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Abstract

We consider learning in an adversarial environment, where an e-fraction of samples from a distribution
P are arbitrarily modified (global corruptions) and the remaining perturbations have average magnitude
bounded by p (local corruptions). Given access to n such corrupted samples, we seek a computationally
efficient estimator P, that minimizes the Wasserstein distance W (Pn, P). In fact, we attack the fine-grained
task of minimizing W1 (HﬂPm IT; P) for all orthogonal projections II € R?*4 with performance scaling
with rank(II) = k. This allows us to account simultaneously for mean estimation (k = 1), distribution
estimation (k = d), as well as the settings interpolating between these two extremes. We characterize the
optimal population-limit risk for this task and then develop an efficient finite-sample algorithm with error
bounded by vek + p+ O(d\/En’l/ (kvz)) when P has bounded covariance. This guarantee holds uniformly
in k and is minimax optimal up to the sub-optimality of the plug-in estimator when p = ¢ = 0. Our efficient
procedure relies on a novel trace norm approximation of an ideal yet intractable 2-Wasserstein projection
estimator. We apply this algorithm to robust stochastic optimization, and, in the process, uncover a new
method for overcoming the curse of dimensionality in Wasserstein distributionally robust optimization.'
Keywords: robust statistics, optimal transport, distributionally robust optimization

1. Introduction

In robust statistics and adversarial machine learning, estimation and decision-making are treated as a two-
player game between the learner and a budget-constrained adversary. Through this lens, researchers have de-
veloped learning algorithms with strong guarantees despite adversarial corruptions. For example, Huber’s -
contamination model in classical robust statistics (Huber, 1964) and the total variation (TV) e-contamination
model (Donoho and Liu, 1988) give the adversary an ¢ fraction of data to arbitrarily and globally corrupt.
Popularized recently in the setting of adversarial training (Sinha et al., 2018), Wasserstein corruption models
permit all of the data to be locally perturbed, bounding the average perturbation size by some radius p > 0.
Recall that the p-Wasserstein distance is defined between distributions P, () by

1
Wy (P,Q) = inf Exy) X —Y]|"]?,
WP.Q) = _inf By [IX - Y]
where II(P, Q) is the set of their couplings. This metric naturally lifts the Euclidean geometry of R? to the
space of distributions 7(R?) with finite p-th absolute moments.

Ideally, a corruption model should be flexible enough to capture multiple types of data contamination.
Towards this goal, we investigate learning under combined TV and Wasserstein adversarial corruptions, re-
cently introduced in the setting of distributionally robust optimization (DRO) (Nietert et al., 2023b). For-
mally, we consider learning where clean samples Xi,...,X,, ~ P are arbitrarily perturbed to obtain
{X;}, such that Yies | X; — X4 < p, where S C [n] with |S| > (1 — &)n. Denoting the clean
and corrupted empirical measures by P, and P,, respectively, this corruption model is characterized by an
outlier-robust variant of the Wasserstein distance defined in (3) ahead, whereby W5 (P, I3n) < p. We ask:
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How can we learn effectively and efficiently with both local and global adversarial corruptions?

Under this combined model, we seek an estimate P, that can approximate P in a variety of downstream
applications. In particular, we explore the distribution learning task of recovering P under W; itself. Since
the sample complexity and risk bounds associated with standard W suffer a curse of dimensionality, we
focus on the fine grained-goal of estimating k-dimensional projections of P, with performance scaling with
k. Quantitatively, we seek Pn such that the k-dimensional max-sliced Wasserstein distance

Wi(P, P)i= sup Wi(UpP,UyP)=  sup  Ep [f(UX)] - Ep[f(UX)]
UeRkXd UERkXd,fELipl(Rk)
UUT =1, UUT=I

is appropriately small for all & € [d]. Since our approach cleanly addresses all slicing dimensions simulta-
neously, we focus on providing bounds which are uniform in k. By doing so, we account not only for the
said distribution estimation task (k = d), but also mean estimation (k = 1).

While this task is relatively straightforward under TV corruption alone (we show in Section 2.3 that
a standard iterative filtering algorithm (Diakonikolas et al., 2016) suffices), and immediate under Wasser-
stein corruption alone, where the corrupted distribution P, is itself minimax optimal, the combined model
requires a new algorithmic approach and analysis to obtain suitable risk bounds. Eventually, we revisit
the Wasserstein DRO setting that introduced in (Nietert et al., 2023b). Here, the steps we take to employ
our estimate lead to a new perspective on generalization and radius selection when employing Wasserstein
ambiguity sets for distributionally robust stochastic optimization.

1.1. Our Results

Assuming that Xp < Ij and n = (dlog(d)/e), we propose an algorithm W2PROJECT (Algorithm 1)
which, given the corrupted data P, efficiently computes an estimate P,, such that

Wy k(Bp, P) S Ve + p+ O(Vdkn ™ #v2), (1)

for all k& € [d]. The final term is a bound on the sampling error max;, W1 i (P, P,), while the first two terms
are minimax-optimal for large sample sizes. Even with no corruptions (p = £ = 0), it is known that error
Wl,k(lf’n, P) > cgn~ Y% 4 \/d/n is unavoidable (Niles-Weed and Rigollet, 2022), so our finite-sample
guarantee is near-optimal, up to the sub-optimality of the plug-in estimator P, for learning P under W1 ..

Our algorithm serves as a tractable proxy for the minimum distance estimate
Pupp = argming . 1_p Wa(Q, Geov),

where () ranges over all distributions obtained by deleting an e-fraction of mass from P, and renormaliz-
ing, and W2 (Q, Geov) = infr.s,<r, Wa(Q, R). In particular, we approximate Wa(Q, Geov) ~ tr(Xg —
I;)+, which lends itself to efficient implementation using spectral decomposition. The resulting algorithm,
W2PROJECT, employs a multi-directional filtering procedure that generalizes the standard iterative filtering
algorithm for robust mean estimation under TV e-corruptions (Diakonikolas et al., 2017). In the infinite-
sample population-limit, we prove tight risk bounds for broader class of probability measures (e.g., those
which are sub-Gaussian or log-concave) using a family of related minimum distance estimators.

Given such an algorithm, we then explore applications to robust stochastic optimization. Suppose that
we have an estimate P of known quality W, (P, P) < 7, perhaps from the procedure above. Given a
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family of Lipschitz loss functions £ which operate on k-dimensional linear features (e.g. k-variate linear
regression) we prove that the Wasserstein DRO estimate

= argmingg o sup Eq[f] 2)
Q:W1(Q,Pn)<T

achieves risk bounds typically associated with the sliced-Wasserstein DRO problem

min sup Eq[f],
L QW1 k(@ Pu)sT

even though P need not belong to the Wasserstein ambiguity set in (2). In particular, we prove that { sat-
isfies the excess risk bound Ep[f] — Ep[ly] < |/le||LipT, where £, = argmin,., Ep[f]. Plugging in the
algorithmic results above improves upon existing results for outlier-robust WDRO, exhibiting tight depen-
dence on k and with sampling error scaling as n~'/¥ rather than n~'/¢. This risk bound would be immediate
if the W1 ball above was replaced with a Wy j, ball. The fact that this is not necessary is essential for com-
putational tractability, and provides a new framework for avoiding the curse of dimensionality (CoD) in
Wasserstein DRO. We note that this result is new even when € = 0 and p > 0 is taken to model only stochas-
tic sampling error. Previous results on avoiding the CoD required £ = 1 or involved significantly more
complicated analysis. In particular, for the rank-one linear structure with k£ = 1, including univariate linear
regression/classification, bounds of order O(n_l/ 2) were established in (Shafieezadeh-Abadeh et al., 2019;
Chen and Paschalidis, 2018; Olea et al., 2022; Wu et al., 2022). On the other hand, Gao (2022) relaxes the
rank-one structural assumption and achieves O(n_l/ 2) bounds as long as the data generating distribution
satisfies certain transport inequalities. Nonetheless, the required assumptions are not easily verifiable.

1.2. Related Work

Robust statistics. Learning from data under TV e-corruptions, a staple of classical robust statistics, dates
back to Huber (1964). Various robust and sample-efficient estimators, particularly for mean and scale param-
eters, have been developed in the robust statistics community; see Ronchetti and Huber (2009) for a com-
prehensive survey. In computational learning theory, older work has explored probably approximately cor-
rect (PAC) learning framework with adversarially corrupted labels (Angluin and Laird, 1988; Bshouty et al.,
2002). Recently, Zhu et al. (2022a), significantly expanding the celebrated results of Donoho and Liu (1988),
developed a unified statistical framework for robust statistics based on minimum distance estimation and a
generalized resilience quantity, providing sharp population-limit and strong finite-sample guarantees for
tasks including mean and covariance estimation. Learning under W corruptions is considered in Zhu et al.
(2022a) and Chao and Dobriban (2023), but our distribution estimation task is trivial under local corruptions
alone, and, as such, is not considered by these works.

