
Published in Transactions on Machine Learning Research (2/2024)

Estimating Optimal Policy Value

in Linear Contextual Bandits Beyond Gaussianity

Jonathan N. Lee jnl@stanford.edu

Stanford University

Weihao Kong weihaokong@google.com

Google Research

Aldo Pacchiano pacchian@bu.edu

Boston University

Vidya Muthukumar vmuthukumar8@gatech.edu

Georgia Institute of Technology

Emma Brunskill ebrun@cs.stanford.edu

Stanford University

Reviewed on OpenReview: https: // openreview. net/ forum? id= RUNiIDU8P7

Abstract

In many bandit problems, the maximal reward achievable by a policy is often unknown in
advance. We consider the problem of estimating the optimal policy value in the sublinear
data regime before the optimal policy is even learnable. We refer to this as V ∗ estimation. It
was previously shown that fast V ∗ estimation is possible but only in disjoint linear bandits
with Gaussian covariates. Whether this is possible for more realistic context distributions
has remained an open and important question for tasks such as model selection. In this
paper, we first provide lower bounds showing that this general problem is hard. However,
under stronger assumptions, we give an algorithm and analysis proving that Õ(

√
d) sublinear

estimation of V ∗ is indeed information-theoretically possible, where d is the dimension. We
subsequently introduce a practical and computationally efficient algorithm that estimates a
problem-specific upper bound on V ∗, valid for general distributions and tight for Gaussian
context distributions. We prove our algorithm requires only Õ(

√
d) samples to estimate

the upper bound. We use this upper bound in conjunction with the estimator to derive
novel and improved guarantees for several applications in bandit model selection and test-
ing for treatment effects. We present promising experimental benefits on a semi-synthetic
simulation using historical data on warfarin treatment dosage outcomes.

1 Introduction

Classic paradigms in multi-armed bandits (MAB), contextual bandits (CB), and reinforcement learning (RL)
consider a plethora of objectives from best-policy identification to regret minimization. The meta-objective
is typically to learn an explicit, near-optimal policy from samples. The best achievable value by a policy in
our chosen policy class, typically denoted as the optimal value V ∗ is often unknown ahead of time. This
quantity may depend in complex ways on the nature of the context space, the action space, and the class
of function approximators used to represent the policy class. In many applications, the impact of these
properties and design choices is often unclear a priori.

In such situations, it would be useful if it were possible to quickly estimate V ∗ and assess the target per-
formance value, in order to decide whether to adjust the problem specification or model before spending
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valuable resources learning to optimize the desired objective. For example, prior work that used online policy
search to optimize educational activity selection has sometimes found that some of the educational activities
contribute little to student success (Antonova et al., 2016). In such settings, if the resulting performance is
inadequate, knowing this early could enable a system designer to halt and then explore improvements, such
as introducing new actions or treatments (Mandel et al., 2017), refining the state representation to enable
additional customization (Keramati & Brunskill, 2019) or exploring alternate model classes. These efforts
can change the system in order to more effectively support student learning.

A related objective is the problem of on-the-fly online model selection in bandit and RL settings (Foster
et al., 2019). From a theoretical perspective, a large number of recent attempts at model selection leverage
some type of V ∗-estimation (or closely related gap estimation) subroutine (Agarwal et al., 2017; Foster
et al., 2019; Chatterji et al., 2020; Pacchiano et al., 2020b; Lee et al., 2021). In particular, Lee et al.
(2021) show that significantly improved model selection regret guarantees would be possible if one could
hypothetically estimate V ∗ faster than the optimal policy. Despite these important practical and theoretical
implications, the amount of data needed to estimate V ∗ is not well understood in real-world settings. A naive
approach would be to attempt to estimate an optimal policy from samples and then plug-in an estimate
of V ∗; however, this may necessitate a full algorithm deployment and a prohibitive number of samples in
high-stakes applications.

In this work, we pursue a more ambitious agenda and ask: is it possible to estimate the optimal value V ∗

faster than learning an optimal policy? Prior work suggests that this is surprisingly possible but only in a
quite restricted setting: Kong et al. (2020) show that, with disjoint linear contextual bandits with Gaussian

contexts and known covariances, it is possible to estimate V ∗ accurately with only Õ(K
√
d/ϵ2) samples,

a substantial improvement over the Õ(d/ϵ2) samples required to learn a good policy in high dimensional
settings (Chu et al., 2011).1 Unfortunately, the strong distribution assumptions make the Gaussian-specific
algorithm impractical for many scenarios and inapplicable to other theoretical problems like model selection
that deal with much richer distributions.

The purpose of this work is twofold. (1) We aim to provide an information-theoretic characterization of V ∗

estimation for linear contextual bandits under much more general distributional assumptions that are more
realistic in practice and comparable to typical scenarios of online learning and bandits. In particular, we aim
to understand under what conditions sublinear V ∗ estimation is and is not possible. (2) We aim to devise
practical methods to achieve sublinear estimation and in turn realize significant improvements in problems
such as model selection and hypothesis testing.

1.1 Contributions

As our first contribution, we make progress towards an information-theoretic characterization of the V ∗

estimation problem (Section 3.2). We prove lower bounds showing that, without structure, one cannot hope
to estimate V ∗ accurately with sample complexity smaller than Ω(d) in general. Despite this, our first
major positive result (Algorithm 1 and Theorem 1) shows that V ∗ estimation with sample complexity that
scales as

√
d is still information-theoretically possible beyond the Gaussian-context setting given some mild

distributional assumptions when lower-order moments are known. In particular, we give an algorithm that
achieves Õ(2C

′

K/ϵ
√
d/ϵ5) sample complexity.2 While the bound is not without undesirable features owing to

the exponential dependence on ϵ−1 and C ′
K , the significance of the result lies in the proof that estimating V ∗

is possible in the sublinear regime in d. In particular, suppose that K is constant (small) and ϵ is a constant
target accuracy. Our result shows that the number of samples needed to get the desired fixed target accuracy
scales with only the square root of the problem size d, meaning that sometimes we may need fewer samples
than there are parameters to achieve constant accuracy. This is in contrast to a naive plug-in approach of
trying to estimate θ directly, a guarantee that requires the number of samples to be at least d to say anything
non-trivial.

1Here, Õ omits polylogarithmic factors and lower order terms. d is the dimension, ϵ is the target accuracy, and K is the
number of actions.

2C′

K
is a constant that depends only on K – see Corollary 3.5 for details. For all intents and purposes, we will consider this

bound only when K and ϵ are constant (e.g. K = 2 and ϵ = 0.1).
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Our second key contribution is a computationally and statistically efficient algorithm that estimates informa-
tive upper bounds on V ∗ with sample complexity Õ(

√
d/ϵ2) (Algorithm 2 and Theorem 2). This algorithm

avoids the exponential dependence and holds with weaker requirements.

We first leverage upper bounds on V ∗ to tighten the bandit model selection guarantee of Foster et al. (2019)
in the large-action setting from O(K1/3) to O(

√
logK) (Theorem 3). Second, we show that upper bounds

on V ∗ can be used to develop provably efficient tests for treatment effects to decide whether we should
expand our set of treatments from a low-stakes-but-limited set, to a more ambitious treatment set that may
be costly to implement (Theorem 4), and provide experimental evidence on a synthetic domain and on a
semi-synthetic simulation using historical data on warfarin treatment dosage.

1.2 Related Work

One can show (see Proposition A.1) that in the MAB setting, estimating V ∗ is no easier than solving a best
arm identification task Bubeck et al. (2009); Audibert et al. (2010); Gabillon et al. (2012); Karnin et al.
(2013); Jun et al. (2016); Even-Dar et al. (2006); Maron & Moore (1994); Mnih et al. (2008); Jamieson et al.
(2014); Katz-Samuels & Jamieson (2020). In the linear setting (Hoffman et al., 2014; Soare et al., 2014;
Karnin, 2016; Tao et al., 2018; Xu et al., 2018; Fiez et al., 2019; Jedra & Proutiere, 2020), as well as in the
non-disjoint linear contextual bandit setting (Chu et al., 2011), there is significantly more shared structure
across actions: all the unknown information in the problem is encapsulated in one unknown, d-dimensional
parameter. Surprisingly little work has been spent on estimating V ∗ even though we do know that certain
functionals of the unknown parameter, such as the signal-to-noise ratio (Verzelen et al., 2018; Dicker, 2014;

Kong & Valiant, 2018) are estimable at the fast Õ(
√
d
n ) rate. The V ∗ estimation problem was first proposed

by Kong et al. (2020) who showed estimation is possible with Õ(
√
dK
ϵ2 ) samples. However, the algorithmic

tools are highly specialized to Gaussian context distributions. Thus, we require novel approaches to handle
more general context distributions. We are able to show that V ∗ estimation is possible under significantly
broader distribution models with many practical implications.

A particularly critical application of V ∗ estimation arises in online model selection in CB. Multiple approaches
to model selection make use of estimators of V ∗ to weed out misspecified models (Agarwal et al., 2017; Lee
et al., 2021; Pacchiano et al., 2020a; Foster et al., 2019; Chatterji et al., 2020; Pacchiano et al., 2020b; Lee
et al., 2022a;b; Muthukumar & Krishnamurthy, 2022; Ghosh et al., 2021). In our current work, we leverage
our faster estimators of V ∗ to improve the model selection results of Foster et al. (2019) in the linear CB
setting. Our more sophisticated approaches to V ∗ estimation imply a logarithmic O(

√
logK) scaling on the

leading term in the regret, exponentially improving upon the O(K1/3) of the original work.

2 Preliminaries

Notation. We use [n] = {1, . . . , n} for n ∈ N. For any vector v ∈ R
d, ∥v∥ = ∥v∥2. For any matrix

M ∈ R
d×d, ∥M∥ denotes the operator norm and ∥M∥F the Frobenius norm. WhenM ⪰ 0, ∥v∥M :=

√
v⊤Mv.

We denote the d-dimensional unit sphere S
d−1 = {v ∈ R

d : ∥v∥ = 1}. We call
(

[n]
s

)
the set of s-combinations

of [n] and use the symbol Id to denote the d × d identity matrix. We use C,C1, C2, . . . to refer to absolute
constants independent of problem parameters. Throughout, we use the failure probability δ ≤ 1/e. The
inequality a ≲ b implies a ≤ Cb for some constant C > 0. For a random variable Z, we denote the variance

as var(Z) and ∥Z∥2
L2 := E|Z|2. Z is said to be sub-Gaussian if there exists σ > 0 such that E [|Z|p]1/p ≤ σ√p

for all p ≥ 1 and we define ∥Z∥ψ2 as the smallest such σ: ∥Z∥ψ2 := supp≥1 p
−1/2

E [|Z|p]1/p. We also use

Z ∼ subG(σ2) to denote that ∥Z∥ψ2
≲ σ. A random vector Z is sub-Gaussian if there exists σ such that

∥Z∥ψ2
:= supv∈Sd−1 ∥

〈
Z, v

〉
∥ψ2
≤ σ.

Setting. We consider the stochastic contextual bandit problem with a set of contexts X and a finite set
of actions A = [K] (with K = |A|). At each timestep, a context-reward pair (Xt, Yt) is sampled i.i.d from
a fixed distribution D, where Xt ∈ X and Yt ∈ R

K is a reward vector indexable by actions from A. Upon
seeing the context Xt, the learner chooses an action At and collects reward Yt(At). Let r∗(x, a) = E[Y (a) | x]
and let π∗ be the optimal policy such that π∗(x) ∈ arg maxa∈A r

∗(x, a).
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The quantity of interest throughout this paper is the average value of the optimal policy, defined as

V ∗ := E Y (π∗(X)) = EX maxa∈A r∗(X, a) (1)

For an arbitrary policy π : X → A, we define V π = E Y (π(X)). A typical objective in contextual bandits is
to minimize regret RegT (π1:T ) =

∑
t∈[T ] V

∗ − V πt . While our focus will be estimation of the quantity V ∗,

we will consider the regret problem in applications of our results (Section 4.1).

We restrict our attention to the linear contextual bandit, which is a well-studied sub-class of the general
setting described above (Auer, 2002; Chu et al., 2011; Abbasi-Yadkori et al., 2011). We assume that there is
a known feature map ϕ : X ×A → R

d and unknown parameter vector θ ∈ R
d such that r∗(x, a) = ⟨ϕ(x, a), θ⟩

for all x ∈ X and a ∈ A. As in standard CB settings, we consider the case where |X | is prohibitively large
(i.e. infinite) and d≪ |X |, but d can still be very large (e.g. on the order of T ). As is standard, we assume
that the noise η(a) := Y (a)−r∗(X, a) is independent of X and sub-Gaussian with ∥η∥ψ2

≤ σ = O(1), and the
features ϕ(X, a) are sub-Gaussian with ∥ϕ(X, a)∥ψ2 ≤ τ = O(1). We will assume that E[ϕ(X, a)] = 0 for any
fixed a ∈ A. For the results of Section 3, this is easily relaxed; however, for Section 4, there are a number of
potential ways to deal with non-zero mean arms that may be lead to varying degrees of approximation error.
We maintain mean zero for simplicity and defer further discussion to the relevant sections. Finally, in order
to enable non-trivial results (see justification in Section 3.1), we will consider well-conditioned distributions.

Assumption 1. The covariance matrices given by Σa := EX

[
ϕ(X, a)ϕ(X, a)⊤] and

Σa,a′ = EX

[
(ϕ(X, a)− ϕ(X, a′)) (ϕ(X, a)− ϕ(X, a′))

⊤
]

for a ̸= a′ are known. The minimum eigenvalue of the average covariance matrix of all actions a ∈ [K] is
bounded below by a positive constant λmin(Σ) ≥ ρ > 0 where Σ := 1

K

∑
a∈[K] Σa.

The assumption that the covariances are known is made for simplicity of the exposition, as many of our results
continue to apply if the covariances are unknown but there is access to Õ(d) samples of unlabeled contexts X,
which allows for sufficiently accurate estimation of the necessary covariances. We provide thorough details
and derivations of this extension in Appendix F. This is common in many applications where there exist
data about the target context population (such as customers or patients), but with no actions or rewards e.g.
in bandits (Zanette et al., 2021; Kong et al., 2020) and active and semi-supervised learning (Hanneke, 2014;
Singh et al., 2008). Interestingly, for our model selection results, no additional unlabeled data is required at
all (see Theorem 3 and Appendix D.1).

3 Information-Theoretic Results

Our first order of business is to make progress towards a sample complexity characterization of the formal V ∗

estimation problem. We are interested in understanding under what conditions it is possible to achieve sample
complexity that scales sublinearly as

√
d in an information-theoretic sense. Kong et al. (2020) showed that

Ω(K
√
d/ϵ2) samples were necessary even in the Gaussian case, but our general setting is a major departure

from their work. We will find that in general the linear structure and well-conditioning (Assumption 1)
are essentially necessary to avoid linear dependence on d. We will then move on to our first major result,
a moment-based algorithm that achieves Õ(2C

′

K/ϵ
√
d/ϵ5) sample complexity, resolving affirmatively and

constructively the question of whether sublinear estimation in d is information-theoretically possible in these
general distributions.

While the exponential dependence on ϵ−1 is undesirable and we ultimately provide a more practical approx-
imation in Section 4, we believe the sample complexity result of this section is important to characterize for
two reasons. (1) The results provide first steps of a characterization of the exact problem of estimating V ∗

to arbitrary accuracy rather than approximations of it. (2) The algorithm and theorem serve as theoretical
evidence that sublinear estimation of V ∗ is possible in the first place. Prior to this, it was not clear whether
this was possible, regardless of ϵ dependence. This can serve as a stepping stone towards improved analyses.
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Algorithm 1 Moment-Based Estimator

1: Input: Number of samples n, failure probability δ, degree t, coefficients {cα}|α|≤t of polynomial approx-
imator pt.

2: Define q = 48 log(1/δ), m = n
q , initialize empty datasets D1, . . . , Dq

3: Whiten features with ϕ(·) = Σ−1/2ϕ(·).
4: for k = 1, . . . , q do
5: for i = 1, . . . ,m do
6: Sample independently xki ∼ D and aki ∼ Unif[K]. Receive reward yki .
7: Set ϕki = ϕ(xki , a

k
i ).

8: Add tuple (ϕki , y
k
i ) to Dk.

9: end for
10: end for
11: for α such that s := |α| ≤ t do
12: Compute independent moment estimators ∀k = 1, . . . , q:

Ŝkm,α :=
1(
m
s

)
∑

ℓ∈([m]
s )

EX

∏

j∈[s]

〈
ykℓj
ϕkℓj

, ϕ(X, a(j))
〉

(2)

13: Set Ŝn,α ← median{Ŝkm,α}qk=1.
14: end for
15: Return Ŝn :=

∑
α : |α|≤t cαŜn,α.

3.1 Hardness Results

A natural starting point is the classical K-armed bandit problem where r∗(x, a) is independent of x (and
for this part only we assume that the means are non-zero). It is not immediately clear whether one can
estimate V ∗ with better dependence on either K or ϵ. Proposition 3.1 implies that, for V ∗ to be estimable,
the bandit must also be learnable. See Appendix A for a formal statement. Proposition 3.2 shows Ω(d)
samples necessary for linear contextual bandits when Assumption 1 is violated.

Proposition 3.1. [informal] There exists a class of K-armed bandit problems such that any algorithm that
returns an ϵ-optimal estimate of V ∗ with constant probability must use Ω(K/ϵ2) samples.

Proposition 3.2. There exists a class of linear contextual bandit problems with ϕ : X ×A → R
d and K ≥ d

such that Assumption 1 is violated and any algorithm that returns an ϵ-optimal estimate of V ∗ with probability
at least 2/3 must use Ω(d/ϵ2) samples. Under the same assumption, there exists a class of problems with
K = 2 and an absolute constant c, such that any algorithm that returns an c-optimal estimate of V ∗ with
probability at least 2/3 must use Ω(d) samples.

These lower bounds suggest that, without more structure, V ∗ estimation is no easier than learning the
optimal policy itself. One might wonder then if a sublinear in d sample complexity is possible at all without
a Gaussian assumption. In the following section, we answer this affirmatively.

