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Abstract

In many applications, e.g. in healthcare and e-commerce, the goal of a contextual
bandit may be to learn an optimal treatment assignment policy at the end of the
experiment. That is, to minimize simple regret. However, this objective remains
understudied. We propose a new family of computationally efficient bandit al-
gorithms for the stochastic contextual bandit setting, where a tuning parameter
determines the weight placed on cumulative regret minimization (where we estab-
lish near-optimal minimax guarantees) versus simple regret minimization (where
we establish state-of-the-art guarantees). Our algorithms work with any function
class, are robust to model misspecification, and can be used in continuous arm set-
tings. This flexibility comes from constructing and relying on “conformal arm sets"
(CASs). CASs provide a set of arms for every context, encompassing the context-
specific optimal arm with a certain probability across the context distribution. Our
positive results on simple and cumulative regret guarantees are contrasted with a
negative result, which shows that no algorithm can achieve instance-dependent sim-
ple regret guarantees while simultaneously achieving minimax optimal cumulative
regret guarantees.

1 Introduction

Learning and deploying personalized treatment assignment policies is crucial across domains such
as healthcare and e-commerce Murphy [2003], Li et al. [2010]. Traditional randomized control
trials (RCTs), while foundational for policy learning [Banerjee et al., 2016, Das et al., 2016], can
be inefficient and costly Offer-Westort et al. [2021]. This motivates the study of adaptive sequential
experimentation algorithms for the stochastic contextual bandit (CB) settings. The algorithm interacts
with a finite sequence of users drawn stochastically from a fixed but unknown distribution. At
each round, the algorithm receives a context (a user’s feature vector), selects an action, and gets a
corresponding reward. At the end of this adaptive experiment, the algorithm outputs a learned policy
(mapping between contexts and actions).

Our algorithms are designed with the dual objectives of minimizing simple regret and cumulative
regret. Simple regret quantifies the difference between the expected rewards achieved by the optimal
policy and the policy learned at the conclusion of the experimental process. In contrast, cumulative
regret encapsulates the summation of differences between the expected rewards generated by the
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optimal policy and the exploration policies employed at each sequential round of decision-making.1

Although there are many settings where simple regret is an important consideration, the majority
of research in the contextual bandit field has focused on the minimization of cumulative regret. To
the best of our knowledge, there is no general-purpose computationally efficient algorithm for pure
exploration objectives like simple regret minimization in the contextual bandit setting. Further, there
has been relatively little work so far into algorithms that explore the trade-off between multiple
objectives like cumulative regret and simple regret (though see Athey et al. [2022], Erraqabi et al.
[2017], Yao et al. [2021] for studies that address this empirically or juxtapose minimizing cumulative
regret with estimating treatment effects or arm parameters). Our work seeks to address these gaps. We
show that there is a trade-off between simple and cumulative regret minimization (formalized later in
a lower-bound result). To navigate this trade-off, we proposes a new algorithm called Risk Adjusted
Proportional Response (RAPR) with a tuning parameter ω ∈ [1,K], which governs the weight placed
on the two objectives.2 The algorithm is general-purpose (in that it can address any user-specified
reward and policy classes), ensures near-optimal guarantees, and is also computationally efficient.

Types of guarantees. In our analysis, we consider two different types of bounds on simple and
cumulative regret, worst-case and instance-dependent guarantees. Here instance-dependent guarantees
refer to bounds that surpass worst-case rates by exploiting instances with large gaps between the
conditional expected rewards of the optimal and sub-optimal arms. Recent work by [Foster and
Rakhlin, 2020] has shown that it is not possible for contextual algorithms to have instance-dependent
guarantees on cumulative regret (without suffering an exponential dependence on model class
complexity); the authors instead develop algorithms that achieve minimax optimal (worst case
optimal) cumulative regret guarantees (with square-root dependence on model class complexity). Li
et al. [2022] developed the first general-purpose contextual bandit algorithm for pure exploration, and
their algorithm achieved instance-dependent guarantees. They also show that instance-dependent best
policy identification guarantees must come at the cost of worse than minimax optimal cumulative
regret (discussed in detail later). We show a similar lower bound on cumulative regret for algorithms
that achieve better instance-dependent simple regret guarantees, and propose the first family of
algorithms that flexibly navigate such trade-offs.

Overview of our guarantees. The simple regret guarantees of RAPR are never worse than the
minimax optimal rates (Theorem 2). Depending on the instance, RAPR achieves simple regret
guarantees that are up to O(1/

√
ω) times smaller compared to minimax optimal rates (Theorem 2).

