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Abstract

We provide a unifying framework for the design and analysis of multicalibrated predictors. By placing
the multicalibration problem in the general setting of multi-objective learning—where learning guarantees
must hold simultaneously over a set of distributions and loss functions—we exploit connections to game
dynamics to achieve state-of-the-art guarantees for a diverse set of multicalibration learning problems. In
addition to shedding light on existing multicalibration guarantees and greatly simplifying their analysis,
our approach also yields improved guarantees, such as obtaining stronger multicalibration conditions
that scale with the square-root of group size and improving the complexity of k-class multicalibration by
an exponential factor of k. Beyond multicalibration, we use these game dynamics to address emerging
considerations in the study of group fairness and multi-distribution learning.

1 Introduction

Multicalibration has emerged as a powerful tool for addressing fairness considerations and other resource
allocation issues in machine learning. Based on calibrated forecasting [Daw82, FV98]—which requires that
among instances x on which a predictor h predicts the probability h(x) = v, a fraction v truly have a
positive outcome—multicalibration yields more fine-grained guarantees by seeking calibration across large and
possibly overlapping collections of sub-populations [HKRR18]. Multicalibration has been studied in numerous
settings, including those with rich label sets (multi-class multicalibration [GKSZ22]), adversarial rather than
stochastic data (online multicalibration [GJN+22]), and problems where no Bayes classifier exists (agnostic
multicalibration [SCM20]). The concept of multicalibration has also been applied to the estimation of other
quantities, such as higher moments [JLP+21], and been strengthened in various ways, such as providing
conditional guarantees [BGJ+22].

Multicalibration’s versatility has led to the development of numerous specialized algorithms, each tailored to a
unique multicalibration problem and requiring its own individualized analysis. Promising attempts to provide
an overarching conceptual framework for multicalibration, such as outcome indistinguishability [DKR+21],
have had limited success in unifying these various algorithms. In this paper, we tackle this challenge,
developing a general-purpose algorithmic framework to guide the design of multicalibrated learning algorithms
for a wide range of settings and considerations.

Our approach is a dynamical systems and game-theoretic approach, taking as its point of departure the
classical connection between no-regret learning and minimax problems [see, e.g., FS96, FV97]. We formulate
multicalibration problems broadly as multiobjective optimization problems that admit a natural minmax
representation. We explore the connection between minmax problems and dynamical systems to demonstrate
that many multicalibration algorithms can be formulated as particular instances of two-player zero-sum games
where players independently either run no-regret algorithms or best-response algorithms. A wide range of
multicalibration algorithms that exhibit varying trade-offs can be obtained by plugging in different no-regret
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and best-response algorithms. This unified framework both recovers existing guarantees and in many cases
improves upon them.

Although approaching multicalibration—a min-max optimization problem—with no-regret learning game
dynamics seems like an obvious approach, no prior multicalibration work has succeeded in using a game-
theoretic framing as a unifying principle for multicalibration. The primary challenge is not reducing
multicalibration to min-max optimization, which is straightforward (Facts 2.5,2.6), but rather solving the
resulting equilibrium computation problem in a way that connects to practical algorithms. The needs of
multicalibration (such as determinism, large and complex predictor space, etc.) differ significantly in this
regard from earlier applications of general-purpose no-regret algorithms and game dynamics. Most notably,
the minimizing player’s action set is the set of all predictors, which scales exponentially in the domain size,
which requires constructing a novel and highly non-trivial online learning strategy (Theorem 3.7). Another
example is that we need to obtain a deterministic solution from the game dynamics despite not having
convexity, which required a novel form of no-regret/best-response game dynamics (Lemma 3.4). It is therefore
quite surprising that every known multicalibration algorithm and guarantee can be cleanly recovered—and
improved upon—with this game-theoretic learning dynamics framework.

Our primary contributions can be categorized into three areas.

1) Unifying framework. In Section 3, we give an overview of game dynamics as a concise but general
framework for obtaining multi-objective learning guarantees. To use these dynamics as a generic solution to
various multicalibration problems, we introduce a powerful general-purpose no-regret algorithm (Theorem 3.7)
and a distribution-free best-response algorithm (Theorem 3.8), for calibration-like objectives. This approach
allows us to unify the diverse—and often, seemingly unrelated—algorithms that have been studied in the
multicalibration literature, offering a general template for their derivation and analysis.

2) New guarantees. In Sections 4 and 5, we use our framework to improve guarantees for various
multicalibration settings (see Table 1) by simply plugging in different no-regret and best-response algorithms.

These improvements include Theorem 4.3’s exponential (in k) reduction in the complexity of k-class multical-
ibration over [GKSZ22], Theorem 4.1 polynomial (in 1/ε) reduction in the complexity of learning a succinct
multicalibrated predictor over [DKR+21], Theorem 5.5 the first conditional multicalibration results for the
batch setting, and Theorem 5.12 the first agnostic multicalibration guarantee that improve over uniform
convergence [SCM20] and removes the dependence on |X |. We also show with Theorem 5.7 that, with only
a 1/ε increase in sample complexity (less than a cube-root factor increase), we can obtain multicalibration
guarantees that, for each group, requires an error tolerance that scales with the square-root of the probability
of observing a group. Note that, in contrast, existing multicalibration algorithms only guarantee constant
error tolerance.

In Section 6, we demonstrate that our framework can be extended to analyze problems beyond multicalibration,
such as multi-group learning [TH22].

3) Simplified analyses. In Sections 4 and 5, we also demonstrate that our framework can recover the
guarantees of various existing multicalibration algorithms, including online multicalibration [GJN+22] and
moment multicalibration [JLP+21], while avoiding intricate and problem-specific arguments.

1.1 Related Work

The study of calibration originated in online (adversarial) forecasting [Daw82, Har22], with classical literature
having also studied calibration across multiple sub-populations [FK06]. Multicalibration, on the other hand,
is classically studied in the stochastic setting; i.e., where (xi, yi)

i.i.d.∼ D, in which case calibration is trivially
satisfied by the predictor h(x) = E [y]. Due to this difference in formulation in the literature on calibration
and that on multicalibration, the specific technical tools that have been developed in these areas have largely
remained distinct. Our work can be viewed as bridging this gap by showing that game-theoretic dynamics
provides a unified foundation for studying multicalibration, just as no-regret learning underpins the study of
calibration.

Motivated by fairness considerations, a formal definition of multicalibration was presented by [HKRR18], and
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Problem Complexity Dynamic Previous Results Our Results Reference

MC (Det) Oracle NRBR O(kε−2) [GKSZ22] O(ln(k)ε−2) Thm 4.3

MC (Sqrt Guarantees, Det)
Sample NRBR Õ( 1

ε6
(
√
k ln(k |S|) Õ( 1

ε4
(ln(k) ln(k |S|) Thm 5.7

+k3/2 ln(λ))) +k ln(λ)))

Agnostic MC (Det) Oracle NRBR O(|X | ε−2) [SCM20] O(ε−2) Thm 5.12

Agnostic MC Sample NRNR O(|X | ε−2) [SCM20] O((d+ k)ε−2) Thm 5.13

Cond. MC (Det) Oracle NRBR O(|S|2 ε−2) O(|S| ε−2) Thm 5.5

Cond. MC Sample NRNR O(|S|2 (d+ k)ε−2) O(|S| (d+ k)ε−2) Thm 5.6

MC (Succinct) Sample NRNR Õ((d+ k)ε−3) [GKSZ22] O((d+ k)ε−2) Thm 4.1

Online MC Regret BRNR O(
√

log(|S|)T ) [GJN+22] (Matching) Thm 4.4

rth Moment MC (Det) Oracle NRBR O(rε−4) [JLP+21] (Matching) Thm 5.16

Table 1: This table summarizes the sample complexity and agnostic learning oracle complexity rates we obtain
for multicalibration (MC), compared with the previous state of the art. S denotes the set of groups for which we
desire multicalibration, d the VC dimension of S, k the number of label classes, and ε the error tolerance. (Det) and
(Succinct) respectively denote cases in which only deterministic or only succinct predictors are acceptable. “Sqrt
guarantees” refers to requiring a multicalibration tolerance of ε

√
Pr(x ∈ S) given a group S ∈ 2X ; when not specified,

only a weaker multicalibration tolerance of ε is required.

has found a wide range of applications and conceptual connections to Bayes optimality, conformal predictions,
and computational indistinguishability [HKRR18, JLP+21, GKR+22, GJN+22, DKR+21, JNRR22]. Algo-
rithms for multicalibration have largely developed along two lines: one studying oracle-efficient boosting-like
algorithms [see, e.g., HKRR18, KGZ19, GKSZ22, DKR+21] and another studying algorithms with flavors of
online optimization [see, e.g., GJN+22, NPR21]. Our work establishes that the contrast between these lines
of work and the algorithms they develop are entirely attributable to different choices of game dynamics.

Multi-objective and multi-distribution learning are concepts that have found broad applications in addressing
fairness, collaboration, and robustness challenges. Haghtalab et al. [HJZ22] obtained tight sample complexity
bounds for this general problem of learning predictors with near-optimal accuracy across multiple populations
(distributions), which is a natural extension of collaborative learning [BHPQ17], group Distributionally
Robust Optimization [SKHL20] and agnostic federated learning [MSS19]. Multi-objective learning also relates
to recent notions of learning over sub-populations that are mutually compatible [RY21, TH22, BL20] (see
[HJZ22] for an in-depth discussion). In Section 6, we use our framework to match and improve guarantees
relative to this literature.

2 Preliminaries

We use X to denote a feature space and Y a label space, where Y = [k] in k-class classification. A data
distribution D is a probability distribution supported on labeled datapoints X × Y. We use H to denote
a set of hypotheses and G a set of objectives, where an objective—or equivalently, a loss—is a function
ℓ : H×(X×Y) → [0, 1] that takes a hypothesis and datapoint and returns a penalty value. We denote expected
objective values by LD,ℓ(h) := E(x,y)∼D [ℓ (h, (x, y))]. For non-deterministic p ∈ ∆(H) and q ∈ ∆(D × G), we
overload notation to write Lq(p) := Eh∼p,(D,ℓ)∼q [LD,ℓ(h)]. We often use the shorthands x(1:T ) := x(1), . . . , x(T )

and {f(x(t))}(1:T ) = f(x(1)), . . . , f(x(T )). We also write f(a, ·) to denote the function x 7→ f(a, x) or f(·)(a)

to denote x 7→ fx(a). For y ∈ [k], δy ∈ {0, 1}k denotes its one-hot delta function, while for y ∈ [k], j ∈ [k] we
write δy,j = 1[y = j] .

2.1 Multicalibration

We use P = (∆Y)X to denote the set of all k-class predictors which are maps from features to label
distributions. To differentiate between predictors and distributions over predictors, we refer to h ∈ P as
a deterministic predictor, and p ∈ ∆(P), as a non-deterministic predictor.1 Calibration is a property of

1Importantly, determinism of a predictor h does not imply that h ∈ YX as opposed to ∆(Y)X .
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predictors h ∈ P requiring, for example in binary classification, that among instances x assigned prediction
probability h(x) = [1− v, v] a fraction v are truly labeled 1. Multicalibration [HKRR18] is the finer-grained
notion that requires calibration on subgroups of one’s domain. This set of subgroups is typically finite or of
finite VC dimension.

In practice, we work with approximate notions of calibration/multicalibration and discretize the range
of probability assignment. In k-class prediction, we partition the k-dimensional hypercube into λk equal
cubes V k

λ , where Vλ := {[0, 1/λ), [1/λ, 2/λ), . . . }. For any interval v ∈ V k
λ , we use h(x) ∈ v to denote that

prediction h(x) falls pointwise in the buckets of v, i.e., h(x)j ∈ vj for all j ∈ [k]. We next formally define
multicalibration.2

Definition 2.1. Fix ε > 0, λ ∈ Z+, and a set of groups S ⊆ 2X . A (possibly non-deterministic) k-class
predictor p ∈ ∆(P) is (S, ε, λ)-multicalibrated for some data distribution D if

∀S ∈ S, v ∈ V k
λ , j ∈ [k] :

∣∣∣∣ E
(x,y)∼D,h∼p

[(h(x)j − δy,j) · 1[h(x) ∈ v, x ∈ S]]

∣∣∣∣ ≤ ε.

That is, p is calibrated on every level set v ∈ V k
λ of every group S ∈ S for every class j ∈ [k]. We are often

specifically interested in a deterministic solution; that is, where p ∈ P.

The batch setting, where we want to find a multicalibrated predictor for some fixed data distribution D, is the
most commonly studied. Multicalibration can also be defined for online settings where the data distribution
changes adversarially over time.

Definition 2.2 (Online multicalibration). Fix ε > 0, λ ∈ Z+, and a set of groups S ⊆ 2X . In online
multicalibration, at every timestep t ∈ [T ], a learner chooses a k-class predictor p(t) ∈ ∆(P). Nature,
which observes p(1:t), responds with any choice of data distribution D(t). The learner’s predictors p(1:T ) are
(S, ε, λ)-online multicalibrated on D(1:T ) if

∀S ∈ S, v ∈ V k
λ , j ∈ [k] :

∣∣∣∣∣ 1T
T∑

t=1

E
h∼p(t)

(x,y)∼D(t)

[1[x ∈ S] · 1[h(x) ∈ v] · (h(x)j − δy,j)]

∣∣∣∣∣ ≤ ε.

2.2 Multi-Objective Learning

We use multi-objective learning (a generalization of multi-distribution learning introduced by [HJZ22]) as a
tool for studying multicalibration and other related problems. The goal of multi-objective learning is to find
a hypothesis that simultaneously minimizes a set of objective values.

Definition 2.3 (Multi-objective learning). A multi-objective learning problem (D,G,H) consists of a set of
objectives G, a hypothesis class H, and a set of data distributions D. An ε-optimal solution to (D,G,H) is a
(potentially non-deterministic) hypothesis p ∈ ∆(H) where

max
D∈D,ℓ∈G

LD,ℓ(p) ≤ min
h∗∈H

max
D∗∈D,ℓ∗∈G

LD∗,ℓ∗(h
∗) + ε. (1)

We usually prefer a deterministic solution p ∈ H over a non-deterministic solution p ∈ ∆(H).

We mainly consider single-distribution multi-objective problems, where D = {D}, though multi-distribution
multi-objective learning arises in conditional multicalibration (Section 5.1) and group fairness (Section 6).
We can also consider multi-objective learning in online settings with adversarial data distributions.

Definition 2.4 (Online multi-objective learning). An online multi-objective learning problem (D,G,H)

2This discretized (binned) definition of multicalibration follows convention and can be readily translated into others [HKRR18].
We also follow convention in measuring in the ℓ∞ norm, the ℓ2 norm is also commonly used in calibration. Some definitions
of multicalibration [e.g., HKRR18] appear as conditional expectations, but for constant probability domain subgroups, which
makes them equivalent to our definition.
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consists of a set of distributions D, objectives G and hypothesis class H. At each timestep t ∈ [T ], a learner
first picks a hypothesis p(t) ∈ ∆(H). Nature, who sees p(1:t), responds with a data distribution D(t) ∈ D. We
say the hypotheses p(1:T ) are ε-optimal on the distributions D(1:T ) if

1

T
max
ℓ∈G

T∑
t=1

LD(t),ℓ(p
(t)) ≤ max

D∗∈D
min
h∗∈H

max
ℓ∗∈G

LD∗,ℓ∗(h
∗) + ε. (2)

In many problems we consider, like online multicalibration, Nature can pick from any data distribution; that
is, D is unrestricted. Let us also note that the baseline in the right-hand-side of (2) differs from that of (1).
This is intentional: when D is unrestricted, the min-max baseline of (1) may be large, since there may be no
hypothesis that is simultaneously good for all distributions. Instead, the max-min baseline of (2) is the best
hypothesis h∗ for the most difficult distribution D∗.

Multicalibration as multi-objective learning. (Batch) Multicalibration is a single-distribution multi-
objective learning problem, whose objectives penalize over-estimation and under-estimation of label probabili-
ties on subsets of the domain.

Fact 2.5. Let D be a data distribution for some k-class prediction problem and fix ε > 0, λ ∈ Z+, and a set
of groups S ⊆ 2X . For every direction i ∈ {±1}, level set v ∈ V k

λ , group S ∈ S, and class j ∈ [k], we define
an objective ℓi,j,S,v : P → [0, 1] where

ℓi,j,S,v(h, (x, y)) = 0.5 + 0.5 · i · 1[h(x) ∈ v, x ∈ S] · (h(x)j − δy,j) (3)

and Gmc := {ℓi,j,S,v}i,j,S,v is the set of these objectives. Predictor p ∈ ∆(P) is a ε-optimal solution to the
multi-objective learning problem ({D},Gmc,P) if and only if p is (S, 2ε, λ)-multicalibrated for D.

Proof. In the multi-objective learning problem (D,Gmc,P), the multi-objective value of a predictor p, L∗(p) :=
maxD∗∈D,ℓ∗∈G LD∗,ℓ∗(p), is exactly the (rescaled and shifted) magnitude of the predictor’s multicalibration
violation. Formally,

L∗(p) =
1

2
+

1

2
max

j∈[k],S∈S,v∈V k
λ

∣∣∣∣ E
(x,y)∼D,h∼p

[(h(x)j − δy,j) · 1[h(x) ∈ v, x ∈ S]]

∣∣∣∣ .
Since we can write the absolute value of an abstract value w as |w| = maxi∈{±1} i · w, we next observe that
the optimal multi-objective value of the problem (D,Gmc,P) is 0.5.

min
h∗∈P

L∗(h∗) =
1

2
+

1

2
max

i∈{±1}
i ·

 max
j∈[k],S∈S

v∈V k
λ

E
(x,y)∼D

h∼p

[(h(x)j − δy,j) · 1[h(x) ∈ v, x ∈ S]]

 =
1

2
.

This fact is because multicalibration objectives Gmc are symmetric around 0.5 (where i = +1 and i = −1
penalize over and under estimation), leading to the worst loss to be at least 0.5. Furthermore, the Bayes
classifier h∗ neither overestimates nor underestimates the label distribution and therefore achieves the loss of
0.5 exactly. Combining these inequalities, we have

L∗(p)− min
h∗∈P

L∗(h∗) =
1

2
max

j∈[k],S∈S
v∈V k

λ

∣∣∣∣∣∣ E
(x,y)∼D

h∼p

[(h(x)j − δy,j) · 1[h(x) ∈ v, x ∈ S]]

∣∣∣∣∣∣ .
Therefore L∗(p)−minh∗∈P L∗(h∗) = ε if and only if our multicalibration violation is 2ε.

Online multicalibration is similarly an online multi-objective learning problem.

Fact 2.6. Let D(1:T ) be data distributions for some k-class prediction problem, D be the set of all data
distributions, and Gmc be as defined in (3). Fix ε > 0, λ ∈ Z+, and a set of groups S ⊆ 2X . A sequence of
predictors p(1:T ) ∈ ∆(P) is ε-optimal on D(1:T ) for the online multi-objective learning problem (D,Gmc,P) if
and only if p(1:T ) is (S, 2ε, λ)-online multicalibrated on D(1:T ).
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Proof. Note that online multicalibration is an online multi-objective learning problem by construction. To
analyze its optimality condition, we expand the definition of the objectives in Gmc as

max
ℓ∈G

1

T

T∑
t=1

LD(t),ℓ(p
(t)) =

1

2
+

1

2
max

j∈[k],S∈S
v∈V k

λ

∣∣∣∣∣ E
h∼p(t)

(x,y)∼D(t)

[
1

T

T∑
t=1

1[x ∈ S] · 1[h(x) ∈ v] · (h(x)j − δy,j)

] ∣∣∣∣∣.
We again observe that the optimal value of the problem is 0.5; formally,

max
D∗∈D

min
h∗∈H

max
ℓ∗∈G

LD∗,ℓ∗(h
∗) = 0.5.

This is because choosing h∗ to be the Bayes classifier for D∗ achieves the value of 0.5, which given the absolute
value in the second term is the minimum achievable value. Thus, p(1:T ) is ε-optimal on D(1:T ) if and only if
p(1:T ) is (S, 2ε, λ)-optimal on D(1:T ).