3.2 A Moment-Based Estimator

We now present, to our knowledge, the first algorithm that achieves sublinear sample complexity in d by
leveraging the well-conditioning of the covariance matrices (Assumption 1). We remark that the method of
Kong et al. (2020) crucially leveraged a Gaussian assumption which meant the problem could be specified
solely by a mean and covariance matrix, thus easing the task of estimation. Such steps are unfortunately
insufficient to generalize beyond Gaussian cases, where we are likely to be dealing with distributions that
are far more rich than what can be specified by a covariance matrix alone. These limitations motivate a
fundamentally new approach, which we present here.
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We present the full algorithm for V ∗ estimation with general distributions in Algorithm 1. The main idea is
to first consider a tth-order K-variate polynomial approximation of the K-variate max function, and reduce
the problem to estimating the expectation of the polynomial. We define such an approximator generically
as in the definition to follow.

As an important note, while we will state all bounds in terms of K to explicitly showcase dependencies in
this section, we will generally assume K is small or constant when discussing the significance of results.

Definition 3.3. Consider a t-degree polynomial pt : [−1, 1]K → R written as pt(z1, . . . , zK) =∑
|α|≤t cα

∏
a∈[K] z

αa
a where z ∈ [−1, 1]K , α is a multiset given by α = {α1, . . . , αK} for αa ∈ N, and

we denote |α| =
∑
a∈[K] αa. We say that pt is a (ζ, cmax)-polynomial approximator of the K-variate max

function on a given CB instance if it satisfies the following conditions:

1. supx∈X |pt(z1(x), . . . , zK(x))−max{z1(x), . . . , zK(x)}| ≤ ζ where za(x) = ⟨θ, ϕ(x, a)⟩ and

2. |cα| ≤ cmax for all multisets α with |α| ≤ t.

Many such polynomial approximators exist and we will discuss several examples shortly with various trade-
offs. Algorithm 1 proceeds by estimating the quantity EX [pt({⟨θ, ϕ(X, a)⟩}a∈A)] which is guaranteed to be
ζ-close to V ∗ if pt satisfies Definition 3.3. We achieve this by estimating individual α-moments between
the {⟨θ, ϕ(X, a)⟩}a∈A random variables using Equation (2) 3 . The intuition is that there are

(
m
|α|
)

ways to

construct independent unbiased estimators of θ in a single term. This step turns out to be crucial for the proof
as we show that only sublinear in d samples are sufficient to get accurate estimation of each Sα (Theorem 5
in Appendix B). This follows from a novel variance bound on the individual estimators (Lemma B.1). Before
proceeding, we state several technical assumptions specific to the guarantee of this estimator.

Assumption 2. There exists a constant L > 0 such that for any v, u ∈ R
d,

E

[
⟨ϕ(X, a), v⟩2 ⟨ϕ(X, a), u⟩2

]
≤ L · E

[
⟨ϕ(X, a), v⟩2

]
E

[
⟨ϕ(X, a), u⟩2

]

for all a ∈ A.

Assumption 3. For all a ∈ A and x ∈ X , it holds that ⟨ϕ(x, a), θ⟩ ∈ [−1, 1].

Assumption 2, which is also made in linear regression (Kong & Valiant, 2018), is a Bernstein-like condition
which says that the fourth moments are controlled by the second moments. However, it is milder as we do not
require all moments to be controlled. It can also be easily shown to follow from standard hypercontractive
conditions (Bakshi & Prasad, 2021). Assumption 3 is a simple boundedness assumption that is almost
universal in bandit studies. We furthermore assume that all moments up to degree t of ⟨ϕ(X, ·), v⟩ for any
v ∈ S

d−1 are known or can be computed. Such knowledge could come from a large collection of unlabeled or
non-interaction batch data (as we demonstrate in Section 4.1.2). Our main technical result of this section,
stated below, shows that it is indeed possible to estimate V ∗ to accuracy up to the polynomial approximation
with sample complexity that scales as

√
d using Algorithm 1.

Theorem 1. Let Assumptions 1, 2, and 3 hold. Let pt be a t-degree (ζ, cmax)-polynomial approximator and
let Ŝn be the output of Algorithm 1. Suppose that n ≥ 96 log(1/δ)t. There is a constant C > 0, depending
only on τ , σ, and L, such that with probability at least 1− t(et/K + e)Kδ, |V ∗ − Ŝn| is bounded by

ζ + cmaxt (et/K + e)
K∑t

s=1

(
Ct3

√
d

n log(1/δ)
)s/2

The crucial aspect to note in the bound of Theorem 1 is that d only appears in terms that are polynomial in√
d
n , in contrast to the typical dn rates required for estimating θ itself or learning the optimal policy (Chu et al.,

2011). As we will see in examples, this readily translates to a sample complexity bound whose dependence

3Note that in (2), for the multiset α of size s := |α| and j ∈ [s], we use a(j) to mean the action a(j) = max{a′ :
∑

b<a′
αb ≤

j}. That is to say, if we considered the tuple (ϕ(X, 1), . . . , ϕ(X, 1), ϕ(X, 2), . . . , ϕ(X, 2), . . . , ϕ(X, K)) where ϕ(X, a) is repeated
αa times, ϕ(X, a(j)) refers to the jth element of this tuple.
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on d is only
√
d and dependence on ϵ and K depends on the instantiation of the polynomial approximator pt.

Another interesting observation is that, as far as estimation error is concerned, we have avoided exponential
dependence on t, which is an easy pitfall because the variance of monomials can easily pick up order Θ(2t).
Here, this is avoided as long as n ≳ t3

√
d log(1/δ), which makes each term in the summation less than 1 and

thus they are smaller for larger s ∈ [t]. The factor 1/ns/2 acts as a modulating effect for any terms that also
pick up exponential in s

2 dependence. Our solution to this is one of the primary technical novelties of the
proof and is a critical consequence of Lemma B.1. This makes Theorem 1 a fairly modular result: we may
plug-in polynomial approximators to observe problem-specific trade-offs between ζ and cmax.

We will now use Theorem 1 to prove that it is indeed possible to estimate V ∗ in the unlearnable regime with
sample complexity sublinear in d in general cases. Specifically, it is possible to estimate V ∗ even when d≫ n,
i.e. for high-dimensional problems. We do this by instantiating several example polynomial approximators.
We start with the most general version of this result, which does not rely on any additional structure in the
bandit problem beyond what’s needed in Theorem 1.

Example 3.4. Consider a generic contextual bandit satisfying the assumptions of Theorem 1. There exists
a t-degree polynomial approximator pBBL

t (named after Bagby et al. (2002)) satisfying Definition 3.3 with

ζ = CK

t and cmax = (2et)2K+123t

KK where CK is a constant that depends only on K (see Lemma B.4 for a
formal existence statement).

Corollary 3.5. The estimator Ŝn generated by Algorithm 1 with polynomial pBBL
t satisfies |V ∗ − Ŝn| ≤ ϵ

for ϵ < 1 with probability at least 1− δ, t = 2CK/ϵ, and sample complexity

O
((

CK
Kϵ

)K
2CK/ϵ · K

√
d

ϵ5
· log

(
CK
ϵδ

))
. (3)

Corollary 3.5 has only a
√
d dependence in the sample complexity of the estimation task, showing sublinear√

d sample complexity is possible in the unlearnable regime when d ≫ n, a broader set of situations. The
exponential dependence on ϵ−1, K, and CK is undesired, but still illustrates that interesting behavior is
possible. In particular, consider the case where K and ϵ−1 are constant (and thus CK is also constant)
such as K = 2 and ϵ = 0.1. Our result suggests that, for large d, it is possible to estimate V ∗ to within
0.1 accuracy in fewer samples than there are parameters. Recall that a plug-in estimator would require at
least d samples to achieve a non-trivial guarantee even if K and ϵ−1 are constant. An alternative view is to
consider the asymptotic regime, as n→∞, in which we require only that

√
d/n→ 0 ensures convergence in

probability, while classical bounds would require that d/n→ 0.

One might wonder if K and ϵ−1 dependence can be substantially improved while maintaining the same level of
generality. One possible solution is to ask if a better polynomial approximator exists since Theorem 1 should
be sufficient as long as cmax and ζ can be properly controlled in Definition 3.3. Unfortunately, for the most
general polynomials it is well-known that the 2t order of cmax is essentially tight even for K = 1 (Markov,
1892; Sherstov, 2012). While we conjecture that this is in general unimprovable, it remains an important
open question to understand. The intuition developed here may serve as a possible stepping-off point for
future work to resolve it.

Despite exponential dependence in this most general setting, we can actually achieve much stronger results
by employing better polynomial approximators in interesting special cases. Our next example shows that
certain contextual bandits can be handled by special case polynomials that have tighter bounds on the
coefficients. In this case, we have sublinear

√
d dependence and purely polynomial dependence on 1/ϵ which

comes as a result of the refined polynomial approximator.

Example 3.6. Consider a CB problem satisfying the conditions of Theorem 1 where θ ∈ R
d is a vector

of all zeros except at some unknown coordinate i∗ where θi∗ = ω ∈ [−1, 1] and |ω| = Ω(1). Furthermore,
ϕi(x, a) ∈ {−1, 0, 1}, where ϕi denotes the ith coordinate of ϕ, and for each (i, x, a) tuple, there is another
a′ such that ϕi(x, a) = −ϕi(x, a′). Then, there exists a K-degree polynomial pbin

K satisfying Definition 3.3 on
this instance with ζ = 0 and cmax = |ω|−K .

Corollary 3.7. On the class of problems in Example 3.6, Ŝn with pbin
K satisfies |V ∗− Ŝn| ≤ ϵ for ϵ < 1 with

probability at least 1− δ and sample complexity O
(
K822K ·

√
d
ϵ2 · log

(
2K
δ

))
.
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Algorithm 2 Estimator of Upper Bound on V ∗

1: Input: Number of interactions n, failure probability δ.
2: Set m = n

2 .
3: Initialize empty dataset D.
4: Whiten features with ϕ(·) = Σ−1/2ϕ(·).
5: for i = 1, . . . , n do
6: Sample independently xi ∼ D and ai ∼ Unif[K]. Receive reward yi
7: Add tuple (xi, ai, yi) to D
8: end for
9: Split dataset D evenly into {xi, ai, yi}i∈[m] and {x′

i, a
′
i, y

′
i}i∈[m].

10: Compute estimators θ̂ = 1
m

∑
i∈[m] yiϕ(xi, ai) and θ̂′ = 1

m

∑
i∈[m] y

′
iϕ(x′

i, a
′
i)

11: for a, a′ ∈ [K] such that a ̸= a′ do

12: Set β̂a,a′ := θ̂⊤Σa,a′ θ̂′

13: end for
14: Λ̃ = arg minλ∈SK

+
maxa̸=a′ |λa,a + λa′,a′ − 2λa,a′ − β̂a,a′ |

15: Return Û = Emaxa∈[K] Z̃ where Z̃ ∼ N (0, Λ̃)

Gaussian processes, symmetric Bernoulli processes, and spherical distributions in R
dK , as well as all rota-

tions and linear combinations. There are indeed counterexamples, but, they involve specialized couplings
of {⟨ϕ(X, a), v⟩} based on hard truncations that are unlikely to be generated in a linear CB setting (see
Appendix C.2 for details).

Theorem 2. Under Assumptions 1 and 4, there are absolute constants C1, C2 > 0 and a Gaussian process
(Za)a∈[K] with U = Emaxa Za such that V ∗ ≤ C1·U ≤ C2·V ∗√logK. Furthermore, for δ ≤ 1/e, Algorithm 2

produces Û such that with probability at least 1 − δ, |U − Û | ≤ O
(√

∥θ∥ log(K/δ)

n1/4 + d1/4 log3/2(dK/δ)√
n

)
. If the

process ϕ(X, ·) happens to be Gaussian, we have V ∗ = U and Û estimates V ∗ exactly.

The proof of Theorem 2 is contained in Appendix C.1. Despite the fact that the majorizing process Z is
unknown due to θ being unknown, we show that our novel procedure of estimating the increments βa,a′ at a
fast rate is sufficient. The norm ∥θ∥ is problem-dependent (and may be 0 – see Section 4.1). Note that U is
an adaptive upper bound: it is exactly V ∗ whenever ϕ(X, ·) is a Gaussian process, so we are able to exactly
estimate V ∗ in the Gaussian and non-disjoint setting. The tightness of the bound changes with the quality
of the Gaussian approximation. A notable case when the approximation might be poor is in the symmetric
Bernoulli case ϕ(X, a) ∼ Unif{−1, 1}d, and θ = (1, 0, . . . , 0)⊤, in which case V ∗ = Θ(1) but U = Θ(

√
logK).

Here our estimation is loose by a
√

logK factor. Theorem 2 shows that this symmetric Bernoulli example
is the worst case, and U itself is at worst bounded by O(V ∗√logK). In Appendix C.3, we discuss possible
ways of relaxing the assumption that the features have zero mean.

4.1 Applications

To demonstrate the usefulness of upper bounds on V ∗ and the estimator of Section 4, we consider several
important applications. We emphasize that the remaining results will all hold for unknown covariance
matrices estimated from data alone.

4.1.1 Model Selection with Many Actions

Model selection for linear contextual bandits is attracting recent interest (Agarwal et al., 2017; Foster et al.,
2019). Lee et al. (2021) posited that fast V ∗ estimators could improve model selection regret guarantees. We
now show how Theorem 2 can be assist this goal. Following a similar setup to that of Foster et al. (2019),
we consider two nested linear function classes F1 and F2 where Fi = {(s, a) 7→ ⟨ϕi(s, a), θ⟩ : θ ∈ R

di}.
Here, ϕi maps to R

di where d1 < d2, and the first di components of ϕ1 are identical to ϕ2: aka the function
classes are nested, i.e. F1 ⊆ F2. The objective is to minimize regret, as defined in the Preliminaries, over T
online rounds. We assume that F2 realizes r∗. If F1 also realizes r∗, we would ideally like the regret to scale

9
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Algorithm 3 Treatment Effect Test

1: Input: Number of interactions n, failure probability δ, unlabeled contexts {x̃j}j∈[p]

2: Set n′ = n
2 .

3: Compute Σ̂a = 1
p

∑p
i=1 ϕ(x̃j , a)ϕ(x̃j , a)⊤ for all a ∈ A2.

4: Compute Σ̂a,a′ = 1
p

∑p
i=1 (ϕ(x̃j , a)− ϕ(x̃j , a

′)) (ϕ(x̃j , a)− ϕ(x̃j , a
′))⊤

for all a, a′ ∈ A2 with a ̸= a′.

5: Compute Σ̂ = 1
|A1|p

∑p
i=1

∑
a∈A1

ϕ(x̃i, a)ϕ(x̃i, a)⊤.

6: Initialize empty dataset D
7: for i = 1, . . . , n do
8: Sample independently xi ∼ D and ai ∼ Unif A1. Receive reward yi
9: Add tuple (xi, ai, yi) to D

10: end for
11: Split dataset D evenly into {xi, ai, yi}i∈[n′] and {x′

i, a
′
i, y

′
i}i∈[n′].

12: Compute estimators θ̂ = Σ̂−1
(

1
n′

∑
i∈[n′] yiϕ(xi, ai)

)
and θ̂′ = Σ̂−1

(
1
n′

∑
i∈[n′] y

′
iϕ(x′

i, a
′
i)
)

13: for a, a′ ∈ [K] such that a ̸= a′ do

14: Set β̂a,a′ := θ̂⊤Σ̂a,a′ θ̂′

15: end for
16: Λ̃ = arg minλ∈SK

+
maxa̸=a′ |λa,a + λa′,a′ − 2λa,a′ − β̂a,a′ |

17: Return Û = Emaxa∈[K] Z̃ where Z̃ ∼ N (0, Λ̃)

with d∗ := d1 instead of d2, as d1 ≪ d2 potentially. If F1 does not realize r∗, then we accept regret scaling
with d∗ = d2. Since the class of minimal complexity that realizes r∗ is unknown, model selection algorithms
aim to automatically learn this online. Our improved estimators for upper bounds on V ∗ imply improved
rates for model selection and are particularly attractive in their leading dependence on K.

Our algorithm, given in Algorithm 4 in Appendix D, resembles that of Foster et al. (2019) where we in-
terleave rounds of uniform exploration and rounds of running Exp4-IX (Neu, 2015) with a chosen model
class. The key difference is statistical: we rely on a hypothesis test that reframes estimation of the
value gap between the two model classes as a V ∗ estimation problem. The high-level intuition is as fol-
lows. Let V ∗

1 and V ∗
2 denote the maximal achievable policy values under F1 and F2 respectively. Define

θi = arg minθ∈Rdi
1
K

∑
a∈A(⟨ϕi(x, a), θ⟩−r∗(x, a))2. We show that the gap between the two values is bounded

V ∗
2 − V ∗

1 ≤ Emaxa∈[K]

〈
ϕ2(X, a), θ2 − (θ1, 0)⊤〉+ Emaxa∈[K]

〈
ϕ2(X, a), (θ1, 0)⊤ − θ2

〉
(4)

The key observation is that the summands on the right are just V ∗ values but for a new CB problem where
the parameter is the difference of optimal parameters of the original CB. Theorem 2 shows that we can
find a majorizing Gaussian process and an upper bound U on each summand5. We can then conclude that
V ∗

2 − V ∗
1 ≤ 2U . Now consider the case where F1 realizes r∗. If this is true, then the V ∗ of the new CB

problem is equal to zero. Consequently Theorem 2 would imply that U = 0 too. Thus, if we can estimate
U at a fast rate, we can decide quickly whether F1 realizes r∗. This is precisely what the second part of
Theorem 2 allows us to do. In the end, Theorem 3 shows our dependence on K in the leading term is only
logarithmic in the leading term, which improves exponentially on the poly(K) factor in Foster et al. (2019).

Theorem 3. With probability at least 1− δ, Algorithm 4 achieves

RegT = O
(
d

1/4
∗ T 2/3 log3/2(d∗TK/δ) log1/2(K)

)
+O

(√
d∗KT log(d∗) · log(d∗TK/δ)

)
(5)

4.1.2 Testing for Treatment Effect

When designing experiments, one must often determine which treatments, or actions, to include in a given
problem. In many cases, such as Mandel et al. (2017); Chaiyachati et al. (2018), choosing from a certain

5In this case, the upper bound U happens to be the same for both summands.
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Synthetic Testing Experiments. To demonstrate the effectiveness and practicality of our proposed
method for testing treatments, we conducted numerical experiments comparing our test with a plug-in
linear regression (LR) baseline. We simulated a high-dimensional contextual bandit learning setting with
|A1| = 3 actions and |A2| = 2 and d = 600 features. Note that this remains in the sublinear regime due to
the fact that the number of samples n never exceeds d.