Over the past decade, the focus in the computer science community has shifted to the high-dimensional
setting, where they have developed computationally efficient estimators achieving optimal estimation rates
for many problems (Diakonikolas et al., 2016; Cheng et al., 2019; Diakonikolas and Kane, 2023). Many
such works involve filtering the corrupted dataset to shrink the eigenvalues of its empirical covariance matrix,
and our algorithm is also of this flavor. Most related to our work is a multi-directional filtering subroutine
for robust Gaussian mean estimation (Diakonikolas et al., 2018), which identifies subspaces of R where
the eigenvalues of the empirical covariance matrix are large. While qualitatively similar, their algorithm
employs an expensive robust mean estimation step along a lower-dimensional subspace at each iteration,
while our approach simply uses the empirical mean (see Remark 11 for further discussion).

Robust optimal transport. The robust optimal transport (OT) literature has a close connection with unbal-
anced OT theory, which deals with transportation problems between measures of different mass. Unbalanced
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OT problems involve f-divergences that account for differences in mass, which can appear either in the con-
straints (Balaji et al., 2020) or in the objective function as regularizers (Piccoli and Rossi, 2014; Chizat et al.,
2018a; Liero et al., 2018; Schmitzer and Wirth, 2019; Hanin, 1992). The constraint version is usually more
difficult to solve, whereas primal-dual type algorithms have been developed to solve the regularized version
(Mukherjee et al., 2021; Chizat et al., 2018b; Fatras et al., 2021; Fukunaga and Kasai, 2022; Le et al., 2021;
Nath, 2020). An alternative approach to model robustness in OT is through partial OT problems, where only
a fraction of mass needs to be transported (Caffarelli and McCann, 2010; Figalli, 2010; Nietert et al., 2023a;
Chapel et al., 2020). Partial OT has been previously used in the context of DRO problems; however, it was
introduced to address stochastic programs with side information (Esteban-Pérez and Morales, 2022).

Sliced optimal transport. Max-sliced optimal transport, as used to define Wy j, is also known as k-
dimensional optimal transport (Niles-Weed and Rigollet, 2022) and projection-robust optimal transport (Lin et al.,
2020, 2021). In general, W1 ;, defines a metric on the space of d-dimensional distributions by measuring
discrepancy between k-dimensional projections thereof. The structural, statistical, and computational prop-
erties of Wy ;. are well-studied in (Lin et al., 2021; Niles-Weed and Rigollet, 2022; Nietert et al., 2022b;
Bartl and Mendelson, 2022; Nadjahi et al., 2020; Boedihardjo, 2024), with the tightest results established

for k = 1. Max-sliced OT has been used in the context of DRO problems; however, it was introduced for
rank-one linear structures (Olea et al., 2022).

Distributionally robust optimization. Wasserstein distributionally robust optimization has emerged as
a powerful modeling approach for addressing uncertainty in the data generating distribution. In this ap-
proach, the ambiguity set around the empirical distribution is constructed by the Wasserstein distance. Mod-
ern convex approach, leveraging duality theory (Mohajerin Esfahani and Kuhn, 2018; Blanchet and Murthy,
2019; Gao and Kleywegt, 2023), has led to significant computational advantages. Despite its computational
success, some studies have raised concerns about the sensitivity of the standard DRO formulations to out-
liers (Hashimoto et al., 2018; Hu et al., 2018; Zhu et al., 2022a). To address potential overfitting to outliers,
Zhai et al. (2021) propose a refined risk function based on a family of f-divergences. Nevertheless, this
approach is not robust to local perturbations, and the risk bounds require a moment condition to hold uni-
formly over ©. Another related work in (Bennouna and Van Parys, 2022; Bennouna et al., 2023) constructs
the ambiguity set using an f-divergence for statistical errors and the Prokhorov distance for outliers. This
provides computational efficiency and statistical reliability but lacks analysis of minimax optimality and
robustness to Huber contamination. Furthermore, Nietert et al. (2023b) constructs the ambiguity set using
the robust Wasserstein distance introduced in (Nietert et al., 2021). We revisit this setting in Section 3.

1.3. Notation and Preliminaries

Let || - || denote the Euclidean norm on R? and define S*~! := {z € R?: ||z|| = 1}. We write P(RY) for the
family of Borel probability measures on R?, equipped with the TV norm between P, Q € P(R?) defined by
|P = Q|ltv = 3|P — Q|(Z). We say that Q is an e-deletion of P if Q < 12 P (where such inequalities
are set-wise). We write Ep[f(X)] for expectation of f(X) with X ~ P; when clear from the context, the
random variable is dropped and we write Ep[f]. Let up denote the mean and X p the covariance matrix of
P € P(R?), and let P,(R?) := {P € P(RY) : Ep[||X — pup|/’] < co}. The push-forward of f through
P e P(RY)is fyP(-) == P(f~1(-)). The set of positive integers up to n € N is denoted by [n]; we also use
the shorthand [x]; = max{z,0}. We write <, >, < for inequalities/equality up to absolute constants, and

let a V b := max{a, b}. For a matrix A € R™?, we write || A||op = sup,ega-1 || Az|| for its operator norm.
If A is further is diagonalizable, we write Apax(A) = A\ (A4) > -+ > A\;(A) for its eigenvalues.

Classical and outlier-robust Wasserstein distances. For p € [1, 00), the p-Wasserstein distance between
: . 1
P,Q € Pp(RY) is Wp(P,Q) = inf crpo) (B[ X - YP]) ? where TI(P,Q) = {r € P(2?) :
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(- x Z) = P, m(Z x -) = Q} is the set of all their couplings. Some basic properties of W, are (see, e.g.,
Villani (2003); Santambrogio (2015)): (i) W, is a metric on P,(Z); (ii) the distance is monotone in the
order, i.e., W, < W, for p < ¢; and (iii) W,, metrizes weak convergence plus convergence of pth moments:
W, (P, P) — 0 if and only if P, % P and [ ||z|[PdP,(z) — [ ||=||PdP(z). For a family of measures
G C P(RY), we write W, (P, G) = infreg W, (P, R).

To handle corrupted data, we employ the c-outlier-robust p-Wasserstein distance”, defined by

W (p,v) = inf  W,(u,v)= inf = Wy(pu,0). 3)
W EP(RD) V eP(RY)
I —pllrv<e v —vilrv<e

This is an instance of partial OT, and the second equality is a useful consequence of Lemma 4 in Nietert et al.
(2023a) (see Appendix A of Nietert et al. (2023b) for further details).

2. Robust Distribution Learning

We now turn to robust distribution estimation under combined TV-W; contamination. Given corrupted
samples from an unknown distribution P, we aim to produce an estimate P such that WLk(P, P) is appro-
priately small for all £ € [d]. When k& = d, we recover standard W;. When k£ = 1, we shall see that the
resulting estimation task is of essentially the same complexity as mean estimation. Omitted proofs appear
in Appendices A and B.

2.1. The Population Limit

We first examine the information-theoretic limits of this problem without sampling error, namely, allowing
computationally-intractable estimators and access to population distributions (rather than samples). We
consider learning under the following environment.

Setting A: Fix corruption levels 0 < ¢ < 0.49° and p > 0, along with a clean distribution family
G C P(R?). Nature selects P € G, and the learner observes P such that W5 (P, P) < p.

Given P, we seck an estimator P such that Wp,k(P, P) is small for all k. To ensure that effective
learning is possible, we impose a stability condition on the clean measure P.

Definition 1 (Stability) Let 0 < ¢ < 1 and § > . We say that a distribution P € P(R%) is (¢, §)-stable
if, for all @ < P, we have || — pp|| < 6§ and |Eq — Spllop < 02/c. Write S(e,6) for the family of

(¢,6)-stable P such that Xp = Iy, and Sis, (<, 8) for the subfamily of those for which X p = (1 — 6% /¢)1,.

A distribution is stable if its first two moments vary minimally under e-deletions. The near-isotropic
subfamily Sjs, coincides with a popular definition in algorithmic robust statistics (see, e.g., Chapter 2 of
Diakonikolas and Kane, 2023). Without the bound on |32 — X p||op, this definition coincides with that of
resilience, a standard sufficient condition for (inefficient) robust mean estimation (Steinhardt et al., 2018).
Stability is a flexible notion that connects to many standard tail bounds.

Example 1 (Concrete stability bounds) Fix 0 < ¢ < 0.99* and P € P(R?) with ¥p < I;. Then:

2. While not a metric, W}, is symmetric and satisfies an approximate triangle inequality (Nietert et al. (2023a), Proposition 3).

3. As € approaches the optimal breakdown point of 1/2, it becomes information-theoretically impossible to distinguish inliers
from outliers. The quantity 0.49 can be replaced with any constant bounded away from 1/2.

4. Similarly to the ¢ < 0.49 bound above, here 0.99 can be replaced with any constant bounded away from 1.
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* Bounded covariance: with no further assumptions, P € Siso(¢,O(\/€));

* Sub-Gaussian: if P is 1-sub-Gaussian, then P € S(g,0(e+/log(1/¢)));

e Log-concave: if P is log-concave, then P € S(g,0(glog(1/¢)));

* Bounded moments of order q > 2: if sup,cga—1 Ep[|[v" (Z — up)|9] < 1, then P € S(e,0(c'~1/9)).

We refer to the families of distributions satisfying these properties by Geov, Gsubc» G1c, and G, respectively.
Note that Geoy = Ga. Similar bounds are derived in Chapter 2 of Diakonikolas and Kane (2023).