3 Tools for Solving Multi-Objective Learning using Game Dynamics

A common approach to multi-objective learning is to imagine a game between a minimizing player who
proposes hypotheses and a maximizing player who proposes objectives and data distributions. It is well-
established (inspired by min-max equilibria, e.g., [FS97]) that a solution can be obtained when both players
play no-regret algorithms. However, considerations that arise in multicalibration motivate us to study a
broader range of dynamics and their implications than has been commonly explored.

Online learning. In an online learning problem, at each timestep t ∈ [T ], a learner chooses an action
a(t) ∈ A which an adversary observes and responds to with a cost function c(t) : A → [0, 1]. We will usually
assume costs to be linear maps. The learner’s regret is defined as

Reg(a(1:T ), c(1:T )) :=

T∑
t=1

c(t)(a(t))− min
a∗∈A

T∑
t=1

c(t)(a∗),

which no-regret learning algorithms like Hedge [FS97] can bound.

Lemma 3.1 (Hedge Regret Bound [Kal07]). In an online learning problem where the action set is the simplex
A = ∆k and costs are linear, the actions chosen by Hedge have a regret of at most 2

√
ln(k)T .

We write no-regret algorithms as a function of a sequence of cost functions Alg : ([0, 1]A)∗ → A. For example,
when A = ∆k, the output of the Hedge algorithm is defined as Hedge(c(1), . . . , c(t)) = [w1/ ∥w∥1 , . . . , wk/ ∥w∥1]
where wi = exp(−η

∑t
τ=1 c

(t)(δi)), for a specific choice of η.

We sometimes define regret against a different baseline B ∈ R, with

RegB(a
(1:T ), c(1:T )) :=

T∑
t=1

c(t)(a(t))−B.

For example, we often consider the min-max baseline Bweak := T ·mina∗∈A maxc∗∈C c
∗(a∗), where C is the set

of cost functions that the adversary chooses from. We also often encounter stochastic cost functions, functions
of form c : A× (X × Y) → [0, 1] for which we want to minimize expected value LD,c := E(x,y)∼D [c(·, (x, y))]
on some distribution D. A stochastic cost c is linear if, for every x ∈ X , y ∈ Y, c(·, (x, y)) is a linear map.
The regret of online learning algorithms on stochastic costs concentrates quickly.

Lemma 3.2 (Stochastic Approximation [NJLS09], Lemma 3.1). Consider an online learning problem on
the simplex ∆k with linear stochastic costs. Suppose, after each timestep t ∈ [T ]—that is, after picking the
action a(t)—we estimate the expected cost LD,c(t) with ĉ(t)(a) := c(t)(a, (x(t), y(t))), where (x(t), y(t))

i.i.d.∼ D.
With probability at least 1− δ,

∣∣Reg(a(1:T ),
{
LD,c(t)

}
(1:T ))− Reg(a(1:T ), ĉ(1:T ))

∣∣ ≤ O(
√
T ln(k/δ)).
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Best responses. An action a is an ε-best response to a cost function c : A → [0, 1] if c(a) ≤ mina∗∈A c(a∗)+ε.
An agnostic learning oracle Aε : (A → [0, 1])× 2A → A is a function that, given a cost function c and subset
of actions A′ ⊆ A, computes an ε-best response Aε(c, A

′) to c from A′. When A′ = A, we may write Aε(c)
without the second argument. Agnostic learning oracles are given this name because they are usually used to
find best-responses to the expected values of stochastic cost functions using some number of samples. Through
this paper, we design learning algorithms that only interact with a data distribution through querying an
agnostic learning oracle; the oracle complexity of such an algorithm is defined as the number of agnostic
oracle calls that the algorithm makes. Using standard sample complexity bounds, all our algorithms also
have a corresponding sample complexity that circumvent the use of agnostic learning oracles.

Another concept we encounter in online settings is the distribution-free best response. An action a is a
distribution-free ε-best response to a stochastic cost c if

max
x∈X ,y∈Y

c(a, (x, y)) ≤ max
x∈X ,y∈Y

min
a∗∈A

c(a∗, (x, y)) + ε. (4)

Game dynamics. We consider no-regret dynamics between a learner (minimizing player) who chooses
hypotheses p(t) ∈ ∆(H) and an adversary (maximizing player) who chooses data distributions and objectives
q(t) ∈ ∆(D × G) where the learners loss is Lq(t)(p

(t)). When both players are no-regret, the time-average
actions they picked quickly converge to an approximate solution for the multi-objective learning problem
(D,G,H). This method of no-regret dynamics has long played a role in empirical convergence to notions of
equilibria [FS97]. Here, we review these dynamics and their convergence guarantees. While the proofs of
these lemmas are standard at a high level (and are deferred to Appendix B.1), they differ in fundamental
ways from past work. In particular, these lemmas consider weak regret, single timestep solutions (instead
of time-averaged ones), and the consequences of having distribution-free best responses, all of which play
important roles in multicalibration.

Lemma 3.3 (No-Regret vs. No-Regret (NRNR)). Consider a multi-objective learning problem (D,G,H),
where a learner and adversary chose p(1:T ) ∈ ∆(H) and q(1:T ) ∈ ∆(D × G). If both players are no-regret,
Regweak

(
p(1:T ), {Lq(t)(·)}(1:T )

)
≤ Tε and Reg(q(1:T ),

{
−L(·)(p

(t))
}

(1:T )) ≤ Tε, then the non-deterministic
hypothesis p = Uniform(p(1:T )) is a 2ε-optimal solution.

The next dynamic focuses on obtaining a solution from a single timestep, rather than time-averaged solutions.
To obtain this, we consider a dynamics in which the learner goes first and is no-regret, the adversary observes
the learner’s action and then best responds.

Lemma 3.4 (No-Regret vs. Best-Response (NRBR)). Consider a multi-objective learning problem (D,G,H),
where a learner chose p(1:T ) ∈ ∆(H) and an adversary chose q(1:T ) ∈ ∆(D × G). If the learner is no-regret,
Regweak

(
p(1:T ), {Lq(t)(·)}(1:T )

)
≤ Tε, and the adversary ε-best-responded to the costs

{
−L(·)(p

(t))
}

(1:T ) using
q(1:T ), then there is a t ∈ [T ] where p(t) is a 2ε-optimal solution.

Once the existence of a single-round solution p(t) is established by Lemma 3.4, it is easy to find which time
step corresponds to this solution by using a few samples and testing all p(1:T ), as follows.

Lemma 3.5. Suppose a set of hypotheses p(1:T ) contains an ε-optimal solution. We can find a 5ε-optimal
solution p(t) ∈ p(1:T ) using O(ε−2 |D| ln(|D| |G|T/δ)) samples with probability 1− δ.

The next dynamic considers difficult distribution-free problems, such as online multi-objective learning. To
enable learning in these scenarios, we consider a no-regret adversary that chooses objectives q(1:T ) ∈ ∆(G) and
a learner who first observes q(t) and plays a distribution-free best-response. The following lemma considers
the consequences of these interactions.

Lemma 3.6 (Best-Response vs. No-Regret (BRNR)). Consider an online multi-objective learning prob-
lem (D,G,H), where a learner chose p(1:T ) ∈ ∆(H), an adversary chose q(1:T ) ∈ ∆(G), and D(1:T ) ∈ D
is any sequence. Assume that the adversary is no-regret, i.e., Reg(q(1:T ), {−LD(t),(·)(p

(t))}(1:T )) ≤ Tε,
and the learner’s actions p(1:T ) are distribution-free ε-best-responses to the stochastic costs q(1:T ), i.e.,
maxx,y L(x,y),q(t)(p

(t)) ≤ maxx,y minp∗ L(x,y),q(t)(p
∗) + ε. Then, the hypotheses p(1:T ) are 2ε-optimal on

D(1:T ).
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The question of which dynamic should be used and their implementation hinges on the type of solution
desired and what online learning and best-response guarantees are possible for each player. NRNR dynamics
often offer maximum sample efficiency, since calculating ε-best-responses may be more sample intensive,
but produce a time-averaged solution. NRBR dynamics, though less sample-efficient due to the adversary’s
repeated best-response computation, provides a single timestep solution and is crucial for, e.g., deterministic
multicalibration. BRNR dynamics, where learners follow (that is, pick their action after the adversary) and
have greater ease being no-regret, are crucial for online settings.

3.1 No-regret and Best Response Computation in Multicalibration

In this section, we introduce algorithms for obtaining (weak) no-regret and best response guarantees in
multicalibration, so that we can apply the previously discussed dynamics.

Since the adversary picks from the—usually, small—set of objectives Gmc, it can achieve no-regret using
standard algorithms like Hedge. However, the learner picks from the—very large—space of all predictors P;
if it used Hedge, its regret would grow linearly in domain size |X |. An important aspect of multicalibration
is that its complexity must be independent of the domain size X (while it can depend on the complexity
of the subgroups S). We leverage structural properties of multicalibration objectives (see Appendix C for
formal treatment) to obtain generic no-regret and best response algorithms that give domain-independent
guarantees for the learner.

No-regret algorithm. Our first theorem gives a no-(weak)-regret learning algorithm for the learner
that provides three important properties simultaneously: 1) domain-independent regret-bound that is also
logarithmic in k, 2) uses no samples (or knowledge of) the underlying distribution D, and 3) deterministically
outputs a deterministic predictor per round. Properties 1-2 lead to fast convergence and low sample complexity
in the aforementioned dynamics and property 3 is key for obtaining deterministic multicalibration guarantees
(via NRBR).

Theorem 3.7. Consider P the set of k-class predictors and any adversarial sequence of stochastic costs
q(1:T ) ∈ ∆(Gmc), where Gmc are the multicalibration objectives (3). There is a no-regret algorithm that outputs
(deterministic) predictors h(1:T ) ∈ P such that Regweak(h

(1:T ),
{
LD,q(t)

}
(1:T )) ≤ 2

√
ln(k)T for every data

distribution D. Moreover, the algorithm does not need any samples from D.

Proof. Consider the following algorithm. At each feature x ∈ X , initialize a Hedge algorithm that picks an
action h(t)(x) ∈ ∆(Y) at each timestep t ∈ [T ]. Aggregating each algorithm’s action yields our learner’s
overall action h(t) ∈ P . For each x ∈ X , let h(t+1)(x) be the outcome of Hedge at step t+ 1 after observing
linear loss functions f

(τ)

h(τ),x
: Rk → [0, 1] for τ ∈ [t]:

f
(τ)

h(τ),x
(z) := 0.5 + 0.5

∑
i∈{±1},j∈[k],S∈S,v∈V k

λ

zj · q(τ)i,j,S,v · i · 1[h
(τ)(x) ∈ v, x ∈ S], (5)

where q
(τ)
i,j,S,v is the probability q(τ) assigns to loss ℓi,j,S,v.

Hedge gives
∑T

t=1 f
(t)

h(t),x
(h(t)(x)) − minz∗∈∆(Y)

∑T
t=1 f

(t)

h(t),x
(z∗) ≤ 2

√
ln(k)T (Lemma 3.1). Since this in-

equality holds for all x ∈ X , by law of total expectation,

2
√
ln(k)T ≥ E

(x,y)∼D

[
T∑

t=1

f
(t)

h(t),x
(h(t)(x))

]
− E

(x,y)∼D

[
min

z∗∈∆(Y)

T∑
t=1

f
(t)

h(t),x
(z∗)

]
(6)

= E
(x,y)∼D

[
T∑

t=1

f
(t)

h(t),x
(h(t)(x))

]
− min

h∗∈P
E

(x,y)∼D

[
T∑

t=1

f
(t)

h(t),x
(h∗(x))

]
,

where the last transition is by defining h∗ such that h∗(x) = z∗ for every x-dependent choice of z∗ in (6).
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Consider
∑T

t=1 E(x,y)∼D

[
f
(t)

h(t),x
(δy)

]
and add and subtract this term to the right-hand side to obtain

T∑
t=1

E
(x,y)∼D

[
f
(t)

h(t),x
(h(t)(x)−δy)

]
≤ 2
√

ln(k)T + min
h∗∈P

T∑
t=1

E
(x,y)∼D

[
f
(t)

h(t),x
(h∗(x)−δy)

]
≤2
√
ln(k)T + 0.5T,

(7)

where the last transition is by the fact that for h∗(x) = Ex,y∼D [δy | x],
∑T

t=1 Ex,y∼D

[
f
(t)

h(t),x
(h∗(x)− δy)

]
=

0.5T . Next, we show the LHS of (7) is equivalent to Regweak(h
(1:T ),

{
LD,q(t)

}
(1:T )). First recall from

multicalibration objectives that ℓi,j,S,v(h, (x, y)) = 0.5+0.5 · i · 1[h(x) ∈ v, x ∈ S] · (h(x)j − δy,j). Since q
(t)
i,j,S,v

is the probability q(t) assigns to ℓi,j,S,v(·) in (5), we have that

q(t)(h(t), (x, y)) = f
(t)

h(t),x
(h(t)(x)− δy).

Therefore, (7) implies that
∑T

t=1 LD,q(t)(h
(t)) ≤ 0.5T + 2

√
ln(k)T . It is left to establish that the min-max

baseline of these losses is indeed at least 0.5. This is implied by Fact 2.5 and its proof is deferred to
Appendix C. Thus Regweak(h

(1:T ),
{
LD,q(t)

}
(1:T )) ≤ 2

√
ln(k)T .

Best-response algorithm. Our second theorem proves the existence of a distribution-free best-response
algorithm for the learner, which is key for obtaining online multicalibration guarantees (via BRNR). Note
that, as a distribution-free algorithm, it requires no samples to compute these best-responses.

Theorem 3.8. Consider the set of k-class predictors P. Fix an ε > 0 and let q ∈ ∆(Gmc) be a mixture
of multicalibration objectives (3). There always exists a (non-deterministic) predictor p ∈ ∆(P) that is a
distribution-free ε-best-response (4) to the stochastic cost function q(·, (x, y)).

Proof Sketch. At a high level, this statement and proof are similar to the min-max proof of calibra-
tion [Fos99, Har22], with additional details in Appendix C. Let ∆̃(Y) be a finite ε-covering of ∆(Y) and ϕx :

∆(∆̃(Y))×∆(Y) → [−1, 1] the bilinear function ϕx(a, b) = E(i,j,S,v)∼q,â∼a [i · 1[â ∈ v, x ∈ s] · (âj − bj)]. Con-
sider p(x) = argmin

a∈∆(∆̃(Y))

max
b∈∆(Y)

ϕx(a, b). By the minmax theorem, max
b∈∆(Y)

ϕx(p(x), b) = max
b∈∆(Y)

min
a∈∆̃(Y)

ϕx(a, b) ≤

max
b∈∆(Y)

min
a∈∆(Y)

ϕx(a, b)+ε. Thus, maxy∈Y q(p, (x, y)) ≤ 0.5 ·ε+maxy∈Y minh∗∈P q(h∗, (x, y)) for all x ∈ X .

4 Batch and Online Multicalibration

We match and improve a broad set of previous results in multicalibration (See Table 1) that had received
individualized and ad hoc treatments in the past. Our work establishes that not only is there a unified
approach for obtaining these results but that it all comes back to game dynamics empowered by our no-regret
and distribution-free-best response results for multicalibration—Theorems 3.7 and 3.8. Below we focus on
three main results highlighting NRNR, NRBR, and BRNR dynamics.

4.1 Batch Multicalibration

Multicalibration with non-deterministic predictors. Our first algorithm uses no-regret no-regret
(NRNR) dynamics to find non-deterministic multicalibrated predictors. Its guarantees are summarized in
Theorem 4.1 and match the fastest known sample complexity rates for multicalibration [GJN+22, NPR21]
of order O(ln(|S|λk)/ε2). It also improves upon the existing fast-rate algorithms of [GJN+22, NPR21] by
producing predictors with a succinct support and small circuit size—an important property impacting storage
and evaluation costs of predictors. These properties were previously only known to be attained by the less
sample efficient multicalibration algorithms of [HKRR18]. In this way, Algorithm 1 simultaneously attains
the best aspects of the algorithms of [GJN+22] and [HKRR18].
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Theorem 4.1. Fix ε > 0, λ, k ∈ Z+, a set of groups S ⊆ 2X , and a data distribution D. The following
algorithm, with probability 1− δ, returns a non-deterministic k-class predictor that is (S, ε, λ)-multicalibrated
on D and takes no more than O

(
ε−2(ln(|S| /δ) + k ln(λ))

)
samples from D.

No-Regret vs No-Regret

Construct the problem ({D},Gmc,P) from Fact 2.5 and let T = Cε−2 ln(|S|λk/δ) for some universal
constant C. Over T rounds, have an adversary choose q(1:T ) ∈ ∆(Gmc) by applying Hedge to the costs
{1− ℓ(·)(h

(t), (x(t), y(t)))}(1:T ) where (x(t), y(t))
i.i.d.∼ D. In parallel, have a a learner choose predictors

h(1:T ) ∈ P by applying the no-regret learning algorithm of Theorem 3.7 to the stochastic costs ℓ(1:T ), where
ℓ(t)

i.i.d.∼ q(t). Return the predictor p = Uniform(h(1:T )). This algorithm is written explicitly in Algorithm 1.

Proof. By Theorem 3.7, if T ≥ 64ε−2 ln(k), the predictors h(1:T ) guarantee the learner a regret bound
of Regweak(h

(1:T ), {Lℓ(t)}(1:T )) ≤ Tε/4. Similarly, by Lemma 3.1, if T ≥ 576ε−2 ln(2kλk |S|), the objective
mixtures q(1:T ) guarantee the adversary a regret bound of Reg

(
q(1:T ), {1− ℓ(·)(h

(t), (x(t), y(t)))}(1:T )
)
≤ T ε

12 .

We now argue that the adversary’s regret with respect to the costs 1− ℓ(·)(h
(t), (x(t), y(t))) approximates

its regret with respect to the costs 1− LD,(·)(h
(t)). Since Ex(t),y(t)∼D

[
ℓ(·)(h

(t), (x(t), y(t)))
]
= LD,(·)(h

(t)), by
Lemma 3.2, there is a universal constant C such that, if T ≥ Cε−2 ln(2kλk |S| /δ),∣∣∣Reg (q(1:T ), {1− ℓ(·)(h

(t), (x(t), y(t)))}(1:T )
)
− Reg

(
q(1:T ), {1− LD,(·)(h

(t))}(1:T )
)∣∣∣ ≤ T

ε

12
,

with probability 1− δ. Similarly, since Eℓ(t)∼q(t)
[
LD,ℓ(t)(h

(t))
]
= LD,q(t)(h

(t)), Lemma 3.2 guarantees∣∣∣Reg (q(1:T ), {1− LD,(·)(h
(t))}(1:T )

)
− Reg

(
ℓ(1:T ), {1− LD,(·)(h

(t))}(1:T )
)∣∣∣ ≤ T

ε

12
,

with probability 1− δ. Taking a triangle inequality and union bound, we can see that for sufficiently large C,
Reg

(
ℓ(1:T ), {1− LD,(·)(h

(t))}(1:T )
)
≤ Tε/4.

By Lemma 3.3, the ergodic iterate h∗ is an (ε/2)-optimal solution. By Fact 2.5, h∗ is therefore a (S, ε, λ)-
multicalibrated predictor. The sample complexity is exactly T since the algorithm only samples one datapoint
at each iteration.

Theorem 4.1—along with all other results in this section—can be rewritten with VC(S) log(1/ε) replacing
ln(|S|); this is done by taking a cover of S. We further note that Algorithm 1 can be instantiated with
different choices of no-regret algorithms for the adversary and different versions of Theorem 3.7 for the learner.
In Section 7, we empirically compare such variants of Algorithm 1.

Multicalibration with deterministic predictors. We are often specifically interested in finding determin-
istic multicalibrated predictors. This is usually because non-deterministic predictors can be multicalibrated
in a very weak sense, as we show in the following example.

Example 4.2. Consider a data distribution D supported uniformly on X = {x1, x2}, where Y = [0, 1],
Pr(Y = 1 | X = x1) = 0 and Pr(Y = 1 | X = x2) = 1. The non-deterministic predictor that is supported
uniformly on predictors h1 and h2, where h1(x1) = 0 and h1(x2) = 0.5 and h2(x1) = 0.5 and h2(x2) = 1, is
technically multicalibrated. However, neither h1 nor h2 are calibrated.