This improvement factor of O(1/
√
ω) over minimax optimal rates is asymptotically achieved for

instances where realizability holds (the reward model class is well specified) and the gap between
the best and second best arm in terms of conditional expected reward is at least ∆ > 0 at every
context (best-case instance in Theorem 2). RAPR provides these instance-dependent guarantees
without the knowledge of any instance information. Unfortunately, the corresponding cumulative
regret for the above instances is a factor of O(

√
ω) times larger compared to minimax optimal rates

(Theorem 1). The cumulative regret guarantees of our algorithm only degrade relative to the minimax
optimal rate if the instance allows for better simple regret guarantees. Our lower bound (Theorem 3)
considers the instances described above with ∆ = 0.24 (the gap between best and second best arm
in terms of conditional expected reward). Theorem 3 shows that, for any algorithm that bounds the
simple regret on these instances to O(1/

√
ω) of the minimax optimal rates, its cumulative regret will

be at least Ω(
√
ω) times the minimax optimal rates. RAPR thus achieves a near-optimal trade-off

between guarantees on simple vs cumulative regrets when T is large enough. The trade-off contrasts
with non-contextual bandits, where successive elimination ensures improved (compared to minimax)
instance-dependent guarantees for both simple and cumulative regret [Even-Dar et al., 2006, Slivkins
et al., 2019].

Types of CB algorithms. Contextual bandit algorithms broadly fall into two categories: regression-
free and regression-based. Regression-free algorithms create an explicit policy distribution, randomly
choosing a policy for decision-making at any time-step [Agarwal et al., 2014, Beygelzimer et al.,
2011, Dudik et al., 2011, Li et al., 2022]. While these algorithms provide worst-case cumulative regret
guarantees [Agarwal et al., 2014, Beygelzimer et al., 2011, Dudik et al., 2011] or instance-dependent

1Our formal definition of simple regret compares against the best policy in our policy class, while our
cumulative regret definition compares against the global optimal policy (induced by the true conditional
expected reward model). The reason for this discrepancy is because we use a regression based approach (due to
computational considerations) for constructing our exploration policies.

2K is the number of arms for the finite arm setting.
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PAC guarantees for policy learning [Li et al., 2022] without additional assumptions, they can be
computationally intensive Foster and Rakhlin [2020]: they require solving and storing the output of
Ω(poly(T )) cost-sensitive classification (CSC) problems [Krishnamurthy et al., 2017] at every epoch
(or update step). In contrast, regression-based algorithms [e.g., Abbasi-Yadkori et al., 2011, Foster and
Rakhlin, 2020, Simchi-Levi and Xu, 2020] construct a conditional arm distribution using regression
estimates of the expected reward, allowing for methods that need only solve O(1) regression or
CSC problems at every epoch (or update step). Traditionally, these algorithms relied on realizability
assumptions for optimal regret guarantees, but recent advances allow for misspecified reward model
classes [Carranza et al., 2023, Foster et al., 2020a, Krishnamurthy et al., 2021]. We develop regression-
based algorithms and do not assume realizability. RAPR is the first general-purpose regression-based
algorithm with attractive pure exploration (simple regret) guarantees.

Overview of our algorithm. We now describe the RAPR algorithm in more detail. We first define
a surrogate objective for simple regret, the optimal cover, which is inversely proportional to the
probability that the bandit exploration policy chooses the arm recommended by the unknown optimal
policy. The optimal cover bounds the variance of evaluating the unknown optimal policy under
our exploration policy. This surrogate objective can be minimized by appropriately designing our
exploration policy/action selection kernels. To maintain the attractive computational properties
of regression-based algorithms, RAPR does not construct an explicit distribution over policies as
that distribution would have large support and would be computationally and memory intensive
to maintain. Instead, the goal of minimizing the optimal cover is attained by directly constructing
a distribution over arms for each arriving context. This in turn builds on a novel general-purpose
uncertainty quantification at each context. Much of the existing literature constructs confidence
intervals with point-wise guarantees, but existing approaches to constructing them rely on assumptions
like linear realizability. For general function classes, these intervals may be too wide and are often
computationally expensive to construct. To overcome this issue, we develop Conformal Arm Sets
(CASs), which are a set of potentially optimal arms at each context. This uncertainty quantification is
regression-based and computationally efficient to construct; it’s general-purpose and shrinks at “fast
rates” (with square-root dependency on expected squared error bounds for regression). Unfortunately,
these sets come with some risk of not containing the arm recommended by the optimal policy at every
context. Nevertheless, we can use this uncertainty quantification to construct a distribution over arms
at each context that helps us minimize the optimal cover by balancing the benefits and risks of relying
on these CASs. The unavoidable trade-off between our simple and cumulative regret guarantees is an
artifact of these risky sets. Beyond allowing us to trade off simple and cumulative regret guarantees,
the flexibility of the approach also helps us extend to continuous arm settings and allows us to handle
model misspecification.

