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Abstract

It is often of interest to learn a context-sensitive decision
policy, such as in contextual multi-armed bandit processes. To
quantify the efficiency of a machine learning algorithm for
such settings, probably approximately correct (PAC) bounds,
which bound the number of samples required, or cumulative
regret guarantees, are typically used. However, real-world set-
tings often have limited resources for experimentation, and
decisions/interventions may differ in the amount of resources
required (e.g., money or time). Therefore, it is of interest to
consider how to design an experiment strategy that reduces the
experimental budget needed to learn a near-optimal contextual
policy. Unlike reinforcement learning or bandit approaches that
embed costs into the reward function, we focus on reducing
resource use in learning a near-optimal policy without resource
constraints. We introduce two resource-aware algorithms for
the contextual bandit setting and prove their soundness. Sim-
ulations based on real-world datasets demonstrate that our
algorithms significantly reduce the resources needed to learn a
near-optimal decision policy compared to previous resource-
unaware methods.

Code and datasets — https://github.com/joyheyueya/cost-
aware-policy-learning

Introduction

Consider designing a program to support people to attend their
court date (Fishbane, Ouss, and Shah 2020; Chohlas-Wood
et al. 2021). Missing a required court appearance, even for a
minor offense, can sometimes lead to warrants and jail time—
consequences many defendants may be unaware of. Missed
appointments also waste time and money in the judicial
system. Historically, if one wanted to test out interventions
that were specific to each individual, one would have had to
rely on mailing different interventions to different individuals.
This process requires significant manual human effort and
provides limited time specificity. In contrast, as the majority
of people now carry a cell phone, one can now automatically
send targeted intervention support (such as text messages,
transit coupons, or ride-sharing fares) to specific individuals
at specific times. The costs involved may vary substantially by
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individual and action—while a text message is very low cost,
providing transportation for an individual living far from the
court house is expensive.

Prior work (Chohlas-Wood et al. 2021) has modeled this as
a contextual multi-armed bandit (CMAB) problem and aimed
to learn high-performing policies within a short experimental
period. However, such work neglects the potentially vast
differences in costs incurred by different actions during the
experimental period.

Indeed, considering the cost incurred to learn high-
performance decision policies is relevant in many social
impact settings. As a second example, we consider interven-
tions to support voter turnout (Gerber, Green, and Larimer
2008) and learning a contextual bandit policy that could
customize interventions per potential voter. There are many
potential interventions that might be used to increase voter
turnout, including phone calls, letters, or in person visits,
which have substantially different costs. In addition, in such
settings it would be of particular interest to design a data
gathering experimental policy in advance to allocate samples
such that after a single election a good decision policy could
be learned. In line with prior work (Zanette et al. 2021), we
call this static exploration, since it cannot use the observed
outcomes from one context-decision to adapt and change
the action taken for the next context (which would require
waiting for one election for each decision). Reducing the cost
of learning a near-optimal contextual policy would be highly
valuable for campaigns and advocacy groups.

Motivated by such examples, we introduce a new setting
of cost-aware near-optimal policy learning for contextual
multi-armed bandits (CMABs). Historically, the majority
of research on multi-armed bandits (MABs) and CMABs
has focused on cumulative regret minimization (Lattimore
and Szepesvári 2020). Cumulative regret measures policy
suboptimality at each round of interaction during exploration,
whereas our pure exploration setting aims to minimize policy
suboptimality only at the end of exploration. There is sub-
stantial research on best arm identification in non-contextual
MABs (Audibert, Bubeck, and Munos 2010; Jamieson and
Nowak 2014; Kaufmann, Cappé, and Garivier 2016). Most of
this work focuses on sample efficiency and does not consider
cost. Another line of work considers knapsack bandits where
there is a fixed budget and tries to maximize the reward
obtained given that cumulative budget (Slivkins 2019). The





with tight minimax bounds on the number of samples needed
for learning a contextual policy with expected near-optimal
performance in linear CMABs. Li et al. (2022b) provide an
instance-optimal algorithm for PAC learning of the optimal
policy within a policy class for contextual bandits, and very
recent work by Krishnamurthy et al. (2023) presents an
algorithm for balancing simple regret and cumulative regret
minimization. None of these consider settings where actions
have heterogeneous costs.