Our second algorithm uses no-regret best-response (NRBR) dynamics to find deterministic multicalibrated
predictors. Its guarantees are summarized in Theorem 4.3 and improve on [GKSZ22]’s oracle complexity
bound of O

(
k/ε2

)
with a bound of O

(
ln(k)/ε2

)
, an exponential reduction in the dependence on the number

of classes k. In concurrent work, [DLLT23] attains a matching rate with graph regularity.

Theorem 4.3. Fix ε > 0, λ, k ∈ Z+, a set of groups S ⊆ 2X , and a data distribution D. The following
algorithm returns a deterministic k-class predictor that is (S, ε, λ)-multicalibrated on D and makes O(ln(k)/ε2)
calls to an agnostic learning oracle. Moreover, with probability 1− δ, the oracle calls can be implemented with
Õ
(

1
ε3 (
√
ln(k) ln(k |S| /δ) + k ln(λ))

)
samples from D.
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No-Regret vs Best-Response

Construct the problem ({D},Gmc,P) from Fact 2.5 and let T = Cε−2 ln(|S|λkδ) for some universal
constant C. Over T rounds, have a learner choose predictors h(1:T ) ∈ P by applying the no-regret learning
algorithm of Theorem 3.7 to the stochastic costs ℓ(1:T ). Have an adversary choose ℓ(1:T ) by calling an
agnostic learning oracle at each t ∈ [T ]: ℓ(t) = Aε/8(1− LD,(·)(h

(t))). Using C ln(T/δ)/ε2 samples from
D, return the predictor h(t∗) with the lowest empirical multicalibration error. This algorithm is written
explicitly in Algorithm 2.

Proof. By Theorem 3.7, if T ≥ 256ε−2 ln(k), the predictors h(1:T ) guarantee the learner a regret bound of
Regweak(h

(1:T ), {LD,ℓ(t)}(1:T )) ≤ Tε/8. Moreover, by construction, every ℓ(t) is an (ε/8) best-response to the
cost 1− LD,(·)(h

(t)). By Lemma 3.4, there must exist a timestep where h(t) is (ε/4)-optimal. By Lemma 3.5,
the h(t∗) found by the algorithm is (ε/2)-optimal with probability at least 1 − δ. By Fact 2.5, h(t∗) is a
(S, ε, λ)-multicalibrated predictor. The oracle complexity is exactly T , while the sample complexity of oracle
A is a standard adaptive data analysis result (Lemma A.6).

We note that our use of no-regret best-response dynamics recovers a multicalibration algorithm similar to the
original multicalibration algorithm of [HKRR18] and which can also be found in [DKR+21, KGZ19]. We also
remark that the guarantees of Theorem 4.3 hold in weaker settings. In particular, Theorem 4.3 holds with the
same analysis even if we only asked that our agnostic learning oracle A to be best-responding with respect to
a min-max baseline. Furthermore, the last step of Algorithm 2, which explicitly samples datapoints to find
timestep t∗, can be removed if one assumes that our agnostic learning oracle A signals to us when it cannot
find a greater than ε violation of multicalibration in the current predictor. This assumption would allow
Algorithm 2 to terminate early and return the current predictor, and is assumed by prior multicalibration
literature.

4.2 Online Multicalibration

We now turn to online multicalibration. In this section, we will limit ourselves to the binary classification
setting, where Y = {0, 1}. Nonetheless, the following results can be extended to the multi-class setting
straightforwardly. For convenience, we will say that predictors P for binary classification output real-valued
h(x) ∈ [0, 1], where h(x) is the predicted probability of class 1 and 1− h(x) is the predicted probability of
class 0.

Our next algorithm uses best-response no-regret (BRNR) dynamics for online multicalibration. Its guarantees
are summarized in Theorem 4.4 and match the best known regret bounds for online multicalibration
[GJN+22, NPR21].

Theorem 4.4. Fix ε > 0, λ ∈ Z+, and a set of groups S ⊆ 2X . The following algorithm guarantees
(S, ε, λ)-online multicalibration with probability 1− δ.

Best-Response vs No-Regret

Construct the online multi-objective learning problem (D,Gmc,P) in Fact 2.6 and let T = Cε−2 ln(|S|λδ)
for some universal constant C. Over T rounds, have an adversary choose q(1:T ) ∈ ∆(Gmc) by applying
Hedge to the costs {1− ℓ(·)(p

(t), (x(t), y(t)))}(1:T ), where (x(t), y(t))
i.i.d.∼ D(t). Have a learner best-respond

to each stochastic cost q(t) with the (ε/2)-distribution-free best-response p(t) ∈ ∆(P) of Theorem 3.8. This
algorithm is written explicitly in Algorithm 3.

Proof. By Lemma 3.1, if T ≥ 576ε−2 ln(2kλ |S|), the objective mixtures q(1:T ) guarantee the adversary
a regret bound of Reg

(
q(1:T ), {1− ℓ(·)(p

(t), (x(t), y(t)))}(1:T )
)
≤ T ε

12 . By Lemma 3.2, there is a universal
constant C such that, if T ≥ Cε−2 ln(2kλ |S| /δ),∣∣∣Reg (q(1:T ), {1− ℓ(·)(p

(t), (x(t), y(t)))}(1:T )
)
− Reg

(
q(1:T ), {1− LD(t),(·)(p

(t))}(1:T )
)∣∣∣ ≤ T

ε

12
,
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with probability 1− δ. Thus, Reg
(
q(1:T ), {1− LD(t),(·)(h

(t))}(1:T )
)
≤ Tε/4 with probability 1− δ.

Since each p(t) is a (ε/4) distribution-free best-response to q(t), whose existence is proven by Theorem 3.8, by
Lemma 3.6, the predictors p(1:T ) are (ε/2)-optimal on D(1:T ) with probability 1− δ. By Fact 2.6, p(1:T ) are
also (S, ε, λ)-online multicalibrated on D(1:T ).

The high-probability condition of Theorem 4.4 can be removed if we assume nature presents datapoints
rather than data distributions, as is assumed in prior works. Interestingly, Algorithm 3’s use of best-response
no-regret dynamics exactly recovers the online multicalibration algorithm of [GJN+22, NPR21]. The analysis
of Theorem 4.4 is, however, significantly simpler because we make explicit the role of the no-regret dynamics,
whereas [GJN+22, NPR21] use potential arguments that ultimately prove no-regret dynamics and the
multiplicative weights algorithm from scratch.

An online-to-batch reduction. The online multicalibration algorithm of Theorem 4.4 can also be used to
obtain a non-deterministic multicalibrated predictor in batch settings through an online-to-batch reduction.
This exactly recovers the non-deterministic multicalibration algorithm of [GJN+22, NPR21].

Theorem 4.5 (Analysis of Algorithm 3 for batch multicalibration). Fix ε > 0, λ ∈ Z+, a set of groups
S ⊆ 2X , and a data distribution D. Simulate Algorithm 3 by having Nature choose D at every timestep and
return a uniform distribution p over its outputs p(1:T ). With probability 1− δ, p is (S, ε, λ)-multicalibrated on
D. This algorithm takes O(ln(|S|λ/δ)/ε2) samples from D.

Proof. By Theorem 4.4, maxℓ∗∈Gmc

∑T
t=1 LD,ℓ∗(p

(t)) ≤ Tε. Thus, the non-deterministic predictor p given by
taking a uniform distribution over p(1), . . . , p(T ) is a (S, ε, λ)-multicalibrated predictor.

Unlike the algorithm of Theorem 4.1, the predictor p output by Theorem 4.5 is neither guaranteed to be
succinct nor guaranteed to be of small circuit size. The lack of succinctness is because, even if p’s predicted
label distribution on any feature x ∈ X is succinct, p itself can require an exponentially large support over P .
The large circuit size is because, at each timestep t, the learner is best-responding to a distribution q(t) over
objectives G with a non-zero weight on every objective. In contrast, in the algorithm of Theorem 4.1, the
learner only interacts with a single new objective ℓ(t) at each timestep t.

In the algorithms throughout this section, given an objective ℓ(t) ∈ Gmc, we wrote i(t), j(t), S(t), v(t) such that
ℓ(t) = ℓi,j,S,v.

Algorithm 1 Non-Deterministic Multicalibration Algorithm (Theorem 4.1)

1: Input: S ⊆ 2X , ε ∈ (0, 1), k, λ, T ∈ Z+, and distribution D;
2: Initialize Hedge iterate q(1) = Uniform(Gmc) and Hedge iterate h(1) = [1/k, . . . , 1/k]X ;
3: for t = 1 to T do
4: Sample objective ℓ(t) ∼ q(t) and datapoint (x(t), y(t)) ∼ D;
5: For every x ∈ X , let h(t+1)(x) := Hedge(c

(1:t)
x ), where

c(t)x (ŷ) :=
1

2
(1 + i(t) · 1[h(x) ∈ v(t), x ∈ S(t)] · ŷj(t));

6: Let q(t+1) := Hedge(cadv
(1:t)), where cadv

(t)(ℓ) := 1− ℓ(h(t), (x(t), y(t)));
7: end for
8: Return: p∗, a uniform distribution over h(1), . . . , h(T );
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Algorithm 2 Deterministic Multicalibration Algorithm (Theorem 4.3)

1: Input: S ⊆ 2X , ε ∈ (0, 1), k, λ, T, C ∈ Z+, distribution D, and agnostic learning oracle A;
2: Initialize Hedge iterate h(1) = [1/k, . . . , 1/k]X ;
3: for t = 1 to T do
4: Let ℓ(t) = Aε/8(cadv

(t),Gmc) where cadv
(t)(ℓ) := 1− LD,ℓ(h

(t));
5: For every x ∈ X , let h(t+1)(x) := Hedge(c

(1:t)
x ), where

c(t)x (ŷ) :=
1

2
(1 + i(t) · 1[h(x) ∈ v(t), x ∈ S(t)] · ŷj(t));

6: end for
7: Take C ln(T/δ)/ε2 samples x ∼ D and let t∗ = argmin

t∈[T ]

∑
(x,y)∈x

ℓ(t)(h(t), (x, y));
8: Return the predictor h(t∗);

Algorithm 3 Online Multicalibration Algorithm

1: Input: S ⊆ 2X , ε ∈ (0, 1), λ, T ∈ Z+;
2: Initialize Hedge iterate q(1) = Uniform(Gmc);
3: for t = 1 to T do
4: Compute p(t)(x) := min

p∗(x)∈∆([0,ε/4λ,...,1])
max
y∈[0,1]

1
2 E
ŷ∼p∗(x)

[
1 + E

ℓi,S,v∼q(t)
[i · 1[x ∈ S, y ∈ v] · (ŷ − y)]

]
;

5: Announce predictor p(t) to Nature and observe Nature’s data distribution D(t);
6: Sample (x(t), y(t)) ∼ D(t) and let q(t+1) := Hedge(cadv

(1:t)) where cadv
(t)(ℓ) := 1− ℓ(h(t), (x(t), y(t)));

7: end for

5 Additional Multicalibration Considerations

In this section, we present additional results on multicalibration that all follow from the same game dynamics
presented in Section 3.

Separable objectives. We begin by introducing a generalization of Theorem 3.7, which describes why
multicalibration objectives are amenable to efficient online learning, to a more general class of multi-objective
learning problems. We refer to such problems as having separable objectives.

Definition 5.1. Consider a multi-objective learning problem (D,G,H) where H is the set of all functions of
form h : X → W and W is some convex space (and not necessarily the label space Y). We say the objectives
G of such a problem are separable if every ℓ ∈ G is of form

ℓ(h, (x, y)) = c+ fℓ(x, h(x)) · (h(x)− gℓ(y)),

where fℓ : X ×W → W and gℓ : Y → W are arbitrary functions and c is some constant offset.

The below Theorem 5.2 generalizes Theorem 3.7 to multi-objective learning problems with separable objectives
and multiple data distributions. Its proof is deferred to Appendix C.

Theorem 5.2. Consider a multi-objective learning problem (D,G,H) where all objectives in G are separable
and all distributions in D are absolutely continuous with respect to a common distribution D∗. Let Asub be an
online algorithm that, for any linear costs c(1:T ), outputs actions a(1:T ) ∈ W where Reg(a(1:T ), c(1:T )) ≤ R(T ).

If |D| > 1, further assume Reg(a(1:T ), c(1:T )) ≤ R(T ) ·maxa∗∈W

√
1
T

∑T
t=1(c

(t)(a(t))− c(t)(a∗))2. Then for
any stochastic costs q(1:T ) ∈ ∆(G) and distributions D(1:T ) ∈ D, the below algorithm outputs predictors
h(1:T ) ∈ H where RegB∗(h(1:T ), {LD(t),q(t)(·)}(1:T )) ≤

√
|D|R(T ) and B∗ is the baseline

B∗ := c+ min
h∗∈H

1

T

T∑
t=1

max
h′∈H

E
(x,y)∼D(t)

ℓ∼q(t)

[fℓ(x, h
′(x)) · (h∗(x)− gℓ(y))] . (8)

13



At each timestep t, construct the predictor h(t+1)(x) by setting, for all x ∈ X ,

h(t+1)(x) := Asub(c
(1)
x , . . . , c(t)x ) where c(τ)x (w) :=

1

2
· dD

(τ)(x)

dD∗(x)
·
(
1 + E

ℓ∼q(τ)

[
fℓ(x, h

(τ)(x))
]
· w
)
,

where dD(τ)(x)
dD∗(x) is the Radon-Nikodym derivative of D(τ) with respect to D∗ at x.

In Appendix C, we also prove that a generalization of Theorem 3.8 holds for multi-objective learning problems
with separable objectives.

5.1 Conditional Multicalibration

One shortcoming of existing definitions of multicalibration is that they measure violations marginally over the
entire distribution D. That is, the amount that a predictor is allowed to violate calibration on a subgroup is
inversely proportional to the probability mass of the subgroup, as reflected by the use of the indicator function
in Definition 2.1. This can lead to predictors that are certifiably multicalibrated, but still poorly calibrated
on underrepresented or minority groups. In contrast, the original definition of multicalibration proposed by
[HKRR18], for which no non-trivial guarantee is known, is a conditional notion of multicalibration.

Below, we generalize this notion of conditional multicalibration so that setting S = S ′ recovers the original
multicalibration definition of [HKRR18].

Definition 5.3. Fix ε > 0, λ ∈ Z+, and two sets of groups S,S ′ ⊆ 2X . A k-class predictor p ∈ ∆(P) is
(S,S ′, ε, λ)-conditionally multicalibrated for some data distribution D if

∀S ∈ S, S′ ∈ S ′, v ∈ V k
λ , j ∈ [k] :

∣∣∣∣ E
(x,y)∼D,h∼p

[(h(x)j − δy,j) · 1[h(x) ∈ v, x ∈ S] | x ∈ S′]

∣∣∣∣ ≤ ε.

It is not possible to obtain conditional multicalibration generally, so we will assume sample access to the
conditional distributions {DS′}S′∈S′ , where DS′ := D | x ∈ S′. In practice, this assumption means that we are
able to sample data from certain protected groups that may otherwise be underrepresented. For convenience,
in this section, we will assume prior knowledge of {PrD(x ∈ S′)}S′∈S′ but note these probabilities can be
cheaply estimated beforehand.

To derive conditional multicalibration algorithms from game dynamics, we first write conditional multicali-
bration as a multi-distribution multi-objective learning problem.

Fact 5.4. Let D be a data distribution for some k-class prediction problem and fix ε > 0, λ ∈ Z+, and two sets
of groups S,S ′ ⊆ 2X . Let Gmc be the set of objectives {ℓi,j,S,v} as defined in Fact 2.5 and let D = {DS′}S′∈S′ .
Predictor p ∈ ∆(P) is a ε-optimal solution to the multi-objective learning problem (D,Gmc,P) if and only if p
is (S,S ′, 2ε, λ)-conditionally multicalibrated for D.

Conditional multicalibration algorithms. The following Theorem 5.5 is, to the best of our knowledge,
the first non-trivial guarantee for conditional multicalibration.

Theorem 5.5. Fix ε > 0, λ, k ∈ Z+, two sets of groups S,S ′ ⊆ 2X , and a data distribution D. The following
algorithm returns a deterministic k-class predictor that is (S,S ′, ε, λ)-conditionally multicalibrated on D and
makes O(ln(k)/ε2) calls to an agnostic learning oracle. Moreover, with probability 1 − δ, the oracle calls
can be implemented with Õ

(
1
ε3 (
√
ln(k) ln(k |S| |S ′| /δ) + k ln(λ))

)
samples from each conditional distribution

{DS′}S′∈S′ .

No-Regret vs Best-Response

Construct the problem (D,Gmc,P) from Fact 5.4 and let T = Cε−2 |S ′| ln(k) for some universal constant
C. Over T rounds, have a learner choose predictors h(1:T ) by applying the no-regret learning algorithm of
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Theorem 5.2 to the stochastic costs ℓ(1:T ) and distributions {DS′(t)}(1:T ). Have an adversary choose S′(1:T )

and ℓ(1:T ) by calling an agnostic learning oracle at each t ∈ [T ]: S′(t), ℓ(t) = Aε/8(1 − LD(·),(·)(h
(t))).

Using C ln(T |S ′| /δ)/ε2 samples from each distribution in {DS′}S′∈S′ , return the predictor h(t∗) with the
lowest empirical multicalibration error. This algorithm is written explicitly in Algorithm 4.

Proof. In order to apply Theorem 5.2, we first observe that every objective in Gmc is separable and every
distribution DS′ is absolutely continuous with respect to D, By definition, for any S′ ∈ S ′, the Radon-Nikodym
derivative of DS′ with respect to D at x ∈ X is 1[x ∈ S′]/PrD(x ∈ S′). Thus, the sequence h(1:T ) corresponds
to running the no-regret algorithm of Theorem 5.2 when Asub is chosen to be Prod. By Lemma A.4, we know
that choosing the Prod algorithm as Asub satisfies the conditions of Theorem 5.2 with R(T ) ∈ O(

√
ln(k)T ).

Theorem 5.2 therefore guarantees that RegB∗(h(1:T ), {LD
S′(t) ,ℓ

(t)(·)}(1:T )) ≤ O(
√
|S ′| ln(k)T ), where B∗ is

as defined in (8). Since we can lower bound the baseline B∗ ≥ 0.5 by plugging the Bayes classifier
h∗(x) = E(x,y)∼D [y | x] into (8), Regweak(h

(1:T ), {LD
S′(t) ,ℓ

(t)(·)}(1:T )) ≤ RegB∗(h(1:T ), {LD
S′(t) ,ℓ

(t)(·)}(1:T )) ≤
O(
√

|S ′| ln(k)T ). Thus, if T ≥ C |S ′| ln(k)/ε2, Regweak(h
(1:T ), {LD

S′(t) ,ℓ
(t)(·)}(1:T )) ≤ Tε/8.

By construction, every pair S′(t), ℓ(t) is an (ε/8) best-response to the cost function 1 − LD(·),(·)(h
(t)). By

Lemma 3.4, since the learner has at most Tε/8 weak regret and the adversary is ε/8 best-responding, there
must exist a timestep t ∈ [T ] where h(t) is (ε/4)-optimal. By Lemma 3.5, the h(t∗) found by the algorithm is
(ε/2)-optimal with probability at least 1− δ. By Fact 5.4, h(t∗) is a (S,S ′, ε, λ)-conditionally multicalibrated
predictor. The oracle complexity is exactly T , while the sample complexity of oracle A is a standard adaptive
data analysis result (Lemma A.6).

We can also implement faster non-deterministic conditional multicalibration algorithms.

Theorem 5.6. Fix ε > 0, λ, k ∈ Z+, two sets of groups S,S ′ ⊆ 2X , and a data distribution D. The following
algorithm returns a non-deterministic k-class predictor that is (S,S ′, ε, λ)-conditionally multicalibrated on D
and takes O

(
|S ′| (ln(|S| |S ′| /δ) + k ln(λ))/ε2

)
samples in total from the distributions in {DS′}S′∈S′ .