We now present our primary risk bound for the population-limit.

Theorem 2 (Population-limit risk bound) Under Settmg A, take n = min{2e,1/4 + £/2} and assume
that G C S(2n,8). Then the minimum distance estimate’ Pupg = argmin, . <L WQ(Q G) satisfies

Wi (Pypg, P) S VES 4 p,  VE € [d].

The minimum distance estimate PMDE involves an infinite dimensional optimization problem, which is
computationally intractable. In the subsequent subsection we propose an iterative filtering algorithm that
approximately solves a surrogate optimization problem on a finite sample set.

Proof The constant 7 is selected so that n — ¢ 2 ¢ while keeping 21 < 0.99 bounded away from 1. For
concreteness, the reader may want to focus on the case where ¢ < 1/6 and ) = 2e.

To treat combined Wasserstein and TV contamination, we first show that any W; perturbation can be
decomposed into a Wy perturbation followed by a TV perturbation.

Lemma 3 (W; decomposition) Fix 0 < 7 < 1 and P,Q € P(RY) with W (P, Q) < p. Then there exists
R € P(RY) such that W1 (P, R) < p, Wa(P, R) < \2p//7, and |R — Q||Tv < T.

The proof in Appendix A.2 takes Z ~ P and Z + A ~ @, where E[||A||] < p. Letting E be the event
such that ||A|| is less than its 1 — 7 quantile, we conclude by setting R to the law of Z + Al g.

Next, we prove a version of the theorem when p = 0, but the clean measure is close to S(g, ) under
Wa.

Lemma 4 (Risk bound when p = 0) Fix0 <7 <1/2, A >0,and G C S(2n,6). Take R, R € P(R%)
such that Wo(R,G) < X and |R — R|tv < 1. Then the estimate R = argme< 1 RWg(Q G) satisfies
Wi k(R, R) S 125 (VRS + Ay/m), for all k € [d].

The proof in Appendix A.3 observes that R satisfies a generalized stability bound: for all R’ < I%ER
and M = 0, we have ||ur — prll < 6+ A/ and

52
tr (M(Sr — 2r))| S - tr(M) + N2 M||op- )

In words, the latter bounds shows that the gap X rr — X g lies in the Minkowski sum of an operator norm
ball of radius O(62 /¢) and a trace norm ball of radius O(\?). In contrast, the more direct guarantee ||~z —
Yrllop < 6%/ + A% would only give a suboptimal risk bound of v/&d + vk

Given the above lemmas, we are ready to prove the theorem. Fix P € G and P such that W§ (]5 ,P) <p.
This requires the existence of () such that W1 (P, Q) < p and |Q — P|ry < €. Applying Lemma 3 to P and

5. Here and throughout, the existence of such minimizers is not consequential but simply assumed for cleaner statements. Ap-
proximate minimizers up to some additive error provide the same risk bounds up to said error.
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Q with 7 = 1 — ¢ implies that there exists R such that W1 (P, R) < p, Wa(P, R) < V2p//n—¢ = A and
|IR—Plltv < |R—Qlltv + |Q — Plltv <1 — e+ e =n. Applying Lemma 4 with TV corruption level
n and Wq bound A < p/+/e, we find that Pyipg, from the theorem statement satisfies

N N 1
Wi i (PypE, P) < Wik (Pupg, R) + Wi (R, P) S o (VES + A\/1) S

1
e 1_277(\/E5+p),

as desired. |
This bound is tight for many distribution families, including those in Example 1.

Corollary 5 The minimum distance estimate PMDE from Theorem 2 achieves error

\/k_g + P, g - gcov
Vke/log(1/e) + p, G = Gemvc
Vkelog(l/e) +p,  G=Gc
Vel =11 4 p, G =0,

W1 1.(Pypg, P) <

and each of these guarantees is minimax optimal up to logarithmic factors in e 1.

For the minimax lower bounds, we employ existing constructions for the setting where p = 0. To
strengthen these bounds when p > 0, we show that the learner cannot distinguish between translations of
magnitude p.

Remark 6 (Comparison to other minimum distance estimators) Estimators related to that in Theorem 2
are standard in robust statistics (see, e.g., Donoho and Liu (1988); Zhu et al. (2022a) for methods based on
(smoothed) TV projection) and robust optimal transport (see, e.g., Nietert et al. (2023a), which employs
projection under Wy,). The risk bounds from Lemma 4 match those in the literature for robust mean and
distribution estimation when p = 0 (recalling that our results extend to mean estimation since ||pp — pg|| <
Wi 1(P,Q)). We diverge from these existing estimators by returning P = T(P) which lies not in G but
nearby G under Wo. The fact that P is an e-deletion of P is essential in turning this approach into a
practical algorithm in Section 2.2.

2.2. Finite-Sample Algorithms

We now turn to the finite-sample setting. Here, our rates are only tight when § = /¢, so we restrict to the
family Geoy of distributions P € P(R?) with Xp < I;. Indeed, Geoy C S(e, O(v/€)) by Example 1.

Setting B: Let 0 < € < ¢(, where & is a sufficiently small absolute constant®. Fix p > 0 and sample
size n = )(dlog(d)/e). Nature samples X1, ..., Xy, i.i.d. from P € Goy, with empirical measure
P,,. The learner observes X 1,. X with ernplrlcal measure P such that W¢ (Pn, P,) <p.

We aim to match the bound of Theorem 2, computing an estimate Pn such that W1,k(13n7 P) < Vke + 0
for sufficiently large n. In order to turn the Wy projection procedure into an efficient algorithm, we replace
the intractable objective W2 (Q, Gov) With the tractable trace norm objective tr(Xg — 1)+ = Y. [Ai(Xg) —
1]+, which can be computed via eigen-decomposition.
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Algorithm 1: W2PROJECT

Input: Contamination levels ¢ and p, uniform discrete measure P, supported on 7' C R%
Output: Uniform discrete measure P,

o+ 50,C « 10"
Compute eigen-decomposition Aq, ..., \g € R, v1,...,v4 € R? of By — 021
II Zi;,\izo ’Ui”z'T
if tr(II(X7 — 021,;)) < Ce + Cp? /e then return P, = Unif(T) // LHS equals tr(Sr —o2ly)4
else
9(x) + |(z — )| for v € T
Let L C T be set of 6¢|T'| points for which g(z) is largest
f(z) < g(x) for z € L and f(x) < 0 otherwise
Remove each point z € T from T with probability f(z)/ max,cr f(x)
Return to Step 1 with new set T’
end

Lemma 7 (Trace norm comparison) For Q € P(R%), we have

Lir(8g — 21a)+ < W (Q, Geov)” < tr(Xq — L)+

This result underlies W2PROJECT (Algorithm 1), which approximately solves the optimization problem

minQ <P tr(Xg — 021;)+ using a variant of iterative filtering (Diakonikolas et al., 2016). In the algo-
=1-0(e)" ™

rithm description, we identify a multiset 7" C R¢ with the uniform distribution Unif (7). We emphasize that
the high-level idea of trimming samples from a corrupted observation to control the empirical covariance ma-
trix is a familiar paradigm in algorithmic robust statistics (see, e.g., Klivans et al., 2009; Diakonikolas et al.,
2016, 2018; Steinhardt et al., 2018). Our main contributions are showing that this approach still applies
with local adversarial corruptions and identifying tr(X¢g — 1)+ as the appropriate quantitative measure for
covariance magnitude.

Theorem 8 Under Setting B, W2PROIECT (P, ¢, p) returns B, in time poly(n, d) such that
Wik (P, P) SVke + p+ Wy k(P By), Yk e [d].
with probability at least 2/3.

Over P € Geov C S(g,0(1/¢)), this guarantee attains the minimax optimal error from Corollary 5 as the
sample size n increases (whence the empirical estimation error vanishes). Our proof shows that the estimate
P, satisfies tr(Xp, — O(1)I4); < p®/e, mirroring the martingale-based analysis of iterative filtering with
the simpler objective /\maX(EQ); see, e.g., Section 2.4 of Diakonikolas and Kane (2023). Via Lemma 7, we
then convert this trace norm bound into a W5 bound, and proceed with the analysis of the W projection
from Theorem 2 to arrive at the risk bound above. As with Theorem 2, the generalized stability bound (4) is
essential for avoiding a v/kp dependence.

The remaining empirical convergence term, W1 (P, P,), can always be bounded by W1 (P, I,), and
the covariance bound implies that E\W; (P, P,)] = O(Vdn~%) for d > 2 (see, e.g., Theorem 3.1 of

6. We make no effort to optimize the breakdown point €o. Similar results for robust mean estimation first required g0 < 1/2,
but this was later alleviated (Hopkins et al., 2020; Zhu et al., 2022b; Dalalyan and Minasyan, 2022). We expect that similar
improvements are possible under our setting but defer such optimization future work—see Section 4 for additional discussion.
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LEL 2020). Generally, we would hope for a faster n~ /¥ rate, and this is indeed the case under appro-
priate additional assumptions on the clean distribution P. To name a few instances, Lin et al., 2021 de-
rive such rates for general k£ under a Bernstein tail condition or a Poincaré inequality assumption, while
Niles-Weed and Rigollet, 2022 provide rates when P satisfies a transport inequality (Niles-Weed and Rigollet,
2022) (which, in particular, holds for sub-Gaussian distributions). Empirical convergence rates in addi-
tional settings have been derived in the £ = 1 case, e.g., for log-concave distributions (Nietert et al., 2022a)
and under certain isotropic and moment boundedness assumptions (Bartl and Mendelson, 2022). Recently,
Boedihardjo (2024) provided bounds for general k& which apply under our covariance bound alone. We
combine these here with the bound from Theorem 8.