We first evaluated the methods in the no-effect setting (∆ = 0) where coordinates of θ were set to 0 so as
to limit any advantage gained from A2. We then sampled θ with a positive value of ∆ and ran the same
experiment. Figure 2 shows ours performs strictly better than a plug-in regression baseline at detecting
effects while still maintaining a comparable false positive rate when there is no effect. Details to reproduce
the experiments can be found in Appendix H.

Testing for Warfarin Treatment Effect. In this section, we apply our method to the problem of testing
for treatment effect in warfarin dosages. Warfarin is an anticoagulant drug that is commonly prescribed to
patients at risk of blood clots. It is important to get the correct dose of warfarin because incorrect dosages can
lead to serious side effects. The Pharmacogenetics and Pharmacogenomics Knowledge Base (PharmGKB)
provides a publicly available dataset of patient covariates as well as their final dosages, which might be noisy
or slightly suboptimal. In this experiment, the doses were grouped into discrete actions of low, medium, and
high based on the original data. We viewed the contextual bandit as giving a reward of +1 if the learner
selects the correct dose for a patient from A = {low,medium,high} and +0 otherwise. We consider the
following simplified testing problem. Given a fixed baseline action a ∈ A, does incorporating another target
action a′ ∈ A such that a ̸= a′ significantly improve outcomes on average over simply applying a to all
patients? Note that this question asks more than just whether a′ is better than a if applied uniformly to all
patients. This is because a′ could be applied to only some patients who would significantly benefit from a′

over a while others are still able to receive a, thus boosting the overall effectiveness.

To evaluate this, we considered each baseline action in a ∈ A and paired it with a target action a′ ∈ A to
evaluate if more can be gained form a′. There are 3! such permutations. We computed (approximately) the
ground truth improvement ∆ under a linear model (which may be misspecified for this real world data).
Note that ∆ will always be non-negative (up to noise), but it may be very small. This dataset happens to
induce a disjoint linear bandit; however, we must still deal with the issue of sub-Gaussian features. We ran
both a naive linear regression and our algorithm to estimate the effect size, varying the amount of labeled
data given 4560 unlabeled samples. The right plot in Figure 2 shows the number of labeled samples required
before the effect is detected for a given effect size. Recall that the effect size is determined by the selection
of the baseline a and target a′. If a method does not detect the effect with the labeled data, it is denoted by
ND. We include dashed vertical lines indicating the effect sizes that were evaluated. Ideally, we should see
points in the top left corner when there is no effect, and then points converging to the bottom right corner
(easy to detect large effect sizes). Our method can detect the effects significantly faster by leveraging the
more sensitive test and unlabeled data. We caution that these results are proof-of-concept and should not
be misconstrued to suggest that a single dosage of warfarin is adequate for all patients.

5 Discussion

In this paper, we studied the problem of estimating the optimal policy value in a linear contextual bandit in
the unlearnable regime. We considered this beyond the Gaussian case and presented estimators for both V ∗

and informative upper bounds on V ∗. In particular, we showed information-theoretically that a sublinear
in d sample complexity of Õ(2C

′

K/ϵ
√
d/ϵ5) is possible for estimating V ∗ directly, given lower-order moments.

To circumvent the exponential dependence, we also gave an efficient Õ(
√
d/ϵ2) algorithm for estimating

upper bounds and demonstrated its utility by achieving novel guarantees for model selection and testing.
There are several open questions for future work. We conjectured that the exponential dependence on ϵ−1

in Corollary 3.5 is unimprovable in general; however, it remains a difficult open problem to verify this. It
would also be interesting to explore how the sample complexity degrades if some quantities were estimated
without unlabeled data.
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A Proofs of Results in Section 3.1

A.1 Formal Analysis of Multi-Armed Bandit Lower Bound

In an effort to prove sublinear sample complexity bounds for V ∗ estimation in bandit problems, a natural
starting point is the classical K-armed bandit problem where r∗(x, a) is independent of x (and for this part
only we assume that the means are non-zero), equivalently represented as a mean vector µ ∈ R

K . The
feedback is the same: Y (a) = µa + η(a). In this case, V ∗ is defined as V ∗ = maxa µa.

One might ask whether it is possible to estimate V ∗ with better dependence on either K or ϵ than what
is typically required to, for example, identify the best arm or identify an ϵ-optimal arm. The following
proposition asserts that such a result is not possible.

Proposition A.1. There exists a class of K-armed bandit problems satisfying ∥µ∥1 = O(1) such that any
algorithm that returns an ϵ-optimal estimate of V ∗ with probability at least 2/3 must use Ω(K/ϵ2) samples.

The result is fairly intuitive: since there is no shared information between any of the arms, the learner must
essentially sample each arm sufficiently to accurately determine the maximal value.

Proof. The proof of the lower bound for the K-armed bandit problem follows a standard argument via Le
Cam’s method. Let V̂n denote the output of a fixed algorithm A after n interactions with the bandit that
achieves |V̂n − V ∗| ≤ ϵ with probability at least 2/3. We let ν and ν′ denote two separate bandit instances,
determined by their distributions.

For shorthand, Pν and Pν′ denote measures under these instances for the fixed, arbitrary algorithm (and
similarly expectations Eν and Eν′). Na denotes the (random) number of times the fixed algorithm sampled
arm a.

We let ν be distributed as N (µa, 1) for all a where µ = (ϵ, 0, . . . , 0). Then, define a′ ∈ arg mina̸=1 Eν [Ta]
and let ν′ be distributed as N (µ′

a, 1) where µ′
a = µa for all a ̸= a′ and µ′

a′ = 4ϵ. We define the successful

events Eν = {V̂n ∈ [0, 2ϵ]} and Eν′ = {V̂n ∈ [3ϵ, 5ϵ]}.
By Le Cam’s lemma and Pinsker’s inequality,

Pν(Ecν) + Pν′(Eν) ≳ 1−
√
DKL(Pν , Pν′) (6)

where DKL(Pν , Pν′) ≲ Eν [Na′ ] ϵ2 ≤ nϵ2

K−1 Lattimore & Szepesvári (2018). It then follows that the probability
of the successful event is bounded as

Pν(Eν) ≤ Pν′(Eν) + C

√
nϵ2

K − 1
(7)

≤ Pν′(Ecν′) + C

√
nϵ2

K − 1
(8)

≤ 1

3
+ C

√
nϵ2

K − 1
(9)

for some constant C > 0. Thus, in order for Pν(Eν) ≥ 2/3 it must be that n ≥ (K−1)
9C2ϵ2 . It follows that any

algorithm that achieves such a condition must incur sample complexity Ω(K/ϵ2).

A.2 Proposition 3.2

Proof. Proof of the first lower bound. Fix algorithm A for the linear contextual bandit problem. Then
consider the class of d

2 -armed bandit problem with means vectors satisfying ∥µ∥ = O(1). From this class,

we construct the following class of linear contextual bandits. Let θ =

[
µ
−µ

]
∈ R

d. The set of contexts is
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X = {1, 2} and the feature map is defined as

ϕ(x, a) =

{
ea x = 1

−ea x = 2
(10)

where {e1, . . . , ed} ⊂ R
d denotes the set of standard basis vectors. Then, X = 1 and X = 2 each with

probability 1
2 . This ensures that Eϕ(X, a) = 0 for any fixed action a. Furthermore, ∥Xa∥ψ2

= Θ(1). Note
that V ∗ = Emaxa ⟨ϕ(X, a), θ⟩ = maxa µa.

Now we construct the reduction by specifying an algorithm B for the d
2 -armed bandit. At each round, B

samples X ∼ Unif{1, 2} and queries A for an arm A. Upon observing feedback Y (A) = µA + η(A), B feeds
Y (A) back to A if X = 1 and −Y (A) if X = 2. This process is repeated for n rounds and A outputs an
estimate V̂n, which B also outputs. If A outputs V̂n such that |V̂n − V ∗| ≤ ϵ for any given instance in the
linear contextual bandit then V̂n is also an ϵ-optimal estimate of maxa µa. Therefore, to satisfy |V̂n−V ∗| ≤ ϵ,
it follows that n = Ω(d/ϵ2).

Proof of the second lower bound. Here we prove the second statement of the proposition that even for
K = 2, it takes Ω(d) samples to estimate V ∗ up to small constant additive error c. The proof simply follows
from the hard instance for signal-noise-ratio (SNR) estimation problem in Theorem 3 of Kong & Valiant
(2018).

Let Qn(P) be the distribution of (x1, y1, . . . , xn, yn) such that (θ, σ,Σ) ∼ P , xi ∼ N(0,Σ), yi = xi + ηi,
ηi ∼ N(0, σ2). Let the null distribution P0 satisfies θ = 0,Σ = Id, σ

2 = 1 almost surely.

We define the alternative data distribution Qn(P1) as follows. First let a rotation matrix R be drawn from a

Haar measure over orthogonal matrices in R
(d+1)×(d+1). Given R, define matrix M = R

[
Id 0
0 0

]
R⊤. Then

we draw n i.i.d samples z1, z2, . . . , zn from Gaussian distribution N(0,M), and let xi = zi,1:d be the first d
coordinate of zi and, yi = zi,d be the last coordinate of zi. This definition will implicitly define a distribution
over Σ, θ, σ which is called P1.

Now we show that dTV (Qn(P0),Qn(P1)) ≤ 0.27 when n ≤ d/8.

Lemma A.2. Define product distribution D0 = N(0, Id)
⊗n, and D1 = N(0,M)⊗n where M =

R

[
Id−1 0

0 0

]
R⊤ and R is drawn from a Haar measure over orthogoal matrices in R

d×d. Then dTV (D0,D1) ≤
0.27 when n ≤ d/8.

Proof. Since the covariance M is randomly rotated, it is suffice to compute the total variation distance
between the Bartlett decomposition of D0 and D1. The Bartlett decomposition A(0) ∈ R

n×n of D0 has

A
(0)
i,i ∼ χ2

d−i+1 ∀i ∈ [n]

A
(0)
i,j ∼ N(0, 1) ∀i < j

A
(0)
i,j ∼ 0 ∀i > j

The Bartlett decomposition A(0) ∈ R
n×n of D1 has

A
(1)
i,i ∼ χ2

d−i ∀i ∈ [n]

A
(1)
i,j ∼ N(0, 1) ∀i < j

A
(1)
i,j ∼ 0 ∀i > j

Therefore

dTV (D0,D1) = dTV (χ2
d−1 × . . .× χ2

d−n, χ
2
d × . . .× χ2

d−n+1).
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To establish a total variation distance bound, we will first bound the chi-square divergence

χ2(χ2
d × . . .× χ2

d−n+1, χ
2
d−1 × . . .× χ2

d−n)

=(χ2(χ2
d, χ

2
d−1) + 1) · . . . (χ2(χ2

d−n+1, χ
2
d−n) + 1)− 1

=

(
2(d−1)/2Γ((d− 1)/2)

2d/2Γ(d/2)

)2

. . .

(
2(d−n)/2Γ((d− n)/2)

2(d−n+1)/2Γ((d− n+ 1)/2)

)2

· (d− 1) . . . (d− n)− 1

=
Γ2((d− n)/2)

2nΓ2(d/2)
· (d− 1) . . . (d− n)− 1

WLOG, assume that d is a multiple of 4 and that n is a multiple of 2. Then

Γ2((d− n)/2)

2nΓ2(d/2)
· (d− 1) . . . (d− n)− 1

=
(d− 1)(d− 2) . . . (d− n)

(d− 2)2(d− 4)2 . . . (d− n)2
− 1

=
(d− 1)(d− 3) . . . (d− n+ 1)

(d− 2)(d− 4) . . . (d− n)
− 1

= (1 +
1

d− 2
)(1 +

1

d− 4
)(1 +

1

d− n )− 1

≤ (1 +
1

d/2
)n/2 − 1 ≤ e1/4 − 1.

Now using the fact that

dTV (D1,D0) ≤
√
χ2(D1,D0)

2
.

We get

dTV (D1,D0) ≤
√
e1/4 − 1/2 ≤ 0.27

Under P1, y is a linear function of x almost surely, and the variance y is 1−R2
d+1,d+1. Since Rd+1 is an entry

of a unit norm random vector, for sufficiently large d, it holds that 1 − R2
d+1,d+1 ≥ 0.99 with probability

0.99.

We construct the alternative bandit instance using (θ, σ,Σ) ∼ P1, and for each arm a ∈ [2], define ϕ(X, a) ∼
N(0,Σ), Y (a) = θ⊤ϕ(X, a). It is easy to see that in this case, EV ∗ = Ω(1). The other bandit instance is a
simple “pure noise” example where ϕ(X, a) ∼ N(0, Id), Y (a) ∼ N(0, 1), and clearly EV ∗ = 0 since θ = 0.
For any bandit algorithm for estimating V ∗, after d/16 rounds, even if all the rewards (regardless of which
arm gets pulled) are shown to the algorithm the total variation distance is between the two example is still
bounded by 1/3 through Lemma A.2. Therefore, we conclude any bandit algorithm must incur Ω(1) error
for estimating V ∗ with probability at least 2/3 when n = c · d where c = 1/16.

B Proofs of Results in Section 3.2

B.1 Proof Mechanism

We give a brief sketch of the proof of Theorem 1. As mentioned, we reduce the problem to just estimating
EX [pt({⟨θ, ϕ(X, a)⟩}a∈A)], which gives us a ζ-accurate approximation of V ∗ via Definition 3.3. Note that
EX [pt({⟨θ, ϕ(X, a)⟩}a∈A)] =

∑
|α|≤t cα

∏
a EX ⟨ϕ(X, a), θ⟩αa is just a linear combination of all the α-moments

Sα := EX
∏
a ⟨ϕ(X, a), θ⟩αa . Recall that m is the sample size of the split dataset. In Lemma B.2 we show

that Ŝkm,α in Algorithm 1 is an unbiased estimator of Sα. We then show that the variance is bounded.
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Lemma B.1. There exist constants C > 0 so that var(Ŝkm,α) ≤∑s
u=1(Cs3m−1

√
d)u where s = |α|.

The proof of this variance bound is non-trivial and, as one might guess, Lemma B.1 does most of the heavy-
lifting in the proof Theorem 1. Observe that this step is where the

√
d/n rate is achieved (since n ≈ m up

to logarithmic factors). To achieve this, we must be careful not to leak
√
d factors into the variance bound

through, for example, hasty applications of Cauchy-Schwarz or sub-Gaussian bounds. This is achieved
through a Hanson-Wright-like inequality (Lemma B.3). Also, to prevent any exponential blow-ups in the
degree of the polynomial, we must ensure that any exponential terms in the numerator can be modulated
by mu in the denominator. This comes down to a careful counting argument. The last steps of the proof
revolve around using the variance bound to prove concentration.

B.2 Understanding the influence of polynomial approximation

Theorem 1 and Lemma B.1 provide some interesting observations about the influence of the polynomial ap-

proximation. One of the key terms to understand is the summation. Each term looks like
(
Ct3

√
d

n log(1/δ)
)s/2

for each s ∈ [t]. This means that as long as n > Ct3
√
d log(1/δ), this term is less than one and thus we have

|V ∗− Ŝn| ≤ O
(
ζ + cmaxt

2(et/K + e)K
√

Ct3
√
d log(1/δ)
n

)
Let us take K = O(1) for ease of exposition. Recall

that the first term (ζ) is the approximation error of the polynomial while the second term can be interpreted
as the effect of variance. The estimation error can be made ϵ

2 small by by taking

n = O
(
c2

maxpoly(t)

√
d log(1/δ)

ϵ2

)
.

The approximation error can be made ζ ≈ ϵ
2 small by choosing stronger polynomial approximators. However,

this is where the trade-off occurs. To obtain better polynomial approximators, we typically require that the
degree t increases accordingly. The magnitude of the coefficients cmax typically also increase (for very
general polynomial approximators). This means that there is a chance the sample complexity can increase
significantly if t and cmax are functions of the accuracy ϵ. While this does not affect the dependence on

√
d

(and thus the results remain sublinear), it can lead to worse ϵ-dependence. See Corollaries 3.5 and 3.7 for
instantiations.

B.3 Proof of Theorem 1

First note that the data-whitening pre-processing step does not contribute more than a constant to the
sample complexity since we reframe the problem as

r∗(x, a) = ⟨ϕ(x, a), θ⟩ =
〈

Σ−1/2ϕ(x, a),Σ1/2θ
〉

Observe ∥Σ1/2θ∥ ≲ ∥θ∥ since ϕ(X, a) ∼ subG(τ2) with τ = O(1). Also Σ−1/2ϕ(X, a) ∼ subG(τ2/ρ) where
τ2/ρ = O(1). Note that this means we must also linearly transform Σa and Σa,a′ for a, a′ ∈ A, but an
identical calculation shows that they are similarly unaffected up to constants. Therefore, without loss of
generality, we may simply take Σ = Id.

Next, we verify that Ŝkm,α for k = 1, . . . , ⌈48 log(1/δ)⌉ are unbiased estimators of the moments of interest.

Lemma B.2. Given Ŝkm,α defined in (2), it holds that EDk

[
Ŝkm,α

]
= EX

∏
a∈[K] ⟨θ, ϕ(X, a)⟩αa .
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Proof. We drop the superscript k notation denoting which of the datasets is being used as the argument is
identical. Fix ℓ ∈

(
[m]
s

)
as an s-combination of the indices [n]. Since the data in D is i.i.d, we have that

EDEX

∏

j∈[s]

〈
yℓjxℓj , ϕ(X, a(j))

〉
= EX

∏

j∈[s]

〈
ED

[
yℓjxℓj

]
, ϕ(X, a(j))

〉
(11)

= EX

∏

j∈[s]

〈
θ, ϕ(X, a(j))

〉
(12)

= EX

∏

a∈[K]

⟨θ, ϕ(X, a)⟩αa (13)

where the second equality uses the fact that EDxix
⊤
i = Id. for all i ∈ [m].

Next, we establish a bound on the variance in preparation to apply Chebyshev’s inequality.

Lemma B.1. There exist constants C > 0 so that var(Ŝkm,α) ≤∑s
u=1(Cs3m−1

√
d)u where s = |α|.