No-Regret vs No-Regret

Construct the problem (D,Gmc,P) from Fact 5.4 and let T = Cε−2 |S ′| ln(|S|λkδ) for some universal
constant C. Over T rounds, have a learner choose predictors h(1:T ) ∈ P by applying the no-regret learning
algorithm of Theorem 5.2 to the stochastic costs ℓ(1:T ) and distributions {DS′(t)}(1:T ). In parallel, have
an adversary choose S′(1:T ), ℓ(1:T ) by applying ELP to costs {1−LD(·),(·)(h

(t))}(1:T ). Return the predictor
p = Uniform(h(1:T )). This algorithm is written explicitly in Algorithm 5.

Proof. As we proved in Theorem 5.5, Theorem 5.2 guarantees that if T ≥ C |S ′| ln(k)/ε2, the learner’s regret
is bounded by Regweak(h

(1:T ), {LD
S′(t) ,ℓ

(t)(·)}(1:T )) ≤ Tε/4. We now turn to the adversary.

We will define a sequence of costs c̃adv
(1:T ) that mirrors the adversary’s costs {1− LD(·),(·)(h

(t))}(1:T ). For all
timesteps t ∈ [T ], rename (x

(t)

S′(t) , y
(t)

S′(t)) := (x(t), y(t)) while for all other S′ ∈ S ′ define the random samples
(x

(t)
S′ , y

(t)
S′ )

i.i.d.∼ DS′ as the datapoint that the adversary would have hypothetically sampled if it had chosen
to sample from DS′ instead of DS′(t) at timestep t. We now can define c̃adv

(t)(S′, (i, j, S, v)) := (0.5 + 0.5 ·
i · 1[h(x(t)

S′ ) ∈ v, x
(t)
S′ ∈ S] · (δ

y
(t)

S′ ,j
− h(x

(t)
S′ )j)). Note that, since the ELP algorithm only observes values of

cadv
(t)((i, j, S, S′, v)) where S′ = S′(t), Reg({(S′(t), ℓ(t))}(1:T ), cadv

(1:T )) = Reg({(S′(t), ℓ(t))}(1:T ), c̃adv
(1:T )).

By Lemma A.5, the adversary satisfies Reg({(S′(t), ℓ(t))}(1:T ), cadv
(1:T )) ≤ O(

√
|S ′| ln(k/δ)T ). Thus, we also

have that Reg({(S′(t), ℓ(t))}(1:T ), c̃adv
(1:T )) ≤ O(

√
|S ′| ln(k/δ)T ). By Lemma 3.2, there is a universal constant

C such that, if T ≥ Cε−2 ln(2kλk |S| |S ′| /δ),

|Reg({(S′(t), ℓ(t))}(1:T ), c̃adv
(1:T ))− Reg({(S′(t), ℓ(t))}(1:T ), {1− LD(·),(·)(h

(t))}(1:T ))| ≤ Tε/12,
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with probability 1− δ. Taking a triangle inequality and union bound, we can see that for sufficiently large C,
Reg({(S′(t), ℓ(t))}(1:T ), {1− LD(·),(·)(h

(t))}(1:T )) ≤ Tε/4.

By Lemma 3.3, the ergodic iterate h∗ is an (ε/2)-optimal solution. By Fact 5.4, h∗ is a (S,S ′, ε, λ)-conditionally
multicalibrated predictor. The sample complexity is exactly T since the algorithm only samples one datapoint
at each iteration.

Stronger multicalibration guarantees for (almost) free. We can also drop the assumption of access
to the conditional distributions {DS′}S′∈S′ and ask for a weaker guarantee than conditional multicalibration
where a subgroup’s error tolerance scales with

√
Pr(x ∈ S′). For simplicity, we will fix S ′ = S here. Note

that unlike Theorem 5.5, Theorem 5.7 does not assume knowledge of the vector [PrD(x ∈ S)]S∈S .

Theorem 5.7. Fix ε > 0, λ, k ∈ Z+, two sets of groups S ⊆ 2X , and a data distribution D. There is an
algorithm that, with probability at least 1− δ, takes O(ln(k) · (ln(|S| /εδ) + k ln(λ))/ε4) samples from D and
returns a deterministic k-class predictor h satisfying∣∣∣∣ E

(x,y)∼D,h∼p
[(h(x)j − δy,j) · 1[h(x) ∈ v, x ∈ S]]

∣∣∣∣ ≤ ε
√
Pr(x ∈ S),

for all S ∈ S, v ∈ V k
λ , j ∈ [k].

The sample complexity of Theorem 5.7 should be improvable to a sample complexity of Õ((
√

ln(k) ln(|S| /δ)+
k ln(λ))/ε3) using adaptive data analysis [MT07, BNS+21]. Even without using adaptive data analysis,
Theorem 5.5 guarantees a sample complexity that is only a 1/ε factor greater (less than a cube-root increase)
than the best known sample complexity for deterministic multicalibration. In fact, it matches the best
sample complexity for deterministic multicalibration that is known to be possible without adaptive data
analysis. This means that we can attain this strictly stronger multicalibration guarantee for free (compared
to its non-adaptive data analysis counterpart) or with only a minor cube-root increase in sample complexity
(compared to its adaptive data analysis counterpart). We defer a complete proof and algorithm statement to
Section F.

5.2 Agnostic Multicalibration

An implicit assumption of multicalibration is that one has unlimited freedom to vary their predictions based
on which subgroups a datapoint belongs to. This assumption arises because we assume that groups are defined
as subsets of the domain, S ⊆ X , and predictors are allowed to condition arbitrarily on the domain. This is
impractical in many settings including, for example, when subgroups correspond to protected demographics.
This is an important concern for fairness applications of multicalibration.

One can extend multicalibration to a more general agnostic setting by assuming that group membership is
passed to the predictor separately from the covariate. Note that, in this definition, different groups may not
share a Bayes classifier and a fully multicalibrated predictor may not exist.

Definition 5.8. Consider a data distribution D supported on X × X ′ × Y and where the set P of k-class
predictors that are functions of the visible covariates X but not the protected covariates X ′. Fix ε > 0, λ ∈ Z+,
and a set of groups S ⊆ 2X

′
. A (possibly non-deterministic) k-class predictor p ∈ ∆(P) is (S, ε, λ)-agnostic

multicalibrated with respect to a baseline B if

∀S ∈ S, v ∈ V k
λ , j ∈ [k] :

∣∣∣∣ E
(x,x′,y)∼D,h∼p

[(h(x)j − δy,j) · 1[h(x) ∈ v, x′ ∈ S]]

∣∣∣∣ ≤ ε+B.

In the original definition of multicalibration, it is implicitly assumed that one knows, a priori, the probability
that a covariate x belongs to a certain group; this is necessary to attain sample complexity rates independent
of domain size X . We will similarly allow agnostic multicalibration to take for granted knowledge of the
group memberships of each covariate x ∈ X .
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Choosing a baseline. One challenge with defining agnostic multicalibration is choosing a proper baseline
B. An immediate option is to choose a min-max baseline:

Bweak := min
h∗∈H∗

max
j,v,S

∣∣∣∣ E
(x,x′,y)∼D

[(h∗(x)j − yj) · 1[h∗(x) ∈ v, x′ ∈ S]]

∣∣∣∣ .
However, achieving this baseline is intractable, with a sample and oracle complexity that depends—potentially
linearly—on domain size. Moreover, the predictor attaining the min-max baseline is odd and undesirable:
when two groups disagree on the label for a set of covariates, the predictor hedges its losses by spreading its
predictions for those covariates into as many bins as possible.

Proposition 5.9. Define X = [m] for some large m ∈ Z+ and uniformly sample a random half of X
as X̃ ⊆ X where |X̃ | = |X |/2. Let X ′ = {1, 2}, λ = 3 and k = 2, and define the marginal distributions
PrD(x | x′ = 1) and PrD(x | x′ = 2) to be uniform on X . For x /∈ X̃ , let labels be random: PrD(y = 1 | x′ =

1, x) = PrD(y = 1 | x′ = 2, x) = 0.5. For x ∈ X̃ , let labels be deterministic: PrD(y = 1 | x′ = 1, x) = 0 and
PrD(y = 1 | x′ = 2, x) = 1. Finding a predictor that is (S, ε, λ)-agnostic multicalibrated with respect to the
min-max baseline requires at least Θ(|x|) samples must be taken from D for ε = 0.1.

Proof. The min-max optimal multicalibated predictor divides X̃ into 4 equal parts: X̃1, . . . , X̃4. It predicts
h(x) = 0.5 for all x /∈ X̃ , x ∈ X̃1 and x ∈ X̃2. It predicts h(x) = 1/3 for all x ∈ X̃3. It predicts h(x) = 2/3 for
all x ∈ X̃4. This attains a multicalibration violation of 1/6. Thus, achieving an ε-optimal predictor requires
determining the membership (in X̃ ) of at least a 3/4− ε fraction of X .

To provide a more satisfactory definition of agnostic multicalibration, we ask that one’s predictor assigns the
same label probabilities to datapoints with the same group memberships and relaxes the baseline so that
hedging is not necessary.

Definition 5.10. We say that a k-predictor h is agnostic multicalibrated if the predictor h provides the
same prediction probabilities h(x1) = h(x2) to datapoints x1, x2 ∈ X that share the same group membership
distributions ∀S ∈ S : Pr(x′ ∈ S | x = x1) = Pr(x′ ∈ S | x = x2); and (2) is (S, ε, λ)-agnostic multicalibrated
with respect to the multi-accuracy baseline:

Bmulti-acc := min
h∗∈H∗

max
j∈[k],S∈S

∣∣∣∣ E
(x,x′,y)∼D

[(h∗(x)j − δy,j) · 1[x′ ∈ S]]

∣∣∣∣ . (9)

This baseline is zero when the groups share a Bayes classifier, recovering Definition 2.1. With a slight tweak
to Fact 2.5, we can write agnostic multicalibration as the following multi-objective learning problem.

Fact 5.11. Let D be a data distribution for some k-class prediction problem and fix ε > 0, λ ∈ Z+, and a set
of groups S ⊆ 2X

′
. For every protected feature x′ ∈ (X ′)X , direction i ∈ {±1}, level set v ∈ V k

λ , group S ∈ S,
and class j ∈ [k], we define an objective ℓx′,i,j,S,v : P × (X × Y) → [0, 1] where

ℓx′,i,j,S,v(h, (x, y)) = 0.5 + 0.5 · i · 1[h(x) ∈ v,x′
x ∈ S] · (h(x)j − δy,j), (10)

and Gag = {ℓx′,i,j,S,v}x′,i,j,S,v is the set of these objectives. We also define objectives without subscript x′,
where ℓi,j,S,v(h, (x, x

′, y)) = 0.5 + 0.5 · i · 1[h(x) ∈ v, x′ ∈ S] · (h(x)j − δy,j) and G′
ag = {ℓi,j,S,v}i,j,S,v. For

every objective ℓ ∈ G′
ag, let qℓ ∈ ∆(Gag) denote the objective mixture where Ex∼D,ℓ∼qℓ [ℓ(·)] = Ex′,x∼D [ℓ(·)].

If a predictor p ∈ ∆(P) is a ε-optimal solution to the multi-objective learning problem ({D} ,G′
ag,P) with

respect to the multi-accuracy baseline, then p is (S,S ′, 2ε, λ)-agnostic multicalibrated for D with respect to the
multi-accuracy baseline.

A simple modification to our batch multicalibration algorithm suffices to achieve agnostic multicalibration.

Theorem 5.12. Fix ε > 0, λ, k ∈ Z+, a set of groups S ⊆ 2X
′
, and a data distribution D. The following

algorithm returns a deterministic k-class predictor that is (S, ε, λ)-agnostic multicalibrated on D with respect
to the multi-accuracy baseline. It makes O(ln(k)/ε2) calls to an agnostic learning oracle and, with probability
1− δ, these oracle calls can be implemented with Õ

(
1
ε3 (
√

ln(k) ln(k |S| /δ) + k ln(λ))
)

samples from D.
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No-Regret vs Best-Response

Construct the problem ({D},Gag,P) from Fact 2.5 and let T = Cε−2 ln(|S|λkδ) for some universal
constant C. Over T rounds, have an adversary choose ℓ(1:T ) ∈ G′

ag by calling an agnostic learning oracle
at each t ∈ [T ]: ℓ(t) = Aε/8(1−LD,(·)(h

(t)),G′
ag). Have a learner choose predictors h(1:T ) ∈ P by applying

the no-regret learning algorithm of Theorem 5.2 to the stochastic costs {qℓ(t)} (1:T ) ∈ ∆(Gag). Using
C ln(T/δ)/ε2 samples from D, return the predictor h(t∗) with the lowest empirical multicalibration error.
This algorithm is written explicitly in Algorithm 6.

Proof. By Theorem 5.2, if T ≥ 256ε−2 ln(k), the predictors h(1:T ) satisfy RegB∗(h(1:T ), {qℓ(t)} (1:T )) ≤ Tε/8.
Note that, since predictors h(1:T ) can only observe x and not x′, we applied the algorithm of Theorem 5.2
to (mixtures of) objectives from Gag that depend only on (x, y). Since Ex∼D,ℓx′,i,j,S,v∼q

ℓ(t)
[ℓx′,i,j,S,v(·)] =

Ex′,x∼D

[
ℓ(t)(·)

]
however, we can still bound regret with respect to the loss functions in G′

ag, which do depend
on x′, by RegB∗(h(1:T ), ℓ(1:T )) = RegB∗(h(1:T ), {qℓ(t)} (1:T )) ≤ Tε/8; we define both of these regrets with
respect to the set of all predictors from X → Y . Also note that the B∗ baseline bounded by the multiaccuracy
baseline (9):

B∗ = min
h∗∈H∗

1

T

T∑
t=1

max
h′∈H∗

E
(x,y)∼D

[
f (t)(x, h′(x)) · (h∗(x)− g(t)(y))

]
≤ min

h∗∈H∗
max
ℓ∗∈G

max
h′∈H∗

E
(x,y)∼D

[f∗(x, h′(x)) · (h∗(x)− g∗(y))]

≤ min
h∗∈H∗

max
j,S

∣∣∣∣ E
(x,x′,y)∼D

[(h∗(x)j − yj) · 1[x′ ∈ S]]

∣∣∣∣
= Bmulti-acc.

Thus, we have regret RegBmulti-acc
(h(1:T ), ℓ(1:T )) ≤ RegB∗(h(1:T ), ℓ(1:T )) ≤ T ε

8 . By construction, every ℓ(t) is
an (ε/8) best-response to the cost 1− LD,(·)(h

(t)). By Lemma 3.4, there must exist a timestep where h(t) is
(ε/4)-optimal with respect to Bmultiacc. By Lemma 3.5, the h(t∗) found by the algorithm is (ε/2)-optimal with
respect to Bmultiacc with probability at least 1− δ. By Fact 5.11, h(t∗) is a (S, ε, λ)-agnostic multicalibrated
predictor. Lastly, we verify that datapoints with identical group membership probabilities must have the
same label probabilities as the update rules for their predicted labels are identical.

The best existing sample complexity bounds for agnostic multicalibration come from uniform convergence
[SCM20], and scale with log(|H|) ≈ |X |—that is, sample complexity scales with the size of one’s domain. In
contrast, Theorem 5.12 provides a sample complexity that still depends only on the complexity of the groups
on which one desires multicalibration. This can be an exponential (in |X |) reduction in sample complexity.

Similarly to Algorithm 6, we can use the same modification to scale our non-deterministic multicalibration
algorithm (Algorithm 1) to agnostic settings.

Theorem 5.13. Fix ε > 0, λ ∈ Z+ and a set of groups S ⊆ 2X . There exists an algorithm guarantees, with
probability at least 1− δ, the algorithm returns a randomized (S, ε, λ)-agnostic multicalibrated predictor while
taking no more than O

(
(ln(|S| /δ) + k ln(λ))/ε2

)
samples from D.

5.3 Moment Multicalibration

Our treatment of multicalibration, and extensions of multicalibration, hold more generally for any problem
that can be written as multi-objective learning with objectives that look separable. As an example, we
demonstrate that we can use the same approach to devise algorithms for moment multicalibration, which
concerns not only learning a multicalibrated label predictor but also a second predictor that estimates
the higher-order moments of the label distribution [JLP+21]. As in online multicalibration, we will work
with only binary classification problems in this section, and so will say that predictors output real-valued
hµ(x), hm(x) ∈ [0, 1].
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Definition 5.14. Let D be a data distribution for a binary classification problem and fix ε > 0, λ,m ∈ Z+,
and a set of groups S ⊆ 2X . A pair of predictors p = (pµ, pm) where pµ, pm : X → [0, 1] is (S, ε, λ,m)-mean-
conditioned moment-multicalibrated3 on D if, for all S ∈ S, vµ, vm ∈ Vλ,

ε ≥
∣∣∣∣ E
(x,y)∼D,(hµ,hm)∼p

[(hµ(x)− y) · 1[hµ(x) ∈ vµ, hm ∈ vm, x ∈ S]]

∣∣∣∣ ,
ε ≥

∣∣∣∣ E
(x,y)∼D,(hµ,hm)∼p

[((hµ(x)− y)m − hm(x)) · 1[hµ(x) ∈ vµ, hm ∈ vm, x ∈ S]]

∣∣∣∣ .
We will write h = (hµ, hm) as shorthand, where h(x) = (hµ(x), hm(x)). Moment multicalibration can also be
expressed as a multi-objective learning problem.

Fact 5.15. Consider the set of all pairs of predictors H = {(hµ, hm) : hµ, hm : X → [0, 1]}. Fix ε > 0
and λ,m ∈ Z+, and a set of groups S ⊆ 2X . Define the objectives Gµ

mc := {ℓµ,i,S,v}i∈{±1},S∈S,v∈V 2
λ

and
Gm
mc := {ℓm,i,S,v}i∈{±1},S∈S,v∈V 2

λ
where

ℓm,i,S,v(h, (x, y)) = 0.5 + 0.5 · i · 1[h(x) ∈ v, x ∈ S] · (hm(x)− (y − hµ(x))
m),

ℓµ,i,S,v(h, (x, y)) = 0.5 + 0.5 · i · 1[h(x) ∈ v, x ∈ S] · (hµ(x)− y).

A pair of predictors is an ε-optimal solution to the single-distribution multi-objective learning problem
({D},Gm

mc ∪ Gµ
mc,P) if and only if the pair is also (S, 2ε, λ,m) mean-conditioned moment multicalibrated.

Thus, we can follow the same steps as before to derive a moment multicalibration algorithm. The algorithm we
derive for Theorem 5.16 recovers the sample complexity of [JLP+21] for moment multicalibration. Moreover,
the algorithm is parallelized in that it learns the mean and moment estimators hµ, hm simultaneously, in
contrast with [JLP+21]’s algorithm which uses nested optimization.

Theorem 5.16. Fix ε > 0, λ, r ∈ Z+, a set of groups S ⊆ 2X , and a data distribution D. The following
algorithm returns a pair of predictors that are (S, ε, λ,m)-mean-conditioned moment multicalibrated on D
and makes O(1/ε2) calls to an agnostic learning oracle. Moreover, with probability 1− δ, the oracle calls can
be implemented with Õ(m ln(|S|λ/δ)/ε4) samples from D.

No-Regret vs Best-Response

Construct the problem ({D},Gm
mc∪Gµ

mc,P) from Fact 5.15 and let T = Cε−2 ln(|S|λkδ) for some universal
constant C. Over T rounds, have a learner choose predictors h

(1:T )
m ∈ P by applying the no-regret learning

algorithm of Theorem 5.2 to the stochastic costs ℓ
(1:T )
m , instantiating Asub to be Hedge with learning T−3/4.

In parallel, have a learner choose predictors h
(1:T )
µ ∈ P by applying the no-regret learning algorithm of

Theorem 5.2 to the stochastic costs ℓ
(1:T )
µ , instantiating Asub to be the strongly adaptive Hedge algorithm

(Lemma A.3). Have an adversary choose ℓ
(t)
m , ℓ

(t)
m by calling an agnostic learning oracle at each t ∈ [T ]:

ℓ
(t)
m = Aε/8(1 − ℓ(·)(h

(t)),Gm
mc) and ℓ

(t)
µ = Aε/8(1 − ℓ(·)(h

(t)),Gµ
mc). Using C ln(T/δ)/ε2 samples from

D, return the predictor h(t∗) with the lowest empirical multicalibration error. This algorithm is written
explicitly in Algorithm 7.

