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Abstract

Multi-distribution learning is a natural generalization of PAC learning to settings with multiple

data distributions. There remains a significant gap between the known upper and lower bounds for

PAC-learnable classes. In particular, though we understand the sample complexity of learning a

VC dimension d class on k distributions to be O(ε−2 ln(k)(d + k) + min
{
ε−1dk, ε−4 ln(k)d

}
),

the best lower bound is Ω(ε−2(d+k ln(k))). We discuss recent progress on this problem and some

hurdles that are fundamental to the use of game dynamics in statistical learning.

Keywords: PAC learning, multi-distribution learning, distributional robustness, learning in games.

1. Introduction

The pervasive need for robustness, fairness, and multi-agent welfare in learning processes has led

to the development of learning paradigms whose performance hold under multiple distributions and

scenarios. Multi-distribution learning, or MDL, is a setting introduced by [HJZ22] to address these

needs and unify several existing frameworks and applications, such as notions of min-max fairness

[MSS19, AAK+22], group distributionally robust optimization [SKHL20], and collaborative learn-

ing [BHPQ17]. MDL is a generalization of the agnostic learning paradigms [Val84, BEHW89] to

multiple data distributions. In this setting, given a set of distributions D = {D1, . . . ,Dk} sup-

ported on X × Y , loss function ℓ, and a hypothesis class H, the goal of MDL is to find a (possibly

randomized) hypothesis h where

max
D∈D

LD(h) ≤ ε+ min
h∗∈H

max
D∈D

LD(h
∗), where LD(h) := E

(x,y)∼D
[ℓ(h, (x, y))] . (1)

Such an h is called an ε-optimal solution to the MDL problem (D,H) and we denote OPT :=
minh∗∈H maxD∈D LD(h

∗). Our open problem concerns the sample complexity of MDL.

Problem Statement. Consider an example oracle EXi for each distribution Di ∈ D, which once

queried returns an independent sample (x, y) ∼ Di. The optimal sample complexity of MDL is

the smallest total number of queries issued to examples oracles, in a possibly adaptive fashion, that

is sufficient for learning an ε-optimal solution. Formally, a multi-distribution learning algorithm

at each iteration t = 1, 2, . . . , chooses an index i(t) ∈ [k], queries EXi(t) to sample an instance

(x(t), y(t)) and, upon termination, returns a (possibly randomized) solution h. We use the shorthands

z(t) = (x(t), y(t), i(t)), Z = X × Y × [k], and Z∗ to denote a sequence z(1), z(2), . . . of any size.
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Definition 1 (Multi-Distribution Learnability) We say a hypothesis class H is multi-distribution

learnable with sample complexity mH : (0, 1)2 × N → N if there exists functions As : Z∗ → [k]
and Ah : Z∗ → ∆(Y)X where the following holds: for every (ε, δ) ∈ (0, 1), k ∈ N, and set of

k distributions D over X × Y , by letting i(t) = As(z
(1), . . . , z(t−1)) for t ∈ [mH(ε, δ, k)], with

probability at least 1− δ, the solution h = Ah(z
(1), . . . , z(m)) is ε-optimal, i.e., satisfying (1).

Problem 1 What is the optimal sample complexity of MDL? Are hypothesis classes H with VC di-

mension d multi-distribution learnable with a sample complexity of O
(
ε−2(ln(k)d+ k ln(k/δ)

)
)?

Recalling that the sample complexity of agnostic learning is mH(ε, δ, 1) ∈ Θ(ε−2(d+ln(1/δ)))
[SB14], one hopes to avoid paying the Ω(k · mH(ε, δ/k, 1)) samples necessary to independently

learn each of the k data distributions. This is why our conjectured sample complexity avoids a

dependence on dk and has an optimal ε−2 dependence. Existing results, however, have fallen short

of meeting both of these requirements and traded off lack of dependence on dk with the optimal

dependence on ε, as shown in rows 1 and 2 of Table 1. On the other hand, the optimal sample

complexity of MDL has been rightly characterized for finite hypothesis classes in row 3 (and more

generally those of finite Littlestone dimension or Bregman diameter [HJZ22]) and obtains optimal

ε−2 ln(|H|) dependence. The best lower bound, row 4, leaves a logarithmic gap with the conjectured

upper bound. Near-optimal bounds are known for realizable settings where OPT=0 (row 5) and

personalized settings where one can produce a different hypothesis for each distribution (row 6).