Other Related Work. Our work connects to the literature on pure exploration, extensively studied in
MAB settings (see overview in [Lattimore and Szepesvári, 2020]). [Even-Dar et al., 2006, Hassidim
et al., 2020] study elimination-based algorithms for fixed confidence best-arm identification (BAI).
[Kasy and Sautmann, 2021, Russo, 2016] study variants of Thompson Sampling with optimal
asymptotic designs for BAI. [Karnin et al., 2013] propose sequential halving for fixed budget BAI.
Our algorithm provides fixed confidence simple regret guarantees and can be seen as a generalization
of successive elimination [Even-Dar et al., 2006] to the contextual bandit setting. The key technical
difference is that it is often impossible to construct sub-gaussian confidence intervals on conditional
expected rewards. The uncertainty quantification we use is similar to the notion of conformal
prediction (see [Vovk et al., 2005] for a detailed exposition). Until recently, pure exploration had been
nearly unstudied in contextual bandits. [Zanette et al., 2021] provide a static exploration algorithm
that achieves the minimax lower bound on sample complexity for linear contextual bandits. [Li et al.,
2022] then provided the first algorithm with instance-dependent (ϵ, δ)-PAC guarantees for contextual
bandits. This algorithm is regression-free (adapts techniques from [Agarwal et al., 2014]) and requires
a sufficiently large dataset of offline contexts as input. Hence, unfortunately, it inherits high memory
and runtime requirements [See Foster and Rakhlin, 2020, for a more detailed discussion]. However,
these costs come with the benefit that their notion of instance dependence leverages structure not
only in the true conditional expected reward (as in Theorem 2) but also in the policy class (similar to
policy disagreement coefficient Foster et al. [2020b]). They also prove a negative result, showing
that it is not possible for an algorithm to have instance-dependent (0, δ)-PAC guarantees and achieve
minimax optimal cumulative regret guarantees. Our hardness result is similar but complementary
to their result, for we show a similar result for simple regret (rather than their (0, δ)-PAC sample

3



complexity).3 Our work also recovers some cumulative regret guarantees for the continuous arm case
[Majzoubi et al., 2020, Zhu and Mineiro, 2022], with new guarantees on simple regret and robustness
to misspecification. Note that our restriction to “slightly randomized" policies for the continuous arm
case results in regret bounds with respect to a “slightly randomized" (smooth) benchmark [see Zhu
and Mineiro, 2022, for smooth regret].

1.1 Stochastic Contextual Bandits

We consider the stochastic contextual bandit setting, with context space X , (compact) arm space A,
and a fixed but unknown distribution D over contexts and arm rewards. DX refers to the marginal
distribution over contexts, and T signifies the number of rounds or sample size. At each time t ∈ [T ]4,
the environment draws a context xt and a reward vector rt ∈ [0, 1]A from D; the learner chooses an
arm at and observes a reward rt(at). To streamline notation for discrete and continuous arm spaces,
we consider a finite measure space (A,Σ, µ) over the set of arms, with K shorthand for µ(A).5 For
ease of exposition, we focus on the finite/discrete arm setting. Here A = [K] and µ is the count
measure, and µ(S) = |S| for any S ⊆ A. A (deterministic) policy π maps contexts to singleton
arm sets Σ1 := {a|a ∈ A}6. With some abuse of notation, we also let π refer to the kernel given
by π(a|x) = I(a ∈ π(x)). An action selection kernel (randomized policy) p : A×X → [0, 1] is a
probability kernel that describes a distribution p(·|x) over arms at every context x. We let D(p) be
the induced distribution over X ×A× [0, 1], where sampling (x, a, r(a)) ∼ D(p) is equivalent to
sampling (x, r) ∼ D and then sampling a ∼ p(·|x).
A reward model f maps X × A to [0, 1], with f∗(x, a) := ED[rt(a)|xt = x] denoting the true
conditional expected reward model. Our algorithm works with a reward model class F and a policy
class Π. For a given model f and an action selection kernel p, we denote the expected instantaneous
reward of p with f as Rf (p). We write Rf∗(p) as R(p) to simplify notation when no confusion

arises. The optimal policy associated with reward function f is defined as πf
7.