Corollary 9 (Statistical performance) Under Setting B, W2PROIECT(P,, ¢, p) returns P, in time poly(n, d)
such that )
Wi so(Po, P) < Ve + p+ O(k:\/an—m). )

with probability at least 2/3.

With respect to optimality, we note that the first two terms in (5) are necessary, due to the minimax lower
bound for G, within Corollary 5. Further, even when there are no corruptions and p = ¢ = 0, a minimax
lower bound of Niles-Weed and Rigollet (2022) implies that Q(cgn~"/*V2) | /d/n) error is unavoidable,
even for P supported on [0, 1]¢. We defer a tight characterization of finite-sample risk for future work.

Remark 10 (Recovering standard filtering via sliced W5 projection) We note that Lemma 7 can be adapted
to the sliced \y setting. In particular, one can approximate W 1(Q, Geov) by the operator norm ||(X¢q —
I)+llop = [I12Qllop — 1]+ This is equivalent to the standard objective ||Xq|op for iterative filtering
(Diakonikolas et al., 2016) (when ||X¢q||op > 1, and otherwise the algorithm will have terminated), provid-
ing a new perspective on this standard algorithm.

Remark 11 (Comparison to Diakonikolas et al., 2018) Multi-directional filtering of the empirical covari-
ance matrix, as employed by W2PROIJECT, is also used by Diakonikolas et al. (2018) for robust Gaussian
mean estimation. Their Algorithm 4 identifies a relatively small subspace V. C R?, whose dimension is
constrained to not exceed O(log(1/¢)), along which X — I has large eigenvalues. Then, it employs a
brute-force approach to obtain a robust estimate [i for Iy (up) and filters out points © € T for which
Ty 2 — fi||? is large. In contrast, we filter based upon |I1(x — ut)||?, where pr is simply the empirical
mean and 11 projects onto the subspace spanned by all eigenvectors of >r — 14 with sufficiently large eigen-
values. Further, their stopping condition is based on the count of large eigenvalues rather than our trace
norm objective.

2.3. Other Corruption Models and Robust Mean Estimation

We now discuss some complementary results. First, we remark that if ¢ = 0, then P, itself satisfies the
bound Wl,k(f’n, P) < p+W, ;,(P,, P), trivially matching the previous upper bounds. In the case that p = 0
and we only suffer TV corruption, standard iterative filtering resolves the question of efficient distribution
learning for near-isotropic P.

Proposition 12 Under Setting B with p = 0 and P € Siso(4¢,0), any estimate P < 1_14 - B, such that
I pllop < 14 O(82 /) satisfies W1 (P, P) S VES + Wy (P, Py), for all k € [d].

Indeed, this A, bound is achieved by all stability-based algorithms for robust mean estimation (see,
e.g., Theorem 2.11 of Diakonikolas and Kane, 2023). Our proof employs a refined version of the certificate
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lemma for stable distributions (see Lemma 2.7 of Diakonikolas and Kane, 2023). The isotropic restriction is
standard in algorithmic robust statistics; hardness results suggest it cannot be eliminated without imposing
further assumptions like Gaussianity or losing computational tractability (Hopkins and Li, 2019).

Next, we comment on the simpler task of robust mean estimation. Under Setting B, we can simply
return the mean of P, = W2PROJECT(P,, ¢, p) to obtain error O(y/z + p). It is not hard to show that
standard iterative filtering also suffices, employing the W; decomposition in Lemma 3 to bound the extent
to which the Wasserstein corruption can perturb second moments after filtering out its e-tails. However,
neither approach generalizes to Siso(, d), leaving us with a simple open question: under Setting B with
P = N (p, I;) and n = poly(d, 1/¢), can one efficiently compute [i from P, such that ||ji— p| = O(e+p)?

3. Robust Stochastic Optimization

Finally, we present an application to robust stochastic optimization. We consider a setting where the learner
seeks to make a decision 6 € © that performs well on a data distribution P, given only a corrupted observa-
tion P,. More precisely, given a loss function L : © x R — R, we seek to minimize the risk Ep[L(6, X)).
In the following we suppress dependence of L on the model parameters § € © and write ¢(-) = L(0, -) for a
specific function. We also introduce the set £ = {L(0, -) }pco for the whole class, and impose the following.

Assumption 1 Fix p > 1. Take L to be a family of real-valued loss functions on RY, such that each ¢ € L
is of the form ¢ = £ o A, where A : R — RF is affine and £ : RF — R% is Ls.c. with Sup,cz % < 00.

In addition to mild regularity conditions, we assume that the loss functions operate on k-dimensional
linear features of the data. For example, this captures k-variate linear regression if © C R%*** and L maps
0 € ©and (z,y) € R™* x R* to L(, (z,y)) = |0z — y||*. In the worst case, we may always set k = d.

If it is known that P, and P are close under W, a popular decision-making procedure is Wasserstein
distributionally robust optimization (WDRQO), which selects

éWDRO = argming, o sup. Eq[¢].
Q: Wp(van)ST’

Indeed, if Wp(P, ﬁn) < r, then it is easy to prove the excess risk bound

Ep[fwpro] —Eplld S sup  Egll] — Epll.] = R,(L; P, 2r), (6)
WP(Q7P)S2T
where ¢, = argmin,., Ep[f]. The right-hand side, denoted R, is termed the p-Wasserstein regularizer
and characterizes a certain variational complexity of the optimal loss function (see, e.g., Gao and Kleywegt,
2023). In particular, we have R (¢; P,r) < 7||¢||Lip.

Alas, the assumption that W, (P, Pn) is small is quite conservative, especially in the high-dimensional
setting, where Wasserstein empirical convergence rates suffer from the curse of dimensionality. In fact,
given the low-dimensional structure imposed in Assumption 1, it is natural to expect that a much smaller
Wasserstein radius would suffice, e.g., as captured by the k-dimensional sliced distance. The next theorem
indeed shows that the inner WDRO maximization problem automatically adapts to the dimensionality of a
given loss function, which provide a new perspective on beating the curse of dimensionality in WDRO, as
discussed in detail at the end of this section.

Theorem 13 Fix P, P € P,(R%) with W,, (P, P) < 7, for some T > 0. Under Assumption I, we have

Eplf] < sup Eql]
QEP(RY): Wy (P,Q)<T

foreach l € L.

10



ROBUST ESTIMATION UNDER LOCAL AND GLOBAL ADVERSARIAL CORRUPTIONS

Proof Take ¢/ = £ o A to be the decomposition guaranteed by Assumption 1. Assume without loss of
generality that A is linear. By the QR decomposition, we can rewrite £ as £ o BU for U € R¥*9 such that
UUT = I. Take ¢ = £ o B. We now show that

sup Egll) = sup Er[f]. (7)
QeP(RY): W, (P,Q)<T REP(RF): W, (U3 P,R)<T

For the “<” direction, note that for any feasible () for the left supremum, R = Uy(Q) is feasible for the right
hand side with equal objective value. For the “>" direction, take any R feasible for the right supremum. Let
(UX,Y) be an optimal coupling for the Wp(UﬁJS7 R) problem, where X ~ P. Taking Q to be the law of
X+UT(Y—UX), we have that W, (P, Q)P < E[|UT (Y —UX)|]P] = E[|Y —UX|]?] = W,(U;P, R)P <

r,and Eg[f] = E{(UX + UUT(Y — UX))] = E[{(Y)] = Eg[¢], as desired.
At this point, we note that W, (Uy P, Uﬁp) < W, (P, P) < 7 and bound

Ep[f] = Ev,p|]
< sup E R[]
REP(RF): W1 (R, Uy P)<T
= sup Eq[f] — EplL.], (7)
QeP(RY): W1 (Q,P)<T
as desired. ]

Theorem 13 implies that we may center the WDRO procedure around any distribution P, for which we
have control over its W1 ;, distance from the true population P. Remarkably, the W2PROJECT algorithm pro-
vides a computationally efficient way to find such a distribution, and Theorem 8 further yields the required
bound on the W1 j, error. We have the following.

Corollary 14 Under Setting B and Assumption 1 with p = 1, take B, = W2PROJECT(]5n7 e,p) and let T
be any upper bound on the error W1 1,(P,,, P) < Vke + p + W, (P, P,). Then the WDRO estimate

{ = argming, . sup Eq[/]
QEP(RY): W1 (P, Q)<

satisfies the excess risk bound Ep[l] — E[(,] < 2||{,||LipT, where ¢, = argmin,.  Ep[¢].