Table 1: Best known bounds on the sample complexity of MDL for hypothesis classes with VC

dimension d. Õ hides double-log factors and an additive factor of ε−2k ln(k/δ).

Bound Assumption Citation

1. Õ(ε−2 ln(k)d+ ε−1dk log(d/ε)) N/A [HJZ22]

2. Õ(ε−4 ln(k)(d + ln(1/δε)) N/A (Theorem 7)

3. Õ(ε−2 ln(|H|)) N/A [HJZ22]

4. Ω(ε−2(d+ k ln(min {d, k} /δ))) N/A [HJZ22]

5. O(ln(k)ε−1(d ln(1/ε) + k ln(k/δ))) OPT = 0 [CZZ18, NZ18]

6. Õ(ln(k)ε−2(d ln(d/ε) + k ln(k/δ))) Personalized (Theorem 9)

Broad Applications. One of the motivating application of MDL is collaborative learning, where

multiple stakeholders (representing Di) collaborate in training a model that provides high perfor-

mance for each stakeholder [BHPQ17, NZ18, CZZ18, BHPS21]. The sample complexity of MDL

thus quantifies the value of collaboration in learning: whereas our conjectured upper bound would

imply that collaboration reduces the amount of data needed by a ln(k)/k factor, existing bounds

only imply a min
{
ln(k)/kε2, ε

}
factor reduction.

Another application of MDL is to Group distributionally robust optimization (DRO) which con-

cerns learning a model with performance guarantees for many deployment environments [SKHL20,

SRKL20]. MDL sample complexity bounds quantify the cost of obtaining this robustness, a ques-

tion of growing interest and which has been studied in terms of finite-sum convergence [CH22,
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ACJ+21] and sample complexity [HJZ22]. Our conjectured upper bound would extend these favor-

able results to VC classes by only increasing the sample complexity logarithmically.

MDL also captures notions of min-max fairness in learning, which concerns prioritizing the

well-being of the worst-off subgroup and has applications in federated learning [MSS19] and equity

[AAK+22]. Min-max fair learning has mainly been studied in settings with presampled datasets,

where an inevitable sample complexity lower bound of Ω(dk/ε2) arises as one cannot adaptively

choose distributions to sample from. The sample complexity of MDL thus captures how min-max

fairness can be attained at less cost by adapting one’s data collection strategy on the fly.

2. Overview of Current Approaches

Multi-distribution learning can be formulated as the zero-sum game between a “learner” who chooses

hypotheses h ∈ H and an “adversary” whose chooses indices i ∈ [k], with the payoff function

LDi
(h). Importantly, for any mixed-strategy ε-min-max equilibrium (p, q) ∈ ∆(H)×∆k, the ran-

domized map p is a 2ε-optimal solution. All existing multi-distribution learning algorithms can be

expressed as finding a ε-equilibrium using no-regret dynamics (see [HJZ22] for an overview).

Game dynamics. Formally, a game dynamic is a T -iteration process where, at each t ∈ [T ], a

learner chooses hypothesis h(t) ∈ H with a no-regret algorithm and an adversary chooses a dis-

tribution i(t) ∈ [k] with a (semi-)bandit algorithm. The learner estimates its current cost function

h 7→ LD
i(t)

(h) by sampling Nlearn datapoints from EXi(t) , while the adversary estimates its cost

function i 7→ −LDi
(h(t)) by, for Nadv choices of i ∈ [k], sampling a datapoint from each EXi. The

random mapping p where p(x) = Uniform(h(1)(x), . . . , h(t)(x)) is a 2ε-optimal solution.

Different instantiations. Every result in Table 1 can be obtained by instantiating this game dy-

namics template. Row 3 can be obtained by setting Nlearn = Nadv = 1, T ∝ ε−2(ln(|H|) +
k ln(k/δ)), having the learner choose h(t) with Hedge and the adversary choose i(t) with Exp3

[HJZ22]. Row 1 can be obtained with the same algorithm but first creating an offline ε-covering

of the class H on each data distribution Di ∈ D, using O(d/ε) samples per distribution. Row 2

can be obtained by setting Nadv = k, Nlearn ∝ ε−2(d + ln(1/δε)), T ∝ ε−2 ln(k/δ), having the

learner choose h(t) to be the (approximate) risk minimizer of the current cost function and the ad-

versary choose i(t) with Hedge (Theorem 7); in contrast to the prior upper bound, this bound uses

an algorithm that iterates fewer times but samples more at each iteration.