Proof. As before, we will drop the superscript k notation as the argument is identical for each independent
estimator. Let s = |α|.
By definition, the variance is given by

var
D

(
Ŝm,α

)
= ED

[
Ŝ2
m,α

]
− ED

[
Ŝm,α

]2

(14)

where

Ŝ2
m,α =

1
(
m
s

)2

∑

ℓ,ℓ′

EX,X′

∏

i∈[s]

〈
yℓi
xℓi
, ϕ(X, a(j))

〉
·
∏

i∈[s]

〈
yℓ′

i
xℓ′

i
, ϕ(X ′, a(i))

〉
(15)

ED

[
Ŝn,α

]2

= EX,X′

∏

a

⟨θ, ϕ(X, a)⟩αa ·
∏

a

⟨θ, ϕ(X ′, a)⟩αa (16)

where again ℓ and ℓ′ are s-combinations [n]. Similar to Kong & Valiant (2018), we can analyze the variance
as individual terms in the sum over ℓ and ℓ′:

EDEX,X′

∏

i∈[s]

〈
yℓi
xℓi
, ϕ(X, a(i))

〉
·
∏

j∈[s]

〈
yℓ′

i
xℓ′

i
, ϕ(X ′, a(i))

〉
(17)

− EX,X′

∏

a

⟨θ, ϕ(X, a)⟩αa ·
∏

a

⟨θ, ϕ(X ′, a)⟩αa (18)

There are two important cases to consider: (1) when ℓ and ℓ′ do not share any indices and (2) when there
is partial or complete overlap of indices.

1. No intersection of ℓ and ℓ′ In this case, we may see that there is no contribution to the variance
for this term due to independence:

EDEX,X′

∏

i∈[s]

〈
yℓixℓi , ϕ(X, a(i)

〉
·
∏

i∈[s]

〈
yℓ′

i
xℓ′

i
, ϕ(X ′, a(i))

〉
(19)

= EX,X′

∏

i∈[s]

〈
θ, ϕ(X, a(i))

〉
·
∏

i∈[s]

〈
θ, ϕ(X ′, a(i))

〉
(20)

= EX,X′

∏

a

⟨θ, ϕ(X, a)⟩αa ·
∏

a

⟨θ, ϕ(X ′, a)⟩αa (21)

This term simply cancels with −E
[
Ŝm,α

]2

.
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2. Partial or complete intersection of ℓ and ℓ′

In this case, there are some samples that appear twice. Let β = {(i, j) : ℓi = ℓ′
j} be the set of

indices that refer to the same sample in D. Also define γ, γ′ ⊂ [s] as the subsets of indices of ℓ and
ℓ′ respectively that are not shared.

The left-hand side of this term can be then be written as

EDEX,X′

∏

i∈[s]

〈
yℓi
ϕℓi
, ϕ(X, a(j))

〉
·
∏

j∈[s]

〈
yℓ′

j
ϕℓ′

i
, ϕ(X ′, a(i))

〉
(22)

= EX,X′

∏

(i,i′)∈β
EDn

[
y2
ℓi

〈
ϕℓi
, ϕ(X, a(i))

〉 〈
ϕℓi
, ϕ(X ′, a(i′))

〉]
(23)

×
∏

i∈γ

〈
θ, ϕ(X, a(i))

〉 ∏

i′∈γ′

〈
θ, ϕ(X ′, a(i′))

〉
(24)

To proceed, we require the following critical lemma which bounds separate moments in the factors
that come from shared indices. The proof given in Section G.

Lemma B.3. Let p ≥ 1 be an integer and define M = EDn

[
y2
ℓi
ϕℓi
ϕ⊤
ℓi

]
. There is a constant C such

that

(
EX,X′ |ϕ(X, a(i))

⊤Mϕ(X ′, a(i))|p
)1/p ≤ C · pτ2(σ2 + L∥θ∥2)

√
d (25)

Through standard sub-Gaussian arguments, we also have that, for p ≥ 1, it holds that(
E|
〈
θ, ϕ(X, a(i))

〉
|p
)1/p ≤ Cτ∥θ∥√p for some constant C > 0. And the same holds for the X ′

factors.

For convenience, let γ = (σ2 + L∥θ∥2) and let u = |β| ≤ s be the size of the overlap. By the
generalized Holder inequality, the term in (23) is upper bounded by




∏

(i,i′)∈β
EX,X′ |ϕ(X, a(i))

⊤Mϕ(X ′, a(i))|2s
∏

i∈γ
EX,X′ |

〈
θ, ϕ(X, a(i))

〉
|2s



1/2s

(26)

×



∏

i′∈γ′

EX,X′ |
〈
θ, ϕ(X ′, a(i′))

〉
|2s



1/2s

(27)

≤




∏

(i,i′)∈β
EX,X′ |ϕ(X, a(i))

⊤Mϕ(X ′, a(i))|2s



1/2s

(28)

≤ (C0 · (2s)τ2γ
√
d)u (29)

= Cu1 s
uτ2uγudu/2 (30)

where we have used Assumption 3 and C0, C1 > 0 are constants.

In summary, we have shown that there is no contribution to the variance when no indices are shared between
ℓ and ℓ′ and the contribution to the variance when m indices are shared is bounded by Õ(du/2). It suffices
now to count the terms to see the total contribution for each u = 1, . . . , s.

It can be checked that the number of terms where the size of the intersection u = |β| is

(
m

s

)(
s

u

)(
m− s
s− u

)
(31)

since there are s elements ℓ, u of which may have an intersection, and a remaining s − u elements to be
chosen for ℓ′ that are not shared with ℓ (recall that m ≥ 2s). Counting all of these contributions up, this
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implies that the variance can be bounded as

var
D

(
Ŝm,α

)
≤ 1
(
m
s

)2

s∑

u=1

(
m

s

)(
s

u

)(
m− s
s− u

)
Cu1 s

uτ2uγudu/2 (32)

≤
s∑

u=1

(
s
u

)(
m−s
s−u

)
(
m
s

) Cu1 s
uτ2uγudu/2 (33)

Now, will bound the factor involving binomial coefficients. First note that we have

(
s

u

)
≤ su

u!
and

(
m− s
s− u

)
≤ (m− s)s−u

(s− u)!
and

(
m

s

)
≥ (m− s+ 1)s

s!
(34)

Therefore,

(
m

s

)(
s

u

)(
m− s
s− u

)
≤ su(m− s)s−us!

u!(s− u)!(m− s+ 1)s
(35)

≤
(
s

u

)
su

(m− s)u (36)

≤
(
s

u

)
(2s)u

mu
(37)

≤
(

2es2

m

)u
(38)

where in the third line, we have used the fact that m = n/48 log(1/δ) ≥ 2t ≥ 2s. Then, we can conclude
that the variance is bounded as

var
D

(
Ŝm,α

)
≤

s∑

u=1

(
C2s

3τ2γd1/2
)u

(39)

where C2 > 0 is a constant. Since it was assumed that τ , σ2, L and ∥θ∥ are O(1), the final claim follows.

The error bound result on the median of the estimators follows almost immediately.

Theorem 5. There exists a constant C = O(1) for all k such that, with probability at least 2/3,

|Ŝkm,α − EŜkm,α| ≤ ϵ(m, d, s) (40)

where

ϵ(m, d, s) :=

s∑

u=1

(
Cs3
√
d

m

)u/2

(41)

Furthermore, defining Ŝn,α = median{Ŝkm,α}qk=1, with probability 1− δ,

|Ŝn,α − EŜkn,α| ≤ ϵ(m, d, s) (42)

Proof. The first statement follows immediately from Chebyshev’s inequality and the second applies the
median of means trick for the independent estimators {Ŝkm,α}qk=1 given the choice of q Kong et al. (2020)

B.3.1 Final Bound

We now combine the estimation and approximation error bounds to derive the final result, which is repro-
duced here.
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Theorem 1. Let Assumptions 1, 2, and 3 hold. Let pt be a t-degree (ζ, cmax)-polynomial approximator and
let Ŝn be the output of Algorithm 1. Suppose that n ≥ 96 log(1/δ)t. There is a constant C > 0, depending
only on τ , σ, and L, such that with probability at least 1− t(et/K + e)Kδ, |V ∗ − Ŝn| is bounded by

ζ + cmaxt (et/K + e)
K∑t

s=1

(
Ct3

√
d

n log(1/δ)
)s/2

Proof. We first start by bounding the full estimation error |EX [pt({⟨θ, ϕ(X, a)⟩}a∈A)]−Ŝn|. For convenience,
let us denote S = EX [pt({⟨θ, ϕ(X, a)⟩}a∈A)]. The degree 0 and degree 1 moments are already known exactly;
thus we may consider 2 ≤ s ≤ t. By the union bound and triangle inequality combined with the result of
Theorem 5, with probability at least 1− t(et/K + e)Kδ,

|S − Ŝn| ≤
∑

s∈[2,t]

α : |α|=s

cα|Ŝn,α − EŜkn,α| (43)

≤
∑

s∈[2,t]

α : |α|=s

cmaxϵ(n/q, d, s) (44)

For each s, there are
(
s+K−1
K−1

)
≤ (es/K + e)

K
monomials for possible choices of α. Therefore, the good event

implies that

|S − Ŝn| ≤ t (et/K + e)
K
cmax · ϵ(n/q, d, t) (45)

Next, we may apply the approximation error. By the triangle inequality

|Emax
a
⟨θ, ϕ(X, a)⟩ − Ŝn| ≤ ζ + t (et/K + e)

K
cmax · ϵ(n/q, d, t) (46)

B.4 Generic Polynomial Approximator in Example 3.4

Throughout this subsection only, we will use pt to refer to pbbl
t .

Lemma B.4. Let f : [−1, 1]K → R be defined as f(z) = maxa za. There exists a degree-t polynomial
pt : [−1, 1]K → R of the form in Definition 3.3 such that

sup
z∈[0,1]K

|f(z1, . . . , zK)− pt(z1, . . . , zK)| ≤ CK
t

(47)

for some constant CK that only depends on K. Furthermore, for t ≥ K, |cα| ≤ (2et)2K+123t

KK =: cmax for all
α such that |α| ≤ t.

Proof. It follows from Lemma 2 of Tian et al. (2017) that, for any 1-Lipschitz g supported on [0, 1]K , a
polynomial q(ẑ) =

∑
α : |α|≤t ĉα

∏
u∈α ẑ

u exists satisfying (47) with |cα| ≤ (2t)K2t := ĉmax and constant
CK

2 . The max function g is 1-Lipschitz and thus satisfies this condition. Let g(ẑ) = maxa ẑa and ẑa = za+1
2 .

Note that ẑ ∈ [0, 1]K by this definition and f(z) = 2g(ẑ) − 1. Furthermore p(z) = 2q(ẑ) − 1 degree t
polynomial such that p(z) =

∑
|α|≤t cα

∏
u∈α z

u. Therefore, for any z, |f(z)− p(z)| ≤ CK/t.
The coefficients cα are different from ĉα as a result of the change of variables. Note that there are∑t
s=0

(
s+K−1
K−1

)
≤ (t + 1)(et/K + e)K ≤ 2t(2et/K)K terms. Therefore |cα| ≤ (2et)2K+123t

KK . The value of
CK is given in equation (13) of Bagby et al. (2002).

Corollary 3.5. The estimator Ŝn generated by Algorithm 1 with polynomial pBBL
t satisfies |V ∗ − Ŝn| ≤ ϵ

for ϵ < 1 with probability at least 1− δ, t = 2CK/ϵ, and sample complexity

O
((

CK
Kϵ

)K
2CK/ϵ · K

√
d

ϵ5
· log

(
CK
ϵδ

))
. (3)
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Proof. To ensure that each term in the sum of Theorem 1 is at most ϵ
2t , it suffices to take

n = c2
maxt

4(et/K + e)2K · Ct
3
√
d log(1/δ)

ϵ2
(48)

for some constant C > 0. Then, choose t = max{2CK/ϵ,K}. Therefore,

n = O
(
CKc

2
max(4eCK/ϵ)

2K ·
√
d log(1/δ)

ϵ5

)
(49)

From the definition of cmax, this leads to

O
(

(4eCK/ϵ)
4K+2212CK/ϵ

K2K
· CK(4eCK/ϵ)

2K ·
√
d log(1/δ)

ϵ5

)

To ensure this event occurs with probability at least 1− δ′ we apply a change of variables with

δ′ = t(et/K + e)Kδ =
2CK(2eCK/ϵK + e)K

ϵ

Therefore the total sample complexity is

O
(

(4eCK/ϵ)
4K+2212CK/ϵ

K2K
· CK(4eCK/ϵ)

2K · K
√
d

ϵ5
· log

(
2CK(2eCK/ϵK + e)

ϵδ′

))

with probability at least 1− δ′.

B.5 Binary Polynomial Approximator in Example 3.6

Throughout this subsection only, we will use pK to refer to pbin

K .

Lemma B.5. There exists a polynomial pbin
K satisfying the conditions of Example 3.6.

Proof. From the description of the CB problem, we have that

V ∗ = EX max {⟨ϕ(X, 1), θ⟩ . . . , ⟨ϕ(X,K), θ⟩} (50)

where

max {⟨ϕ(X, 1), θ⟩ . . . , ⟨ϕ(X,K), θ⟩} =

{
ω ∃a ∈ [K] s.t. ⟨ϕ(X, a), θ/ω⟩ = 1

0 otherwise

= |ω|
(

1−
∏

a

(1− ⟨ϕ(X, a), θ/|ω|⟩)
)

Note that the right side is simply a K-degree polynomial function of {⟨ϕ(x, a), θ⟩} which we denote by pK so
there is zero approximation error. Furthermore, it can be easily seen that a bound on the largest coefficient
is |ω|−K due to the product of terms.

We now prove the corollary.

Corollary 3.7. On the class of problems in Example 3.6, Ŝn with pbin
K satisfies |V ∗− Ŝn| ≤ ϵ for ϵ < 1 with

probability at least 1− δ and sample complexity O
(
K822K ·

√
d
ϵ2 · log

(
2K
δ

))
.
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Proof. The proof is an essentially identical application of Theorem 1 as in the previous corollary. In this
case, we have t = K as the degree. Then, it suffices to choose

n = c2
maxt

4(et/K + e)2K · Ct
3
√
d log(1/δ)

ϵ2

to ensure the error of each term is at most ϵ/t. Then, with c2
max ≤ |ω|−K and t = K and the change of

variables to δ′ = t(et/K + e)Kδ, we get that the total sample complexity is

O
(
|ω|−2KK822K ·

√
d

ϵ2
· log

(
2K

δ′

))

with probability at least 1− δ′

B.6 Definition of CK

Bagby et al. (2002) define CK via the restriction of a holomorphic function to R
K , given by g : RK → R. In

particular, their Lemma A defines the quantity

Ik =
Kk

k!

∫
|w|k(|w|+ 1)|g(w)|dw

for the restriction function g. In our case, we have k = 1 (due to Lipschitzness). It is sufficient in their
Theorem 1 to ensure that I1

t , and thus CK

t , upper bounds the following quantity:

CR(tR+ 1)(2Rt)Ke
√
K(2R+1)δt

2−t

where C is an absolute constant (see their Lemma A), R is the l∞ length of the box (in this case R = 1), and
δ > 0 is such that

√
K(2R+ 1)δ ≤ log 2, and we recall that t is the degree of the polynomial approximator,

C Proofs of Results in Section 4

C.1 Proof of Theorem 2

Perhaps surprisingly, The result makes use of a combination of Talagrand’s comparison inequality (which
arises from Talagrand’s fundamental “generic chaining” approach in empirical process theory Talagrand
(2006)) and some techniques from Kong et al. (2020). Here, we state a version of Talagrand’s comparison
inequality that appears in Vershynin (2018).

Lemma C.1. Let (Wa)a∈[K] be a mean zero sub-Gaussian process and (Za)a∈[K] a mean zero Gaussian
process satisfying ∥Wa −Wa′∥ψ2

≲ ∥Za − Za′∥L2 . Then,

E max
a∈[K]

Wa ≲ E max
a∈[K]

Za (51)

By Assumption 4, note that

∥ ⟨ϕ(X, a)− ϕ(X, a′), θ⟩ ∥2
ψ2
≤ L2

0∥ ⟨ϕ(X, a)− ϕ(X, a′), θ⟩ ∥2
L2 (52)

Thus, we can define a Gaussian process Z ∼ N (0,Λ) that satisfies the condition in Talagrand’s inequality by
choosing its mean to be zero and its covariance matrix to match the increment of the original sub-Gaussian
process ϕ(X, ·). Note that such a process trivially exists since we can let Λ satisfy:

Λa,a′ = cov(Za, Za′) = E [⟨ϕ(X, a), θ⟩ ⟨ϕ(X, a′), θ⟩] (53)

Then, the first inequality in the theorem is satisfied with U = Emaxa∈[K] Za. The proof of the second
inequality is deferred to Section C.1.1.

Since θ is unknown, our goal now is to estimate the increment ∥ ⟨ϕ(X, a)− ϕ(X, a′), θ⟩ ∥2
L2 from samples.

Specifically, we aim to estimate the following quantity:
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• For all a, a′ ∈ [K] such that a ̸= a′, βa,a′ := E

[
⟨ϕ(X, a)− ϕ(X, a′), θ⟩2

]
= θ⊤Σa,a′θ where Σa,a′ =

E
[
(ϕ(X, a)− ϕ(X, a′)(ϕ(X, a)− ϕ(X, a′))⊤].

We can construct fast estimators for these quantities using similar techniques as those developed in Kong
& Valiant (2018). While a similar final result is obtained in that paper by Chebyshev’s inequality and
counting, here we present a version that is carried out with a couple simple applications of Bernstein’s
inequality. Algorithm 2 specifies the form of the estimator and the data collection procedure.

Lemma C.2. Fix a, a′ ∈ [K] such that a ̸= a′ and define ξ2 = τ2(τ2∥θ∥2 + σ2). Let δ ≤ 1/e. Given the
dataset Dn = {xi, ai, yi}, with probability at least 1− 3δ,

|β̂a,a′ − βa,a′ | ≤
√
ξ2∥Σ∥2∥θ∥2

C1m
· log(2/δ) +

√
ξ4∥Σ∥2d

C2m2
· log2(2d/δ) (54)

for absolute constants C1, C2 > 0.