Proof As in Theorem 13, decompose £, = £ o U for U € R**¢ such that UU " = I. Note that ||¢||p;, =
|[4+||Lip and that W1 (U P, Uﬁ]f’n) < W k(P P,)) < 7. We then bound

Ep[l] — Ep[ty] < sup Eqll] — Ep[t,] (Theorem 13)
QEP(RL): W1 (Q,P,)<T
< sup Egll,] — Ep[t,] (¢ minimizing)
QEP(RL): W1 (Q,P,)<T
< sup Exlf] — Eu,p[l] (R =U;Q)
REP(RF):W1 (R,U Pp) <7
< sup Eg[f] - Ey,p[/] (W (UyP,UsB,) < 1)
ReP(RF): W1 (R,Uy P)<27
< |[elLip27
=2/l lLipT,
as desired. |

11
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3.1. Beating the Curse of Dimensionality in WDRO

Despite promising applications, the classic Wasserstein DRO approach suffers from the curse of dimen-
sionality. The rate of empirical convergence under the Wasserstein distance scales as n~/¢, which can-
not be generally improved when d > 3 (Fournier and Guillin, 2015; LEI, 2020). In light of this rate,
Mohajerin Esfahani and Kuhn (2018) showed that if the WDRO radius is chosen as p = O(n~'/), then
the worst-case expected loss over all distributions in the Wasserstein ambiguity set of that radius would be
an upper bound for the expected loss with respect to the true data-generating distribution. This provided the
first non-asymptotic guarantee for the Wasserstein robust solution, but the bound deteriorates exponentially
fast as d grows.
To address the curse of dimensionality, an empirical likelihood approach was proposed in (Blanchet and Kang,

2021; Blanchet et al., 2022, 2019) to find the smallest radius p such that, with high probability, there exists
Q € P(R?) with W,,(Q, B,) < pand ¢* € L satisfying

0* € argmin,. » Eg[¢{] Nargmin,, Ep[/].

This choice leads to a confidence region around the optimal solution, which enables working with a radius
p= O(n_l/ 2). However, this result is only asymptotic in nature, yet finite-sample bounds are crucial for ap-
plications. For certain WDROs with linear structure, such as linear regression/classification and kernelized
versions thereof, non-asymptotic bounds of O(n~'/2), have been established in (Shafieezadeh-Abadeh et al.,
2019; Chen and Paschalidis, 2018; Olea et al., 2022; Wu et al., 2022). To relax these structural assumptions,
Gao (2022) demonstrated that if the data-generating distribution satisfies a transport-entropy inequality, a
radius of O(n_l/ 2) is again sufficient. However, the transport-entropy inequality assumption on the un-
known data distribution is restrictive and may be hard to verify in practice. Furthermore, the loss function
is required to be a-smooth over the family £ and to admit a sub-root function in order to establish local
Rademacher complexity bounds.

Corollary 14 present a clean route to overcome the curse of dimensionality in the classical Wasser-
stein DRO setting, when ¢ = 0, and obtain finite-sample results without relying on transport inequalities.
Moreover, it provides a simple procedure for achieving the excess risk bounds for outlier-robust WDRO
presented in Nietert et al. (2023b) when p = 1. In fact, the algorithm therein matches our v/ke + p risk
bound only when & = ©(1) or k = O(d), but not in between. Their approach further requires solving
new optimization problems that are more complicated than standard WDRO. Finally, the analysis in that
work led to finite-sample excess risk bounds including a term scaling like n~'/¢ even when k = O(1). The
result of Theorem 14 accounts for all these limitations, yielding optimal rates uniformly in % via simple and
computationally efficient procedures.

4. Concluding Remarks and Future Work

In this work, we have provided the first polynomial time algorithm for robust distribution estimation under
combined Wasserstein and TV corruptions. In order to apply its guarantees to Wasserstein DRO, we un-
covered a practical and conceptually simple technique for alleviating the curse of dimensionality that often
manifests itself in this setting. There are numerous directions for future work; some of particular interest
include:

* For distributions that are (2¢, ¢)-stable and isotropic, we have efficient algorithms for robust mean
estimation up to error § under TV e-corruptions. Can we extend these results to obtain W,, ;. estimation
error 0v/k + p under our combined model? For an even simpler challenge, as posed in Section 2.3
— can one estimate the mean of a spherical Gaussian up to ¢y error O(e—:) + p with both W; and TV
corruption? We suspect that there may be similar obstacles as those known for robust mean estimation
with stable but non-isotropic distributions (Hopkins and Li, 2019).

12
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* Relatedly, algorithms for robust mean estimation have been refined and optimized in many ways,
improving their breakdown points (Hopkins et al., 2020; Zhu et al., 2022b; Dalalyan and Minasyan,
2022), running time (Cheng et al., 2019), and memory usage (Diakonikolas et al., 2017, 2022). We
expect many of these improvements to translate to our model.

* Finally, for WDRO, can we tractably achieve dependence on the dimensionality k, of the optimal loss
function if k, < k (recalling that k is a uniform bound over the loss function family)? We suspect
this can be achieved by integrating the objective of W2PROJECT into the Wasserstein DRO ambiguity
set.
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Appendix A. Proofs for Section 2.1

Throughout this section, we prove results under a more general learning environment.

Setting A2: Fix TV corruption level 0 < ¢ < 0.49 and W, corruption level p > 0, where p € {1,2}.
Let G C P(R?). Nature selects P € G, and the learner observes P such that W (P, P) < p.

We begin with some auxiliary definitions and lemmas.
Definition 15 (Resilience) For P € P(R?) and 0 < € < 1, the mean e-resilience of P is given by

T(Pe) = sup lng — ppll-
QEP(RY):Q<TL P

For p > 1, the pth-order e-resilience of P € P,(R?) is defined by 1,(P,¢) = 7(f;P, ), where f(z) =
|2 — wpl|[P. Forafamily G C P(RY), we define 7(G, €) == suppeg 7(P, ) and 7,,(G, €) == suppeg 7p( P, €).

It generally suffices to analyze resilience for € bounded away from 1, due to the following result.
Lemma 16 For each P € P(R?) and 0 < e < 1, we have 7(P,1 — &) = 1=27(P,¢).
Proof If P = (1-¢)Q +eR for Q, R € P(R?), we have

9
P,e).
—<r(P,e)

1-¢

lup — pr| = THMP —pel <

Supremizing over R gives one direction, and substituting € <— 1 — ¢ gives the other. |
We also observe a certain monotonicity of pth moment resilience terms in p.
Lemma 17 Fix1<p<gq 0<e<1, and P € PR?). Then 7(P,e) < 7,(P,e)"/P < 7,(P,¢)"/1,
Proof Take X ~ PandY ~ Q, for any Q € P(R%) such that Q < 1—£EP. We then bound
g — prll E[IY = X|] < [E[IY — ppll = |X — pplll] < n(Pe).
Moreover, writing a = E[|| X — up|[P], b = E[||Y — pp|P], and r = ¢/p > 1, we have
B — uplP = 1X — pp|P)] < la—b] < |a" = b"[V" = [E[|Y — pp||? = [|X — pp|| ][

Raising both sides to the (1/p)th power and supremizing over ) completes the proof. |

Stability essentially captures resilience in first and second moments.
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Lemma 18 Let0 < e < land§ > e. For P € S(¢,6), we have 7(P,e) < § and 75(P,¢) < 2d6?/e.

Proof = Mean resilience follows directly from the definition of (e, §)-stability. For second moment re-
silience, we fix any @ < P and bound

252

52
[tr(Co(rp)) — tr(Zp)| = [tr(Zq = Bp)| + llng — pr|* < — +6% < —

Supremizing over () gives the lemma. |

Next, we compute useful resilience bounds for distributions that lie near S(&,d) under Wa. For brevity,
we define S(g,d,\) == {P € P(R?) : Wa(p, S(e,6)) < A}

Lemmal9 Let0<e<1,d>¢ and\>0. For P € S(g,0,\), we have
20/
1—¢

T(Pe) <

TQ(P, 6) S

4ds? N 1672
(I—¢)e 1-¢

Finally, we have tr(Xp) < 2d + 4)\? and, for any Q < l—ieP,

6d6> N 202
(1—¢)2 1-¢

tr(Xg) <

Proof Fix Py € S(g,0) such that Wy(Pp, P) < A, and let X,Y be optimal coupling for Wy(Fy, P).
Fix any Q < l—isP. Augmenting the probability space if necessary, we can realize @) as the law of Y
conditioned on an event E with probability 1 — ¢. Write P} for the law of X conditioned on E. We then
bound

g = nell = T— | EIY] - E[Y|E°)|

=9 - - (1E[X] - ELX|E|| + | E[Y] — E[X]]| + | E[Y]E9] - E[LX|E])

3 1
< E[X] - E[X|E° Ws(Py, P) + —=Wq (P, P
< 5 (VLX) = BIXIE + Wal, P) + WalFo. P) )
2
< lar, — mrgll + 2N
<ot 2VEy
1—-¢

Supremizing over () gives the mean resilience bound. Next, we use Minkowski’s inequality to bound
tr(Sp = 2p,)| = [ElIY —EX]IP] - t:(SR)))|

< ‘(EHIX E[Y]I} + B[y - X|?)} + | EX] - ElY])) - (2R

'(\/tr Sr) +2)\> —t(Sp,)
< 4AM/tr(Sp,) + 4N?