Personalization. We can pinpoint the challenge of negotiating trade-offs between different data

distributions as the primary difficulty of handling infinite classes. Consider the personalized setting

where, during inference time, Ah(z
(1), . . . , z(m)) can return a different hypothesis hi for each dis-

tribution Di. This assumes away the difficulty of combining hypotheses that are each near-optimal

for different distributions. The conjectured sample complexity bound of Õ(ln(k)ε−2(d ln(d/ε) +
k ln(k/δ))) can be obtained in the personalized setting (Row 6 of Table 1) by running the Row 1

algorithm ln(k) times, at each round limiting the adversary to playing within a small region of the

simplex ∆k that we can efficiently cover H on (Theorem 9).

2.1. Existing Challenges

Adaptive coverings. A potential approach to closing the gap with the conjectured sample com-

plexity bound is to find a method of adaptively covering the hypothesis class H. Whereas Row 1

3
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was obtained by taking a naive offline ε-covering of H on all k distributions, Row 2 was obtained by

an algorithm that (implicitly) ε-covers the class H on O(ln(k)ε−2) adaptive choices of Di ∈ D. It

is unclear whether a covering of lower resolution can be used, or if it is possible to only cover H on

O(ln(k)) choices of distributions Di ∈ D. We also note that it is not the size of the ε-covering of k
distributions, i.e., kε−O(d), that is the bottleneck, but rather the number of samples needed to create

such a cover. In contrast, the personalized algorithm decided in an online fashion what distributions

need to be covered and it only covers H on O(ln(k)) choice of (mixture) distributions from D.

Agnostic-to-realizable. Another potential tool is an agnostic-to-realizable reduction [HKLM22],

since nearly-optimal sample complexity bounds are known for realizable settings where OPT = 0
[BHPQ17, CZZ18, NZ18]. This technique has had success in related problems, such as the closely

related adversarial PAC learning problem [MHS19]. Unfortunately, because multi-distribution learn-

ing involves online decision-making—determining which example oracles to call—the usual reduc-

tion of testing all possible labelings of observed datapoints is intractable.

Bounding regret. Game dynamics algorithms rely on the learner achieving a low regret on the

sequence of distributions chosen by the adversary. However, with VC classes, even when all distri-

butions share a Bayes classifier, an oblivious adversary can force the learner to suffer regret linear

in k. It is therefore necessary to reason about the adversary’s behavior to bound the regret of the

learner. This is atypical; game dynamics proofs usually bound each player’s regret independently.

Proposition 2 Consider an algorithm A that, given distributions D1, . . . ,DT , draws only N dat-

apoints in total and returns a sequence of hypotheses h1, . . . , hk where each ht is trained only on

datapoints sampled from D1, . . . ,Dt. There exists a sequence D1, . . . ,DT with only k distinct

members, where E[T−1
∑

t∈[T ] LDt(ht)]−minh∗∈H T−1
∑

t∈[T ] LDt(h
∗) ∈ Ω(

√
dk/N ).

3. Intermediate Open Problems

Lower Bounds. We believe a ln(k)d factor is missing from the best known sample complexity

lower bound of Θ(ε−2(d+k ln(min {k, d} /δ))). The absence of a ln(k)d term would be significant

as it would imply that, when VC dimension dominates sample complexity, handling more data

distributions comes effectively for free. Interestingly, this ln(k) factor does not appear in the upper

bound when the complexity of H is characterized by Littlestone dimension, perhaps due to the

stronger compression guarantees for online-learnable classes. A ln(k)d term would also shed light

on compression schemes for VC classes [LW86]; a lower bound of Θ(ln(k)d + k) would lend

evidence against the existence of O(VC(H))-size compression schemes.

Problem 2 Is the sample complexity of multi-distribution learning in Ω(log(k)d)?

Proper learning. All existing multi-distribution learning algorithms with fast sample complexity

rates produce either a randomized hypothesis h ∈ ∆(H) or an improper hypothesis resulting from

taking a majority vote. An open question is whether improperness is necessary for fast rates.

Problem 3 What is the sample complexity of proper multi-distribution learning?

Oracle-efficient learning. For oracle-efficient algorithms, that is an algorithm only accessing H
through an ERM oracle [DHL+20], only the sample complexity bound from Row 2 in Table 1 is

known. An open question is whether there exists a statistical-computational trade-off for MDL.