Something to note about this result is that it depends on ∥θ∥. This is fairly common in sample complexity
results and bandits where the size of θ is akin to the scale of the problem. However, it is problem-dependent.
Interestingly, the applications of Section 4.1 make use of the special case when θ = 0.

Proof. Consider an arbitrary pair a, a′ and covariance matrix Σa,a′ . For convenience, we drop the subscript
notation and just write Σ. The argument will be the same for all pairs, including when a = a′. The dataset
Dn is split into two independent datasets Dm and D′

m of size m = n
2 . Let ϕi := ϕ(xi, ai) as shorthand and

the same for ϕ′
i.

First, we verify that β̂a,a′ is indeed an unbiased estimator of βa,a′ :

E

[
θ̂⊤Σθ̂′

]
= E

[
yiy

′
jϕ

⊤
i Σϕ′

i

]
= θ⊤Σθ (55)

which follows by independence of the datasets Dm and D′
m and the fact that the covariance matrix under

the uniform data collection policy is the identity. By adding and subtracting and then applying the triangle
inequality, we have

|θ̂⊤Σθ̂′ − θ⊤Σθ| = |θ⊤Σθ̂′ − θ⊤Σθ|︸ ︷︷ ︸
Term I

+ |θ̂⊤Σθ̂′ − θ⊤Σθ̂′|︸ ︷︷ ︸
Term II

(56)

and we focus on bounding each term individually. We start with the first. Note that ∥θ⊤Σϕ′
i∥ψ2

≤ ∥Σθ∥τ
and ∥y′

i∥ψ2 ≲
√
τ2∥θ∥2 + σ2. Therefore, we have that the term ϕ′

i,ky
′
i is sub-exponential with parameter

∥ϕ′
i,ky

′
i∥ψ1

≲ τ∥Σθ∥
√
τ2∥θ∥2 + σ2 = ξ∥Σθ∥, where recall that we have defined ξ2 = τ2(τ2∥θ∥2 + σ2). Then,

by Bernstein’s inequality,

Pr


 1

n

∑

i∈[n]

θ⊤Σϕ′
i,ky

′
i − θ⊤Σθ ≥ t


 ≤ exp

(
−C min

{
nt2

∥Σθ∥2ξ2
,

nt

∥Σθ∥ξ

})
(57)

for some absolute constant C > 0, and the negative event occurs with the same upper bound on the
probability. This implies

| 1
m

∑

i∈[m]

θ⊤Σϕ′
iy

′
i − θ⊤Σθ| ≤

√
ξ2∥Σθ∥2

Cm
· log(2/δ) (58)

For the second term, we condition on the data in D′ and then apply the same calculations. The difference
is that ∥ϕiΣθ̂′∥ψ2

≤ τ∥Σθ̂′∥ and so the bound becomes

| 1
m

∑

i∈[m]

yiϕ
⊤
i Σθ̂′ − θ⊤Σθ̂′| ≤

√
ξ2∥Σθ̂′∥2

Cm
· log(2/δ) (59)
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with probability at least 1− δ.
It suffices now to obtain a high probability bound on ∥θ̂′∥, showing that it is close in value to ∥θ∥. Let ϕ′

i,k

and θk denote the kth elements of ϕ′
i and θk, respectively. Similar to the previous proof, we have that

∥ϕ′
i,ky

′
i∥ψ1 ≲ ξ (60)

by multiplication of the sub-Gaussian random variables. By Bernstein’s inequality, with probability 1 − δ,
for all k ∈ [d],

| 1
m

∑

i∈[m]

ϕ′
i,ky

′
i − θk| ≤

√
ξ2

Cm
· log(2d/δ) (61)

for some constant C > 0. Under the same event,

∥θ̂′ − θ∥ ≤
√
dξ2

Cm
· log(2d/δ) (62)

by standard norm inequalities. The triangle inequality then yields

∥θ̂′∥ ≤ ∥θ∥+

√
dξ2

Cm
· log(2d/δ) (63)

Finally, we are able to put these three events together:

|θ̂⊤Σθ̂′ − θ⊤Σθ| ≤
√
ξ2∥Σθ∥2

Cm
· log(2/δ) +

√
ξ2∥Σθ̂′∥2

Cm
· log(2/δ) (64)

≤
√
ξ2∥Σθ∥2

Cm
· log(2/δ) +

√
2ξ2∥Σ∥2∥θ∥2

Cm
· log(2/δ) (65)

+

√
2ξ4∥Σ∥2d

C1m2
· log2(2d/δ) (66)

≤
√

8ξ2∥Σ∥2∥θ∥2

C2m
· log(2/δ) +

√
2ξ4∥Σ∥2d

C2m2
· log2(2d/δ) (67)

with probability at least 1− 3δ by the union bound over the three events.

Define β̃a,a′ = Λ̃a,a + Λ̃a′,a′ − 2Λ̃a,a′ , and Z̃ ∼ N(0, Λ̃) where Λ̃ is the result of the projection onto S
K
+ using

β̂ as defined in Line 13 of Algorithm 2. Since Λ is positive semidefinite, the fact that

|βa,a′ − β̂a,a′ | ≤ O
(
∥θ∥ log(K/δ)√

n
+

√
d · log2(dK/δ)

n

)
, (68)

and the optimality of Λ̃ in Algorithm 2, we have

|β̂a,a′ − β̃a,a′ | ≤ O
(
∥θ∥ log(K/δ)√

n
+

√
d · log2(dK/δ)

n

)
. (69)

Triangle inequality then immediately implies the following element-wise error bound on the increment

|βa,a′ − β̃a,a′ | ≤ O
(
∥θ∥ log(K/δ)√

n
+

√
d · log2(dK/δ)

n

)
(70)

with probability at least 1− δ.
Now we apply the following error bound due to Chatterjee (2005).
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Lemma C.3 (Theorem 1.2, Chatterjee (2005)). Let W and W̃ be two Gaussian random vectors with EWa =
EW̃a for all a ∈ [K]. Define γa,a′ = ∥Wa−Wa′∥2

L2
and γ̃a,a′ = ∥W̃a−W̃a′∥2

L2
and Γ = maxa,a′ |γ̃a,a′−γa,a′ |.

Then,

|E max
a∈[K]

Wa − E max
a∈[K]

W̃a| ≤
√

Γ logK (71)

Therefore, by the union bound over at most K2 terms βa,a′ , the final bound becomes

|U − E max
a∈[K]

Z̃a| ≤ O
(√
∥θ∥ log(K/δ)

n1/4
+
d1/4 log3/2(dK/δ)√

n

)
(72)

with probability at least 1− δ.

C.1.1 Proof of the second inequality

Here we prove the second inequality in the theorem statement that
√

logK · V ∗ ≳ U

Lemma C.4. Let (Wa)a∈[K] be a mean zero sub-Gaussian process such that ∥Wa−Wa′∥ψ2 ≲ ∥Wa−Wa′∥L2 ,
then

E max
a∈[K]

Wa ≳ max
a,a′∈[K]

∥Wa −Wa′∥L2 (73)

Proof. Let random variable Wb,Wb′ achieve the maximum for maxa,a′∈[K] ∥Wa −Wa′∥L2 .

Emaxa∈[K] Wa ≥ Emax(Wb,Wb′) Define Z = Wb′ −Wb, then

Emax(Wb,Wb′)

=E[Wb|Z ≤ 0] Pr[Z ≤ 0] + E[Wb + Z|Z > 0] Pr[Z > 0]

=E[Wb|Z ≤ 0] Pr[Z ≤ 0] + E[Wb|Z > 0] Pr[Z > 0] + E[Z|Z > 0] Pr[Z > 0]

=E[Wb] + E[Z|Z > 0] Pr[Z > 0]

=E[Z|Z > 0] Pr[Z > 0]

Since E[Z|Z > 0] Pr[Z > 0] + E[Z|Z < 0] Pr[Z < 0] = 0, we have

E[Z|Z > 0] Pr[Z > 0] = E[|Z|]/2 (74)

Thus, we just need to lower bound E[|Z|]. Due to the sub-Gaussian assumption on Z, it holds that for a
constant K0,

Pr(|Z| > t) ≤ exp(− t2

K0∥Z∥2
L2

)

Let C be a constant such that

∫ ∞

C∥Z∥L2

t exp(− t2

K0∥Z∥2
L2

)dt

=K0∥Z∥2
L2 exp(−C

2

K0
)

=∥Z∥2
L2/20.
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Then,

∥Z∥2
L2 = 2

∫ ∞

0

tPr(|Z| > t)dt

= 2

∫ C∥Z∥L2

0

tPr(|Z| > t)dt+ 2

∫ ∞

C∥Z∥L2

tPr(|Z| > t)dt

le2

∫ C∥Z∥L2

0

tPr(|Z| > t)dt+ 2

∫ ∞

C∥Z∥L2

t exp(− t2

K0∥Z∥2
L2

)dt

≤ 2C∥Z∥L2

∫ C∥Z∥L2

0

Pr(|Z| > t)dt+ ∥Z∥2
L2/10

≤ 2C∥Z∥L2E[|Z|] + ∥Z∥2
L2/10.

This implies that E[|Z|] ≥ 9
20C ∥Z∥L2 . Combining with Equation 74 yields

E max
a∈[K]

Wa ≳ ∥Wb′ −Wb∥L2

Proposition C.5. Let (Za)a∈[K] be a mean zero Gaussian process, then

E max
a∈[K]

Za ≲
√

logK max
a,a′∈[K]

∥Za − Za′∥L2 (75)

Proof. This is a simple corollary of Sudakov-Fernique’s inequality (see Theorem 7.2.11 in Vershynin
(2018)). Define mean zero Gaussian process Ya, a ∈ [K] such that each Ya is sampled independently from
N(0,maxa,a′∈[K] ∥Za − Za′∥2

L2). By Sudakov-Fernique’s inequality, it holds that

E max
a∈[K]

Za ≤ E max
a∈[K]

Ya.

We conclude the proof by combining with classical fact that

max
a∈[K]

Ya ≲
√

logK max
a,a′∈[K]

∥Za − Za′∥L2

Applying Lemma C.4 on V ∗ yields

V ∗ ≳ max
a,a′∈[K]

∥ ⟨ϕ(X, a)− ϕ(X, a′), θ⟩ ∥L2 .

By the definition of the Gaussian process Z, its increment is bounded by

max
a,a′∈[K]

∥ ⟨ϕ(X, a)− ϕ(X, a′), θ⟩ ∥L2 (76)

, therefore applying Proposition C.5 for U yields

U ≲
√

logK max
a,a′∈[K]

∥ ⟨ϕ(X, a)− ϕ(X, a′), θ⟩ ∥L2 .

This concludes the proof.
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C.2 A marginally sub-Gaussian bandit instance that does not satisfy Assumption 4

Given a constant C, let us define a bandit instance with K = 2 as follows:

ϕ(X, 1) ∼ N(0, 1) (77)

ϕ(X, 2) =

{
ϕ(X, 1) if |ϕ(X, 1)| ≤ C;
−ϕ(X, 1) if |ϕ(X, 1)| > C.

(78)

Since the marginal distribution of ϕ(X, 1) and ϕ(X, 2) are both N(0, 1), it is easy to see that sub-Gaussian
assumption of the Preliminaries (Section 2) is satisfied. To see how Assumption 4 fails to hold, we compute the
sub-Gaussian norm and L2 norm of Z := ϕ(X, 1)−ϕ(X, 2). Notice that Z has Gaussian tail when |Z| > 2C,
and thus ∥Z∥ψ2

= Θ(1). For the L2 norm, note that ∥Z∥L2
= O(

∫∞
C
t2 exp(−t2)dt) = O(C2 exp(−C2))

which can be made arbitrarily small by choosing large C. Therefore for any constant L, there exist a bandit
instance such that the marginal sub-Gaussian assumption holds but Assumption 4 does not.

C.3 Comments on zero-mean features

We have originally assumed each arm has zero-mean features so that E [ϕ(X, a)] = 0 for all a ∈ A for
simplicity. To deal with the non-zero case, it is not sufficient to simply estimate the individual means and
subtract them off, as it would yield an incorrect estimate since we aim to estimate the expected max of a
random process. If the true process is indeed Gaussian, we can estimate the means and set the estimated
Gaussian process Z to have the estimated means. However, doing so with non-Gaussian processes would
require a more sophisticated version of Talagrand’s comparison inequality, and we are unaware of results of
this kind. There are less refined alternatives such as adding back the maximum estimated mean or using a
centered Gaussian process Z with large enough increments to subsume the means. Both would guarantee
an upper bound on V ∗, but could affect the tightness of the bound in different ways.

D Model Selection

The algorithm that achieves the regret bound in Theorem 3 is presented in Algorithm 4. For ease of
exposition, we first present this result assuming known (identity) covariance. Unknown covariance is handled
Appendix D.1. Here, we provide some further comparisons with existing literature. State-of-the-art model
selection guarantees have typically exhibited a tension between either worse dependence on d∗ or worse
dependence on T . For example, Foster et al. (2019); Lee et al. (2021) and our work all pay a leading factor of
T 2/3 while maintaining optimal dependence on d∗. In contrast, Pacchiano et al. (2020b) gave an algorithm
that gets the correct

√
T regret but pays d2

∗ dependence. It has been shown that this tension is essentially
necessary Marinov & Zimmert (2021); Zhu & Nowak (2021), except in special cases (e.g. with constant
gaps Lee et al. (2021)) or in cases that assume full realizability. Thus, our improved model selection bound
contributes to the former line of work that maintains good dependence on d∗ at the cost of slightly worse
dependence on T .
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Algorithm 4 Model Selection with Gaussian Process Upper Bound

1: Input: Rounds T , failure probability δ ≤ 1/e, constants C0, C1

2: if Σa,Σa,a′ ,Σ are known for all a, a′ ∈ [K] such that a ̸= a′ then

3: Set tmin = C0 log3/2(T log T/δ)

4: Set αt = C1 · d
1/4
2 log3/2(Kd2T/δ)

t1/3

5: else
6: Set tmin = C0

(
1 + log3/2(T logKT/δ) + τ4

ρ2 (d2 + log(KT/δ)) + d2 log(KT/δ)
)

7: Set αt = C1 ·
√
d2 log(Kd2T/δ)

t1/2 + C2 · d
1/4
2 log3/2(Kd2T/δ)

t1/3

8: end if
9: Initialize exploration dataset S0 = {}

10: Initialize algorithm Alg1 ← Exp4-IX(F1).
11: Sampler Bernoulli Zt ∼ ber(t−1/3) for all t ∈ [T ]
12: for t = 1, . . . , T do
13: Sample independently xt ∼ D and
14: if Zt = 1 then
15: Sample at ∼ Unif[K], observe yt
16: Add to dataset: St = (xt, at, yt) ∪ St−1

17: Tt = Tt−1

18: else
19: Sample at from Algt, observe yt
20: Update Algt with (xt, at, yt)
21: St = St−1

22: Tt = {t} ∪ Tt−1

23: Algt+1 ← Algt
24: end if
25: Estimate Ût from exploration data St and covariate data Tt (if unknown covariance matrices)
26: if t ≥ tmin and Ût > 2αt then
27: Set algorithm Algt+1 ← Exp4-IX(F2)
28: end if
29: end for

The main idea is that the algorithm starts with model class F1, the simpler one, and runs an Exp4-like
algorithm under F1. However, it will randomly allocate some timesteps for exploratory actions where the
uniform random policy is applied. From the exploration data, if it is detected that the gap is non-zero with
high confidence, then the algorithm switches to F2. The critical component of the algorithm is in detecting
the non-zero gap and then bounding the worst-case performance when the gap is non-zero but it has not
been detected yet.

We require several intermediate results in order to prove the regret bound. The first is a generic high
probability regret bound for a variant of Exp4-IX as given by Algorithm 4 of Foster et al. (2019), which is
a modification of the algorithm proposed by Neu (2015). In particular, define

θi := arg min
θ∈Rdi

1

K

∑

a∈[K]

EX

(
ϕi(X, a)⊤θ − Y (a)

)2
,

θdiff := θ2 −
[
θ1

0

]
, and V ∗

i := max
π∈Πi

V π

where Πi := {x 7→ arg maxa ϕi(x, a)⊤θ : θ ∈ R
di} is the induced policy class. Let πθi be the argmax policy

induced by θi. Note that the policy πθ1 may not be the same as the policy that maximizes value.
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Lemma D.1 (Foster et al. (2019), Lemma 23). With probability at least 1− δ, for any t ∈ [T ], Exp4-IX for
model class Fi satisfies

t∑

s=1

V πθi − V πs ≤ O
(√

ditK log(di) · log(TK/δ)
)

(79)

The second result we require is high probability upper and lower bounds on the number of exploration
samples we should expect to have at any time t ∈ [T ]. We appeal to Lemma 2 of Lee et al. (2021), as the
exploration schedules are identical.

Lemma D.2 (Lee et al. (2021), Lemma 2). There are constants C1, C2 > 0 such that, with probability 1− δ,
C1t

2/3 ≤ |St| ≤ C2t
2/3 for t ≥ C0 log3/2(T log T/δ).

The last intermediate result leverages the upper bound estimator from Theorem 2. We will define a Gaussian
process, which we prove will act as an upper bound on the gap in value between the model classes. Let
Z ∼ N (0,Λ) where

Λa,a′ = E [⟨ϕ(X, a), θdiff⟩ ⟨ϕ(X, a′), θdiff⟩] (80)

for all a, a′ ∈ [K] and θdiff = θ2−
[
θ1

0

]
. The following lemma establishes these upper bounds and shows that

we can estimate Emaxa∈[K] Za at a fast rate. The critical property of this upper bound is that it is 0 when
F1 satisfies realizability.