Proof. By Lemma D.1, the learner’s regret is Regweak(h
(1:T ), {ℓ(t)m + ℓ

(t)
µ }(1:T )) ∈ O

(
m1/2T 3/4

)
. When T =

Cm2/ε4, we thus have Regweak(h
(1:T ), {max{ℓ(t)m , ℓ

(t)
µ }}(1:T )) ≤ Tε/8. By construction, every max{ℓ(t)m , ℓ

(t)
µ }

is an (ε/8) best-response to the cost 1− LD,(·)h
(t). By Lemma 3.4, there must exist a timestep where h(t) is

(ε/4)-optimal. By Lemma 3.5, the predictors h(t∗) found by the algorithm are (ε/2)-optimal with probability
at least 1− δ. By Fact 5.15, h(t∗) is a (S, ε, λ,m)-mean-conditioned moment multicalibrated predictor.

3This definition aligns with the definition of “pseudo-moment multicalibration” proposed by [JLP+21]. We adopt this
particular definition as previous studies [JLP+21, GJN+22] develop their algorithms and analyses based on this definition of
moment multicalibration, with translations to other definitions occurring only retrospectively.
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Algorithm 4 Conditional Multicalibration Algorithm (Theorem 5.5)

1: Input: S,S ′ ⊆ 2X , ε ∈ (0, 1), k, λ, T, C ∈ Z+, distributions {DS′}S′∈S′ , and agnostic learning oracle A;
2: Initialize Prod iterate h(1) = [1/k, . . . , 1/k]X ;
3: for t = 1 to T do
4: Let S′(t), ℓ(t) = Aε/8(cadv

(t),S ′ × Gmc) where cadv
(t)(S′, ℓ) := 1− LDS′ ,ℓ(h

(t));
5: Let h(t+1)(x) = Prod(c

(1:t)
x ) where

c(t)x (ŷ) :=
1[x ∈ S′(t)]

2 PrD(x ∈ S′(t))
(1 + 1[h(x) ∈ v(t), x ∈ S(t)] · i(t) · ŷj(t));

6: end for
7: Take C ln(T/δ)/ε2 samples x(S′) ∼ DS′ for all S′ ∈ S ′, and let t∗ = argmin

t∈[T ]

∑
(x,y)∈x(S′(t))

ℓ(t)(h(t), (x, y));
8: Return the predictor h(t∗);

Algorithm 5 Non-Deterministic Conditional Multicalibration Algorithm (Theorem 5.6)

1: Input: S,S ′ ⊆ 2X , ε ∈ (0, 1), k, λ, T ∈ Z+, and distributions {DS′}S′∈S′ ;
2: Initialize Prod iterate h(1) = [1/k, . . . , 1/k]X and ELP iterate (S′(1), ℓ(1)) ∼ Uniform(S ′ × Gmc);
3: for t = 1 to T do
4: Let h(t+1)(x) = Prod(c

(1:t)
x ) where

c(t)x (ŷ) :=
1[x ∈ S′(t)]

2 PrD(x ∈ S′(t))
(1 + 1[h(x) ∈ v(t), x ∈ S(t)] · i(t) · ŷj(t));

5: Sample (x(t), y(t)) ∼ DS′(t) and let S′(t+1), ℓ(t+1) := ELP(cadv
(1:t)) with

cadv
(t)(S′, ℓi,j,S,v) :=

1

2
1[S′ = S′(t)] · (1 + i · 1[h(x(t)) ∈ v, x(t) ∈ S] · (δy(t),j − h(x(t))j));

6: end for
7: Return h∗, a uniform distribution over h(1), . . . , h(T );

Algorithm 6 Agnostic Deterministic Multicalibration Algorithm (Theorem 5.12)

1: Input: S ⊆ 2X , ε ∈ (0, 1), k, λ, T, C ∈ Z+, agnostic learning oracle A, and distribution D;
2: Initialize Hedge iterate h(1) = [1/k, . . . , 1/k]X ;
3: for t = 1 to T do
4: Let ℓi,j,S,v = ℓ(t) = Aε/8(cadv

(t),G′
ag) where cadv

(t)(ℓ) := 1− LD,ℓ(h
(t));

5: Let h(t+1)(x) = Hedge(c
(1:t)
x ) with

c(t)x (ŷ) :=
1

2
(1 +

∑
x′∈X ′

Pr
D
(x′ | x) · i(t) · 1[h(x) ∈ v(t), x′ ∈ S(t)] · ŷj(t) ;

6: end for
7: Take C ln(T/δ)/ε2 samples x from D, and let t∗ = argmin

t∈[T ]

∑
(x,x′,y)∈x

ℓ(t)(h(t), (x, x′, y));
8: Return the predictor h(t∗);

20



Algorithm 7 Moment Multicalibration Algorithm (Theorem 5.16)

1: Input: S ⊆ 2X , ε ∈ (0, 1), k, λ, T, C ∈ Z+, agnostic learning oracle A, and distribution D;
2: Initialize Hedge iterate h

(1)
m = 0.5X and Hedge iterate h

(1)
µ = 0.5X ;

3: for t = 1 to T do
4: Let ℓ

(t)
m = Aε/8(cadv

(t),Gm
mc) and ℓ

(t)
µ = Aε/8(cadv

(t),Gµ
mc) where cadv

(t)(ℓ) := 1− LD,ℓ(h
(t));

5: For x ∈ X , let h
(t+1)
m (x) := Hedge(c

(1:t)
m,x ) and h

(t+1)
µ (x) := Hedge(c

(1:t)
µ,x ) where

c(t)m,x(ŷ) :=
1

2
(1 + i(t)m · 1[ŷ ∈ v(t)m , x ∈ S(t)

m ]), c(t)µ,x(ŷ) :=
1

2
(1 + i(t)µ · 1[ŷ ∈ v(t)µ , x ∈ S(t)

µ ])

6: end for
7: Take C ln(T/δ)/ε2 samples x from D and let t∗ = argmin

t∈[T ]

∑
(x,y)∈x

ℓ
(t)
m (h(t), (x, y)) + ℓ

(t)
µ (h(t), (x, y));

8: Return the predictors h
(t∗)
m , h

(t∗)
µ ;

Algorithm 8 Multi-Group Learning Algorithm (Theorem 6.6)

1: Input: S ⊆ 2X , ε ∈ (0, 1), ℓ : Y × Y → [0, 1], hypothesis class H : X → Y, and distribution D;
2: Initialize Hedge iterate q(1) = Uniform(S ×H) and p(1) = Uniform(H);
3: for t = 1 to T do
4: Sample (x

(t)
q , y

(t)
q ) ∼ D and (x

(t)
p , y

(t)
p ) ∼ D;

5: Let q(t+1) := Hedge(c
(1:t)
q ) and p(t+1) := Hedge(c

(1:t)
p ) where

c(t)q (S, h) :=
1

2
+

1

2
E

h′∼p(t)

[
1[x(t)

q ∈ S](ℓ(h, (x(t)
q , y(t)q ))− ℓ(h′, (x(t)

q , y(t)q )))
]

c(t)p (h) :=
1

2
+

1

2
E

S,h′∼q(t)

[
1[x(t)

p ∈ S](ℓ(h, (x(t)
p , y(t)p ))− ℓ(h′, (x(t)

p , y(t)p )))
]
;

6: end for
7: Return: p∗, a uniform distribution over p(1), . . . , p(T );

6 Other Fairness Notions

This general framework of approaching multi-objective learning problems with game dynamics can be
extended beyond multicalibration. In this section, we use multi-objective learning to derive new guarantees
for multi-distribution learning and multi-group learning.

Competing in multi-distribution learning. Usually, in agnostic multi-objective learning problems, the
trade-off between objectives is arbitrated by the worst-off objectives maxD∗∈D,ℓ∗∈G LD∗,ℓ∗(·). However, this
approach to negotiating trade-offs may be suboptimal when some objectives are inherently more difficult. In
those cases, we can take into account the difficulty of individual objectives by asking for a predictor where
there is no objective for which a competitor h ∈ H∗ performs significantly better.

Definition 6.1. For a multi-objective learning problem (D,G,H), a solution that is ε-competitive with respect
to a class H′ is a hypothesis p ∈ ∆(H) satisfying,

L∗
H′(p)− min

h∗∈H
L∗
H′(h∗) ≤ ε where L∗

H′(h) := max
D∈D

max
ℓ∈G

(LD,ℓ(h)− min
h∗∈H′

LD,ℓ(h)).

Only a simple modification is needed to provide ε-competitive guarantees: amplify your original objectives G
into a new objective set G′ :=

{
1
2 (1 + ℓ(·)− ℓ(h′)) | ℓ ∈ G, h′ ∈ H′} and solve as usual. The following fact,

which holds by definition, formalizes this reduction.

Fact 6.2. Consider a multi-objective learning problem (D,G,H). For some choice of H′, let G′ :=
{0.5 + 0.5(ℓ(·)− ℓ(h′)) | ℓ ∈ G, h′ ∈ H′}. Any solution p that is ε-optimal for the multi-objective learning
problem (D,G′,H), is also 2ε-competitive (Definition 6.1) w.r.t. H′ for the original problem (D,G,H).
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[HJZ22] showed that the sample complexity of finding an ε-optimal solution to a multi-objective learning
problem (D,G,H) is O(ε−2(ln(|H|) + |D| ln(|D| |G| /δ))). Thus, Fact 6.2 immediately implies the following
sample complexity bound for finding an ε-competitive solution.

Theorem 6.3. Consider a multi-objective learning problem (D,G,H) and a competitor class H′. There is
a no-regret no-regret dynamics algorithm that takes no more than O(ε−2(ln(|H|) + |D| ln(|D| |H′| |G| /δ)))
samples and with probability at least 1− δ returns a solution p ∈ ∆(H) that is ε-competitive against H′.

Multi-group learning. Consider the multi-group learning problem where, rather than seeking simultane-
ously calibrated estimates of different subsets of the domain as in multicalibration, we seek to simultaneously
minimize a general loss function on different subsets of the domain [RY21].

Definition 6.4. Fix ε > 0, a set of groups S ⊆ 2X , a hypothesis class H and a loss ℓ : H× (X ×Y) → [0, 1].
An ε-optimal solution to the multi-group learning problem (S,H) is a randomized hypothesis p ∈ ∆(H)
that satisfies, for all S ∈ S, E [ℓ(p, (x, y)) · 1[x ∈ S]] ≤ minh∗∈H E [ℓ(h∗, (x, y)) · 1[x ∈ S]] + ε. In multi-group
learning, we always assume such a hypothesis p exists in class H.

A (near) optimal sample complexity for multi-group learning of O
(
ln(|S| |H|)/ε2

)
was attained by [TH22]

using a reduction to sleeping experts. [TH22] also asked whether there exists a simpler optimal algorithm
that does not rely on sleeping experts. We answer this affirmatively by designing an optimal algorithm that
just runs two Hedge algorithms.

We can equate the multi-group learning problem (Definition 6.4) to finding an ε-competitive solution in a
single-distribution multi-objective learning problem.

Fact 6.5. Fix ε > 0, a set of groups S ⊆ 2X , a hypothesis class H, data distribution D, and a loss
ℓ : H × (X × Y) → [0, 1]. We define ℓS(h, (x, y)) := ℓ(h, (x, y)) · 1[x ∈ S]. If a hypothesis p ∈ ∆(H)
is ε-competitive with respect to the class H for the single-distribution multi-objective learning problem
({D}, {ℓS}S∈S ,H), then p is also an ε-optimal solution to the multi-group learning problem (S,H).

The following is a direct consequence of running no-regret no-regret dynamics, as in Lemma 3.3.

Theorem 6.6 (Multi-group learning). Fix a set of groups S ⊆ 2X , loss ℓ : Y × Y → [0, 1], hypothesis class
H : X → Y, and distribution D; For some universal constant C and T = C ln(|S| |H|)/ε2, Algorithm 8
takes 2T = O

(
ln(|S| |H|)/ε2

)
samples from D and returns an ε-optimal solution to the multi-group learning

problem (S,H).

7 Empirical Results

In this section, we study the empirical performance of batch multicalibration algorithms on real-world
classification datasets.

7.1 Experiment Setup

We conduct three sets of experiments to evaluate different batch multicalibration algorithms. The three
sets of experiments we conduct correspond to three datasets: the UCI Adult Income dataset [KB96], a
real-world dataset for predicting individuals’ incomes based on the US Census, the UCI Bank Marketing
dataset [MCR14], a dataset for predicting whether an individual will subscribe to a bank’s term deposit, and
the Dry Bean Dataset [KO20], a dataset for predicting a dry bean’s variety.

In every experiment, the performance of a multicalibration algorithm is measured based on the multicali-
bration violations of the average iterate and last iterate, where multicalibration violations are as defined
in Definition 2.1. In every experiment, we empirically evaluate six multicalibration algorithms. Four algo-
rithms are based on no-regret best-response dynamics, using an empirical risk minimizer as the adversary
and implementing either Hedge [FS97] (Hedge-ERM), Prod [Lit87] (Prod-ERM), Optimistic Hedge [RS13]
(OptHedge-ERM), or Gradient Descent (GD-ERM) as the learner. Two algorithms are based on no-regret
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no-regret dynamics, using either Hedge (Hedge-Hedge) or Optimistic Hedge (OptHedge-OptHedge) as both
the learner and adversary. We also note that the most commonly used multicalibration algorithms are included
in these comparisons. The original multicalibration algorithm of [HKRR18] is equivalent to GD-ERM. The
revised, boosting-inspired, multicalibration algorithm of [KGZ19, DKR+21] is equivalent to Hedge-ERM.

Additional details on datasets, hyperparameter tuning, and replication are deferred to Appendix E.

7.2 Results

The results of these experiments are summarized in Table 2, which reports the multicalibration errors of each
algorithm’s final iterate and average iterate. In Appendix E, Figure 1 plots the evolution of training and
testing multicalibration errors over the duration of the training process. We identify two key trends that are
statistically significant and hold consistently in all three experiments.

Error Measures

Train Error (Det) Test Error (Det) Test Error (Non-Det)

U
C

I
A

du
lt

Hedge-Hedge (NRNR) 2.0e-2 ± 2.0e-3 3.0e-2 ± 3.0e-3 2.3e-4 ± 2.7e-5

OptHedge-OptHedge (NRNR) 7.0e-3 ± 0.0 2.7e-2 ± 3.0e-3 2.6e-4 ± 2.8e-5

OptHedge-ERM (NRBR) 0.0 ± 0.0 4.7e-2 ± 1.0e-3 4.8e-4 ± 9.0e-6

Hedge-ERM (NRBR) 0.0 ± 0.0 6.4e-2 ± 1.0e-3 6.4e-4 ± 1.1e-5

Prod-ERM (NRBR) 0.0 ± 0.0 5.3e-2 ± 4.0e-3 5.3e-4 ± 4.4e-5

GD-ERM (NRBR) 5.3e-2 ± 1.1e-2 8.3e-2 ± 3.0e-3 9.5e-4 ± 6.5e-5

U
C

I
B

an
k

Hedge-Hedge (NRNR) 2.4e-2 ± 1.0e-3 4.3e-2 ± 1.1e-2 5.3e-4 ± 1.2e-4

OptHedge-OptHedge (NRNR) 1.3e-2 ± 1.0e-3 2.0e-2 ± 1.0e-3 2.1e-4 ± 5.0e-6

OptHedge-ERM (NRBR) 2.0e-3 ± 1.0e-3 1.8e-2 ± 0.0 2.2e-4 ± 6.0e-6

Hedge-ERM (NRBR) 2.0e-3 ± 0.0 5.2e-2 ± 1.0e-3 5.3e-4 ± 8.0e-6

Prod-ERM (NRBR) 0.0 ± 0.0 4.6e-2 ± 3.0e-3 5.1e-4 ± 2.3e-5

GD-ERM (NRBR) 8.0e-3 ± 1.0e-3 9.9e-2 ± 6.0e-3 1.1e-3 ± 7.1e-5

D
ry

B
ea

n

Hedge-Hedge (NRNR) 3.2e-2 ± 5.0e-3 4.6e-2 ± 4.0e-3 2.4e-5 ± 1.0e-6

OptHedge-OptHedge (NRNR) 1.9e-2 ± 1.0e-3 5.3e-2 ± 1.0e-3 2.7e-5 ± 1.0e-6

OptHedge-ERM (NRBR) 1.3e-2 ± 0.0 5.2e-2 ± 2.0e-3 2.6e-5 ± 1.0e-6

Hedge-ERM (NRBR) 1.4e-2 ± 0.0 5.5e-2 ± 1.0e-3 2.6e-5 ± 1.0e-6

Prod-ERM (NRBR) 1.2e-2 ± 4.0e-3 6.5e-2 ± 1.6e-2 2.9e-5 ± 5.0e-6

GD-ERM (NRBR) 6.0e-3 ± 0.0 7.6e-2 ± 1.0e-3 3.1e-5 ± 1.0e-6

Table 2: Average (± standard error) of multicalibration violations on UCI Adult Dataset (20 seeds), UCI
Bank Marketing Dataset (5 seeds), and the Dry Bean Dataset (5 seeds). Train Error (Det) and Test Error
(Det) evaluate the last iterate (deterministic predictor) on training and test splits; Test Error (Non-Det)
measures the average iterate (non-deterministic predictor) on the test split.

The last iterates of no-regret no-regret dynamics are surprisingly multicalibrated. On all datasets,
the algorithms based on no-regret no-regret dynamics, namely Hedge-Hedge and OptHedge-OptHedge,
consistently yield not only among the most multicalibrated randomized predictors (with their average iterate)
but also the most multicalibrated deterministic predictors (with their last iterate). This is surprising because
the last iterate of these algorithms is not guaranteed to be multicalibrated, and only enjoys a theoretical
advantage over no-regret best-response algorithms in terms of average iterate guarantees. As corroborated by
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Figure 1, this trend does not appear to be an artifact of early stopping or learning rates, but may rather
indicate that their more stable adversary updates provide regularization to these algorithms.

One’s choice of no-regret algorithm matters. On all datasets, we see that the best multicalibration
results are consistently achieved by algorithms that instantiate the Optimistic Hedge no-regret algorithm.
This is consistent with the theoretical results of [RS13], which show that Optimistic Hedge converges faster
than a standard Hedge in games. We also see that the original multicalibration algorithm of [HKRR18], based
on gradient descent, consistently attains the worst multicalibration errors, both in terms of average-iterate and
last-iterate. This is consistent with gradient descent being a theoretically less effective no-regret algorithm,
as it is unstable near the boundaries of a probability simplex.

Due to the superficial similarity between boosting and multicalibration, the field has already begun adopting
multicalibration algorithms with Hedge’s multiplicative updates rather than gradient descent’s additive ones,
as suggested by [KGZ19]. Our findings offer the first theoretical and empirical endorsement of this shift.
Moreover, our results suggest that practitioners should further explore the use of Optimistic Hedge-based
algorithms and algorithms based on no-regret no-regret dynamics—even when one is only interested in
deterministic predictors.
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A Additional Background

In this section, we supplement our discussion of online learning with some additional notations and results.

No-regret algorithms. In the following lemma, we state the regret bound of the Hedge algorithm [FS97]
for general choices of the learning rate η ∈ (0, 1).

Lemma A.1 (Hedge [Kal07]). Consider an online learning problem on the simplex ∆k and any adver-
sarial sequence of linear cost functions c(1:T ). If Hedge, with learning rate η ∈ (0, 1), outputs a(1:T ), then
Reg(a(1:T ), c(1:T )) ≤ Tη + ln(k)

η . If η =
√
ln(|A|)/T , Reg(a(1:T ), c(1:T )) ≤ 2

√
ln(k)T .

It is helpful to note that the learning rate of the Hedge algorithm also bounds how far its iterates move in
the primal space.