Problem 4 What is the sample complexity of oracle-efficient multi-distribution learning?
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Chris Russell, and Jie Zhang. Active sampling for min-max fairness. In Kamalika

Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato,
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Appendix A. Omitted Proofs

We first recall standard results in online learning. We use the shorthands x(1:T ) := x(1), . . . , x(T ),

{f(x(t))}(1:T ) := f(x(1)), . . . , f(x(T )), and f(·, b) := a 7→ f(a, b) throughout this section. We

use ∆(A) to denote the set of probability distributions over a set A, and ∆d to denote a probability

simplex in R
d−1. Given a distribution P ∈ ∆d, we use (∆d)2 to denote the convex subset of ∆d

that is the distributions that are 2-smooth: (∆d)2 := {P ∈ ∆d | maxi Pi ≤ 2/d}.

Online learning. For a sequence of actions a(1), . . . , a(T ) ∈ A and costs c(1), . . . , c(T ) : A →
[0, 1], regret is defined as Reg(a(1:T ), c(1:T )) :=

∑T
t=1 c

(t)(a(t)) − mina∗∈A
∑T

t=1 c
(t)(a∗). An

online learning algorithm Alg maps from costs c(1:t−1) to a new action a(t) ∈ A, where a(t) =
AlgA(c

(1:t−1)). We recall the following online learning regret bound for probability simplices.

Lemma 3 Let A be a compact convex subset of ∆d and fix a learning rate η ∈ [0, 0.5]. For any

sequence of linear costs c(1:T ), the Hedge online learning algorithm [FS97] chooses actions a(1:T ),

where a(t) = HedgeA(c
(1:t−1), with regret Reg(a(1:T ), c(1:T )) ≤ ln(d)/η+ηmina∗∈A

∑T
t=1 c

(t)(a∗).

Stochastic costs are functions ĉ : A×Z → [0, 1] of both actions and datapoints. We say a stochastic

cost ĉ is linear if ĉ(·, z) is linear in its first argument under any datapoint z ∈ Z . We know that

estimating stochastic costs with i.i.d. samples does not significantly affect the regret of an online

learning algorithm.

Lemma 4 Let A be a compact convex subset of ∆d, Alg an online learning algorithm, and

z(1:T ) i.i.d.
∼ D i.i.d. samples from some data distribution D. For any sequence of linear stochas-

tic costs ĉ(1:T ), applying Alg to the empirical cost estimates
{
ĉ(t)(a, z(t))

}
(1:T ) such that a(t) =

AlgA(
{
ĉ(τ)(a, z(τ))

}
(1:t−1)) guarantees

∣∣∣Reg(a(1:T ), {Ez∼D[ĉ
(t)(·, z)]}(1:T ))− Reg(a(1:T ),

{
ĉ(τ)(a, z(τ))

}
(1:T ))

∣∣∣ ≤ O
(√

ln(d/δ)T
)
,

with probability at least 1− δ over the randomness of z(1:T ) [NJLS09].

We also recall the agnostic learning upper bound.

Lemma 5 Consider any stochastic cost ĉ : A × Z → [0, 1] and data distribution D, where

d is the VC dimension of A. With only O((d + ln(1/δ))/εα) samples from D, the action a ∈
A empirically minimizing ĉ is ε-optimal with probability 1 − δ: Ez∼D [ĉ(a, z)] ≤ ε + (1 +
α)mina∗∈A Ez∼D [ĉ(a∗, z)] [NZ18].

Finally, we note that all the aforementioned results for cost sequences also apply to payoff se-

quences, where the regret of actions a(1:T ) with respect to a sequence of payoffs ρ(1:T ) is defined as

Reg+(a
(1:T ), ρ(1:T )) := maxa∗∈A

∑T
t=1 ρ

(t)(a∗) −
∑T

t=1 ρ
(t)(a(t)). Here, we use the subscript +

in Reg+ to distinguish when regrets are stated for payoff functions. For example, the regret bound

of Hedge for payoffs can be written as follows.

Lemma 6 Let A be a compact convex subset of ∆d and fix a learning rate η ∈ [0, 0.5]. For any se-

quence of payoffs ρ(1:T ), the Hedge online learning algorithm [FS97] chooses actions a(1:T ), where

a(t) = HedgeA(ρ
(1:t−1)), with regret Reg+(a

(1:T ), ρ(1:T )) ≤ ln(d)/η + ηmaxa∗∈A
∑T

t=1 ρ
(t)(a∗).
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Algorithm 1 Multi-Distribution Learning Algorithm.