< AN+ 4X?, Ep, <1y

18



ROBUST ESTIMATION UNDER LOCAL AND GLOBAL ADVERSARIAL CORRUPTIONS

which implies the desired bound on tr(Xp). The same argument via Minkowski’s inequality gives

Bl X — ELX]12|E7] - B[y — E[Y]|?|£9)|< % L2

We then compute

tr(Eq(up) — p)|

[E[lY —E[]* | E] - E[|lY — E[Y]|]|
[y - EX1IF] - E[lY - EXI* | E°]|

= Aap, 8AWd | 8\
< 1_€<\E[HX—E[X]H} ~E[||X - E[X]|l| E]HT*?)
8\ 82
- [E[1X —EX]| | E] —E[1X — Bix))]| + 250, B
2
< m(Po,e) + 81A\_/_ 1Sis
2
= = 8/\\/_ w (Theorem 18)
€ ¢ 1 —€
1 \/_5
§1—6<x/ fA) 0 >¢)
4d6? 162

- (1—€)€+1—€

Supremizing over @ gives the second moment resilience bound. Finally, we bound

tr(Xq) = tr(Sp) + tr(Sq(up) — Lp) — llup — poll?
<tr(Xp) + (P, ¢)

4d6? 162
< 2d + 4)\?
= +(1—€)€+1—€
6d62 202

- (1—6)52+1—5’

as desired.

Finally, we prove a technical lemma used throughout.

Lemma 20 Fix0 < ¢ < land P € S(¢,5,\). Suppose that Q = (1 — )P’ + <R for some P', R € P(R%)
such that P' < ﬁP. Then, for 1 < q < 2, we have

765_15\/8 n 126472\ Lo
V1—e¢ V1—e¢
Proof Write P = (1 — )P’ + &S, for some S € P(R?). For any ¢ € [1,2], we have

W, (P, Q) < tr(Xr(pp))-

W, (P, Q)7 < eW,(S, R)?
< 2q€(W4(S’ 5MP)q + Wq(éuP’R)q)
< 296(Wy(P,0,,)7 + 74(P,1 — &) + Wy (0yp, R)?).
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Taking pth roots and applying Lemma 19, we obtain

W, (P, Q) < 261W,y(P,6,,) + 260 7,(P,1 — €)1 + 261 W, (3,0, R)
< 269Wy(P,8,,) + 261 /75(P,1 — &) + 21 W5(3,,,,, R)

< 25%\/tr(2p) + 2&?%_%\/7'2(P,€) + 25%\/‘51“(23(“19))

. i1 [ 4482 162 o
< 2e01/2d + 402 + 2¢7 5\/(1_6)€+ 1_€+253 tr(Sr(ip))

1

Tea'oVd 12e17 2 pd s
< + + 294/t ,
V-t @ V¢ H(E(p))

as desired. [ |

As a consequence, we can bound the Wasserstein distance between a stable distribution and any of its
e-deletions. In Nietert et al. (2023a), this is called a “Wasserstein resilience” bound.

Lemma 21 (Wasserstein resilience from stability) Fix0 <e <1, P € §(¢,0,A), and Q < 1—i£P. Then,
forl < q < 2, we have

125%_15\/3 N 215%_%/\
Vv1—¢ Vi—¢

Proof Writing P = (1 — £)Q + R for some R € P(R?), we use Lemma 19 to bound

W,(P, Q) <

tr(Xq(pp)) < tr(Xp) + 72(P )

46> 1672
< 2d + 4)\?
=2ar +(1—&?)&7—1_1—5
6d62 202

< .
- (1—5)52+1—5

Noting that Q = (1 — €)@ + eQ and Q < 1—E£P, we use Lemma 20 to bound

1_q 1_1
Tea 6v/d  12ea7 2 )\ 1
W, (P,Q) < + + 2644 /tr(T
o(PQ) < Vi—e 1—¢ erytr(Zalnr)
14 11
Tea " oVd  12ea 2 )\ 1 6452 202
< + + 2¢eq +
V1—c¢ 1—¢ (1—¢e)?2 1-—¢
. 1253‘15\/E+ 21ed I\
T W1l —¢ 1—¢’

as desired. ]

(NI

A.1. Proof of bounds in Example 1

We first observe that a distribution is (£, 0)-stable if and only if all of its 1-dimensional orthogonal projec-
tions are (g, 0)-stable. We thus assume that d = 1 without loss of generality.
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Next we prove a useful stability bound under the more general condition of an Orlicz norm bound.
Recall that an Orlicz function is any convex, non-decreasing function ¢ : Ry — R such that ¢)(0) = 0
and ¢ (z) — oo as ¢ — oo. For a real random variable X, we define its Orlicz norm with respect to i by
[ X1y = sup{o = 0: E[¢(|X]/0)] < 1}.

Lemma 22 Suppose that | X — E[X]|y < o, where v is an Orlicz function satisfying 1(z) = ¢(x?) for
another Orlicz function ¢. Then X is (e,0(ccyy™1(1/¢)))-stable for 0 < e < 0.99.

Proof We assume without loss of generality that E[X] = 0. For mean resilience, take E to be any event
with probability 1 — &’ > 1 — &, and bound

5/

|E[X|E]| = :— | ELX|E7]]
< 1i—/€/E[|X| | E°]

We note that this approach is well-known; see, e.g., Lemma E.2 of Zhu et al. (2022a). For the second
moment condition, we apply the bound above to X2 (with || X?||s < 0?), deducing

IE[x?|E) - B[ < 25 o (2)

IN

IN
~la
| o
mm
<
AN
7N
™ |
~~_
(]

<

Combining, we bound |Var[X |E] — Var[X]| < 6%/ + E[X|E]? < 26%/e. Thus, X is (g, 1/26)-stable. W

We now turn to the specific examples.

Bounded covariance: We apply the lemma with 1)(x) = 22 and ¢(x) = =, giving (¢, O(y/€))-stability.
The near-isotropic restriction is vacuous since § 2> /.

Sub-Gaussian: We apply the lemma with 1)(x) = exp(2?)—1and ¢(x) = exp(z)—1, giving (g, O(e+/log(1/¢)))-
stability.

Log-concave: If X is log-concave with bounded variance, then || X ||y, = O(1) for ¥(x) = exp(z) — 1,
by Borell’s lemma. There is a very slight non-convexity to exp(y/z) — 1, which we remedy by taking

o(x) = exp(y/r) — 1, x>1
T le/2+ez|/2-1, 0<z<1

and ¥ (z) = ¢(z%). We still have || X ||, = O(1), giving (¢, O(e log(1/¢))-stability.
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Bounded gth moments, ¢ > 2: We apply the lemma with ¢)(z) = 29, giving (g, O(e'~/%))-stability. M

A.2. Proof of Lemma 3

We prove a stronger result.

Lemma23 Fix0 <7 <1,1<p<gq and P,Q € P(R?) such that W, (P, Q) < p. Then there exists
R € P(RY) such that W, (P, R) < p, W, (P, R) < (ﬁ)l/qml/q—l/p, and |R = Q||trv < 7.

Proof Let (X,Y') be an optimal coupling for W, (P, @), and let A =Y — X. Writing 7 for the 1 — 7
quantile of ||Al], let £ denote the event that ||A]] < 7. By Markov’s inequality, we have

r = Pr(|a] > 7) = Pr(lafp > ) < 2

and so 7 < pr /P, Consider the random variable Z which equals Y if |A|| < 7 and X otherwise. Taking
R to be the law of Z, we have |R — Q|+v < 7,

W, (P, R)P <E[|X — Z|P] <E[[|X - Y|"] = p,

and
W, (P, R)? X — Z]|9]
A | E]

74

Pr[||A[7 > ¢ | E] dt

= =

<
<

IN
S~

74

Pr[HAHP > 9/ | E] dt

0

74
< E[|A7|E] / £Pl qp
0

=

ti=pla 4

<pPr—F
1-p/q'°

__ 49 PPrIP
q—7p

Py
q—p

IN

Taking gth roots gives the lemma. |

As a consequence, we also have the following.

Lemma 24 Fix0 < ¢ < 1/2, integers p,q > 1, and P,Q € P(R?) such that W (P, Q) < p. Then there
exists R € P(RY) such that W,,(P, R) < p, W, (P, R) < /2pe~1/P=Vdl+ and | R — Q||1v < 2e.

Proof By the W5 bound, there exists P’ € P(R?) such that W,,(P, P') < p and ||[P’ — Pllty < e If
q < p, then we can simply take R = P’. Otherwise, ¢ > p + 1, and we can apply Lemma 23 between

P and P’ to obtain R such that W, (P, R) < (ﬁ)l/qul/q—l/p < V2pe~/p=Vdl+ and ||R — Q|ltv <
IR — P'||rv + [|P" + Pllrv < 2e. |
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A.3. Proof of Lemma 4
Defining S(g,5,\) := {P € P(RY) : W5 (P, S(¢,5)) < A}, we prove a stronger statement.