Conservative and safe bandits. Another line of work that is
loosely related to our setting is conservative bandits (Wu et al.
2016), where the learner maximizes the cumulative reward
while ensuring the reward of the chosen arm is above a fixed
percentage of a known arm. There is also substantial research
on bandits with safety constraints. Amani, Alizadeh, and
Thrampoulidis (2019) consider minimizing cumulative regret
with respect to the best safe actions, whereas we focus on
reducing cost while learning a policy that minimizes simple
regret. Pacchiano et al. (2021) consider cost but focus on
minimizing cumulative regret while ensuring the deployed
policy on each round satisfies a cost constraint. Similar to us,
Carlsson et al. (2024) focus on learning a near-optimal policy,
but they consider multi-armed bandits with no context and
assume there are constraints on the arms. Additionally, there
have been papers on safe data collection for evaluating a single
known policy π, subject to restrictions on the exploration
policy πe being used to gather data to evaluate the value of π
(Zhu and Kveton 2021; Wan, Kveton, and Song 2022).

Active learning. Our setting is loosely related to the active
learning problem in machine learning, where the goal is to
maximize the model accuracy while minimizing the total cost
of annotating the data used to train the model. Many previous
studies assume that the cost of obtaining each sample is the
same, some studies consider varying costs (Settles, Craven,
and Friedland 2008; Kapoor, Horvitz, and Basu 2007; Haertel
et al. 2008). However, active learning is focused on supervised
learning models, where the next sample is chosen and the full
label is observed. In CMABs, we do not get to choose the
next state—we only get to choose the action for a given state
and observe its reward.

Bayesian optimization and Experimental design. Our set-
ting also overlaps broadly with many other research areas
focused on efficient data collection to learn the optima of
a function (Bayesian optimization) or to gather as much
information as possible about some parameters of interest
(Bayesian optimal experimental design).

While Bayesian optimization and pure exploration in ban-
dits are closely related (Srinivas et al. 2012; Krause and Ong
2011), Bayesian optimization techniques often use Gaussian
processes to model complex, black-box functions, while ban-
dit algorithms often leverage parametric structure in rewards
for statistical efficiency gains. Some Bayesian optimization
papers explicitly consider heterogeneous sampling cost in
the acquisition function used to direct sampling (Snoek,
Larochelle, and Adams 2012; Lee et al. 2021; Astudillo
et al. 2021; Belakaria et al. 2023). A simple approach pro-
posed is to move from the popular acquisition function of
expected improvement, to expected improvement per unit
of cost (Snoek, Larochelle, and Adams 2012). Recent work

shows this can be suboptimal in the Bayesian optimization
setting (Astudillo et al. 2021) and has considered unknown
costs using a multi-step lookahead approach (Astudillo et al.
2021; Lee et al. 2021) with a finite fixed budget. However, this
work has focused on learning the optima for generic function
optimization, has not considered parametric structure, and
are focused on finding the best optima given a fixed input
budget. In contrast, we provide finite bounds that can be used
to bound the expected simple regret of the learned contextual
policy. Perhaps most similar is work by Paria et al. (2020),
which uses a cost-aware version of information-directed sam-
pling (Russo and Van Roy 2018) to guide exploration for
generic Bayesian optimization. One of our algorithms is also
related to information-directed sampling, but we formulate
a different objective and focus on CMABs. Li et al. (2022a)
introduce an algorithm for best-policy identification, but do
not consider action costs or budget minimization.