Input: Hypotheses H, distributions D, iterations T ∈ Z+, sub-iterations r1, r2 ∈ Z+, parameter

α ∈ (0, 0.5);
Intialize Hedge iterate D(1) to be a uniform mixture of D;

for t = 1, 2, . . . , T do

Sample r1 datapoints z1, . . . , zr1 from D(t);

Let h(t) = argminh∈H
∑r1

i=1 ℓ(h, zi) be the empirical minimizer of ℓ;
Sample r2 datapoints zD,(t−1)r2+1, . . . , zD,tr2 from each D ∈ D;

Use the Hedge algorithm to get the next iterate D(t+1) ∈ ∆(D), using learning rate α and

observing the payoff ρ̃(t) : D → [0, 1] where ρ̃(t)(D) = 1
r2

∑tr2
i=(t−1)r2+1 ℓ(h

(t), zD,i);
end for

Return h: a uniform distribution over h(1:T );

A.1. Proof of Theorem 7 (Row 2 of Table 1)

Theorem 7 For any ε, α ∈ (0, 0.5), δ > 0, k ∈ Z+ and binary class H, the sample complexity of

MDL, mH(ε+ α ·OPT, δ, k), is Õ(ε−2
(
k log(k/δ) + α−2 log(k)(log(1/εδ) + VC(H))

)
).

Proof Let d denote the VC dimension of H. Without loss of generality, assume ε ≤ α. Consider

Algorithm 1, fixing T = ln(k)
εα , r1 = C1

d+ln(T/δ)
εα , and r2 =

⌈
C2

ln(k/δ)
Tε2

⌉
.

Fact 8 The regret of the “adversary” in the game dynamics induced by Algorithm 1 satisfies

Reg+(D
(1:T ), {L(·)(h

(t))}(1:T )) ≤
ln(k)

α
+ Tε+ α max

D∗∈D

T∑

t=1

LD∗(h(t)),

with probability at least 1− 2δ for some choice of universal constant C2.

Proof The mixture distributions D(1:T ) result from applying Hedge to the payoff functions ρ̃(1:T ).

Hence, by Lemma 6,

Reg+(D
(1:T ), ρ̃(1:T )) ≤

ln(k)

α
+ α max

D∗∈D

T∑

t=1

ρ̃(t)(D∗).

To prove generalization, we will break each timestep t into r2 sub-timesteps. For every j ∈ [Tr2],
we let D̃(j) = D(⌈j/r2⌉) and define c̃(j) to be the cost function D 7→ 1

r2
(1 − ℓ(h(t), zD,j)). We can

rewrite the adversary’s regret as Reg+(D
(1:T ), ρ̃(1:T )) = Reg(D̃(1:Tr2), c̃(1:Tr2)). Further observe

that, since EzD,j

[
c̃(j)

]
= LD(h

(⌈j/r2⌉)) for every j ∈ [Tr2] and D ∈ D, the empirical regret is

unbiased: Reg+(D
(1:T ), {L(·)(h

(t))}(1:T )) = Reg(D̃(1:Tr2), {Ez(·),j

[
c̃(j)

]
}(1:Tr2)). By Lemma 4,

∣∣∣Reg+(D(1:T ), {L(·)(h
(t))}(1:T ))−Reg+(D

(1:T ), ρ̃(1:T ))
∣∣∣

=
∣∣∣Reg(D̃(1:Tr2), c̃(1:Tr2))− Reg(D̃(1:Tr2), {Ez(·),j [c̃

(j)]}(1:Tr2))
∣∣∣

≤ O
(√

ln(k/δ)T/r2

)
= O (Tε/C2) ,
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Algorithm 2 Personalized Algorithm.

Input: Hypotheses H, distributions D;

Initialize D(1) = D;

for t = 1, 2, . . . , ⌈log(k)⌉ do

Run Algorithm 3 on D(t),H to obtain h(t);
Sample O

(
ε−2(ln(k ln(k)/δ))

)
datapoints XD

t from each D ∈ D;

Let D(t+1) consist of D where L̂
X

D
t
(h(t)) > Median

(
L̂
X

D
t
(h(t))

)
D∈D

;

end for

For each D ∈ D, find tD where D ∈ D(tD) but D /∈ D(tD+1). Return
(
D,h(tD)

)
D∈D

.

with probability at least 1−δ. Similarly, with probability at least 1−δ, maxD∗∈D
∑T

t=1 ρ̃
(t)(D∗) ≤

O(Tε
C2

) + maxD∗∈D
∑T

t=1 LD∗(h(t)). A union bound yields the claimed fact.