A simple transformation of the feature vectors allows us to apply the results from before. For datapoints

(xi, ai, yi) collected by the uniform random policy, the following is an unbiased estimator of θ2 −
[
θ1

0

]
:

yi

(
ϕ2(xi, ai)−

[
ϕ1(xi, ai)

0

])
= yi

(
ϕ2(xi, ai)−

[
ϕ1(xi, ai)

0

])
= yi

[
0

ϕd1:d2(xi, ai)

]
(81)

where ϕd1:d2 denotes the bottom d2 − d1 coordinates of the feature map ϕ. As shorthand, we de-

fine ϕ̃i(x, a) =

[
0

ϕd1:d2
(x, a)

]
. Note that ∥ϕ̃i∥ψ2 ≤ τ and this feature vector still satisfies the con-

ditions of Assumption 4 as we can simply zero the top coordinates. Furthermore, define Σ̃a,a′ =

E
(
ϕ̃(X, a)− ϕ̃(X, a′)

) (
ϕ̃(X, a)− ϕ̃(X, a′)

)⊤
for a ̸= a′. The estimators for this transformed problem are

then

θ̂ =
1

m

∑

i

yiϕ̃i (82)

θ̂′ =
1

m

∑

i

y′
iϕ̃

′
i (83)

And, as before, the quadratic form estimators are analogously

β̂a,a′ = θ̂⊤Σ̃a,a′ θ̂′ (84)

Lemma D.3. There is a constant C such that the Gaussian process Z

V ∗ − V πθ1 ≤ 2C · E max
a∈[K]

Za (85)

and, with probability at least 1−δ, for all n ∈ [T ], the estimator Û defined in Algorithm 4 with n independent
samples satisfies

|E max
a∈[K]

Za − Û | ≤ O
(√
∥θdiff∥ log(TK/δ)

n1/4
+
d

1/4
2 log3/2(d2KT/δ)√

n

)
(86)
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Proof. It is immediate that

V ∗ − max
π∈Π1

V π ≤ V ∗ − V πθ1 (87)

since θ1 ∈ F1 by definition and πθ1
is an argmax policy. This gap can then be bounded as

V ∗ − V πθ1 = V πθ2 − V πθ1 (88)

= E ⟨ϕ2(X,πθ2(X)), θ2⟩ − E ⟨ϕ2(X,πθ1(X)), θ2⟩ (89)

= E ⟨ϕ2(X,πθ2(X)), θ2⟩ − E ⟨ϕ2(X,πθ1(X)), θ2⟩ (90)

+ E ⟨ϕ1(X,πθ1(X)), θ1⟩ − E ⟨ϕ1(X,πθ1(X)), θ1⟩ (91)

≤ E

〈
ϕ2(X,πθ2

(X)), θ2 −
[
θ1

0

]〉
+ E

〈
ϕ2(X,πθ1

(X)),

[
θ1

0

]
− θ2

〉
(92)

≤ E max
a∈[K]

〈
ϕ2(X, a), θ2 −

[
θ1

0

]〉
+ E max

a∈[K]

〈
ϕ2(X, a),

[
θ1

0

]
− θ2

〉
(93)

The Gaussian process Z ∼ N (0,Λ) satisfies the conditions of Lemma C.1, which implies the Gaussian process
upper bound on both of the above terms and, thus, the first claim.

Now we prove the estimation error bound. We apply Algorithm 2 with the constructed fast estimators for
quadratic forms θ⊤

diff
Σ̃a,a′θdiff for all a, a′ ∈ [K]. Let Z̃ ∼ N(0, Λ̃). We can apply Theorem 2 and get

|E max
a∈[K]

Za − E max
a∈[K]

Z̃a| ≤ O
(√
∥θdiff∥ log(K/δ)

n1/4
+
d

1/4
2 log3/2(d2K/δ)√

n

)
(94)

Setting Û = Emaxa∈[K] Z̃a gives the result.

Lemma D.4. Let Û be the estimate of Emaxa∈[K] Za from Lemma D.3 using the same method. Then, with
probability 1− δ,

Emax
a

Za ≤ CÛ log1/2(K) +O
(

(∥θdiff∥1/2 + d
1/4
2 ) log(d2K/δ) log1/2(K)√

n

)
(95)

for some constant C > 0.

Proof. Here we let C represent an absolute constant, which may change from line to line. For this, we
require a multiplicative error bound, which is stated formally in Theorem 6. It is similar to the additive
one developed in the proof of Theorem 2. From Theorem 6, and applying the union bound over all pairs of
actions in [K], we have with probability at least 1−K2δ, for all a′ ̸= a,

|βa,a′ − β̂a,a′ | ≤ βa,a′

2c
+O

(
c(∥Σ1/2

a,a′θ∥+
√
d) log2(d2/δ)

n

)
(96)

where we simply prepend Σ1/2 to θ and the estimators and c ≥ 1 is to be chosen later.

With this concentration, we now show that if Û = Emaxa∈[K] Z̃a is small, then this must mean that
maxa,a′ βa,a′ is also small.

(
Û
)2

≥
(
E max
a∈[K]

Z̃a

)2

(97)

≥ C max
a,a′∈[K] : a̸=a′

∥Z̃a − Z̃a′∥2
L2 (98)

= O
(

max
a,a′

βa,a′ − βa,a′

2c
− c(∥θdiff∥+

√
d2) log2(d2/δ)

n

)
(99)
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for an absolute constant C. The second line uses Lemma C.4. The third line uses the concentration above.
Choosing c large enough (dependent only on absolute constants), we get

max
a̸=a′

βa,a′ ≤ 2Û2 +O
(

(∥θdiff∥+
√
d2) log2(d2/δ)

n

)
(100)

Then, from Proposition C.5, we get the statement:

U ≤ C
√

logK ·
√

max
a̸=a′

βa,a′ ≤ CÛ
√

logK +O
(

(∥θdiff∥1/2 + d
1/4
2 ) log(d2/δ) log1/2(K)√

n

)
(101)

Changing the variable δ′ = δ/K2 gives the result.

Armed with these facts, we can prove the regret bound. Let E = E1 ∩ E2 ∩ E3 ∩ E4 denote the good event
that satisfies the conditions laid out in the intermediate results where

1. E1 is the event that
∑
s∈I V

πθi − V πs ≤ O
(√

di|I|K log(di) · log(TK/δ)
)

for any interval of times

up to |I| ≤ T .

2. E2 is the event that C1t
2/3 ≤ |St| ≤ C2t

2/3 for t ≥ tmin

3. E3 is the event that the following inequality is satisfied for all tmin ≤ t ≤ T :

|E max
a∈[K]

Za − Ût| ≤ O
(√
∥θdiff∥ log(TK/δ)

t1/6
+
d

1/4
2 log3/2(d2KT/δ)

t1/3

)
(102)

4. E4 is the event that the following is satisfied for all tmin ≤ t ≤ T :

V ∗ − V π1 ≤ CÛt log1/2(K) +O
(

(∥θdiff∥1/2 + d1/4) log(d2KT/δ) log1/2(K)

t1/3

)
(103)

Proof of Theorem 3 with known covariance matrices. First note that event E holds with probability at least
1− 4δ via an application of the union bound (over T ) and the intermediate results. We now work under the
assumption that E holds. The proof is divided into cases when F1 does and does not satisfy realizability.

First, we bound the instantaneous regret incurred during the exploration rounds. Note that the average value
of the uniform policy is zero and V ∗ ≤ O

(
∥θ∥√logK

)
by standard maximal inequalities. This establishes

the bound on the instantaneous regret for these rounds.

1. When F1 satisfies realizability, the algorithm is already running Exp4-IX with model class F1 from
the beginning, so we are left with verifying that a switch to F2 never occurs in this setting. This can
be shown by realizing that Emaxa∈[K] Za = 0 whenever F1 satisfies realizability. Therefore θdiff = 0
and, under the good event, we have that

Ût ≤ C
d

1/4
2 log3/2(d2KT/δ)

t1/3
(104)

for a some constant C > 0. Therefore, for C1 chosen large enough, Ût ≤ 2αt for all t ≥ tmin and
thus a switch never occurs. In this case, the regret incurred is

RegT ≤ Õ
(
T 2/3 · log1/2(K) +

√
d1TK log(d1) · log(TK/δ) + tmin

)
(105)

where the first term is due to the upper bound on the number of exploration rounds in E2 and the
second term is due to the regret bound for Exp4-IX under model F1.
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2. In the second case when F1 does not satisfy realizability we must bound the regret when the algorithm
is still using F1. The regret may therefore be decomposed as

RegT ≤ (V ∗ − V πθ1 ) · t∗ +
∑

t∈[t∗]

V πθ1 − V πt +

T∑

t=t∗+1

V ∗ − V πt (106)

where t∗ is the timestep that the switch is detected. From t∗ onward, the algorithm runs Exp4-IX
with F2, so this last term is simply bounded by Õ(

√
d2KT ) under event E. The same is true for

the middle term.

Note that before the switch occurs it must be that Ût∗−1 ≤ αt∗−1. Therefore, from event E,

V ∗ − V πθ1 ≤ CÛt log1/2(K) +O
(

(∥θdiff∥1/2 + d
1/4
2 ) log(d2KT/δ) log1/2(K)

t1/3

)
(107)

≤ O
(
d

1/4
2 log3/2(d2KT/δ) · log1/2(K)

t1/3

)
(108)

for t = t∗ − 1. The final regret bound for this case is then

RegT ≤ O
(
d

1/4
2 T 2/3 · log3/2(d2KT/δ) · log1/2(K)

)
(109)

+O
(√

d1TK log(d1) · log(TK/δ) +
√
d2TK log(d2) · log(TK/δ) + tmin

)
(110)

D.1 Contextual Bandit Model Selection with Unknown Covariance Matrix and Completed Proof of

Theorem 3

Here we consider a modification of Algorithm 4 and the proof of the previous section in order to handle
the case where the covariance matrix is unknown. The addition is small and follows essentially by showing
that the estimated covariance matrix is close to the true one while contributing negligibly to the regret.
Throughout, we assume that Σ ⪰ ρI for some constant ρ > 0 and ρ = Ω(1), which is also assumed by Foster
et al. (2019). We will use the fact that τ = O(1) and ∥θ∗∥ = O(1).

Let the time t be fixed for now. The covariance matrices are estimated from all previous data during non-
exploration rounds. Let Tt denote the times up to time t for which a non-exploration round occurred as
defined in the algorithm (i.e. Zs = 0 for s ∈ Tt) For a ̸= a′, we have

Σ̂1 =
1

|Tt|K
∑

s∈Tt,a

ϕ1(xs, a)ϕ1(xs, a)⊤

Σ̂2 =
1

|Tt|K
∑

s∈Tt,a

ϕ2(xs, a)ϕ2(xs, a)⊤

Σ̂a,a′ =
1

|Tt|
∑

s∈Tt

(ϕ(xs, a)− ϕ(xs, a
′))(ϕ(xs, a)− ϕ(xs, a

′))⊤

Σ̂a,a =
1

|Tt|
∑

s∈Tt

ϕ(xs, a)ϕ(xs, a)⊤

We also define Σi = EΣ̂i and Σa,a′ is defined as before. Note that for t ≥ C1 for some constant C1 > 0,
event E2 ensures that |Tt| ≥ t

2 . Proposition 12 of Foster et al. (2019) ensures that the following conditions
are satisfied with probability at least 1− δ

1− ϵ ≤ λ1/2
min

(
Σ

−1/2
i Σ̂iΣ

−1/2
i

)
≤ λ1/2

max

(
Σ

−1/2
i Σ̂iΣ

−1/2
i

)
≤ 1 + ϵ
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for all i ∈ {1, 2} where ϵ ≤ 50τ2

ρ

√
d2+log(8K2/δ)

|Tt| and thus we will require that

tmin = C0

(
C1 + log3/2(T logKT/δ) +

τ4

ρ2

(
d2 + log(8K2T/δ)

)
+ d2 log(KT/δ)

)
(111)

for a sufficiently large constant C0 > 0. For here on, we will assume that t ≥ tmin. Note that this new choice
does not impact the regret bound significantly since tmin does not influence the regret under model class F1

and under model class F2 it contributes a factor linear in d2 but only logarithmic in T . Observe that this
choice of tmin for sufficiently large C0 ensures that ϵ < 1/2 in the above concentration result.

For convenience, we let ϕs,1 denote the d1-dimensional features while ϕs,2 denotes the d2-dimensional features
at time s ≤ t. Note that St is the set of past times of uniform exploration up to point time t. We split the

dataset St randomly evenly into and let St and S ′
t denote the time indices of each dataset of size m = |St|

2 .
We consider the following estimators:

θ̂2 = Σ̂−1
2

(
1

m

∑

s∈St

ϕ2(xs, as)ys

)
(112)

θ̂1 = Σ̂−1
1

(
1

m

∑

s∈St

ϕ1(xs, as)ys

)
(113)

and the difference

θ̂diff =

(
Σ̂−1

2 −
[
Σ̂−1

1 0
0 0

])(
1

m

∑

s∈St

ϕs,2ys

)

θdiff =

(
Σ−1

2 −
[
Σ−1

1 0
0 0

])
E [ϕs,2ys]

and we use analogous definitions to define θ̂′
diff

and θ′
diff

with the other half of the data S ′
t. Proposition F.1

ensures the following holds.

Proposition D.5. For a fixed t with tmin ≤ t ≤ T , with probability at least 1− δ, for all a, a′,

θ̂⊤
diffΣ̂a,a′ θ̂′

diff

≥ C1θ
⊤
diffΣa,a′θdiff −O

(
log(Kd2T/δ)

t

)
−O

(√
d2

t2/3
· log2(Kd2T/δ)

)
−O

(
d2 · log(Kd2T/δ)

t

)

and

θ̂⊤
diffΣ̂a,a′ θ̂′

diff

≤ C2θ
⊤
diffΣa,a′θdiff +O

(
log(Kd2T/δ)

t

)
+O

(√
d2

t2/3
· log2(Kd2T/δ)

)
+O

(
d2 · log(Kd2T/δ)

t

)

for absolute constants C1, C2 > 0.

Proof. The proof follows almost immediately from the general result in Proposition F.1 with dataset St.
Recall that event E2 asserts that

t2/3 ≲ |St| ≲ t2/3

We then have that that |Tt| ≥ t
2 and therefore ϵ = O

(√
d2+log(K/δ)

t

)
for all covariance matrices with

probability at least 1− 2δ. We also set Λ̂ = Σ̂a,a′ , consisting of |Tt| samples. It remains to find ϵ0 such that

∥Λ− Λ̂∥ ≤ ϵ0 and verify that ϵ0 = O(1) for sufficiently large t. A covering argument suffices.
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Let N(γ) denote the γ-net of the unit ball in d2. Then,

∥Λ− Λ̂∥ ≤ (1− 2γ)−1 max
y∈N(γ)

〈
(Λ− Λ̂)y, y

〉
(114)

Note that |N(γ)| ≤ Cd for some constant C, setting γ = 1/4. For all y ∈ N(γ), by applying Bernstein’s
inequality, we have

1

|Tt|
∑

s∈Tt

y⊤
(

Λ̂− Λ
)
y = O

(√
d2 log(1/δ)

t
+
d2 log(1/δ)

t

)
(115)

for all y ∈ N(γ) with probability at least 1− δ. Therefore, we ensure that ϵ0 = O(1) for t = Ω(d2 log(1/δ)),
which is accounted for in the new definition of tmin. Applying the union bound over these events and a
change of variable δ′ = 10K2δ gives the result.

Using this new concentration result, we can immediately replace Lemma D.4 with the case when the covari-
ance matrices are estimated from data.

Let E′
1 and E′

2 be the same events as E1 and E2 defined before. Then define the following new events:

1. E′
3 is the event that, for all t such that tmin ≤ t ≤ T ,

Ût ≲ U +
√
βa,a′ logK +O

(√
d2 log(Kd2T/δ)

t1/2
+
d

1/4
2 log3/2(Kd2T/δ)

t1/3

)

2. E′
4 is the event that, for all t such that tmin ≤ t ≤ T ,

U ≲ Û
√

logK +O
(√

d2 log(Kd2T/δ)

t1/2
+
d

1/4
2 log3/2(Kd2T/δ)

t1/3

)

Finally, we define the intersection E′ = E′
1 ∩ E′

2 ∩ E′
3 ∩ E′

4.

Lemma D.6. E′ holds with probability at least 1− 4δ.

Proof. Events E1 and E2 each fail with probability at most δ as demonstrated in the previous section. Now
we handle E′

3. Let βa,a′ = θ⊤
diff

Σa,a′θdiff and let β̂a,a′,t = θ̂⊤
diff,tΣ̂a,a′,tθ̂diff,t denote its estimator at time t.

Lemma C.3 shows that

Ût ≤ U +

√
max
a,a′

|βa,a′,t − β̂a,a′ | logK

≲ U +
√

max
a,a′

βa,a′ logK +O
(√

d2 log(Kd2T/δ) logK

t1/2
+
d

1/4
2 log(Kd2T/δ)

√
logK

t1/3

)

where the second line fails for any tmin ≤ t ≤ T with probability at most δ by Proposition D.5 and a union
bound.

For event E′
4, we may follow the proof of Lemma D.4 but instead leveraging Proposition D.5 and lower

bound Ût with

(
Ût

)2

≳ max
a,a′

βa,a′ −O
(
d2 log(Kd2T/δ)

t
+
d

1/2
2 log2(Kd2T/δ)

t2/3

)
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where the last line fails for any tmin ≤ t ≤ T with probability at most δ following a union bound. Applying
Proposition C.5,

U ≲
√

logK ·
√

max
a,a′

βa,a

≲ Û
√

logK +O




√
d2 log(Kd2T/δ) logK

t
+
d

1/2
2 log2(Kd2T/δ)logK

t2/3




which implies E′
4.

Proof of Theorem 3 with unknown covariances. The remainder proof of Theorem 3 is now identical to the

known covariance matrix case except that there is an estimation penalty of Õ
(√

d2/t
)

which is incorporated

into the test via the updated definition of αt and the slightly larger value of tmin. This contributes only a
factor of Õ

(√
d2T

)
to the regret in the case where F2 is the correct model.

E Testing for Treatment Effect

E.1 Setting and Algorithm

Here, we describe in more detail the treatment effect setting of Section 4.1.2. As further motivation for
this setting, consider the studied problem of deciding whether to issue ride-sharing services for primary care
patients so as to reduce missed appointments. A priori, it is unclear what interventions (e.g. text message
reminders, ride-share vouchers, etc.) might actually be effective based on characteristics of a patient. In
such cases, we would be interested in developing a sample-efficient test to determine this.