Lemma25 Fix0 < ¢ < 1/2and G C S(2¢,8,\). Then, forall 1 < q < 2 and k € [d], we
have Rw, (G, || - lTv < ) < ﬁ(\/gsl/q_ld + Xe'/9=1/2), for all k € [d]. This risk is achieved

~

by the minimum distance estimator T satisfying T(P) € argming . 1 pWa(Q,G), where W2(Q,G) =
—1l—¢
infReQ W2(Q7 R)

Proof Given P € G and P such that ||[P — P||ty < ¢, we decompose P = (1—¢)P' +&R for distribution
P’ and R such that P’ < -1 P. Observe that the estimate P = T(P) satisfies

Wo(P,G) = min W2(Q,6)

Q< L
< Wg( )
< Wg( )
1_1
12¢a 2lga 2
< Eq 5\/34— ° )\. (Lemma 21)
1—e¢ Vv1i—e¢
Thus, P € S(2¢,4,\'), where
v oo 12eloVE 21eaA 12:07L5v/d L2
T VI—¢ V1—¢ R Vi—e

Of course P € S(2¢,6,\) as well, and || P — Plv < |P — P|ltv + ||P — P|ltv < 2e. Defining the
midpoint distribution Q = (1 — ||[P — P||tv)~'P A P, we again apply Lemma 21 to bound
Wy (P, P) < Wy (P, Q) + Wq(Q, P)
14 11,
< 24(2)- 5Vd N 42(2e)a 2\
- V1—2e V1—2e

528¢0 15v/d  924ed 2\
< -+ ,
- 1—2¢ 1—2¢

as desired. Fpr k < d, we observe tha}t, for each orthogonal projection U € RFxd Ut =1 &, we still have
|UyP — Uy P||1v < 2e and Uy P, U P € S(2¢,8,\'), so the analysis above can be applied in R¥ to give the
desired bound under W ;.. |

A.4. Proof of Corollary 5

Upper bounds follow by Theorem 2. Matching lower bounds (up to logarithmic factors) when p = 0 are
shown in Theorem 2 of Nietert et al. (2023a). It is straightforward to raise these lower bounds by the needed
term of p. Indeed, suppose the learner observes P = § but the adversary flips a fair coin to select P = g
or P = ¢, with ||z|| = p. Then, no estimate P can incur expected risk less than that of P = 9,2, for which
Wl,k(P, P) = p/2. (See proof of Theorem 2 in Nietert et al. (2023b) for a more formal treatment of this
two point method).

|
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Appendix B. Proofs for Section 2.2

Throughout this section, we prove results under a more general learning environment.

Setting B2: Fix ¢ > 0 sufficiently small, p > 0, and p € {1,2}. Nature selects a distribution
P € Geoy and produces P’ such that W,(P’, P) < p and Wy(P', P) < pe'/271/P_ The learner
observes P such that |[P — P'||ty < e. All of P, P’, and P are uniform discrete measures over n
points in R?.

The W5 bound is without loss of generality by Lemma 3 (no such decomposition is necessary when
p = 2, where we may simply take P’ = P).

B.1. Proof of Lemma 7

We first prove that Wo(Q, Geov)? < t1(3g — I4)+. Assume without loss of generality that () has mean 0.
Write Ay > --- > Ay > 0 for the eigenvalues of ¥, with accompanying eigenvectors v1,...,v4 € R,
Define A = S0, (1A (1/v/A;))viv;, so that R = A;Q satisfies Sz < I;. Taking X ~ Q, we bound
W2(Q7 gcov)2 < W2(Q7 R)2
< E[|IX — AX?)
=E[||(I - A)X|]
= tr((I — A)*Sg)

- Y (VA

A >1

S SP
A >1

= tr(zﬂ - Id)+7

as desired.

Next, we prove that tr(Xg —214)+ < 2Ws (Q, QCOV)2. Suppose that Wo(Q, R) < X for some R € Geoy .
Assume without loss of generality that 12 has mean 0, and fix any R?*? with || A||o, < 1. Taking (AX, AY))
to be an optimal coupling for the Wo(A44Q, Ay R) problem, so that (X,Y’) is a coupling of @ and R, we have

tr(AT A¥q) = E[|A(X — E[X])|’]
< E[lAX]?]
=E[AY + A(X - Y)|7]

2
< <\/E[HAY||2] + VE[JA(X — Y)||2]) (Minkowski’s inequality)
2
= <\ / tr(ATAZR) + Wg(AﬁQ, AﬁR))
2

< ( tr(AT ASR) + A) ([ Allop < 1)

< tr(ATA(25R)) + 222

< tr(ATA2Id) + 2)\2 (R e gcov(a))
Rearranging and supremizing over A, we find that tr(X¢g — 2I4)4 < 22, as desired. |
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B.2. Proof of Theorem 8

We shall prove a stronger statement under Setting B2. We require a slight change to the termination condition
when p = 2. Specifically, we define the modified algorithm W2PROJECT2 by changing the termination
condition at Step 4 from

tr(I(S7 — 021;)) < Ce + Cp? /e

to
tr(I[(S7 — 021;)) < Ce + Cp2e' =27,

For this algorithm (which matches W2PROJECT when p = 1), we prove the following.

Lemma 26 Under Setting B2 with g < 2720, W2PROIECT2 (P, ¢, p) returns P in time poly(n,d) such
that, for all g € {1,2} and k € [d],

. _fi_1
W, (P, P) < ch v+ e ke
with probability at least 2/3.

Proof First, it is easy to show that the algorithm runs in polynomial time. At least one point is removed at
each iteration, so there can be at most n iterations, and each iteration can be performed in poly(n, d) time.

Next, we show that W2PROJECT approximately minimizes its trace norm objective. We begin with
a technical claim about the function f computed in Steps 6-8. This result mirrors Proposition 2.19 of
Diakonikolas and Kane (2023), which pertains to the simpler objective Apax(20).

Lemma 27 Under Setting B2, let S C R denote the support of P'. Suppose that, in some iteration of
W2PROJECT, the multiset T satisfies [T N S| > (1 — 4¢)|S| and tr(Sr — 021;) 4+ > 233e 4 2192l =2/p,
Then the function f computed in Steps 6-8 satisfies Y f(x) > 23 crng f(2).

Proof Under Setting B2, we have W (S, Geoy) < Wo (S, P) < pel/271/P = X, Since Geov C Siso(6e, 5v/2),
as described in Example 1 (the constant can be obtained from Lemma 22), we have that S' € S(6¢, 5/, A),
using the notation from the proof of Lemma 4.

Now, at Step 6, W2PROJECT computes the function g(x) = ||TI(x — pr)||?, where IT is the orthogonal
projection onto the non-negative eigenspace of Y7 — 02I;. At Step 7, we take L to be the set of 6¢|T|
elements of 7' for which g(z) is largest. Then, Step 8 takes f(z) = g(x) forz € L and f(z) = 0
otherwise. Define ) = tr(Xr — 02I4)y = tr(II(X7 — 0%14)), which, by the lemma assumption, satisfies
n > 233¢ 4 2192, This lower bound will be used later. We first compute

> g(@) = |T|tr([IS7) = |T|(n + o® tr(ID)).
zeT

Next, we apply Lemma 19 to II;S, noting that S, and hence II;S, belongs to S(6e,5+/¢, A). For any
S’ C S with |[S'] > (1 — 6¢)]S|, this gives

?_\/g—z < 5y/e +10\/e (e <1/12)

s — per|| < 5v/e +
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and

[ tr(T8s) — tr(ID)] < [tr(I1(Zgr — B (us)))| + |tr((Bsr (us) — Bs)) | + [tr(ML(Es — 1a))|

100 16)?
< s — s+ oo (D + 1o

> + max{tr(I1Xg), tr(II) }

2\/6¢ 162
§<5\/E+ A > +< tr(1T) + 62 >+2tr(H)—|—4/\2
1-— 1— 6¢e
2\/6¢ 1 162
< <5\/E+ A ) ( 0o tr(TI) + 62 >+2tr(H)—|—4/\2
1-— 1— 6¢e
152 242
< <1/12
e o = €<1/19

< 304 tr(IT) + 48)2.