Constrained Markov Decision Processes (MDPs). Altman
(2021) focuses on planning with constrained MDPs; in con-
trast, we focus on online learning of a policy through active
data collection for CMABs. There is additional work in learn-
ing in constrained MDPs (Germano et al. 2023). Such work
often assumes there is a fixed constraint that must be satisfied
and constrains what policy can be optimal (Sun et al. 2021).
In contrast, we aim to find a near-optimal policy with no
constraints and reduce the cost required to learn that policy.

Setting

We consider the stochastic contextual bandit environment
where at each round n ∈ [N ], a context sn ∈ S is sampled
i.i.d. from a distribution µ. For each context sn, a (potentially
context-dependent) finite action set Asn is made available to
the learner. The bandit instance is defined by a reward function
r : S × As 7→ R. Upon choosing an action an ∈ Asn , a
stochastic sample rn with mean r(sn, an) is revealed to the
learner. The reward model parameterization depends on the
problem setting and we consider several specific settings. We
assume there is a known, deterministic, and positive resource
cost c(s, a) ∈ R

+ for each state-action pair.
We define a decision policyπ to be a mapping from contexts

to actions: π : S → A. Let V (π) denote the expected reward
(i.e., value) of a policy π,

V (π) := Es∼µ[r(s, π(s))], (1)

where the expectation is taken over the context distribution,
the stochasticity in the observed rewards, and any stochasticity
in the policy π. The optimal policy π⋆ maximizes the expected
reward: π⋆ = maxπ V (π).

In the pure exploration/simple regret setting, the goal is
create an efficient exploration policy πe to gather a dataset D,
such that a near-optimal policy π̂(D) can be learned from the
resulting dataset D.

In prior work, efficiency has been defined by the number
of samples needed to achieve a particular performance bound
ϵ on the resulting policy

V (π⋆)− V (π̂(D)) ≤ ϵ (2)

In our work, we are interested in designing resource-aware
exploration algorithms, which aim to reduce the sum of costs



Algorithm 1: Cost-aware planner

1: Input: Contexts C = {s1, . . . , sM}, regularization λ
2: Σ1 = λI
3: m = 1
4: for m = 1, 2, . . .M do
5: if det(Σm) > 2 det(Σm) or m = 1 then
6: m← m
7: Σm ← Σm

8: end if

9: Define πm : s 7→ argmaxa∈As

∥ϕ(s,a)∥2

Σ
−1
m

c(s,a)

10: Σm+1 = Σm + αϕmϕ⊤
m; ϕm = ϕ(sm, πm(sm))

11: end for
12: return policy mixture πmix of {π1, . . . , πM}

incurred during exploration c(D) =
∑

(sn,an)∈D c(sn, an)

relative to the ϵ-accuracy of the resulting learned policy.
While provably minimizing this cost may involve complex
optimization programs (similar to knapsack problems), we
will shortly introduce and show that myopic cost-aware ex-
ploration strategies involve the same computational cost as
prior related methods, but can offer notable improvements in
the cost required to learn the same ϵ-optimal policy.

Finally, in CMABs, the primary focus has been on the
realizable setting where we assume access to a statistical
parameterized model that can capture the true reward function.
Similarly, we assume access to a particular function class
(such as a linear model) that describes the reward function.
We consider both the frequentist setting where there is a single
fixed but unknown parameter and a Bayesian setting in which
a prior over the reward model parameters is provided. Before
proceeding we briefly define our notation.

Notation. Unless otherwise stated, we let ∥x∥ denote the
l2-norm of a vector x ∈ R

d. For a positive semi-definite

matrix Σ ∈ R
d×d, let ||x||Σ =

√
x⊤Σx. For a set S we let

∆(S) denote the set of (appropriately defined) distributions
over S. We use Id ∈ R

d×d to denote the d-dimensional
identity matrix.

Algorithms

In the pure exploration setting, a key question is whether it
is required to specify a fixed exploration policy in advance
of data collection (the static setting) or whether it is possible
to update the exploration policy during data collection in
response to observed rewards (the adaptive setting). We
present two algorithms, one for each setting, that build on
prior work by introducing modifications to past algorithms to
account for costs.

