224 327 293 21.2 123 20.1 209 18.5 65.5 80.5 38.8 285 527 343
‘ LLMLingua2-2x 133 275 36.3 285 254 13.0 285 223 25.6 6.0 653 34.8 19.5 49.0 274
LLMLingua2-4x 14.4 263 30.7 272 24.0 10.7 2531 220 234 1.0 61.9 320 85 477 24.5
‘ LLMLingua2-6x 14.7 25.6 27.6 24.3 247 11.7 23.8 21.6 224 0.0 64.4 326 5.0 48.6 24.1
LLMLingua2-8x 14.6 244 249 23.8 235 112 23.1 214 214 0.5 66.6 315 6.5 48.3 239

Table 9: Full report of linear-time sequence models and mixed architecture across 15 datasets in LongBench

Dataset Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code
atasel
> 2
LLM Q' 5 i > Q> «© o o o c ~ & R & Ave
e o e ot A A& o8 & N € oL o & RS o
Method e e o W@ T B g T T V™
Mamba-2.8B 2.7 58 13.3 6.2 9.2 36 17.9 16.6 229 50.0 54.4 125 12 50.6 445 20.8
Mamba | Mamba-Chat-2.8B 32 63 17.9 73 95 4.0 215 18.5 235 455 432 239 37 50.5 45.0 216
Mamba2-2.7B 26 5.6 144 79 8.7 35 203 17.8 24.8 45.0 58.2 18.4 4.1 54.4 455 22.1
RWKV | RWKV-5-World-7B | 33 9.8 162 6.5 76 22 215 16.2 17.9 610 772 189 45 36.2 318 22.1
R-Gemma | R-Gemma-2B-it 12.0 162 26.0 9.8 10.8 43 207 20.0 2.1 52.0 63.3 23.6 4.0 57.0 503 26.1
R-Gemma-9B-it 154 258 323 25.4 2713 13.0 24.6 18.1 23.0 60.5 705 323 9.0 64.1 575 332
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