Lemma A.2 (Hedge Iterate Stability). Consider an online learning problem on the interval [0, 1] and any
sequence of linear costs. Let a(1:T ) ∈ [0, 1] be the actions that get picked by Hedge instantiated with learning
rate η ∈ (0, 1). Then, for every timestep t ∈ [T ],

∣∣a(1) − a(t)
∣∣ ≤ 2ηT .

Proof. By the triangle inequality, it suffices to prove that the learner’s actions move by at most 2η at each
timestep. That is,

∣∣a(t+1) − a(t)
∣∣ ≤ 2η at every timestep t ∈ [T ]. By definition of the Hedge algorithm, the

learner’s action at timestep t is given by

a(t+1) =
exp(−η

∑t
τ=1 c

(τ)(1))

exp(−η
∑t

τ=1 c
(τ)(0)) + exp(−η

∑t
τ=1 c

(τ)(1))
.

We can rearrange this as a(t+1) = a(t) ·α · exp(−ηc(t)(1)), where α is a ratio of normalization terms defined as

α :=
exp(−η

∑t−1
τ=1 c

(τ)(0)) + exp(−η
∑t−1

τ=1 c
(τ)(1))

exp(−η
∑t−1

τ=1 c
(τ)(0)) · exp(−ηc(t)(0)) + exp(−η

∑t−1
τ=1 c

(τ)(1)) · exp(−ηc(t)(1))
.

Note that α ≥ 1. Let us write x1 = exp(−η
∑t−1

τ=1 c
(τ)(0)), x2 = exp(−η

∑t−1
τ=1 c

(τ)(1)), x3 = exp(−ηc(t)(0))
and x4 = exp(−ηc(t)(1)), noting that the values x1, x2, x3, x4 are all positive. Observe that x1+x2

x1·x3+x2·x4
≤

max{ 1
x3
, 1
x4
}. To see this, suppose without loss of generality that x4 ≥ x3. Then x2 ≤ x2·x4

x3
, which implies

that x1 + x2 ≤ x1·x3+x2·x4

x3
, or equivalently, x1+x2

x1·x3+x2·x4
≤ 1

x3
. Substituting in our values for x1, x2, x3, x4, we

therefore have

1 ≤ α ≤ max{ 1

exp(−ηc(t)(0))
,

1

exp(−ηc(t)(1))
} ≤ 1

exp(−η)
.

The second inequality is because costs are bounded in [0, 1].

This gives the iterate movement bound of∣∣∣a(t+1) − a(t)
∣∣∣ ≤ max{

∣∣∣∣a(t) exp(−ηc(t)(1))

exp(−η)
− a(t)

∣∣∣∣ , ∣∣∣a(t) exp(−ηc(t)(1))− a(t)
∣∣∣}

≤ max
{∣∣∣a(t) exp(η)− a(t)

∣∣∣ , ∣∣∣ηc(t)(1)∣∣∣} .

Here, the second inequality applies the fact that |e−x − 1| ≤ |x| for any x ≥ 0 to the right-hand value. Since
η ∈ (0, 1), we can use the fact that |exp(η)− 1| ≤ 2η. Thus, we attain the desired bound

∣∣a(t+1) − a(t)
∣∣ ≤

2η.

We can modify the Hedge algorithm to obtain strongly adaptive regret bounds that provides guarantees for
every contiguous interval.
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Lemma A.3 (Strongly Adaptive Regret [DGS15]). Consider an online learning problem on the simplex ∆k.
There is a modified Hedge algorithm [DGS15] that, for any adversarial sequence of linear costs c(1:T ), outputs
actions a(1:T ) such that, for every interval T1 < T2 ≤ T ,

Reg(a(T1:T2), c(T1:T2)) :=

T2∑
t=T1

c(t)(a(t))− min
a∗∈A

T2∑
t=T1

c(t)(a∗)

≤ O
((√

ln(k) + ln(T )
)√

T2 − T1

)
.

There are also online learning algorithms that provide second-order regret bounds. We present the regret
bound of one such algorithm, Prod [GSvE14].

Lemma A.4 (Second-Order Regret Bound of Prod [GSvE14]). Consider an online learning problem on the
simplex A = ∆k and any adversarial sequence of linear costs c(1:T ). If the Prod algorithm of [GSvE14] is
used and outputs the actions a(1:T ), then

Reg(a(1:T ), c(1:T )) ≤ O

max
a∗∈A

√√√√ln(k)
T∑

t=1

(c(t)(a(t))− c(t)(a∗))2

 .

We also know that there are adversarial bandit algorithms with sublinear regret guarantees.

Lemma A.5 (Semi-Bandit Regret Bounds [HJZ22]). Consider an online learning problem on the simplex
∆k, and any adversarial sequence of linear costs c(1:T ). Let I be a partition of [k] into r groups. There is a
high-probability variant of [MS11]’s ELP algorithm that, for any adversarial sequence of costs c(1:T ), outputs
a sequence of mixtures a(1:T ) ∈ ∆k such that, with probability at least 1− δ,

Reg(a(1:T ), c(1:T )) ≤ O
(√

r ln(k/δ)T
)
.

Moreover, after each time the algorithm chooses a(t), the algorithm samples an integer i(t) ∼ a(t) (unseen by
the adversary). Let I(i(t)) is the group in I that i(t) belongs to. The algorithm will only ever observe the
components of its cost vector corresponding to I(i(t)):

{
c(τ)(δi) | i ∈ I(i(t))

}
(t).

Best-response algorithms. We can efficiently find an ε best-response to the expected value of a stochastic
cost function using agnostic learning oracles. For example, computing a single ε best-response requires
at most O(ln(|A|)/ε2) samples by uniform convergence. In game dynamics, we will often need to provide
best-responses for a sequence of stochastic cost functions. These sequences are usually adaptive, in that which
stochastic cost functions appear later in the sequence depending on how we responded to previous stochastic
cost functions. Adaptive data analysis provides sample-efficient algorithms for these settings.

Lemma A.6 (Adaptive Data Analysis [BNS+21] Corollary 6.4). There is an algorithm that, for any adaptive
sequence of stochastic costs c(1:T ), is guaranteed with probability 1 − δ to ε-best respond to each cost in{
LD,c(t)

}
(1:T ) while drawing at most

O

(√
T

ε2
ln

(
|A|
ε

)
ln3/2

(
1

εδ

))
≈ Õ

(√
T ln(|A| /δ)

ε2

)

samples from D. Here, Õ (·) suppresses ln(1/ε) and ln1/2(1/δ) factors.

Remark A.7. It often suffices, for our results, that a sequence of actions a(1:T ) is on average ε-best responding
to a cost sequence c(1:T ); that is,

∑T
t=1 c

(t)(a(t)) ≤
∑T

t=1 mina∗∈A c(t)(a∗) + Tε. Thus, it may be possible to
use more efficient minimization oracles than Lemma A.6 in our algorithms.
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B Proofs for Section 3

We first recall our characterization of multi-objective learning as a two-player zero-sum game. In this game,
a learner player chooses a non-deterministic hypothesis p ∈ ∆(H) and an adversary player chooses a joint
distribution over data distributions and objectives q ∈ ∆(D × G). The payoff of the game is the expected
objective value Lq(p). In single-distribution multi-objective learning problems where the adversary only has
one data distribution D to choose from, we sometimes write q ∈ ∆(G) for simplicity. In online multi-objective
learning, the adversary does not have control over which data distribution D is chosen by nature. In these
cases, the adversary only chooses objectives q ∈ ∆(G) and the game payoff function becomes LD,q(p).

B.1 Game Dynamics

We now prove formalizations of Lemma 3.3, Lemma 3.4, Lemma 3.5, and Lemma 3.6 from Section 3.

The following is a formal restatement of Lemma 3.3.

Lemma B.1 (No-Regret vs. No-Regret). Consider a multi-objective learning problem (D,G,H), and
two sequences p(1:T ) ∈ ∆(H) and q(1:T ) ∈ ∆(D × G). Suppose RegB

(
p(1:T ), {Lq(t)(·)}(1:T )

)
≤ Tε and

Reg(q(1:T ), {1−L(·)(p
(t))}(1:T )) ≤ Tε where B ∈ R. Then, the non-deterministic hypothesis p ∈ ∆(H) defined

as p := Uniform(p(1:T )) satisfies L∗(p) ≤ B +2ε. If the baseline B is the min-max baseline Bweak, then p is a
2ε-optimal solution for the problem (D,G,H).

Proof. By connecting the adversary’s regret bound and the learner’s (weak) regret bounds of

max
D∗∈D,ℓ∗∈G

T∑
t=1

LD∗,ℓ∗(p
(t))− Tε ≤

T∑
t=1

Lq(t)(p
(t)) and

T∑
t=1

Lq(t)(p
(t)) ≤ T (ε+B),

we directly observe that maxD∗∈D,ℓ∗∈G
1
T

∑T
t=1 LD∗,ℓ∗(p

(t)) ≤ 2ε+B. Linearity of expectation allows us to
equate 1

T

∑T
t=1 LD∗,ℓ∗(p

(t)) = LD∗,ℓ∗(p)), which yields our first claim that L∗(p) ≤ 2ε+B. The second claim
just plugs Bweak into the previous inequality to obtain the definition of a 2ε-optimal solution.

The following is a formal restatement of Lemma 3.4.

Lemma B.2 (No-Regret vs. Best-Response). Consider a multi-objective learning problem (D,G,H) and two
sequences p(1:T ) ∈ ∆(H) and q(1:T ) ∈ ∆(D × G). Suppose RegB

(
p(1:T ), {Lq(t)(·)}(1:T )

)
≤ Tε where B ∈ R.

Further suppose q(1:T ) are, on average, ε best-responses to the cost functions {1− L(·)(p
(t))}(1:T ). Then there

exists a t ∈ [T ] where L∗(p(t)) ≤ B + 2ε. If B = Bweak, then p(t) is a 2ε-optimal solution for the problem
(D,G,H).

Proof. Assume the contrary, namely that L∗(p(t)) > B + 2ε at all t ∈ [T ]. Then

Tε ≥
T∑

t=1

Lq(t)(p
(t))− TB, (bounded regret w.r.t. B)

≥
T∑

t=1

L∗(p(t))− Tε− TB, (on average ε-best-responding)

>
T∑

t=1

(B + 2ε− ε−B), (assumption to contrary)

gives us a contradiction that T (2ε−2ε) > 0. This proves our first claim. The second claim follows by plugging
B = Bweak into our inequality L∗(p(t)) ≤ B + 2ε to obtain the definition of a 2ε-optimal solution.

The following is a formal restatement of Lemma 3.5.
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Lemma B.3. Consider a multi-objective learning problem (D,G,H) and a sequence p(1:T ) ∈ ∆(H) of
hypotheses where at least one hypothesis p(t) is ε-optimal. We can find a 3ε-optimal solution p(t

∗) ∈ p(1:T ) with
probability at least 1− δ by taking only O(ε−2 ln(T |D| · |G| /δ)) samples from each distribution D ∈ D. If we
further have access to a sequence q(1:T ) ∈ ∆(D×G) of ε best-responses to the cost functions {1−L(·)(p

(t))}(1:T ),
then a 5ε-optimal solution can be found with only O(ε−2 ln(T/δ)) samples from each D ∈ D.

Proof. Let the ε-optimal solution be denoted p(tgood). This claim is a simple uniform convergence argument.
Suppose that N i.i.d. samples xD are drawn from each distribution D ∈ D. We can then use L̂D,ℓ(p) to
denote the empirical value of the loss function ℓ of hypothesis p on distribution D, as approximated by the
samples xD. We similarly define L̂∗ as the empirical analog of the multi-objective value L∗. Since the range
of each objective is bounded in [0, 1], Chernoff’s bound guarantees that for any q ∈ ∆(D × G) and p ∈ ∆(H)

we have Prx

[∣∣∣L̂q(p)− Lq(p)
∣∣∣ ≥ ε

]
≤ 2 exp

(
−2Nε2

)
. Taking a union bound over each D ∈ D, t ∈ [T ] and

ℓ ∈ G gives

Pr
x

[
∃D ∈ D, ℓ ∈ G, t ∈ [T ] :

∣∣∣L̂D,ℓ(p
(t))− LD,ℓ(p

(t))
∣∣∣ ≥ ε

]
≤ 2 |D| |G|T exp

(
−2Nε2

)
.

Letting t∗ = argmint∈[T ] L̂∗(p(t)) and N = O
(
ε−2 ln(T |D| · |G| /δ)

)
guarantees

L∗
D∗,ℓ∗(p

(t∗))− ε ≤ L̂∗(p(t
∗)) ≤ L̂∗(p(tgood)) ≤ L∗(p(tgood)) + ε ≤ min

h∗∈H
L∗(h∗) + 2ε,

with probability at least 1− δ. We can therefore return p(t
∗) as our solution.

To prove our second claim, take instead a union bound over each t ∈ [T ] so that

Pr
x

[
∃t ∈ [T ] :

∣∣∣L̂q(t)(p
(t))− Lq(t)(p

(t))
∣∣∣ ≥ ε

]
≤ 2T exp

(
−2Nε2

)
.

Letting t∗ = argmint∈[T ] Lq(t)(p
(t)) and N = O

(
ε−2 ln(T/δ)

)
guarantees with probability at least 1− δ that

we can return p(t
∗) as our solution, as

L∗(p(t
∗))− 2ε ≤ Lq(t∗)(p(t

∗))− ε︸ ︷︷ ︸
(since q(t

∗) is an ε-best response.)

≤ L̂q(t∗)(p(t
∗)) ≤ L̂

q(tgood)(p
(tgood)) ≤ L

q(tgood)(p
(tgood)) + ε

≤ L∗(p(tgood)) + 2ε ≤ min
h∗∈H

L∗(h∗) + 3ε.

The following is a formal restatement of Lemma 3.6.

Lemma B.4 (Best-Response vs. No-Regret). Consider a online multi-objective learning problem (D,G,H) and
the sequences p(1:T ) ∈ ∆(H), q(1:T ) ∈ ∆(G), and D(1:T ) ∈ D. Suppose Reg(q(1:T ), {1− LD(t),(·)(p

(t))}(1:T )) ≤
Tε and p(1:T ) ∈ ∆(H) are distribution-free ε′ best-responses to q(1:T )(·, (x, y)). Then, p(1:T ) are (ε+ε′)-optimal
on D(1:T ).

Proof. Let D∗ be the set of all data distributions over X × Y. By linearity of expectation, the maximum
argmaxD∈D∗ LD(p(t)) can always be attained on a degenerate distribution supported only on a single point
(x, y). Thus, the learner’s distribution-free best-response guarantee provides the bound

LD(t),ℓ(t)(p
(t))− ε′ ≤ max

x∈X ,y∈Y
q(t)(p(t), (x, y))− ε′ ≤ max

D∗∈D∗
min
h∗∈H

LD∗,ℓ(t)(h
∗).

We can obtain our desired claim by recovering (2) with a triangle inequality between the adversary’s regret
bound and a summation of the previous inequality over t ∈ [T ]:

max
ℓ∗∈G

1

T

T∑
t=1

LD(t),ℓ∗(p
(t))− Tε ≤ 1

T

T∑
t=1

LD(t),q(t)(p
(t)),
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1

T

T∑
t=1

LD(t),ℓ(t)(p
(t))− Tε′ ≤ max

D∗∈D∗
min
h∈H

LD∗,ℓ(t)(h) ≤ max
D∗∈D∗

min
h∈H

max
ℓ∗∈G

LD∗,ℓ∗(h).

C Proofs for Theorem 5.2 and Generalizations

In this section, we prove generalizations of Theorem 3.7 and Theorem 3.8 from Section 3 that address a broad
range of multi-objective learning problems with separable objectives. Specifically, we will see that, like with
multicalibration objectives, having a learner’s cost functions all be separable objectives introduces two major
advantages.

Advantage 1: There exist no-regret learning strategies that do not require one to randomize
their actions, or even sample any data, yet still guarantee domain-independent regret bounds.
The following theorem, which proves this advantage of separable objectives, is a generalization of Theorem 3.7.

Theorem 5.2. Consider a multi-objective learning problem (D,G,H) where all objectives in G are separable
and all distributions in D are absolutely continuous with respect to a common distribution D∗. Let Asub be an
online algorithm that, for any linear costs c(1:T ), outputs actions a(1:T ) ∈ W where Reg(a(1:T ), c(1:T )) ≤ R(T ).

If |D| > 1, further assume Reg(a(1:T ), c(1:T )) ≤ R(T ) ·maxa∗∈W

√
1
T

∑T
t=1(c

(t)(a(t))− c(t)(a∗))2. Then for
any stochastic costs q(1:T ) ∈ ∆(G) and distributions D(1:T ) ∈ D, the below algorithm outputs predictors
h(1:T ) ∈ H where RegB∗(h(1:T ), {LD(t),q(t)(·)}(1:T )) ≤

√
|D|R(T ) and B∗ is the baseline

B∗ := c+ min
h∗∈H

1

T

T∑
t=1

max
h′∈H

E
(x,y)∼D(t)

ℓ∼q(t)

[fℓ(x, h
′(x)) · (h∗(x)− gℓ(y))] . (8)

At each timestep t, construct the predictor h(t+1)(x) by setting, for all x ∈ X ,

h(t+1)(x) := Asub(c
(1)
x , . . . , c(t)x ) where c(τ)x (w) :=

1

2
· dD

(τ)(x)

dD∗(x)
·
(
1 + E

ℓ∼q(τ)

[
fℓ(x, h

(τ)(x))
]
· w
)
,

where dD(τ)(x)
dD∗(x) is the Radon-Nikodym derivative of D(τ) with respect to D∗ at x.

Proof. First, suppose that D = {D}, that is |D| = 1. Then, for any x ∈ X , c(1:T )
x are linear costs and thus

Asub guarantees Reg({h(t)(x)}(1:T ), c
(1:T )
x ) ≤ R(T ). By the law of total expectation,

2R(T ) ≥ E
x∼D∗

[
T∑

t=1

E
ℓ∼q(t)

[
dD(x)

dD∗(x)
fℓ(x, h

(t))

]
· h(t)(x)− min

w∗∈W

T∑
t=1

E
ℓ∼q(t)

[
dD(x)

dD∗(x)
fℓ(x, h

(t))

]
· w∗

]

= E
x∼D

[
T∑

t=1

E
ℓ∼q(t)

[
fℓ(x, h

(t))
]
· h(t)(x)

]
− E

x∼D

[
min

w∗∈W

T∑
t=1

E
ℓ∼q(t)

[
fℓ(x, h

(t))
]
· w∗

]

=
T∑

t=1

E
x∼D(t),ℓ∼q(t)

[
fℓ(x, h

(t)) · h(t)(x)
]
− min

h∗∈H

T∑
t=1

E
x∼D(t),ℓ∼q(t)

[
fℓ(x, h

(t)) · h∗(x)
]
.

If |D| > 1, Asub further guarantees

Pr
D∗

(x) · Reg({h(t)(x)}(1:T ), c(1:T )
x ) ≤ Pr

D∗
(x) · max

w∈W
R(T )

√√√√ 1

T

T∑
t=1

(c
(t)
x (h(t)(x))− c

(t)
x (w))2

34



≤ Pr
D∗

(x) ·R(T )

√√√√ 1

2T

T∑
t=1

(
dD(t)(x)

dD∗(x)

)2

≤ R(T ) ·

√√√√ 1

2T

T∑
t=1

Pr
D(t)

(x)2.

For simplicity, we assumed above that D(1:T ) each have discrete support. The law of total expectation gives

√
2 ·R(T ) ·

∑
x∈X

√√√√ 1

2T

T∑
t=1

Pr
D(t)

(x)2

≥ E
x∼D∗

[
T∑

t=1

E
ℓ∼q(t)

[
dD(t)(x)

dD∗(x)
fℓ(x, h

(t))

]
· h(t)(x)− min

w∗∈W

T∑
t=1

E
ℓ∼q(t)

[
dD(t)(x)

dD∗(x)
fℓ(x, h

(t))

]
· w∗

]

=
T∑

t=1

E
x∼D(t),ℓ∼q(t)

[
fℓ(x, h

(t)) · h(t)(x)
]
− min

h∗∈H

T∑
t=1

E
x∼D(t),ℓ∼q(t)

[
fℓ(x, h

(t)) · h∗(x)
]
.