Static Cost-Aware Exploration

In many practical settings of interest, it is not possible
to deploy a policy that is updated during exploration (Mat-
sushima et al. 2020; Pacchiano, Lee, and Brunskill 2024;
Zanette et al. 2021). Continual updates can require signifi-
cant engineering overhead, and may even be infeasible when
rewards are delayed or in studies with parallel treatment as-
signment. Consider learning a contextual bandit policy that

Algorithm 2: Cost-aware Sampler

1: Input: πmix = {π1, . . . , πM}, regularization λ
2: Set D′ = ∅
3: for n = 1, 2, . . . N do
4: Receive context s′n ∼ µ
5: Sample m ∈ [M ] uniformly at random
6: Select action a′n = πm(s′n)
7: Receive feedback reward r′n
8: Store feedback D′ = D′ ∪ {s′n, a′n, r′n}
9: end for

10: return dataset D′

could customize interventions per potential voter to increase
voter turnout (Gerber, Green, and Larimer 2008). Many po-
tential voters are assigned to different conditions in parallel,
and voting outcomes can only be observed once per election.
Here, we propose a cost-aware algorithm for static exploration
in settings where different actions have different costs.

In particular, we restrict ourselves to the well-studied
stochastic linear contextual bandits setting. We assume there
is a known feature map ϕ : S × As 7→ R

d and the reward
model follows rθ⋆(s, a) = ϕ(s, a)⊤θ⋆, where θ⋆ ∈ R

d is an
unknown parameter. Upon choosing an action a ∈ As, the
reward r = rθ⋆(s, a) + η is revealed to the learner, where
η is mean-zero, 1-sub-Gaussian noise. As is standard, we
assume that ∥θ⋆∥ ≤ 1 and sups,a ∥ϕ(s, a)∥ ≤ 1 such that

|rθ⋆(s, a)| ≤ 1. For a given parameter θ ∈ R
d, we define

πθ(s) = argmaxa∈As
ϕ(s, a)⊤θ to be a greedy policy with

respect to θ. The optimal policy π⋆ is defined as πθ⋆ .
Our static pure exploration setting proceeds in two

phases. First, we design an exploration policy πe to con-
struct a dataset D′ = {(s′n, a′n, r′n)}n=1,...,N . Then, us-
ing D′, we extract the regularized least-square predic-

tor θ̂ =
(
Σ′

N

)−1 ∑N
i=1 ϕ(s

′
n, a

′
n)r

′
n, where Σ′

N = λId +∑
n∈[N ] ϕ(s

′
n, a

′
n)ϕ(s

′
n, a

′
n)

⊤ and λ > 0. Our objective is

to design πe such that the simple regret of the greedy de-

cision policy π̂ = argmaxa∈As
ϕ(s, a)⊤θ̂ is minimized.

It is known from prior work (Zanette et al. 2021) that to
learn an ϵ-optimal policy for ϵ > 0, it suffices to design
the exploration policy πe so as to minimize the maximum
uncertainty Es∼µ maxa ∥ϕ(s, a)∥Σ′

N
. Zanette et al. (2021)

propose the sampler-planner algorithm (S-P), which selects
the action am = argmaxa ∥ϕ(s, a)∥Σ−1

m
that maximizes the

uncertainty with respect to the current covariance matrix
every time a context sm ∼ µ is observed.