Rf (p) := E
x∼DX

E
a∼p(·|x)

[f(x, a)], and πf ∈ argmax
π

Rf (π).

The policy πf induced by f ∈ F is assumed to be within policy class Π without loss of generality.8

For any S ⊆ A, with some abuse of notation, we let f(x, S) =
∫
a∈S

f(x, a)dµ(a)/µ(S). Note that

πf (x) ∈ argmaxS∈Σ1
f(x, S) for all x. The regret of a policy π with respect to f is the difference

between the optimal value and the actual value of π, denoted as Regf (π) := Rf (πf ) − Rf (π).

Finally, we let π∗ denote the optimal policy in the class Π and let RegΠ(·) denote the regret with
respect to π∗. That is, π∗ ∈ argmaxπ∈Π R(π) and RegΠ(π) := R(π∗)−R(π).

Objectives. Contextual bandit algorithms adaptively construct action sampling kernels (exploration
policies) {pt}t∈[T ] used to collect data over the T rounds. At the end of the adaptive experiment, the
adaptively collected data is used to learn a policy π̂ ∈ Π. We study two main objectives to measure
quality of these outputs: [Objective 1] Cumulative regret minimization. Cumulative regret (CRegT ) is

given by CRegT :=
∑T

t=1 Regf∗(pt). It compares the cumulative expected reward obtained during
the experiment with the expected reward of the policy (πf∗ ) induced by the true conditional expected
reward (f∗). We seek to minimize cumulative regret which is equivalent to maximizing cumulative
expected reward during the experiment. [Objective 2] Simple regret minimization. Simple regret is
given by RegΠ(π̂). It compares the expected reward of the learnt policy π̂ ∈ Π against the value
of the optimal policy in the class Π. We seek to minimize simple regret which is equivalent to
maximizing expected reward of the policy learnt at the end of the experiment. To understand the
kind of exploration kernels ({pt}t∈[T ]) that help with policy learning, we now identify a surrogate
objective for simple regret (called optimal cover) that is in terms of the kernels used for exploration.

3In (ϵ, δ) PAC sample complexity results, given an input (ϵ, δ), the objective is to minimize the number of
samples needed in order to output an ϵ-optimal policy with probability at least 1− δ (a "fix accuracy, compute
budget" setting). In contrast, in our simple regret case, we consider how to minimize the error ϵ as the number of
samples increases.

4For any n ∈ N
+, we use notation [n] to denote the set {1, ..., n}

5Here Σ is a σ-algebra over A and µ is a bounded set function from Σ to the real line.
6The introduction of Σ1 is to allow for easy generalization to the continuous arm setting.
7subject to any tie-breaking rule.
8Note that Π may contain policies that are not induced by models in the class F .
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Definition 1 (Cover). Given a kernel p and a policy π, we define the cover of policy π under the
kernel p to be,

V (p, π) := E
x∼DX ,a∼π(·|x)

[
π(a|x)
p(a|x)

]
. (1)

Additionally, for any pair of kernels (p, q), we let V (p, q) := Ex∼DX ,a∼q(·|x)[q(a|x)/p(a|x)]. Finally,

we use the term optimal cover for kernel p to refer to V (p, π∗).

The cover measures the quality of data collected under the action selection kernel p for evaluating a
given policy π and bounds the variance of commonly used unbiased estimators for policy value [e.g.,
Agarwal et al., 2014, Hadad et al., 2021, Zhan et al., 2021]. In particular, the cover under optimal

policy 1
T

∑T
t=1 V (pt, π

∗) can be treated as a surrogate objective for simple regret minimization
(proven in Appendix E.2), which is particularly instructional in designing our algorithm to minimize
simple regret.

Extending notation to continuous arms. In the continuous arm setting, evaluating arbitrary
deterministic policies can be infeasible without extra assumptions [Mou et al., 2023]. Thus, we
focus on “slightly randomized” policies by generalizing Σ1 to be the arm sets with measure one
(Σ1 := {S ∈ Σ|µ(S) = 1}).9 The granularity of these sets can be adjusted by scaling the finite
measure µ, which also affects the value of K = µ(A). We then continue defining policies be maps
from X to Σ1 and Π is a class of such policies. We overload notation and define the induced kernel
as π(a|x) = I(a ∈ π(x)), which is a valid definition since

∫
a
I(a ∈ π(x))dµ(a) = µ(π(x)) = 1.