To bound the left-hand term, we can apply Cauchy-Schwartz to get

∑
x∈X

√√√√ 1

T

T∑
t=1

Pr
D(t)

(x)2 =
∑
x∈X

√∑
D∈D

TD

T
Pr
D
(x)2 ≤

∑
x∈X

∑
D∈D

Pr
D
(x)

√
TD

T
=
∑
D∈D

√
TD

T

∑
x∈X

Pr
D
(x) ≤

√
|D|,

where TD is the number of timesteps t ∈ [T ] where D(t) = D. Thus, whether |D| = 1 or |D| > 1, we have

T∑
t=1

E
x∼D(t),ℓ∼q(t)

[
fℓ(x, h

(t)) · h(t)(x)
]
− min

h∗∈H

T∑
t=1

E
x∼D(t),ℓ∼q(t)

[
fℓ(x, h

(t)) · h∗(x)
]
≤ 2
√
|D|R(T ).

Adding and subtracting the term
∑T

t=1 E(x,y)∼D(t),ℓ∼q(t)
[
fℓ(x, h

(t)(x))(gℓ(y))
]
, we have

T∑
t=1

E
(x,y)∼D(t)

ℓ∼q(t)

[
fℓ(x, h

(t)(x))(h(t)(x)− gℓ(y))
]
≤ 2
√

|D|R(T ) + min
h∗∈H

T∑
t=1

E
(x,y)∼D(t)

ℓ∼q(t)

[
fℓ(x, h

(t)(x))(h∗(x)− gℓ(y))
]
.

Adding the constant c to both sides, we have

T∑
t=1

LD(t),q(t)(h
(t)) ≤ 2

√
|D|R(T ) + T min

h∗∈H

1

T

T∑
t=1

E
(x,y)∼D(t)

ℓ∼q(t)

[
c+ fℓ(x, h

(t)(x))(h∗(x)− gℓ(y))
]

≤ 2
√
|D|R(T ) + T min

h∗∈H

1

T
max
h′∈H

T∑
t=1

E
(x,y)∼D(t)

ℓ∼q(t)

[c+ fℓ(x, h
′(x))(h∗(x)− gℓ(y))] .

We can directly prove Theorem 3.7 by instantiating the algorithm of Theorem 5.2 with Hedge as the no-regret
learning algorithm Asub.

Theorem 3.7. Consider P the set of k-class predictors and any adversarial sequence of stochastic costs
q(1:T ) ∈ ∆(Gmc), where Gmc are the multicalibration objectives (3). There is a no-regret algorithm that outputs
(deterministic) predictors h(1:T ) ∈ P such that Regweak(h

(1:T ),
{
LD,q(t)

}
(1:T )) ≤ 2

√
ln(k)T for every data

distribution D. Moreover, the algorithm does not need any samples from D.
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Proof. First, we observe that every objective in multicalibration is separable. Specifically, for every
i ∈ {±1}, j ∈ [k], S ∈ S, v ∈ V k

λ , the corresponding objective ℓi,j,S,v ∈ Gmc can be written in the form
ℓi,j,S,v(h, (x, y)) = c+ fi,j,S,v(x, h(x)) · (h(x)− gi,j,S,v(y)) where c = 0.5, W = ∆k ∪−∆k, gi,j,S,v(y) = δy and
fi,j,S,v(x, h(x)) = δj · 0.5 · i · 1[h(x) ∈ v, x ∈ S]. Next, we recall that by Lemma A.1, the Hedge algorithm
guarantees a regret bound of 4

√
ln(k)T for any linear costs on W = ∆k ∪−∆k (Lemma A.1). The algorithm

of Theorem 5.2, for any stochastic costs q(1:T ) ∈ ∆(Gmc), outputs h(1:T ) where

T∑
t=1

q(t)(h(t)) ≤ 8
√

ln(k)T + T · min
h∗∈H

max
ℓ∗∈G

max
h′∈H

E
(x,y)∼D

[c+ fℓ∗(x, h
′(x)) · (h∗(x)− g(y))]

≤ 8
√
ln(k)T + T ·max

ℓ∗∈G
max
h′∈H

E
(x,y)∼D

[c+ fℓ∗(x, h
′(x)) · (g(y)− g(y))]

≤ 8
√
ln(k)T + Tc,

if we choose h∗(x) = E(x,y)∼D

[
g(t)(y) | x

]
. Since the adversary is choosing from objectives symmetric around

c, the min-max baseline Bweak is at least c, meaning that Regweak(h
(1:T ), {LD,q(t)(·)}(1:T )) ≤ 8

√
ln(k)T .

Advantage 2: There (almost) always exists distribution-free best responses. This advantage is
what allows multicalibration to be achievable in online settings where data arrives adversarially. [Fos99, Har22]
first showed that this advantage exists in calibrated online forecasting when Hart pointed out that Foster’s
asymptotic calibrated forecasting result could be obtained by appealing to Blackwell approachability. Moreover,
their proof extends trivially to online multicalibration. Later on, [GJN+22, NPR21] independently rediscovered
this same advantage and proof. In the following theorem, we provide a rigorous treatment—largely in line
with the prior works—that generalizes to all multi-objective learning problems that have separable objectives
and satisfy some weak compactness conditions.

Theorem C.1. Consider an online multi-objective learning problem (D,G,H) with separable objectives and
where D is the unrestricted set of all data distributions. Further, consider any objective mixture q ∈ ∆(G) with
finite support and suppose that for every objective ℓ ∈ G, (1) there is a finite subset Yℓ ⊆ Y s.t. {gℓ(y) | y ∈ Yℓ}
is an (ε/3)-net for {gℓ(y) | y ∈ Y}, (2) the range of gℓ is convex, compact and finite-dimensional, and (3)
fixing any x, y pair, ℓ(h, (x, y)) is, in the argument h, a function of bounded variation. Then, for any ε > 0,
there is a non-deterministic hypothesis p ∈ ∆(H) (given by (11)) that is a distribution-free ε best-response for
q.

Proof. Let Gq = Support(q) be the support of our objective mixture, noting that |Gq| < ∞ by assumption.
Let Wg ⊆

∏
ℓ∈Gq

W denote the range of the vector-valued function g : Y → Wg where g(y) := [gℓ(y)]ℓ∈Gq .
Fixing some x ∈ X , observe that we can rewrite our loss q(h, (x, y)) as the function q̃x : W ×Wg → [0, 1]
where q(h, (x, y)) = q̃x(h(x), g(y)) and we define q̃x(w, v) := c+ Eℓ∼q [fℓ(w, x)(w − vℓ)].

By assumption (3), q̃x(w, v) is a function of bounded variation in w for all x ∈ X , v ∈ Wg. By Lemma C.3,
for any x ∈ X , y ∈ Y, there must exist some finite subset Wx,y ⊆ W such that {q̃x(w, (x, g(y)))}w∈Wx,y

is an (ε/3)-net of {q̃x(w, (x, g(y)))}w∈W . Let us choose Wx :=
⋃

ℓ∈Gq

⋃
y∈Yℓ

Wx,y, which is a finite set as
|Yℓ| < ∞ by assumption (1) and we |Gq| < ∞ by assumption. Moreover, by construction, for any y ∈ Y,
{q̃x(w, (x, y))}w∈Wx

is an (2ε/3)-net of {q̃x(w, (x, y))}w∈W .

We now define our best response p pointwise at each x ∈ X , letting

p(x) = argmin
w∗∈∆(Wx)

max
y∈Y

E
w∼w∗

[q̃x(w, (x, g(y)))] = argmin
w∗∈∆(Wx)

max
g(y)∈Wg

E
w∼w∗

[q̃x(w, (x, g(y)))] . (11)

Because each objective ℓ is separable, q̃x(w, (x, g(y))) is linear in g(y). By linearity of expectation, we also
know that Ew∼w∗ [q̃x(w, (x, g(y)))] is linear in w∗. Thus, for any x ∈ X ,

max
g(y)∈Wg

q̃x(p(x), (x, g(y))) = min
w∗∈∆(Wx)

max
g(y)∈Wg

E
w∼w∗

[q̃x(w, (x, g(y)))] , (construction of f)

= max
g(y)∈Wg

min
w∗∈∆(Wx)

E
w∼w∗

[q̃x(w, (x, g(y)))] , (minimax theorem)
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≤ max
g(y)∈Wg

min
w∗∈∆(W)

E
w∼w∗

[q̃x(w, (x, g(y)))] + rε, (discretization error)

≤ max
g(y)∈Wg

min
p∗∈∆(H)

q̃x(p
∗(x), (x, g(y))) + rε.

In the above, we were able to apply the minimax theorem because of assumption (2). Recall that our
construction of Wx, guarantees, for any w ∈ W , y ∈ Y, there is a w′ ∈ Wx, y

′ ∈ Y ′ such that

|q̃x(w, (x, g(y)))− q̃x(w, (x, g(y
′)))| ≤ ε/3, (y′ ∈ Y ′)

|q̃x(w, (x, g(y′)))− q̃x(w
′, (x, g(y′)))| ≤ ε/3, (w′ ∈ Wx,y′)

|q̃x(w′, (x, g(y′)))− q̃x(w
′, (x, g(y)))| ≤ ε/3, (y′ ∈ Y ′)

|q̃x(w, (x, g(y)))− q̃x(w
′, (x, g(y)))| ≤ ε. (triangle inequality)

We, therefore, have that

max
D∈D

LD,q(p) = max
x∈X ,y∈Y

q̃x(p(x), (x, g(y)))

= max
x∈X ,g(y)∈Wg

q̃x(p(x), (x, g(y)))

≤ max
x∈X ,g(y)∈Wg

min
p∗∈∆(H)

q̃x(p
∗(x), (x, g(y))) + rε

= max
x∈X ,y∈Y

min
p∗∈∆(H)

q̃x(p
∗(x), (x, g(y))) + rε

= max
D∈D

min
p∗∈∆(H)

LD,q(p
∗) + rε.

We can now directly prove Theorem 3.8.

Theorem 3.8. Consider the set of k-class predictors P. Fix an ε > 0 and let q ∈ ∆(Gmc) be a mixture
of multicalibration objectives (3). There always exists a (non-deterministic) predictor p ∈ ∆(P) that is a
distribution-free ε-best-response (4) to the stochastic cost function q(·, (x, y)).

Proof. Let (D′,G′
mc,P) be the relaxation of the problem (D,Gmc,P) where, instead of assuming that nature

can only sample discrete labels y ∈ [k], nature too can sample mixed labels y ∈ ∆k. By linearity of expectation,
we have that maxD′∈D′ LD′,q′(p) = maxD∈D LD,q(p) for every predictor p ∈ ∆(P) and objective q ∈ Gmc,
where q′ ∈ G′

mc is the relaxation of q. Thus, a distribution-free ε best-response (4) for the relaxed problem is
a distribution-free ε best-response for our original problem (D,Gmc,P). We next observe that (D′,G′

mc,P)
satisfies the conditions of Theorem C.1.

Recall that every objective q′ ∈ G′
mc can be written in a separable format where, for every i ∈ {±1}, j ∈

[k], S ∈ S, v ∈ V k
λ , we can write ℓi,j,S,v(h, (x, y)) = c + fi,j,S,v(x, h(x)) · (h(x) − gi,j,S,v(y)) where c = 0.5,

gi,j,S,v(y) = y and fi,j,S,v(x, h(x)) ∈ [0, 1]k is δj · 0.5 · i · 1[h(x) ∈ v, x ∈ S]. The domain and range of identity
gi,j,S,v(y) = y is exactly ∆k which is convex, compact, and k-dimensional; thus, it has a finite ε-covering.
Finally, we observe that fi,j,S,v(h(x), (x, y)), and by extension ℓi,j,S,v(h, (x, y)), is always a piecewise constant
function in h(x) with finite discontinuities. It follows that ℓi,j,S,v must be of bounded total variation in h(x)
as variation along any linear segment is at most 1. Thus, Theorem C.1 states there exists a distribution-free
ε best-response for (D′,G′

mc,P) and by extension (D,Gmc,P).

Remark C.2 (Closed-form of distribution-free best-responses). For calibration and multicalibration problems,
the best-response implicitly defined in Theorem C.1 takes a clean closed-form: for any given x ∈ X , p(x)
randomizes on two neighboring actions. This simple closed form was first derived by [Fos99] and independently
rediscovered by [GJN+22].

In Theorem C.1, we referenced the notion of a function being of bounded variation. This is a common notion
in analysis which says that a function cannot go up and down too many times; thus reasonable objectives
(including every finite loss function you can think of) should all be of bounded variation. For completeness,
we prove below that bounded variation implies finite domain coverings.
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Lemma C.3. Consider a function f : K → [0, 1] where K is a convex compact subset of Rn. Suppose that f
has pathwise bounded variation on K: that is, there exists a finite constant M such that for any linear path
γ : [0, 1] → K, Vγ(f) = sup0=t0≤t1≤···≤tN=1

∑N
i=1 ∥f(γ(ti)) − f(γ(ti−1))∥ ≤ M . Then for any ε > 0, there

exists a finite subset S ⊆ K such that for every y ∈ f(K), there exists an xi ∈ S with ∥f(xi)− y∥ < ε.

Proof. Since K is compact, it is totally bounded. For any δ > 0, there exists a finite set T such that K is
covered by balls of radius δ centered at points in T . Let δ = ε

2M , where M is the constant from the pathwise
bounded variation condition. For each point t ∈ T , choose a point st ∈ K such that ∥st − t∥ < δ. Define
S = {st : t ∈ T}. Let y ∈ f(K). Then there exists an x ∈ K with f(x) = y. Since K is covered by balls of
radius δ centered at points in T , there exists a t ∈ T with ∥x − t∥ < δ. By the construction of S, we also
have ∥st − t∥ < δ. Then, by the triangle inequality, ∥st − x∥ ≤ ∥st − t∥ + ∥t − x∥ < 2δ = ε

M . Consider a
linear continuous path γ : [0, 1] → K with γ(0) = x and γ(1) = st; such a path must exist by the convexity of
K. By the pathwise bounded variation condition, we have Vγ(f) ≤ M . For the partition 0 = t0 ≤ t1 = 1, we
have ∥f(st)− y∥ = ∥f(st)− f(x)∥ ≤ Vγ(f) · ∥st − x∥ ≤ M · ε

M = ε. Thus, for every y ∈ f(K), there exists an
st ∈ S such that ∥f(st)− y∥ < ε.
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D Proofs and Algorithms for Section 5

D.1 Conditional Multicalibration

Fact 5.4. Let D be a data distribution for some k-class prediction problem and fix ε > 0, λ ∈ Z+, and two sets
of groups S,S ′ ⊆ 2X . Let Gmc be the set of objectives {ℓi,j,S,v} as defined in Fact 2.5 and let D = {DS′}S′∈S′ .
Predictor p ∈ ∆(P) is a ε-optimal solution to the multi-objective learning problem (D,Gmc,P) if and only if p
is (S,S ′, 2ε, λ)-conditionally multicalibrated for D.

Proof. In the multi-objective learning problem ({DS′}S′∈S′ ,Gmc,P), the multi-objective value of a predictor
p, L∗(p) := maxD∗∈D,ℓ∗∈G LD∗,ℓ∗(p), is exactly the (rescaled and shifted) magnitude of the predictor’s
multicalibration violation. Formally,

L∗(p) =
1

2
+

1

2
max

j∈[k],S∈S,S′∈S′,v∈V k
λ

| E
(x,y)∼DS′ ,h∼p

[(h(x)j − δy,j) · 1[h(x) ∈ v, x ∈ S]] |.

The optimal multi-objective value of the problem (D,Gmc,P) is 0.5, as Gmc are symmetric around 0.5 and
the Bayes classifier still achieves a loss of 0.5.

min
h∗∈P

L∗(h∗) =
1

2
+

1

2
max

i∈{±1}
i ·

 max
j∈[k],S∈S

v∈V k
λ

E
(x,y)∼D

h∼p

[(h(x)j − δy,j) · 1[h(x) ∈ v, x ∈ S]]

 =
1

2
.

Thus, L∗(p)−minh∗∈P L∗(h∗) = ε if and only if our conditional multicalibration violation is 2ε.

D.2 Moment Multicalibration

Lemma D.1. In the Algorithm 7, the sequence of hypotheses h(1:T ) satisfies the bounded regret condition
Regweak(h

(1:T ),
{
ℓm

(t) + ℓµ
(t)
}

(1:T )) ∈ O
(√

mT 3/4
)
.

Proof. For simplicity, we’ll round T to the next largest square. Recall that using Hedge to select T
actions from the interval [0, 1] with learning rate T−3/4m−1/2 guarantees a regret bound of 2 ln(2)

√
mT 3/4

(Lemma A.1). By Theorem 5.2, since we chose Asub to be Hedge with learning rate T−3/4 when learning
h
(t)
µ ,

∑T
t=1 ℓ

(t)
µ (h(t)) ≤ 0.5T + 2 ln(2)

√
mT 3/4. Similarly, by Theorem 5.2, having chosen Asub to be strongly

adaptive Hedge when learning h
(t)
m , we have for any T1 ∈ [T ] and h∗

m ∈ Hm,

T1+
√
T∑

t=T1

(
L
ℓ
(t)
m
(h(t))− 0.5− E

(x,y)∼D

[
f (t)
m (x, h(t)(x))(h∗

m(x)− g(t)m (y))
])

≤ O
(
T 1/4 ln(T )

)
.

In the above equation, f (t)
m and g

(t)
m are the separable components of the loss ℓ

(t)
m , as defined in Definition 5.1.

We now turn to bound the expectation term. By triangle inequality, f
(t)
m (x, h(t)(x))(h∗

m(x) − g
(t)
m (y)) ≤

f
(t)
m (x, h(t)(x))(h∗

m(x) − g
(T1)
m (y)) +

∣∣∣g(T1)
m (y)− g

(t)
m (y)

∣∣∣. Using the inequality that |am − bm| ≤ m |a− b|

when a, b ∈ [0, 1], and the movement upper bound of Hedge (Lemma A.2), we have
∣∣∣g(T1)

m (y)− g
(t)
m (y)

∣∣∣ ≤
m
∣∣∣h(t)

µ (x)− h
(T1)
µ (x)

∣∣∣ ≤ mηµ
√
T , where ηµ = T−1/2T−3/4 is the learning rate of the mean predictor hµ.

Thus, for all T1, by choosing h∗
m(x) = E

[
g
(T1)
m (y) |x

]
, we have that

T1+
√
T∑

t=T1

(L
ℓ
(t)
m
(h(t))− 0.5) ≤ min

h∗
m∈Hm

T1+
√
T∑

t=T1

E
(x,y)∼D

[
f (t)
m (x, h(t)(x))(h∗

m(x)− g(T1)
m (y))

]
+mTηµ +O

(
T 3/4 ln(T )

)
≤

√
mT 3/4 +O

(
T 3/4 ln(T )

)
.

This gives 1
2

∑T
t=1 Lℓ

(t)
m
(h(t)) + L

ℓ
(t)
µ
(h(t))− 1 ≤ O

(
(ln(T ) +

√
m)T 3/4

)
as desired.

39



E Figures for Section 7

Figure 1 plots the evolution of training and testing multicalibration errors over the duration of the training
process. These plots confirm that the relative performance of different multicalibration algorithms is fairly
monotonic and regular, even across the duration of training and the learning rate schedule.

Figure 1: These plots depict the multicalibration violations (Definition 2.1) of various multicalibration
algorithms on the UCI Adult Income dataset (top left), Bank Market dataset (top right), and Dry Bean
dataset (bottom). The lines plot how much the current iterate violates the multicalibration condition on
the training data (top plot) and testing data (bottom plot), with error bars denoting standard error. The
iterates of the OptHedge-OptHedge algorithm, which implements no-regret vs no-regret dynamics using the
Optimistic Hedge algorithm, are the most multicalibrated predictors.
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E.1 Experiment Details

The source code for these experiments is included in the repository https://github.com/ericzhao28/
multicalibration. Model checkpoints for replicating our results can be found at https://drive.google.
com/drive/folders/1CVusrPZkB-15_55VVkoU3KrLXQGZzne4?usp=sharing. All experiments were performed
on a 2021 MacBook Pro, with a M1 Pro chip. The total compute time for replicating the experiments in this
section, including hyperparameter tuning, is approximately 20 hours.