Building on the S-P algorithm, we propose the S-P cost

algorithm that explicitly thinks about the cost for minimizing
the maximum uncertainty. S-P cost consists of two subrou-
tines: the cost-aware planner (see Alg. 1) and cost-aware
sampler (see Alg. 2). Similar to a reward-free version of
the LinUCB algorithm (Abbasi-Yadkori, Pál, and Szepesvári
2011), the planner leverages an offline set of contexts and

chooses the action am = argmaxa
∥ϕ(s,a)∥2

Σ
−1
m

c(s,a) (see line 9 of

Alg. 1) every time a context sm ∼ µ is observed. Intuitively,
∥ϕ(s,a)∥2

Σ
−1
m

c(s,a) represents the uncertainty per unit cost, and we



would like to maximize the uncertainty reduction per unit cost.
We run Alg. 1 forM iterations, whereM could be determined
by ϵ (see Zanette et al. (2021) for details). Upon termina-
tion, the planner outputs a sequence of policies π1, . . . , πM .
The sampler then uses the average mixture policy πmix to
gather a dataset: for each new context, πmix samples an index
m ∈ [M ] uniformly at random and plays πm. We run Alg. 2
for N iterations. The sampler’s policy produces a covariance
matrix close to what the planner computed with offline data,
which in turn yields a bound on maximum uncertainty and
thus simple regret (Zanette et al. 2021).

Adaptive Cost-Aware Exploration

Bayesian approaches are very popular in adaptive optimization
and experimental design, in part because they provide a
natural way to quantify information gain with respect to prior
uncertainty, which can be leveraged for adaptive exploration.
We introduce a simple resource-aware algorithm for pure
exploration in Bayesian contextual bandits.

We here consider a more general class of reward models f ,
such that the observed reward when taking action a in context
s is r = f(s, a, θ) + η, where θ is the unknown parameter,
η is mean-zero, 1-sub-Gaussian noise. We assume that θ is
sampled from some known prior distribution.

Let Fn = {s1, a1, r1, s2, a2, r2, . . . , sn−1, an−1, rn−1)
be the sequence of states observed, actions taken, and
rewards observed up to the current time point. Define
En[X] := E[X|Fn]. Recall that the entropy of a probability
distribution Px is defined as H(Px) = −

∑
x P (x) logP (x).

Given a history Fn, a prior p(θ), and an observed state sn,
we can define a posterior probability distribution over the
optimal action a⋆ = argmaxa∈Asn

f(sn, a, θ) in state sn:

αn(sn, a) = P (a⋆ = a|sn,Fn). (3)

The information gain gn(a
′) of selecting a particular action

a′ in state sn is defined as the expected reduction in entropy
over the optimal action for state sn after taking action a′:

gn(a
′) = En [H(αn(sn, ·))−H(αn+1(sn, ·))] . (4)

A common approach in Bayesian optimization that can
also be easily applied in the pure exploration simple multi-
armed bandit setting is to select actions to maximize the
information gain. Russo and Van Roy (2018) introduced
information-directed sampling for Bayesian cumulative regret
minimization in bandits and extend the above by considering
the ratio of the expected regret to the information gain.

In our setting, we are instead interested in considering
the information gain in relation to resources spent. To do so,
we define our exploration policy as one that maximizes the
relative information gain per unit cost:

πe(sn) = argmax
a′

gn(a
′)

c(sn, a′)
. (5)

Our objective is very similar to work in Bayesian opti-
mization that uses expected improvement per unit of cost an
acquisition function (Snoek, Larochelle, and Adams 2012),
though that work did not consider MABs or the contextual
setting, nor provided finite sample analysis.

Algorithm 3: IG cost

1: Input: K, r, q
2: Set D′

0 = ∅
3: for n = 1, 2, . . . N do
4: Receive context s′n ∼ µ
5: Draw θ1, . . . , θK from the posterior p(θ|Fn)

6: Θ̂a ← {m|a = argmaxa′

∑
y qθm,s′

n
,a′(y)r(y)}

7: p̂(a∗)← |Θ̂a∗ |/K ∀a∗
8: p̂a(y)←

∑
m qθm,s′

n
,a(y)/K ∀y

9: p̂a(a
∗, y)←∑

m∈Θ̂a∗
qθm,s′

n
,a(y)/K ∀a∗, y

10: g⃗a ←
∑

a∗,y p̂a(a
∗, y) log p̂a(a

∗,y)
p̂(a∗)p̂a(y)