We maintain the assumption throughout that r∗(x, a) = ⟨ϕ(x, a), θ⟩. The primary difference between the
models is that we may either use all actions A1∪A2 (which may be costly from a practical perspective) or just
the basic set of actions in A1. There is a known control action a0 in both A1 and A2 such that ϕ(x, a0) = 0.
We will assume throughout that |A1 ∪A2| = K. We assume that there is at least one action other than the
control a0 in A2. That is, |A2| ≥ 2. Since there are potentially two action sets, there is now ambiguity in
the definition of Σ. Here, we use Σ = 1

|A1|
∑
a∈A1

Eϕ(X, a)ϕ(X, a)⊤ and assume λmin(Σ) ≥ ρ > 0. However,

we could just as easily define it with respect to A1 ∪ A2 and then the algorithm would change by taking
samples uniformly from A1 ∪ A2.

More specifically, we define the test as

Ψ =

{
0 Û ≲ C1 ·

√
d log2(dK/δ)

p + C2 · d
1/4 log3/2(dK/δ)√

n

1 otherwise

for sufficiently large constants C1, C2 > 0.

E.2 Analysis

Lemma E.1. Let ∆ = V ∗
2 − V ∗

1 . There exists a constant C > 0 such that

∆ ≤ C · EX max
a∈A2

Za

where Z ∼ N (0,Λ) is a Gaussian process with covariance matrix Λ and

Λa,a′ = θ⊤
E
[
ϕ(X, a)ϕ(X, a′)⊤] θ

Λa,a = θ⊤Σaθ

for a, a′ ∈ A and a ̸= a′.
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Proof. Define the following alternative feature mapping ψ : A1 ∪ A2 → R
2d.

ψ(x, a) =





[
ϕ(x, a)

0

]
if a ∈ A1

[
0

ϕ(x, a)

]
if a ∈ A2 \ A1

Note that we still have ψ(x, a0) = 0 for the control action. Furthermore, it is readily seen that r∗(x, a) =

⟨ϕ(x, a), θ⟩ =

〈
ψ(x, a),

[
θ
θ

]〉
for all x ∈ X and a ∈ A1 ∪ A2. Then, the gap can be bounded above by

∆ = EX

[
max

a∈A1∪A2

〈
ψ(X, a),

[
θ
θ

]〉
− max
a∈A1

〈
ψ(X, a),

[
θ
θ

]〉]

= EX

[
max

a∈A1∪A2

〈
ψ(X, a),

[
θ
θ

]〉
− max
a∈A1∪A2

〈
ψ(X, a),

[
θ
0

]〉]

≤ EX

[
max

a∈A1∪A2

〈
ψ(X, a),

[
0
θ

]〉]

≤ EX max
a∈A2

⟨ϕ(X, a), θ⟩

where the second line follows because we have assumed that a0 ∈ A1 and thus a value of 0 is always attainable
inA1. The last line follows for a similar reason since a0 ∈ A2 also. We may now apply our result in Theorem 2
which guarantees that the Gaussian process Z majorizes {ϕ(X, ·)} with EX maxa∈A2

⟨ϕ(X, a), θ)⟩ ≤ C ·
Emaxa∈A2

Za for some constant C > 0.

Proof of Theorem 4. No additional treatment effect

First, we consider the case where there is no additional treatment effect by A2. That is, by definition
EX maxa∈A2

⟨ϕ(X, a), θ⟩ = 0. Lemma C.4 ensures that

max
a,a′∈A2 : a̸=a′

∥ ⟨ϕ(X, a)− ϕ(X, a′), θ⟩ ∥L2 ≲ EX max
a∈A2

⟨ϕ(X, a), θ⟩ = 0

Since θ⊤Σa,a′θ = ∥ ⟨ϕ(X, a)− ϕ(X, a′), θ⟩ ∥L2 , we have that U := Emaxa Za = 0. It remains to show that Û

concentrates quickly to U . For this, we leverage Proposition F.1. First, we must verify that ∥Σa,a′ − Σ̂a,a′∥.
An identical covering argument in the proof of Proposition D.5 shows that ∥Σa,a′ − Σ̂a,a′∥ = O(1) with
probability at least 1− δ for p ≥ d log(1/δ).

Proposition 12 of Foster et al. (2019) ensures that the following conditions are satisfied with probability at
least 1− δ

1− ϵ ≤ λ1/2
min

(
Σ−1/2Σ̂Σ−1/2

)
≤ λ1/2

max

(
Σ−1/2Σ̂Σ−1/2

)
≤ 1 + ϵ

where ϵ ≤ O
(√

d2+log(8/δ)
p

)
. Therefore Proposition F.1 yields

θ̂⊤Σ̂a,a′ θ̂ ≲ θ⊤Σa,a′θ +O
(
d log(dK/δ)

p
+

√
d log2(dK/δ)

n

)

= O
(
d log(dK/δ)

p
+

√
d log2(dK/δ)

n

)

and

θ̂⊤Σ̂a,a′ θ̂ ≳ θ⊤Σa,a′θ −O
(
d log(dK/δ)

p
−
√
d log2(dK/δ)

n

)
(116)

(117)
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for all a, a′ ∈ A2 with a ̸= a′ with probability at least 1− δ. Therefore, under this event, we conclude that

Û ≲ U +

√
max
a,a′

|βa,a′ − β̂a,a′ | · logK (118)

= O



√
d log2(dK/δ)

p
+
d1/4 log3/2(dK/δ)√

n


 (119)

By the definition of the test, this implies that Ψ = 0 with probability at 1 − δ when there is no additional
treatment effect with A2

Additional treatment effect Next, we consider the case where there is an additional treatment effect.
Following the proof of Lemma D.4 and leverage the result of (116), we have that

Û2 ≳ max
a,a′∈A2 : a′ ̸=a

βa,a − C3
d log(dK/δ)

p
− C4

√
d log2(dK/δ)

n

for sufficiently large constants C1, C2 > 0. Therefore

∆ ≤ U

≲ Û ·
√

logK + C3

√
d log2(dK/δ)

p
+ C4

d1/4 log3/2(dK/δ)√
n

In other words,

∆√
logK

− C3

√
d log(dK/δ)

p
− C4

d1/4 log(dK/δ)√
n

≲ Û

Therefore, for ∆ = Ω

(√
d log3(dK/δ)

p + d1/4 log2(dK/δ)√
n

)
, we can guarantee that the left side is at least

C1

√
d log2(dK/δ)

p + C2
d1/4 log3/2(dK/δ)√

n
, ensuring that Ψ = 1.

F Unknown Covariance Matrix Case

Our goal in this section will be to extend the results developed in the latter half of the paper to the case where
the covariance matrix is unknown. The first subsection is dedicated to establishing strong concentration
guarantees for estimating quadratic forms in general regression setting. Following the general analysis, we
will demonstrate an application to contextual bandits.

F.1 General estimation

In this section, we consider the abstract regression setting where we observe features and responses (ϕ, y)
where ϕ ∈ R

d is a random vector and y ∈ R satisfies y = ϕ⊤θ + η for some unknown parameter θ ∈ R
d and

zero-mean noise η.

As before, we assume that ϕ ∼ subG(τ2) and η ∼ subG(σ2). We assume access to two independent datasets
of m ∈ N samples given by D = {ϕi, yi}i∈[m] D

′ = {ϕ′
i, y

′
i}i∈[m]. Furthermore, we consider features ϕ(1) ∈ R

d1

which are the top d1 coordinates of ϕ where d1 ≤ d. We also consider a third dataset of size m {zi}i∈[m]

where zi ∈ R
d and zi ∼ subG(Cτ2) for some constant C > 0.
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Define the following notation:

Σ = E
[
ϕϕ⊤] ⪰ ρ

Σ(1) = E

[
ϕ(1)(ϕ(1))⊤

]
⪰ ρ

θ(1) = arg min
θ∈Rd1

E

(
(ϕ(1))⊤θ − y

)2

θdiff = θ −
[
θ(1)

0

]

R† = Σ−1 −
[
(Σ(1))−1

0

0 0

]

R̂† = Σ̂−1 −
[
(Σ̂(1))−1

0

0 0

]

Λ = Eziz
⊤
i

Λ̂ =
1

m

∑

i∈[m]

ziz
⊤
i

where Σ̂ and Σ̂(1) are estimates of Σ and Σ(1) (independent of D and D′ and {zi}) satisfying

1− ϵ ≤ λ1/2
min

(
Σ−1/2Σ̂Σ−1/2

)
≤ λ1/2

max

(
Σ−1/2Σ̂Σ−1/2

)
≤ 1 + ϵ (120)

and the same for Σ̂(1) and Σ(1) where 0 < ϵ ≤ 1/2. We will further assume that ∥Λ − Λ̂∥ ≤ ϵ0 for some
ϵ0 > 0 for ϵ0 = O(1). Note that this setting also subsumes the case where d1 = 0. Here, we must just make
the adjustment that Σ(1) = 0 and define its inverse to also be zero. The remaining calculations are agnostic
to this.

Our objective in this section will be derive a general high-probability error bound on the difference between
θ⊤

diff
Λθdiff and θ̂⊤

diff
Λ̂θ̂′

diff
where we define the estimators

θ̂diff = R̂†


 1

m

∑

i∈[m]

ϕiyi


 (121)

θ̂′
diff = R̂†


 1

m

∑

i∈[m]

ϕ′
iy

′
i


 (122)

Proposition F.1. With probability at least 1− δ,

θ̂diffΛ̂θ̂′
diff ≥ C1θ

⊤
diffΛθdiff −O

(
log(2/δ)

t
+ ϵ2 +

√
d

m
· log2(2d/δ)

)
(123)

and

θ̂diffΛ̂θ̂′
diff ≤ C2θ

⊤
diffΛθdiff +O

(
log(2/δ)

t
+ ϵ2 +

√
d

m
· log2(2d/δ)

)

for constants C1, C2 > 0

Proof. We first make the important observation that R†ϕiyi is an unbiased estimator of θdiff. It therefore
suffices to show concentration of θ̂ to its mean and then bound the error between R̂† and R†. We must also
bound the error due to the difference between Λ̂ and Λ.
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For convenience, also define µ̂ := 1
m

∑
i∈[m] ϕiyi and µ̂′ := 1

m

∑
i∈[m] ϕ

′
iy

′
i and µ := E [ϕy] = Σθ. We will

achieve this goal by a series of applications of the triangle inequality:

µ̂⊤R̂†Λ̂R̂†µ̂′ − θ⊤
diffΛθdiff = µ̂⊤R̂†Λ̂R̂†µ̂′ − µ⊤R̂†ΛR̂†µ (124)

+ µ⊤R̂†ΛR̂†µ− θ⊤
diffΛ̂θdiff (125)

+ θ⊤
diffΛ̂θdiff − θ⊤

diffΛθdiff (126)

We will bound each of the three terms individually.

Second Term

µ⊤R̂†Λ̂R̂†µ− θ⊤
diffΛ̂θdiff = µ⊤R̂†Λ̂R̂†µ− µR†Λ̂R†µ (127)

=
〈
R̂†Σ̂a,a′R̂†µ, µ

〉
−
〈
R†Σ̂a,a′R†µ, µ

〉
(128)

=
〈(
R̂† −R†

)
Λ̂R̂†µ, µ

〉
−
〈
R†Λ̂

(
R† − R̂†

)
µ, µ

〉
(129)

≤ ∥R̂† −R†∥ · ∥Λ̂R̂†µ∥ · ∥µ∥+ ∥R̂† −R†∥ · ∥Λ̂R†µ∥ · ∥µ∥ (130)

≲ ϵ · ∥Λ̂R̂†µ∥+ ϵ · ∥Λ̂R†µ∥ (131)

where the last inequality applies Proposition 13 of Foster et al. (2019). Bounding the negative follows
equivalent steps. Note that

∥Λ̂R̂†µ− Λ̂R†µ∥ ≲ ∥Λ̂∥ · ∥R̂† −R†∥ · ∥µ∥ (132)

≲ ∥Λ̂∥ · ϵ (133)

Therefore, the prior display can now be bounded as

ϵ · ∥Λ̂R̂†µ∥+ ϵ · ∥Λ̂R†µ∥ ≤ ϵ ·
(
∥Λ̂R†µ∥+ ∥Λ̂∥ · ϵ

)
+ ϵ · ∥Λ̂R†µ∥ (134)

≲ ϵ2 +
θ⊤

diff
Λ̂θdiff

c
(135)

for some constant c > 0 to be chosen later. Here, we have used the AM-GM inequality and the fact that
∥Λ̂− Λ∥ ≤ ϵ0 = O(1).

Throughout, we have used the fact

∥R̂† −R†∥ = ∥Σ̂−1 − Σ−1∥+ ∥(Σ̂(1))−1 − (Σ(1))−1∥ ≲ ϵ (136)

which follows from Proposition 13 of Foster et al. (2019).

First Term A bound on the first term follows from a concentration argument.

|µ̂⊤R̂†Λ̂R̂†µ̂′ − µ⊤R̂†Λ̂R̂†µ| ≤ |µ̂⊤R̂†Λ̂R̂†µ− µ⊤R̂†Λ̂R̂†µ|+ |µ̂⊤R̂†Λ̂R̂†µ̂′ − µ̂⊤R̂†Λ̂R̂†µ| (137)

Now again, we deal with both terms individually. Note that we have E [ϕiyi] = µ and for any vector v,
∥v⊤ϕiyi∥ψ1 ≲ τ∥v∥ (τ∥θ∗∥+ σ) = ξ∥v∥.
Let v = R̂†Σ̂a,a′R̂†µ. By Bernstein’s inequality and independence of the data and covariance matrices,

|µ̂⊤R̂†Λ̂R̂†µ− µR̂†Λ̂R̂†µ| ≲ O
(√

ξ2∥v∥2 · log(2/δ)

m
+
ξ∥v∥ · log(2/δ)

m

)
(138)

with probability at least 1− δ. Then, note that

∥v∥ = ∥R̂†Λ̂R̂†µ∥ (139)

≲ ∥R̂†∥∥Λ̂1/2∥∥Λ̂1/2R̂†µ∥ (140)
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Furthermore

∥R̂†∥ ≲ ∥Σ−1∥+ ∥(Σ̂(1))−1∥ = O(ρ−1) (141)

∥Λ̂∥ ≲ ∥Λ∥+ ϵ0 = O(1) (142)

Then, we can say that

|µ̂⊤R̂†Λ̂R̂†µ− µ⊤R̂†Λ̂R̂†µ| ≲ C1

√
∥Λ̂1/2R̂†µ∥2 · log(2/δ)

m
+ C2

∥Λ̂1/2R̂†µ∥ · log(2/δ)

m
(143)

≤ ∥Λ̂
1/2R̂†µ∥2

4c
+O




(
∥Λ̂1/2R̂†µ∥+ 1

)
· log(2/δ)

m


 (144)

for constants C1, C2, c > 0, where the last line applies the AM-GM inequality. For the other term, we have
a similar upper bound by defining v̂ = R̂†Λ̂R̂†µ̂:

|µ̂⊤R̂†Λ̂R̂†µ̂′ − µ̂⊤R̂†Λ̂R̂†µ| ≲ O
(√
∥v̂∥2 · log(2/δ)

m
+
∥v̂∥ · log(2/δ)

m

)
(145)

And the norm is bounded as

∥v̂∥ = ∥R̂†Λ̂R†µ̂∥ (146)

≲

(
1

ρ
+ 1

)
· ∥Λ̂R†µ̂∥ (147)

Furthermore,

∥Λ̂R̂†µ̂− Λ̂R̂†µ∥ ≤ ∥Λ̂R̂†∥ · ∥ 1

m

∑

i

ϕiyi − µ∥ (148)

≤ O
(
∥Λ̂R̂†∥ ·

√
ξ2d

m
· log(2d/δ)

)
(149)

where the last inequality follows from Lemma C.2 with probability at least 1− δ. Therefore,

1

1/ρ+ 1
∥v̂∥ ≤ ∥Λ̂R̂†µ̂∥ ≲ ∥Λ̂1/2R̂†µ∥+O

(
∥Λ̂R̂†∥ ·

√
ξ2d

m
· log(2d/δ)

)
(150)

This yields the bound

|µ̂⊤R̂†Λ̂R̂†µ̂′ − µ̂⊤R̂†Λ̂R̂†µ| ≲ O
(√
∥v̂∥2 · log(2/δ)

m
+
∥v̂∥ · log(2/δ)

m

)

≤ O



√
∥v̂∥2 log2(2/δ)

m




≤ O




√
∥Λ̂1/2R̂†µ∥2 log2(2/δ)

m
+

√
d log4(2d/δ)

m2




≤ ∥Λ̂
1/2R̂†µ∥2

4c
+O

(√
d

m
· log2(2d/δ)

)

where the last line applies the AM-GM inequality.
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Therefore, in total, the first term is bounded as

|µ̂⊤R̂†Λ̂R̂†µ̂′ − µ⊤R̂†Λ̂R̂†µ| ≤ µ⊤R̂†Λ̂R̂†µ

2c
+

(
∥Λ̂1/2R̂†µ∥+ 1

)
· log(2/δ)

m
(151)

+O
(√

d

m
· log2(2d/δ)

)
(152)

≤ µ⊤R̂†Λ̂R̂†µ

2c
+O

(√
d

m
· log2(2d/δ)

)
(153)

where we have used the fact that ∥Λ̂1/2R̂†µ∥ = O(1) under the good events.

Term III For the third term, we aim to show that θ⊤
diff

Λ̂θdiff is close to θ⊤
diff

Λθdiff and lever-
age Assumption 3 and Bernstein’s inequality for bounded random variables to do so. Define Wi =
θ⊤

diff
(ϕ2(xs, a)− ϕ2(xs, a

′)) ziz⊤
i θdiff. Note that we have |Wi| ≤ C for some constant C > 0 by Assump-

tion 3. Therefore var(Wi) ≤ EW 2
i ≲ E[Wi] since Wi is non-negative. By Bernstein’s inequality, we have

|θ⊤
diffΛ̂θdiff − θ⊤

diffΛθdiff| ≤ |
1

m

∑

i

Wi − EWi|

≤ C1

√
var(Wi) log(2/δ)

m
+O

(
log(2/δ)

t

)

≤ E[Wi]

2c
+O

(
log(2/δ)

t

)

≤ θ⊤
diff

Λθdiff

2c
+O

(
log(2/δ)

t

)

for some constant c > 0 to be chosen later with probability at least 1− δ. The last inequality follows from
applying the AM-GM inequality.