Next, we observe that, at each timestep t, h(t) is the empirical risk minimizer of ℓ on C1(d +
log(T/δ))/εα samples from D(t). For sufficiently large C1, by Lemma 5, LD(t)(h(t)) ≤ ε + (1 +

α)minh∗∈H LD(t)(h∗) with probability at least 1 − δ/T . By union bound,
∑T

t=1 LD(t)(h(t)) ≤
Tε + T (1 + α)OPT with probability at least 1 − δ. Putting together the regret bounds for the

learner and adversary,

(1− α) max
D∗∈D

LD∗(h)− 2ε = (1− α) max
D∗∈D

(
1

T

T∑

t=1

LD∗(h(t))

)
− 2ε

≤
1

T

T∑

t=1

LD(t)(h(t))

≤ ε+ (1 + α) min
h∗∈H

1

T

T∑

t=1

LD(t)(h∗)

≤ ε+ (1 + α)OPT.

We can simplify maxD∗∈D LD∗(h) ≤ 1
1−α (3ε + (1 + α))OPT ≤ 6ε + (1 + 4α)OPT. Reparam-

eterizing ε → 1
6ε and α → 1

4α yields the desired claim. Our sample complexity is (r1 + kr2) × T

and thus O
(
k ln(k/δ)

ε2
+ (d+log(T/δ)) ln(k/δ)

ε2α2

)
.

A.2. Proof of Theorem 9

Theorem 9 For any ε, δ > 0, k ∈ Z and binary class H, the sample complexity mH(ε, δ, k) of

personalized multi-distribution learning is Õ(ε−2 ln(k)(VC(H) ln(VC(H)k/ε) + k ln(k/δ))).

We now turn to proving this result.

Lemma 10 Consider the multi-distribution learning problem (D,H, ℓ). For any h ∈ ∆H, there

exists a D′ ⊆ D where |D′| ≥ |D| /2 and maxD∈(∆D)2 LD(h) ≥ maxD∈D′ LD(h).

9
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Algorithm 3 Multi-Distribution Learning Algorithm (Mid).

Input: Hypotheses H, distributions D;

Take ε−1C (d log(d/ε) + log(1/δ)) samples x1, . . . , xN from Uniform(D) and obtain a covering

H′ of H by projection: for every y ∈ {[h(x1), . . . , h(xN )] | h ∈ H}, include in H′ an arbitrary

choice of h ∈ H such that [h(x1), . . . , h(xN )] = y;

Intialize Hedge iterate D(1) on (∆D)2, that is the set of 2-smooth distributions on D;

Intialize Hedge iterate h(1) on the simplex (∆H′);
for t = 1, 2, . . . , T do

Use the Hedge algorithm to get the next iterate h(t+1) = Hedge∆(H′)(
{
ĉ(τ)

}
(1:t)), where

ĉ(t)(h) = ℓ(h, z) and z ∼ D(t);

Sample a D′ ∼ Uniform(D) and a datapoint z ∼ D;

Run Hedge algorithm to get the next iterate D(t+1) = Hedge(∆D)2(
{
c̃(τ)

}
(1:t)), where

c̃(t)(D) = 1[D′ = D] · |D| · PrD(t)(D′)(1− ℓ(h(t), z));
end for

Return a uniform distribution over h(1:T );

Proof Fix an h ∈ ∆H. Consider all strict minorities of D: Min := {D′ ⊆ D | |D′| < |D| /2}. Let

DMinHard denote the strict minority on which h does worst, and DMinEasy denote the strict minority

on which h does best:

DMinHard = argmax
D∗∈Min

1

|D∗|

∑

D∈D∗

L(h), DMinEasy = argmin
D∗∈Min

1

|D∗|

∑

D∈D∗

L(h).

First, we observe that max(∆D)2 L(h) ≥ ED∼Uniform(D)

[
L(h) | D /∈ DMinEasy

]
, where Uniform(D)

is the uniform mixture over D. Second, we observe that ED∼Uniform(D)

[
L(h) | D /∈ DMinEasy

]
≥

maxD∈D\DMinHard
LD(h). Thus, D′ = D \ DMinHard satisfies the desired property.