∀a ∈ As′
n

11: Select action a′n = argmaxa∈A
s′
n

g⃗a
c(s′

n
,a)

12: Receive feedback reward r′n
13: Store feedback D′

n = D′
n−1 ∪ {s′n, a′n, r′n}

14: end for
15: return dataset D′

N

In general, computing the information gain is computa-
tionally challenging due to intractable posteriors. Prior work
often considers approximations, and we draw from (Russo and
Van Roy 2018)’s algorithm for a sample-based approximation
to the information gain and present a cost-aware information
gathering algorithm for contextual bandits (IG cost) in Alg. 3.
This uses a sample-based approximation to Equation 5 and we
restrict our attention to settings with discrete reward outcomes.
We let y(s, a) ∈ Y denote the outcome of choosing action a
in context s, where Y is a discrete set.

Alg. 3 takes as input K, r, and q. K is the number of
samples drawn independently from the posterior p(θ|Fn)
and r : Y 7→ R is a reward function mapping outcomes to
scalar rewards. We let qθ,s,a(y) = P (y(s, a) = y|θ) be the
probability, conditioned on θ, of observing y when action
a is selected in context s. Line 6 computes the optimal
action for each value of θ. Line 7 computes the probability
that each action is optimal. Line 8 computes the marginal
distribution over the particular rewards, and line 9 computes
the joint probability distribution of the optimal action and
a particular reward outcome. These quantities are used to
compute the information gain (see a derivation in “Definition
of Information Gain in Alg. 3” in Appendix), which is then
scaled by the inverse of the cost.

Experiments

Voting Encouragement Simulation

We evaluate S-P cost on a voting dataset focused on the
August 2006 primary election1, collected by Gerber, Green,
and Larimer (2008) to study the effect of social pressure
on voter turnout. The researchers designed one control and
4 treatment actions that involved sending different types
of letters to selected individuals before the 2006 Michigan
primary election. The actions are:

• Nothing (control): No letter sent.

1Data available at
https://github.com/gsbDBI/ExperimentData/tree/master/Social



• Civic: A letter stating “Do your civic duty.”

• Hawthorne: A letter stating “You are being studied.”

• Self-History: A letter showing the voter’s and their house-
hold’s past voting records, with a promise to send a follow-
up letter after the election showing updated records.

• Neighbors-History: A letter showing the voting records
of the individual, their household, and their neighbors,
with a notification that a follow-up letter would be sent
after the election to update everyone, thereby making the
individual’s participation public among the neighbors.

The data collection policy sampled actions with probability
5
9 for the control action and 4

9 for other actions. The reward is
a binary indicator of voter participation in the 2006 primary
election. For simplicity, we assume the Civic and Hawthorne
actions cost $0.5 for each individual, roughly aligned with
the 2006 postage rate and printing costs. The Self-History
action costs $2.5 due to the extra effort in accessing detailed
voting records, and the Neighbors-History action is the most
expensive at $10, requiring extensive data. Since our algorithm
requires c(s, a) > 0, ∀s, a, we set the control action cost at a
nominal $0.1.

The dataset consists of 180, 002 entries, each representing
a voter from a unique household across the state of Michigan.
The dataset includes ten voter characteristics, such as age and
gender, which are used as the context features (see details in
“Experiment Details for Voting Dataset” in Appendix).

Each action in our experiment is encoded using a 6-
dimensional feature vector. The first dimension identifies
if the action is the control (1 for control, 0 otherwise). The
second dimension denotes whether the action includes mailing
a letter (1 for the four treatment actions, 0 for the control). The
third through sixth dimensions respectively indicate whether
the action is Civic, Hawthorne, involves checking neighbors’
voting history (Neighbors-History), or requires access to
household voting history (applies to Neighbors-History and
Self-History), with a 1 for yes and a 0 for no. We concatenate
these action features with context features about each voter
and use a linear model to predict the reward based on the
combined features2.