Collecting all terms Now that we have shown bounds on each of the terms, we are ready to prove the
proposition:

From the bound on the first term, we have

µ̂⊤R̂†Λ̂R̂†µ̂′ ≲

(
1 +

1

2c

)
µ⊤R†Λ̂R̂†µ+O

(√
d

m
· log2(2d/δ)

)
(154)

From the bound on the second term,

µ⊤R†Λ̂R̂†µ ≲ ϵ2 +

(
1 +

1

c

)
θdiffΛ̂θdiff (155)

From the bound on the third term,

θdiffΛ̂θdiff ≲

(
1 +

1

2c

)
θ⊤

diffΛθdiff +O
(

log(2/δ)

t

)
(156)

Therefore, for sufficiently large choice of c > 0 (not dependent on problem parameters), we have

µ̂⊤R̂†Λ̂R̂†µ̂′ ≲ θ⊤
diffΛθdiff +O

(√
d

m
· log2(2d/δ)

)
+ ϵ2 +O

(
log(2/δ)

t

)
(157)
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For the other direction, we have

µ̂⊤R̂†Λ̂R̂†µ̂′ ≳

(
1− 1

2c

)
µ⊤R†Λ̂R̂†µ−O

(√
d

m
· log2(2d/δ)

)
(158)

≳

(
1− 1

2c

)2

θdiffΛ̂θdiff − ϵ2 −O
(√

d

m
· log2(2d/δ)

)
(159)

≳

(
1− 1

2c

)3

θdiffΛθdiff −O
(

log(2/δ)

t

)
− ϵ2 −O

(√
d

m
· log2(2d/δ)

)
(160)

Taken together, the necessary events occur with probability at least 1− 10δ by the union bound.

G Supporting Lemmas

The following is a proof of the moment bound in Lemma B.3.

Proof of Lemma B.3. For convenience, define X(i) = ϕ(X, a(i)) and the same for X ′
(i). Define A =

[
0d M
0d 0d

]

and Z =

[
X(i)

X ′
(i)

]
. Note that Z⊤AZ = X⊤

(i)MX ′
(i) and A⊤A =

[
M⊤M 0d

0d 0d

]
. By Lemma G.3, Z ∼

subG(C0τ
2). Furthermore, EZ = 0 and EZZ⊤ = Id. The remaining proof utilizes a variation of the Hanson-

Wright inequality due to Zajkowski (2020), stated in Lemma G.16. By this inequality, there exists a constant
C > 0 such that

Pr
(
|Z⊤AZ − E

[
Z⊤AZ

]
| ≥ ξ

)
≤ exp

(
−C min

{
ξ2

τ4∥A∥2
F

,
ξ

τ2∥A∥F

})
(161)

By direct calculation, we have that E
[
Z⊤AZ

]
= trE

[
ZZ⊤A

]
= 0 and by Lemma G.2, ∥A∥F ≤

√
d(σ2 +

L∥θ∥2). To bound the moment, we use the tail-sum-expectation for non-negative random variables. For
convenience, define σ1 = τ2∥A∥F .

E|Z⊤AZ|p =

∫ ∞

0

Pr
(
|Z⊤AZ|p ≥ u

)
du (162)

=

∫ ∞

0

pvp−1 Pr
(
|Z⊤AZ| ≥ v

)
dv (163)

≤
∫ ∞

0

pvp−1 max

{
e

Cv2

σ2
1 , e

Cv
σ1

}
dv (164)

≤
∫ ∞

0

pvp−1e
Cv2

σ2
1 dv +

∫ ∞

0

pvp−1e
Cv
σ1 dv (165)

The first inequality used Lemma G.1. Consider the second term first. Let r = Cv/σ1. Then, by a change of
variables,

∫ ∞

0

pvp−1e
Cv
σ1 dv = p(σ1/C)p

∫ ∞

0

rp−1e−rdr ≤ 3p(σ1/C)p · pp (166)

6Critically, Lemma G.1 applies to quadratic forms of sub-Gaussian, dependent random variables, rather than requiring the
coordinates of Z to be independent as in the traditional Hanson-Wright inequality Rudelson et al. (2013); Hanson & Wright
(1971). As a consequence, the second term in the minimum of the above tail bound depends on ∥A∥F as opposed to the operator
norm ∥A∥. Further discussion may be found in Zajkowski (2020).
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where we have used the Gamma function inequality
∫∞

0
rp−1e−rdr ≤ 3pp Vershynin (2018). Consider the

first term. Let r = Cv2/σ2
1 . Like the previous part, we may apply a change of variables.

∫ ∞

0

pvp−1e−Cv2/σ2
1dv =

1

2

∫ ∞

0

p

(
σ2

1r

C

) p−1
2

e−r ·
√
σ2

1

rC
· dr (167)

=
p

2

(
σ2

1

C

) p
2
∫ ∞

0

r
p
2 −1e−rdr (168)

≤ 3p

2

(
σ2

1

C

) p
2

· (p/2)(p/2). (169)

Taking these two together,

(
E|Z⊤AZ|p

)1/p ≤
(

3p(σ1/C)p · pp +
3p

2

(
σ2

1

C

) p
2

· (p/2)(p/2)

)1/p

(170)

≤ C ′ · σ1(p+
√
p), (171)

for some other constant C ′ > 0 since p1/p is bounded by a constant. Since we only consider p ≥ 1, the claim
follows.

Lemma G.1 (Restatement of Corollary 2.8 of Zajkowski (2020)). Let X ∼ subG(τ2) be a centered random
vector in R

d and A ∈ R
d×d. Then, there exists a constant C > 0 such that

Pr
(
|X⊤AX − E

[
X⊤AX

]
|
)
≤ exp

(
−C min

{
ξ2

τ4∥A∥2
F

,
ξ

τ2∥A∥F

})
(172)

where ∥ · ∥F is the Frobenius norm.

Lemma G.2. Let (ϕ, y) be generated under the uniform-random policy. Define M = E
[
y2ϕϕ⊤] and A =[

0d M
0d 0d

]
. Under Assumption 2, ∥A∥ ≤ L∥θ∥2 + σ2 and ∥A∥F ≤

√
d(L∥θ∥2 + σ2).

Proof. By definition ∥A∥2 = supv : ∥v∥=1 v
⊤A⊤Av = supv : ∥v∥=1 v

⊤
1 M

⊤Mv1 = ∥M∥2 where v1 denotes

the first d coordinates of v. The first equality follows since A⊤A =

[
M⊤M 0d

0d 0d

]
. Since M is positive

semi-definite,

∥M∥ = sup
v∈Rd : ∥v∥=1

v⊤Mv (173)

= sup
v∈Rd : ∥v∥=1

E
[
y2(ϕ⊤v)2

]
(174)

= sup
v∈Rd : ∥v∥=1

{
E
[
(ϕ⊤v)2(ϕ⊤θ)2

]
+ E

[
(ϕ⊤v)2η2

]}
(175)

(176)

The second term is simply Eη2 = σ2 since Eϕϕ⊤ = Id and ϕ and η are independent. The first term may
be bounded as E

[
(ϕ⊤v)2(ϕ⊤θ)2

]
≤ L ·E

[
(ϕ⊤v)2

]
E
[
(ϕ⊤θ)2

]
= L∥θ∥2 by Assumption 2. This concludes the

first claim. For the second, we note that ∥A∥2
F = trA⊤A = trM⊤M ≤ d∥M∥2 and the second claim follows

by applying the first.

Lemma G.3. Let X,Y subG(τ2) be two independent sub-Gaussian vectors in R
d. Then, Z =

[
X
Y

]
∼

subG(C0τ
2) for some constant C0 > 0.

46



Published in Transactions on Machine Learning Research (2/2024)

Proof. Let v =

[
v1

v2

]
∈ R

2d where v1, v2 ∈ R
d and ∥v∥2 = 1. Then, v⊤Z = v⊤

1 X + v⊤
2 Y is the sum of

independent sub-Gaussian variables where v⊤
1 X ∼ subG(∥v1∥2

2τ
2) and v⊤

2 Y ∼ subG(∥v2∥2
2τ

2) where both
∥v1∥2 ≤ 1 and ∥v2∥2 ≤ 1. Therefore v⊤Z ∼ subG(C0τ

2) for a constant C0 > 0. Since v was arbitrary, the
statement follows.

G.1 Multiplicative Error Bound for Estimating Norms

In this section, we prove a multiplicative error bound for estimating ∥θ∥2, which can potentially be faster.
The key is an application of the AM-GM inequality, similar to the work of Foster et al. (2019). As before,
we will consider a dataset of n samples split evenly into D = {ϕi, yi} and D′ = {ϕ′

i, y
′
i} each of size m = n

2 .
Define

θ̂ =
1

m

∑

i∈[m]

ϕiyi (177)

θ̂′ =
1

m

∑

i∈[m]

ϕ′
iy

′
i (178)

Then, we estimate θ⊤θ with θ̂⊤θ̂′.

Theorem 6. Let δ ≤ 1/e and let c > 1 be a constant. With θ̂ and θ̂′ defined above with n total samples, the
following error bound holds with probability at least 1− δ:

|θ̂⊤θ̂′ − θ⊤θ| ≤ θ⊤θ

2c
+O

(
c(∥θ∥+

√
d) max{ξ2, ξ} log2(d/δ)

n

)
(179)

Proof. Similar to the proof of Theorem 2, we apply the triangle inequality use Bernstein’s inequality to
bound two terms individually with high probability.

The decomposition becomes

|θ̂⊤θ̂′ − θ⊤θ| ≤ |θ̂⊤θ − θ⊤θ|+ |θ̂⊤θ′ − θ̂⊤θ| (180)

We start with the first term. By Bernstein’s inequality there is a constant C > 0 such that

Pr
(
|θ̂⊤θ − θ⊤θ| ≥ ϵ

)
≤ exp

(
−C min

{
mϵ2

∥θ∥2ξ2
,
mϵ

∥θ∥ξ

})
(181)

since yiθ
⊤xi is sub-exponential with ∥yiθ⊤xi∥ψ1

≤ ξ∥θ∥, as before. Rearranging, we have that with proba-
bility at least 1− δ,

|θ̂⊤θ − θ⊤θ| ≤
√
∥θ∥2ξ2 log(1/δ)

Cm
+
∥θ∥ξ log(1/δ)

Cm
(182)

≤ ∥θ∥
2

4c
+
cξ2 log(1/δ)

Cm
+
c∥θ∥ξ log(1/δ)

Cm
(183)

where the second line follows from the AM-GM inequality. Similarly, conditioned on the dataset D, the
second term in the triangle inequality may be bounded as

|θ̂⊤θ̂′ − θ̂⊤θ| ≤

√
∥θ̂∥2ξ2 log(1/δ)

Cm
+
∥θ̂∥ξ log(1/δ)

Cm
(184)

≤ ∥θ̂∥ ·
(√

ξ2 log(1/δ)

Cm
+
ξ log(1/δ)

Cm

)
(185)
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with probability at least 1− δ. Finally the proof Theorem 2 shows that, with probability 1− δ,

∥θ̂∥ ≤ ∥θ∥+

√
dξ2

Cm
· log(2d/δ) (186)

Under both of these events, we have

|θ̂⊤θ′ − θ̂⊤θ| ≤
√
∥θ∥2ξ2 log(1/δ)

Cm
+
∥θ∥ξ log(1/δ)

Cm
(187)

+

√
dξ2 log3/2(2d/δ)

Cm
+

√
dξ2 log2(2d/δ)

(Cm)3/2
(188)

≤ ∥θ∥
2

4c
+
cξ2 log(1/δ)

Cm
+
∥θ∥ξ log(1/δ)

Cm
(189)

+

√
dξ2 log3/2(2d/δ)

Cm
+

√
dξ2 log2(2d/δ)

(Cm)3/2
(190)

where the second line again uses the AM-GM inequality. Putting all three events together and applying the
union bound, we have with probability 1− 3δ,

|θ̂⊤θ̂′ − θ⊤θ| ≤ ∥θ∥
2

2c
+O

(
c∥θ∥max{ξ2, ξ} log(1/δ)

m
+
c
√
dξ2 log2(2d/δ)

m

)
(191)

Simplifying the error term gives the result.

H Experiment details

H.1 Section 3.2 Experiments

We simulated a high-dimensional CB learning setting with K = 2 actions and d = 300 dimensions. The
problem is high-dimensional in the sense that the number of samples n ∈ {10, 20, . . . , 100} is significantly
smaller than d. The contexts X are generated such that the ith coordinate of the features is distributed
as an independent Rademacher random variable ϕ(i)(X, a) ∼ Unif{−1, 1} for a ∈ [K] and we select θ ∈ R

d

uniformly at random from the unit ball. To reduce the computational burden, we set the degree t = 2 and
did not split the data q = 1.

Algorithm 1 is shown in red (Moment). Additionally, we implemented several plug-in baselines based on
linear regression: one that solves minimum-norm least squares problem (LR) and another that is ridge
regression with regularization λ = 1 (LR-reg). Figure 1 shows the absolute value difference between the
estimated V ∗ values of the three methods and the true value of V ∗. Error bars represent standard error over
10 trials.

We evaluated the estimated values of all three methods by empirically evaluating them. LR, LR-reg, and
Approx were evaluated with 4000 samples. Moment was evaluated with 1000 samples since it is more
computationally burdensome. We note that these difference in evaluation number should only affect the
variance.

We approximated the max function with a polynomial of degree t = 2 by minimizing an ℓ1 loss under
randomly 2000 uniformly randomly generated points in [−2, 2]. Note that this is a convex optimization
problem and can be solved efficiently. This procedure can be done without any samples from the environment.
The noise η for the problem was generated uniformly randomly from the set [−1/2, 1/2].

Comparison with Kong et al. (2020) As discussed, the algorithm of Kong et al. (2020) assumes
Gaussianity, meaning that we expect it to have significant bias in settings where the process {⟨ϕ(X, a), θ⟩}
is not Gaussian. In this part, we demonstrate one such illustrative instance empirically. The setting is the
same as before except that we set θ to be 1-sparse with θi∗ = 10 for some unknown index i∗ and θi = 0 for all
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with the majority of the data and then evaluate the difference

∆̂ =
1

nout

∑

i∈[nout]

max
a∈A2

〈
ϕ(x′

i, a
′
i), θ̂

〉

The lines in Figure 2 represent the means of the test outcomes over 100 repeated, independent samplings of
the dataset of n labeled points and p unlabeled points.

H.2.1 Warfarin experiments

Warfarin data. We first evaluated the ground-truth effect sizes, which we take to the difference between
the average value attained by a single baseline action and the average value attained by a linear model
that greedily chooses actions, when trained on the dataset with the same features. Note that, due to noise
and misspecification on real world data, this might not be the true effect size, but demonstrates what is
achievable with a linear model on the full dataset. As discussed in the main text, the reward is modeled as
+1 if the correct dose is applied and 0 otherwise.

The data is structured as rows representing each patient with covariate features as well as a dosage of warfarin
that is assumed to have succeeded for the patient (up to noise) given a rate measurement of mg/week. We
divide the doses into three categories:

• Low for less than 21 mg/week

• Medium for 21 to 59 mg/week

• High for more than 59 mg/week

For patient covariates, we omitted ’Medications’ and ’Comorbidities’ since they are difficult to featurize. We
also dropped rows with missing data in the ’Age’, ’Height’ and ’Weight’ categories. For discrete features
with missing data, we simply introduced another category. The baseline performance of each single action
on the entire dataset is given below:

• Low: 0.32

• Medium: 0.56

• High: 0.12

To account for non-zero means of each arm in this dataset and the particular structure of the features of
the patients, we consider a slight reformulation as a disjoint bandit. We denote the features of patient x by
ϕ(x) ∈ R

d where d = 193. Then, we assume the reward has the following model:

r∗(x, a) = µa + ⟨ϕ(x), θa⟩ (192)

for unknown vectors {θa}a∈A and unknown values µa. Recall that we use a to denote the baseline action
and a′ to denote the target action. Similarly, we use A = {a, a′} to denote the target action set.

For the linear regression baseline, we perform standard unregularized linear regression on the training dataset
to learn both µ̂a and θ̂a for the candidate actions. We then deploy the learned model on the validation set
to estimate the expected difference:

E

[
max
a′∈A′

{µa′ + ⟨ϕ(x), θa′⟩}
]
− µa (193)

As this relies on accurate estimation of θa, the threshold for detection scales approximately as
√
d/n where

d is the dimension and n is the number of training samples.
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For our method, we split the training set into two equal parts, randomly. Both are used to learn the
parameters µ̂a and µ̂a′ and θ̂a and θ̂a′ . Using the validation data, we estimate the centered feature covariance
matrix Σ̂. We the form the covariance matrix:

Λ̂ =

[
θ̂⊤
a Σ̂θ̂a θ̂⊤

a Σ̂θ̂a′

θ̂⊤
a Σ̂θ̂a′ θ̂⊤

a′Σ̂θ̂a′

]
(194)

which, we project onto the set of positive semi-definite matrices. In practice this step was not necessary since
the resulting covariance matrices already had this property, but they are not guarnateed to. We then consider
the normal distribution given by N (µ̂, Λ̂) and compute the difference between its expected maximum and the

baseline: EZ maxa′∈A′ Za′ − µ̂a, where Z ∼ N (µ̂, Λ̂). Here, the threshold follows the rate
√
d/p+ d1/4/

√
n

where d is the dimension, n is the number of labeled training samples and p is the number of unlabeled
evaluation samples.

H.3 Hardware

The experiments of Section 3.2 were run on a standard Amazon Web Services EC2 c5.xlarge instance. The
experiments of Section 4.1.2 were conducted on a standard personal laptop with 16GB of memory and an
Intel Core i7 processor.

I Broader Impact

While this work is primarily theoretical, there are several conceivable applications of this theory that could
have societal implications. Firstly, this work is meant to assist in the development of effective algorithms for
contextual bandits. As a result, any applications of contextual bandit research are potentially influenced by
this work such as health care, ads, education, recommender systems, and dynamic pricing. Specific to this
paper, we mention applications in health care and testing for treatment effect, specifically for the efficient
algorithm in Section 4. The algorithms presented here may be useful in health care settings to determine
if it is worthwhile to pose a problem as a contextual bandit before conducting any procedures that might
affect patients, even if only limited data is available. Our testing-for-treatment-effect application also has
the potential to lower the sample complexity for clinical trials that evaluate the effectiveness of interventions.
We advise practitioners to take note of the assumptions made here that may or may not hold in practice,
such as realizability and sub-Gaussianity.
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