Moreover, since || < |S|and |[T'N S| > (1 — 6¢)|S|, we have that ||T" — S||tv < 6¢. Using this, that
tr(Xr — 021;)+ = 0, and that S € S(6¢,5+/¢, \), we apply Lemma 28 to T and S with ¢ = k = 1 and
€ ¢ 6 < FEje to obtain

T — psll < W1i(T, S)
_ 21(5vE+ V6eo)  36VEN+ /)
> 1— 6e (1 _ 66)3/2
< 212\/F +102vE(A + /1) (e <1/12,0 < 50)

Thus, the triangle inequality gives

T — psll < llpr — psll + s — ps|l
< (2"%VE +102vE(A + /1)) + (5v/E + 10AVE)
< 2B\e 4 1120/ + 1024/27

Combining the above, we have for such S’ that

> g(@) = |9 |(er(ITSs0) + [ (ur — ps)|)

zes’
<19 (tr(H) + 304 tr(IT) + 48)2 + [2'3\/ + 112\VE + 102,/7] 2)
< |9](305 tr(IT) + 2% + 2MA% + 219e)

and

> g(@) =15 (r([I8s) + |z — ps)|1?)

zeSsS’
> || (tr(I) — 304 tr(IT) — 2% — 2MA% — 219pe)
> (1 —¢)|S](—303 tr(IT) — 228 — 2M\% — 21%y)c)
> |S|(—303 tr(Il) — 228 — 2127 — 21%y)c)
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Since |T'| > (1 — 4¢)|S| > 2|S|/3, combining the above gives

Y @) = Y g@) - 3 gl@)

x€T\S zeT z€S
= |T|(n + o tr(Il)) — |S|(305 tr(IT) + 2% + 2M4X\* + 219¢)
> |S|(2n/3 + 1300 tr(IT) — 2%%e — 2122 — 21%9)c) (o > 50)
> |S|(n/4 + 1300 tr(11)) (e <2718 5 > 230 4 214)2)

Moreover, since |L| = 6¢|T| > 6¢|S|(1 —4e) > 4¢|S| > |T'\ S|, and g takes its largest values on points of
L, we have

S f@)=> g@) = Y g(x) > |S|(n/4+ 1300 tr(II)).

zeT zeL z€T\S

Finally, plugging in S’ = S and S’ = S\ L into the bounds above on 3« g(x), we obtain

S fa) = Y o)

zeSNT xeSNL

=Y g - Y gl

zeS xeS\L

< |9](609 tr(IT) + 2% + 215X% 4 267p¢)

< |S1(609 tr(I1) + n/8) (e <2720, 5 > 233 + 219)2)
1

zeT

as desired. [ |

Now, by the exact martingale argument used to prove Theorem 2.17 in Diakonikolas and Kane (2023),
Theorem 27 implies that W2PROJECT maintains the invariant |[S N T'| > (1 —4¢)|S| over all iterations with
probability at least 2/3. Since at least one point is removed from 7' at each iteration, the algorithm must
terminate while satisfying this invariant as well as the (updated) termination condition at Step 4: tr(Xp —
021,)4 < Ce + Cp?c'~2/P_ Consequently, the returned measure P = Unif (T') satisfies

HP — P/HTV § 4e

and
tr(zp —Ypr— 0'2]d)+ < tr(EP — 0'2[d)+ < (Ce+ Cp251—2/17‘

Thus, by Lemma 29 and the fact that P € S(g, O(1/)), we have

Wik(@P) 5 HE+ e (p i hy o v a0t 7
SR (1 )
N ei 2 VE + 6_[%_%“;),

as desired. ]
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B.3. Error Certificate Lemmas

We state a useful technical lemma extending the certificate lemma (Lemma 2.6) of Diakonikolas and Kane
(2023). Note that here the name is less precise; since P’ is not observed, we cannot certify this condition
from our observation unless we approximate X ps by 1.

Lemma28 Let A\, \o, > 0, ¢ € (0,1), and § > e. Fix P' € S(,6,n) and Q € P(R?) such that
tr(EQ —Yp — Mg+ < Xand |Q — P |tv < e. Then

1 ~ 1 1
21ca 'ovVk  36c7 %7

/
<
Wf],k(Qap) — 1—¢ + (1 —5)3/2

for all k € [d), where 6 = 6 + /A1 and 7j = 1 + /2.
We now apply this result under Setting B2.

Lemma 29 Let A\, \y > 0and C > 1. Under Setting B2 with P € S(Ce, d), fix any Q € P(R?) such that
tr(Xg —Xp — Milg)+ < Ao and ||Q — P'||tv < 7, where e <7 < Ce. Then

2175_15\/E N 37— [/p=1/d+ 5
3

W P) <
q,k(Qa )— 1— 7 (1—T)§

for all k € [d), where 6 = 6 + /A7 and p = p + T /P12 /X,

Proof Under Setting B2, we have P’ € S(Ce,8,n7) C S(r,6,n), where n = pe/2=1/P > prl/2=1/p,
Applying Lemma 28 to P’ and @) with TV corruption level 7 and plugging in our value of 7 gives

21ra '6/d 3675‘%n<2175‘15\/& 36715

W P < )
M@ P) S = b e < T, Yo

Moreover, we have W, (P, P’) < pe~W/p=1/dl+ < 5r=[1/p=1/d+  Noting that 7~ [2/P—1/d+ > 71/a=1/p,

the lemma follows by the triangle inequality. |

We now return to the initial technical lemma.

Proof of Lemma 28 By the TV bound, we can decompose Q = (1—¢)P +&R for some P < 1_£5P/ . Using
this decomposition, we bound

Ay > tr(EQ —Ypr — )\1[d)
= tr(Sp — Tpr) +etr(Sr) + (1 —o)llup — prll® —etr(Sp) — dr
>tr(Xp —Ep) +etr(Zgp) —etr(Xp) — dAy.
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Since P’ € S(¢, d,n), we can rearrange the above and apply Lemma 19 to obtain

tMER)Sé?+§md2pp—2@+¢dzpy+%?
< % + %tr(zpf —Yp(upr)) + é”up, _ NPH2 (D) + %
< % + §T2(P/,€) + éT(P, )2 4+ tr(2p) + dT/\l
R [ R ?J_ggr = B
2 2
R e

- 13d62 N 4577
T (1-¢e)e? (1—g)2

Next, take v to be the unit vector in the direction of upr — pg. Then, applying a similar argument as
above, we bound

A2

v

UT(gQ — 2p/ - )\1[[1)1)
=0 (Zp— Up)v+ 20" Yo +e(l —&)|up — purl?® — v Epv — A2
>0'(Sp —Sp)v+e(l—e)llpp — prll* —ev Spo— N

Rearranging and applying Lemma 19 to Z};—Pl, we bound (1 — ¢)||up — ur||* by

Ao+ 0 (Zp —Ep)v+ev Spv+ N\
<o+ 0T (Sp— Splup))o + e — ppl + 20" Spu+

462 1612 2 2 662 20m?
§A2+< + ”>+<5+ ﬁ”) +e<( n ”>+A1

(1—g)e 1-¢ l—¢ 1—¢e)?2 1-—¢
1262 44m?
<A+ A
SR R e
1352 45772
L 457

“(1—-gke (1—¢)?

‘We thus have

1352 4577
_ 2
HMP IURH = (1 —8)262 + (1 —8)38

Combining with an application of Lemma 19 to P/, we bound

Ik — el < 2llpr — ppl® +2)up — ppr|)?

2652 9077 NCAS
< 200
_(1—6)2€2+(1—€)36+ < +1—€>
3062 98772

= (1 —¢)2e? + (1—¢)3e’
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Next, we apply Lemma 20 to bound W, (Q, P’) by
7&75_15\/3 N 1253_%77
v1i—¢ Vv1—e¢

1
+2e9\/tr(SR) + |ur — e |2

cilov/d s 126472y Lo [ 1340  asP 308 o8

V1—¢ V1—¢ (1—e)e?2 (1—g)2c (1—e)2e2 (1—¢)e
7e1715v/d 1255‘%77 Lo 43P 1437

Vi—¢ Vi—¢ (1—e)2e2  (1—¢)3e

1 ~
21ca'5v/d N 36127
- l-c¢ (1—g)3/2
as desired. As usual, for k& < d, we note that the analysis above applies to all k-dimensional orthogonal
projections of the input measures, with the substitution d < k. |

B.4. Proof of Corollary 9
Fix 0 < § < 1. By Theorem 2.7 in (Boedihardjo, 2024), we have

_1
n 1 2+26 2426
ZgiX +EE|[— sup Z! v, X;) ®(n, k,0), (8)
i=1

vesd-1 .7
where g1, ..., g, and Xi, ..., X, are sampled i.i.d. from N(0, 1) and P, respectively, and ®(n, k,d) =
O((6n)~Y/*v2))_ Since Xp < I;, we have

1
> gX = (ZE||Xi\I2> 2 < Vnd.
im1 i=1

Thus, the first term of (8) is at most k+/d/n. We now set § = 1/log(n). In this case, n" T <n~Y2, and

SO
2_1’_26 ﬁ 2+25
(— wp z\ ) ( zux nw)

vesa—1
2+25
< n~ 2R (Z HX H2+26>

EW, (P, P)] < “E
n

<|E

i

n 5
< n_l/2E (Z ”X1H2>
i=1

< V.

Combining, we obtain that E[W 4(P, P,)] = O(kv/dn~'/(*V2)). To obtain a uniform bound over &k € [d]
with high (constant) probability, we employ Markov’s inequality for all & which are a multiple of (1 +
1/1og(n)) when rounded up or down to the nearest integer. There are at most O(log(d) log(n)) such k, and
n+1/log(m)™" > /1og(n), so a union bound gives that maxy, Wi x(P, P,) = O(Vdkn="*V2)) with

high constant probability, as desired.
|

30



ROBUST ESTIMATION UNDER LOCAL AND GLOBAL ADVERSARIAL CORRUPTIONS

B.5. Proof of Proposition 12

We have in this case that ©p: = Xp (since p = 0). Then, if X [op < 1+ C6?/e, we have by stability of
P that

tr(Sp —Sp — (14 (C = DEV) ;4 <tr(Sp — (1+ CL) 1), <0,

at which point Lemma 29 with p = ¢ = 1 gives the Proposition.
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