We partition the dataset by city, using 90% for training and
the remaining 10% for testing. We use rejection sampling
for simulating data collection and evaluation since only the
outcomes of the chosen actions were observed in the real data:
For each data point, we accept it if the action selected by the
policy is the same as the action selected in the historical data
and reject it otherwise.

We compare our S-P cost against three baselines: (1) a
random exploration algorithm (Random) that chooses actions
uniformly, (2) the cost-unaware sampler-planner algorithm
(S-P) proposed in Zanette et al. (2021), and (3) a variant
of S-P cost inspired by HATCH (Yang et al. 2020), which
adaptively allocates a fixed exploration budget based on the
remaining resources, action costs, and estimated uncertainty
reduction. Unlike our S-P cost, HATCH requires a fixed
constraint on the number of samples. To evaluate its per-
formance, we run HATCH with various constraints (e.g.,

2We also tested a logistic model and observed a similar fit.

M = N = 10000, . . . , 50000). For S-P and S-P cost, the
planner is first run on the training set repeatedly until it has
processed M data points (M = N = 50000). All algorithms
are then used to collect a dataset of size N . After collecting
each sample during exploration, we calculate the value of the
resulting greedy decision policy for each algorithm on the
test set of 53505 data points. The policy value is computed as
the average reward on the test set. Additionally, we estimate
the optimal value that could be achieved by a supervised
learning oracle that has access to all state-action pairs in the
training set, which represents an approximate upper bound.
All algorithms use λ = 1, and the planner uses α = 1, as
these work well empirically (Zanette et al. 2021). We run the
experiment for 50 trials using random seeds 1-50.

Figure 1a shows cumulative exploration costs required by
our S-P cost versus alternatives to achieve various perfor-
mance gaps ϵ (i.e., the difference between the value of the
optimal policy and the learned policy). We averaged costs
within 5 equally spaced ϵ intervals, and each dot represents a
particular epsilon interval. Our S-P cost learns an ϵ-optimal
policy at a lower exploration cost than S-P. S-P cost tends to
choose the cheaper actions to get information about most of the
coordinates, while the cost-unaware S-P often selects the most
informative yet expensive actions, such as Neighbors-History,
without considering cost-efficiency. Figure 2a displays these
costs plotted against the performance gap ϵ. We find similar
results across various nominal values (i.e., the small cost
assigned to actions that might otherwise be considered free),
as shown in Figure 3 in the appendix.

Interestingly, Random outperforms S-P in terms of cost.
This highlights the importance of considering costs directly, as
even sample-efficient algorithms may not necessarily lower the
real experimental costs compared to random data collection.

Court Appearance Simulation

We evaluate IG cost using a semi-synthetic court appearance
simulator from Chohlas-Wood et al. (2021), which is grounded
in real case data from the Santa Clara County Public Defender
Office. In this setting, a policymaker seeks to help individuals
attend their court dates by providing government-sponsored
transportation assistance. Individuals can receive one of three
mutually exclusive interventions a: rideshare assistance, a
transit voucher, or no transportation assistance. The round-trip
rides cost $5 for every mile between an individual’s home
address and the courthouse and back. The transit voucher
costs $7.5. Since our algorithm requires c(s, a) > 0, ∀s, a,
we assume that the no transportation assistance intervention
has a cost of $0.1, which is negligible compared to the other
interventions. The simulator considers the binary outcome
y ∈ {0, 1} that indicates whether a client appeared at their
court date. The simulator uses a logistic reward model, where

P(rθ⋆(s, a) = 1) = logit−1(ϕ(s, a)⊤θ⋆) for some unknown
θ⋆ ∈ R

d. The reward is independent across draws.
The resulting dataset consists of 12, 636 example cases.

Each data point is a 7-dimensional feature vector associated
with the true appearance probability of the individual, the
observed binary outcome, and the cost of the intervention
if provided each of the three interventions. The simulator
is designed in such a way that the type of assistance that is
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