Lemma 11 Consider a multi-distribution learning problem (D,H, ℓ). Algorithm 3 returns a hy-

pothesis h such that with probability 1− δ,

max
D∗∈(∆D)2

LD∗(h) ≤ min
h∗∈∆H

max
D∗∈(∆D)2

LD∗(h∗) + ε.

It takes only Õ(ε−2(d ln(dk/ε) + ln(1/δ))) samples.

Proof By construction, with probability at least 1 − δ, H′ is an ε-net for H [HW86] under the

distribution Uniform(D). Consider any distribution P ∈ ∆(D)2. Because any event that happens

in P must also happen in Uniform(D) with at least half the probability, including the event that

h(x) 6= h′(x), H′ is a 2ε-net for P . Since the range of ℓ is [0, 1], it also follows that for any h ∈ H,

there is an h′ ∈ H′ such that |LP(h)− LP(h
′)| < 2ε. We now turn to arguing that our output

Uniform(h(1:T )) is nearly optimal for the discretized class H′.

We observe that D(1:T ) results from applying Hedge to (importance-weighted estimates of)

stochastic cost functions that are bounded in [0, 2]. Moreover, the costs are bounded unbiased

estimates of the true costs. Thus, as in our proof of Theorem 7, we can directly apply Hedge’s

regret bound (Lemma 3) and stochastic approximation (Lemma 4) to bound the adversary’s regret

10
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Reg(D(1:T ), {1 − L(·)(h
(t))}(1:T )) ≤ O

(√
ln(k/δ)T

)
. Note that this regret is defined only over

the set ∆(D)2. Therefore choosing T =
⌈
C ′ ln(k/δ)/ε2

⌉
for large C ′ gives Reg(D(1:T ), {1 −

L(·)(h
(t))}(1:T )) ≤ Tε with probability 1 − δ. Similarly, the learner’s Hedge (Lemma 3) and

the stochastic approximation (Lemma 4) gives the regret bound Reg(h(1:T ), {LD(t)(·)}(1:T )) ≤

O
(√

ln(|H′|)T
)

. Note that this regret is defined only over the set H′. Since |H′| ≤ O((kN)d)

by Sauer Shelah’s lemma, choosing T ≥ Cε−2d ln(dk ln(d/εδ)/ε) for some large constant C
guarantees that Reg(h(1:T ), {LD(t)(·)}(1:T )) ≤ Tε with probability at least 1− δ. Putting together

the regret bounds for the learner and adversary as before,

max
D∗∈∆(D)2

LD∗(h)− ε ≤
1

T

T∑

t=1

LD(t)(h(t)) ≤ ε+ min
h∗∈H′

1

T

T∑

t=1

LD(t)(h∗)

≤ 3ε+ min
h∗∈H

1

T

T∑

t=1

LD(t)(h∗)

≤ 3ε+OPT.

Our sample complexity is 2× T and thus Õ(ε−2(d ln(dk/ε) + ln(1/δ))).

Proof [Proof of Theorem 9] Consider Algorithm 2. Let D∗ be the product distribution of every

D ∈ D. Let d denote the VC dimension of H. By Lemma 11, with probability at least 1− log(k)δ,

for all t ∈ [T ],

max
D∗∈(∆D(t))2

LD∗(h(t)) ≤ min
h∗∈∆H

max
D∗∈(∆D(t))2

LD∗(h∗) + ε.

By Lemma 10, there exists D′ ⊆ D(t) where |D′| > D(t)/2 and maxD∈(∆D)
P(t)

LD(h
(t)) ≥

maxD∈D′ LD(h
(t)). In other words, OPT + ε ≥ maxD∈D′ LD(h

(t)). By uniform convergence,

with probability at least 1 − δ, for all t ∈ [T ] and D ∈ D(t),

∣∣∣L̂(t)
D (h(t))− LD(h

(t))
∣∣∣ ≤ ε. Thus,

for every D ∈ D(t) \ D(t+1), LD(h
(t)) ≤ 2ε + OPT. Since the size of D(t) is reduced by at

least half every iteration, the algorithm terminates after ⌈ln(k)⌉ iterations. The algorithm’s sample

complexity comes from the samples needed for Lemma 10 and for evaluating each h(t), and taking

a union bound over all iterations.
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