UCI Adult Income Dataset. The UCI Adult Income dataset [KB96] is a dataset for predicting individuals’
incomes based on the US Census. Our experiments use the dataset’s binary ‘income’ attribute as the target
label and form 129 protected groups using eight of the dataset’s labeled attributes: ‘age’, ‘workclass’,
‘education’, ‘marital-status’, ‘occupation’, ‘relationship’, ‘race’, and ‘sex’. We perform random 80-20 train/test
splits of the dataset, resulting in approximately 24000 training samples, 6000 test samples, and 130 groups.
We discretize the label space into 0.1-width bins (λ = 10). Experiments are repeated for 20 seeds, with
multicalibration algorithms running for 50 iterations.

UCI Bank Market Dataset. The UCI Bank Marketing dataset [MCR14] is a dataset for predicting
individuals’ subscriptions to a term deposit at a bank. Our experiments use the dataset’s binary ‘y’ attribute
as the target label and form 129 protected groups using eight of the dataset’s labeled attributes: ‘age’, ‘job’,
‘marital’, ‘education’, ‘default’, ‘housing’, ‘loan’, and ‘contact’. We round ages to the nearest age divisible by
5 since ‘age’ is a continuous attribute. We perform random 80-20 train/test splits of the dataset, resulting in
approximately 36000 training samples, 9000 test samples, and 180 groups. We discretize the label space into
0.1-width bins (λ = 10). Experiments are repeated for 5 seeds, with multicalibration algorithms running for
50 iterations.

Dry Bean Dataset. The Dry Bean Dataset [KO20] is a dataset for predicting a dry bean’s variety using
its physical attributes. Our experiments use the dataset’s bean ‘type’ attribute (which takes 7 possible values)
as the target label and form 80 protected groups using eight of the dataset’s labeled attributes: ‘perimeter’,
‘major-axis-length’, ‘minor-axis-length’, ‘aspect-ratio’, ‘eccentricity’, ‘convex-area’, and ‘equivalent-diameter’.
We discretize all numerical/continuously-valued attributes by evenly dividing the range of possible values
into 10 segments. We perform random 80-20 train/test splits of the dataset, resulting in approximately 11000
training samples, 2700 test samples, and 80 groups. We discretize the label space into 0.25-width bins (λ = 4).
Experiments are repeated for 5 seeds, with multicalibration algorithms run for 100 iterations.

Hyperparameter tuning. In each experiment, the learning rates of the algorithms are tuned on the
training set using 10 seeds (Adult Income dataset), 5 seeds (Bank Market dataset), and 5 seeds (Dry Bean
dataset). We sweep over the learning rate decay rates of η ∈ [0.8, 0.85, 0.9, 0.95] for the learner and (if
applicable) η ∈ [0.9, 0.95, 0.98, 0.99] for the adversary, where the learning rate of the learner at the tth
iteration is ηt and the adversary is 100 · ηt. In the Dry Bean dataset, learning rates are universally doubled
to 2ηt and the adversary is 200 · ηt. The selected learning rate decays are summarized below.

Dataset
Hedge-
Hedge

OptHedge-
OptHedge

OptHedge-
ERM

Hedge-
ERM

Prod-ERM GD-ERM

Adult
Income

η = (0.95, 0.9) η = (0.95, 0.9) η = 0.9 η = 0.9 η = 0.9 η = 0.9

Bank
Marketing

η = (0.95, 0.95) η = (0.95, 0.95) η = 0.95 η = 0.95 η = 0.95 η = 0.85

Dry
Bean

η = (0.99, 0.98) η = (0.95, 0.99) η = 0.95 η = 0.95 η = 0.95 η = 0.95
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F Square-root Multicalibration Guarantees

The following Theorem F.1 is a stronger restatement of Theorem 5.7.

Theorem F.1. Fix ε > 0, λ, k ∈ Z+ and sets of groups S ⊆ 2X . Set T = C ln(k)/ε2 for some universal
constant C. Algorithm 9, with probability at least 1 − δ, requires no more than Õ(ln(k) · (ln(k |S| /εδ) +
k ln(λ))/ε4) samples4 from D to find a deterministic k-class predictor h satisfying∣∣∣∣ E

(x,y)∼D
[(h(x)j − δy,j) · 1[h(x) ∈ v, x ∈ S]]

∣∣∣∣ ≤ ε
√
Pr(x ∈ S),

for all S ∈ S, v ∈ V k
λ , j ∈ [k]. That is, h is a deterministic predictor that is (S,

√
Pr(x ∈ S) · ε, λ)-

multicalibrated, where the error tolerance
√
Pr(x ∈ S) · ε depends on the group mass.

Before proceeding to a proof, we first introduce some technical results which are simple variants of lemmas
that the reader has seen previously in the manuscript. Note that, in the following multi-objective learning
problem construction, we will allow negative objective values for simpler notation.

Fact F.2. Let D be a data distribution for some k-class prediction problem and fix ε > 0, λ ∈ Z+, and a set
of groups S ⊆ 2X . We define the following set of multicalibration losses:

G′
mc :=

{
1√

PrD(x ∈ S)
· i · (h(x)j − δy,j) · 1[h(x) ∈ v, x ∈ S]

}
i∈±{1},j∈[k],S∈S,v∈V k

λ

(12)

Predictor p ∈ ∆(P) is a ε-optimal solution to the multi-objective learning problem ({D} ,Gmc,P) if and only
if p is (S, ε

√
PrD(x ∈ S), λ)-multicalibrated for D.

Proof. In the multi-objective learning problem ({D} ,G′
mc,P), the multi-objective value of a predictor p,

L∗(p) := maxℓi,j,S,v∈G LD,ℓi,j,S,v
(p), is exactly the magnitude of the predictor’s multicalibration violation.

Formally,

L∗(p) = max
j∈[k],S∈S,v∈V k

λ

|E(x,y)∼D,h∼p [(h(x)j − δy,j) · 1[h(x) ∈ v, x ∈ S]] |√
PrD(x ∈ S)

.

The optimal value is 0, as the objectives are symmetric around 0 and the Bayes clasifier achieves a loss of 0.
Thus, L∗(p)−minh∗∈P L∗(h∗) ≥ ε if and only if our multicalibration violation is at least ε

√
Pr(x ∈ S).

Lemma F.3. Let D be a data distribution for some k-class prediction problem, ε ∈ (0, 0.6), δ ∈ (0, 1) and fix
a set of groups S ⊆ 2X where, for all S ∈ S, PrD(x ∈ S) ≥ ε2. With only O(ln(S/δ)/ε4) samples, one can
find with probability at least 1− δ a vector v ∈ R|S| where, for all S ∈ S,∣∣∣vS − Pr

D
(x ∈ S)

∣∣∣ ≤ εPr
D
(x ∈ S), (13)∣∣∣∣∣ 1

√
vS

− 1√
PrD(x ∈ S)

∣∣∣∣∣ ≤ ε√
PrD(x ∈ S)

, (14)∣∣∣∣√vS −
√
Pr
D
(x ∈ S)

∣∣∣∣ ≤ ε
√
Pr
D
(x ∈ S). (15)

Proof. Fix some sufficiently large universal constant C. Sample N = C ln(S/δ)/ε4 datapoints X from D, and
let vS = 1

|X|
∑

(x,y)∈X 1[x ∈ S]. Observe that E [v] = [PrD(x ∈ S)]S∈S . The multiplicative Chernoff bound
says that, fixing an S ∈ S,

Pr(|vS − Pr
D
(x ∈ S)| ≥ εPr

D
(x ∈ S)) ≤ 2 exp(−ε2N Pr

D
(x ∈ S)/3)

4Here, the tilde-O hides log-log factors.
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≤ 2 exp(−ε4N/3).

With our choice of N , taking a union bound over all S ∈ S, with probability at least 1− δ, we have our first
claim. Taking a square-root of both sides, we also have that for all S ∈ S,

√
(1− ε) PrD(x ∈ S) ≤ √

vS ≤√
(1 + ε) PrD(x ∈ S). The second claim then follows by observing that, for any ε ∈ (0, 0.6), 1− 1√

1+ε
≤ ε,

and 1√
1−ε

− 1 ≤ ε. The third claim follows by observing that, for any ε ∈ (0, 1),
√
1 + ε − 1 ≤ ε and

1−
√
1− ε ≤ ε.

The following lemma is a modification of Theorem 5.2 that states that the learner has a no-regret strategy on
the calibration objectives given in Fact F.2.

Lemma F.4. Consider the set of k-class predictors P, a data distribution D, and any adversarial sequence of
stochastic costs ℓ(1:T ) ∈ G′

mc, where G′
mc are the multicalibration objectives defined in Lemma F.2. Suppose you

are given v ∈ R satisfying (14) and (13) for all S ∈ S and that, for all S ∈ S, PrD(x ∈ S) ≥ ε2. There is a no-
regret algorithm that outputs (deterministic) predictors h(1:T ) ∈ P ′ such that Regweak(h

(1:T ), {LD,ℓ(t)}(1:T )) ≤
O(
√

ln(k)T + εT ). Moreover, the algorithm does not need any samples from D.

Proof. Consider the following algorithm. At each feature x ∈ X , initialize a Prod algorithm that picks an
action h(t)(x) ∈ ∆(Y) at each timestep t ∈ [T ]. Aggregating each algorithm’s action yields our learner’s
overall action h(t) ∈ P. For each x ∈ X , let h(t+1)(x) be the outcome of Prod at step t+ 1 after observing
linear loss functions f

(τ)

h(τ),x
: Rk → [0, 1] for τ ∈ [t]:

f
(τ)

h(τ),x
(z) :=

1

2
√
vS(τ)

(
1 + zj(τ) · i(τ) · 1[h(τ)(x) ∈ v(τ), x ∈ S(τ)]

)
. (16)

Prod gives
∑T

t=1 f
(t)

h(t),x
(h(t)(x))−minz∗∈∆(Y)

∑T
t=1 f

(t)

h(t),x
(z∗) ≤ C

√
ln(k)

∑T
t=1 v

−1
S(t) (Lemma A.4) for some

universal constant C. Since this inequality holds for all x ∈ X , applying the law of total expectation to
Lemma A.4,

∑
x∈X

C Pr
D
(x)

√√√√ln(k)

T∑
t=1

v−1
S(t)

≥
∑
x∈X

T∑
t=1

Pr
D
(x)f

(t)

h(t),x
(h(t)(x))−

∑
x∈X

min
z∗∈∆(Y)

T∑
t=1

Pr
D
(x)f

(t)

h(t),x
(z∗)

=
∑
x∈X

T∑
t=1

Pr
D
(x)f

(t)

h(t),x
(h(t)(x))− min

h∗∈P

∑
x∈X

T∑
t=1

Pr
D
(x)f

(t)

h(t),x
(h∗(x))

= max
h∗∈P

∑
x∈X

T∑
t=1

Pr
D
(x)f

(t)

h(t),x
(h(t)(x)− h∗(x)),

with the equality following because we allow arbitrary predictors. Expanding the definition of f ,

max
h∗∈P

∑
x∈X

T∑
t=1

Pr
D
(x)f

(t)

h(t),x
(h(t)(x)− h∗(x))

= max
h∗∈P

∑
x∈X

T∑
t=1

Pr
D
(x)

1

2
√
vS(t)

(
(h(t)(x)− h∗(x)) · i(t) · 1[h(t)(x) ∈ v(t), x ∈ S(t)]

)

≥
T∑

t=1

E
x∼D

[
1

2
√
vS(t)

(
(h(t)(x)− E

y∼D
S(t)

[δy | x]) · i(t) · 1[h(t)(x) ∈ v(t), x ∈ S(t)]

)]

=
T∑

t=1

√
PrD(x ∈ S(t))

vS(t)

LD,ℓ(t)(h
(t)).
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By definition of v,

T∑
t=1

√
PrD(x ∈ S(t))

vS(t)

LD,ℓ(t)(h
(t)) ≥

T∑
t=1

√
1− εLD,ℓ(t)(h

(t)) ≥
T∑

t=1

LD,ℓ(t)(h
(t))− Tε.

We also know by construction of the losses in G′
mc that the weak baseline Bweak = 0. We can therefore bound

Regweak(h
(1:T ), {LD,ℓ(t)}(1:T )) ≤ Tε+

∑
x∈X

C Pr
D
(x)

√√√√ln(k)
T∑

t=1

1

vS(t)

≤ Tε+
∑
x∈X

C Pr
D
(x)

√√√√ln(k)
T∑

t=1

(1 + ε)
1

PrD(x ∈ S(t))

= Tε+ C
√
T ln(k)(1 + ε)

∑
x∈X

√
Pr
D
(x)

√√√√ 1

T

T∑
t=1

Pr
D

S(t)

(x).

To bound the last inequality, let u ∈ RX , v ∈ RX be vectors defined as ux =
√

PrD(x) and vx =√∑T
t=1 PrDS(t)

(x). Then, by Cauchy-Schwarz inequality, we have that u · v ≤ ∥u∥2 ∥v∥2. In other words,

C
√
T ln(k)

∑
x∈X

√√√√Pr
D
(x)

1

T

T∑
t=1

Pr
D

S(t)

(x) ≤ C
√

T ln(k)

(∑
x∈X

Pr
D
(x)

)(∑
x∈X

1

T

T∑
t=1

Pr
D

S(t)

(x)

)
≤ C

√
T ln(k).

The following lemma states that the adversary can efficiently best-respond to the objectives from Fact F.2.

Lemma F.5. Consider a k-class predictor h ∈ P, a data distribution D, and set of multicalibration objectives
G′
mc. Suppose you are given v ∈ R satisfying (15) for all S ∈ S. There is an algorithm that, taking only

ε−2(ln(|S| /δ) + k ln(λ)) samples for some universal constant C, returns a ℓi,j,S,v ∈ G′
mc such that, with

probability at least 1− δ, LD,ℓi,j,S,v
(h) + 2ε ≥ maxi∗,j∗,S∗,v∗ LD,ℓi∗,j∗,S∗,v∗ (h).

Proof. Consider the following algorithm. Draw N = Cε−2(ln(|S| /δ) + k ln(λ)) samples (x, y)(1:N) from D.
For all S ∈ S, initialize the empty buffer XS = {}. Then, for every value of r = 1, . . . , N and for every group
S ∈ S, if x(r) ∈ S, append (x, y)(r) to XS . Let ℓi,j,S,v = maxi,j,S,v

√
vS

PrD(x∈S)
1

|XS |
∑

(x,y)∈XS
ℓi,j,S,v(h, (x, y))

be the multicalibration objective that minimizes the empirical risk on its respective buffer XS . Note that
finding ℓi,j,S,v does not require knowledge of PrD(x ∈ S), as the explicit factor of

√
1/PrD(x ∈ S) is cancelled

out by ℓi,j,S,v.

We first observe that |XS | is a binomial random variable with parameters N and Pr(x ∈ S). By Chernoff’s
bound, with probability 1− δ |S|−1, |XS | ≥ Pr(x ∈ S) ·C ′ε−2(ln(|S| /δ)+k ln(λ)) for some universal constant
C ′, where we choose C to be large enough so that C ′ ≥ C

2 . By union bound, with probability 1− δ, for every
S ∈ S, |XS | ≥ Pr(x ∈ S)N/2.

Condition on this event and fix a ℓi,j,S,v ∈ G′
mc. We observe that each (x, y) ∈ XS is an unbiased sample from

DS , we have at least Pr(x ∈ S)N/2 samples, and ℓi,j,S,v ∈ ±{1/
√

Pr(x ∈ S)}. Thus, by Chernoff’s bound,
with probability at least 1− δ |G′

mc|
−1,∣∣∣∣∣∣|XS |−1

∑
(x,y)∈XS

√
Pr(x ∈ S)ℓi,j,S,v(h, (x, y))−

√
Pr(x ∈ S)LDS ,ℓi,j,S,v

(h)

∣∣∣∣∣∣ ≤ ε/(3
√
Pr(x ∈ S)).
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Thus with probability at least 1− δ, for all ℓi,j,S,v ∈ G′
mc,∣∣∣∣∣∣|XS |−1

∑
(x,y)∈XS

Pr(x ∈ S)ℓi,j,S,v(h, (x, y))− Pr(x ∈ S)LDS ,ℓi,j,S,v
(h)

∣∣∣∣∣∣
=

∣∣∣∣∣∣|XS |−1
∑

(x,y)∈XS

Pr(x ∈ S)ℓi,j,S,v(h, (x, y))− LD,ℓi,j,S,v
(h)

∣∣∣∣∣∣
≤ ε.

Taking a union bound over all ℓ ∈ G′
mc, by uniform convergence, with probability at least 1 − 2δ, our

returned ℓi,j,S,v is an ε best-response to the cost function ℓi,j,S,v 7→ −
√

vS

PrD(x∈S)LD,ℓi,j,S,v
(h(t)). By (15),

maxℓi∗,j∗,S∗,v∗ LD,ℓi∗,j∗,S∗,v∗ (h
(t)) − LD,ℓi,j,S,v

(h(t)) ≤ ε. Thus, ℓi,j,S,v is an 2ε best-response to the cost
function ℓi,j,S,v 7→ −LD,ℓi,j,S,v

(h(t)).

Proof of Theorem F.1. First, we will assume without loss of generality that, for every group S ∈ S, PrD(x ∈
S) ≥ ε2/32. This is because for such S, our multicalibration constraint is trivially satisfied for tolerances of
at least ε/

√
32. We can remove such S from our group set S by testing if PrD(x ∈ S) ≤ ε2/32; O( ln(|S|/δ)

ε4 )
samples suffices.

Next, we will sample v according to Lemma F.3, which also takes at most O( ln(|S|/δ)
ε4 ) samples. Lemma F.4

then guarantees that, since T ≥ C ln(k)/ε2, Regweak(h
(1:T ), {LD,ℓ(t)(·)}(1:T )) ≤ Tε/8. By Lemma F.5, ℓ(t) is

an (ε/8) best-response to the cost function −LD,(·)(h
(t)) with probability at least 1− δ/T at each timestep t.

By Lemma 3.4, since the learner has at most Tε/8 weak regret and the adversary is ε/8 best-responding,
there is a timestep t ∈ [T ] where h(t) is (ε/4)-optimal for the problem ({D} ,G′

mc,P). By Lemma 3.5,
the h(t) found by the algorithm is (ε/2)-optimal with probability at least 1 − δ. By Fact F.2, this is an
(S, ε, λ)-multicalibrated predictor.

Algorithm 9 Conditional Multicalibration Algorithm (Theorem F.1)

1: Input: S ⊆ 2X , ε ∈ (0, 1), k, λ, T, C ∈ Z+, and distribution D;
2: Initialize Prod iterate h(1) = [1/k, . . . , 1/k]X ;
3: Sample C ln(S/δ)/ε4 datapoints X from D and, for each S ∈ S, remove S from S if 1

|X|
∑

(x,y)∈X 1[x ∈
S] ≤ ε2/32;

4: Sample C ln(S/δ)/ε4 datapoints X from D, and let vS = 1
|X|
∑

(x,y)∈X 1[x ∈ S] for all S ∈ S;
5: for t = 1 to T do
6: Draw N = Cε−2(ln(|S|T/δ) + k ln(λ)) samples (x, y)

(1:N)
t from D;

7: For all S ∈ S, let Xt,S =
{
(x, y)it | i ∈ [N ], xi ∈ S

}
;

8: Let cadv
(t)(S, ℓ) :=

√
vS |Xt,S |−1∑

(x,y)∈Xt,S
ℓ(h(t), (x, y));

9: Let ℓ(t) = argmaxℓ∈G′
mc

cadv
(t)(S, ℓ);

10: If cadv
(t)(S(t), ℓ(t)) ≤ ε/8 terminate and return h(t);

11: Let h(t+1)(x) = Prod(c
(1:t)
x ) where

c(t)x (ŷ) :=
1[x ∈ S(t)]

2
√
vS(t)

(1 + 1[h(x) ∈ v(t), x ∈ S(t)] · i(t) · ŷj(t));

12: end for
13: Return p∗, a uniform distribution over h(1), . . . , h(T );
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