All the remaining definitions, including Rf (π), πf , π
∗ and V (p, π), relied on these induced kernels

and continue to hold. While there are some measure theoretic issues that remain to be discussed, we
defer these details to Appendix A.

Uniform sampling. Our algorithm frequently selects an arm uniformly from a constructed set of
arms. In the context of a set S ⊆ A, uniform sampling refers to selecting an arm from the distribution
q(a) := I(a ∈ S)/µ(S). This constitutes a probability measure since its integral over A equals 1. In
the discrete arm setting, uniform sampling from a set S ⊆ A implies selecting an arm according to
the distribution I(a ∈ S)/|S|.

1.2 Oracle Assumptions

Our algorithm relies on two sub-routines. For generality, we abstract away these sub-routines by
stating them as oracle assumptions, for which we describe two oracles, EstOracle and EvalOracle, in
Assumptions 1 and 2 respectively. The EstOracle sub-routine is for estimating conditional expected
reward models (Assumption 1), and the EvalOracle sub-routine is for estimating policy values
(Assumption 2) according to the true and estimated reward models.

These sub-routine tasks are supervised learning problems. Hence, the average errors for the corre-
sponding tasks can be bounded in terms of the number of samples (n) and a confidence parameter
(δ′). The oracle assumptions specify the estimation rates. We let ξ : N× [0, 1]→ [0, 1] denote the
estimation rate for these oracles. For simplicity, we assume that they share the same rate and that
ξ(n, δ′) scales polynomially in 1/n and log(1/δ′). In order to simplify the analysis, we also require
ξ(n/3, δ′/n3) be non-increasing in n.10 We now formally describe these oracle assumptions, starting
with EstOracle.

Assumption 1 (Estimation Oracle). We assume access to a reward model estimation oracle
(EstOracle) that takes as input an action selection kernel p, and n independently and identically

drawn samples from the distribution D(p). The oracle then outputs an estimated model f̂ ∈ F such
that for any δ′ ∈ (0, 1), the following holds with probability at least 1− δ′:

E
x∼DX

E
a∼p(·|x)

[(f̂(x, a)− f∗(x, a))2] ≤ B + ξ(n, δ′)

9Note that our restriction to “slightly randomized" policies for the continuous arm case results in regret
bounds with respect to a “slightly randomized" (smooth) benchmark. Hence for the continuous arm case, our
cumulative regret bounds translate to smooth regret bounds from Zhu and Mineiro [2022] with K = 1/h. Where
h is the measure of smoothness in smooth regret (a leading objective for this setting).

10This ensures that ξm defined in Lemma 1 is non-increasing in m for any epoch schedule with increasing
epoch lengths.
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Where B ≥ 0 is a fixed but unknown constant that may depend on the model class F and distribution
D, but is independent of the action selection kernel p.

In Assumption 1, the parameter B measures the bias of model class F ; under realizability, B equals
0. The function ξ characterizes the estimation variance, which decreases with increasing sample
size. As long as the variance term (which shrinks as we gather more data) is larger than the fixed
unknown bias (B), we have from Assumption 1 that the expected squared error for the estimated
reward model is bounded by 2ξ. We use this bound on expected squared error to further bound how
accurately the estimated reward model evaluates policies in the class Π (Lemma 6). However, since
B is unknown, we need a test to detect when this policy evaluation bounds starts failing (which can
only happen after the variance term gets dominated by the unknown bias term). To construct this test,
our algorithm relies on EvalOracle, which provides consistent independent policy value estimates
and helps compare them with policy value estimates with respect to the estimated reward model.

Assumption 2 (Evaluation Oracle). We assume access to an oracle (EvalOracle) that takes as input
an action selection kernel p, n independently and identically drawn samples from the distribution
D(p), a set of m models {gi|i ∈ [m]} ⊆ F , and another action selection kernel q. The oracle

then outputs a policy evaluation estimator R̂ of true policy value, and a set of m policy evaluation

estimators {R̂gi |i ∈ [m]}} that estimate policy value with respect to the models g1, g2, . . . , gm
respectively. Such that for any δ′ ∈ (0, 1), the following conditions simultaneously hold with
probability at least 1− (m+ 1)δ′:

• |R̂(π)−R(π)| ≤
√
2V (p, π)ξ(n, δ′) + 2ξ(n, δ′)/(min(x,a)∈X×A p(a|x)) for all π ∈ Π ∪ {q}.

• |R̂f (π)−Rf (π)| ≤
√

2ξ(n, δ′) for all π ∈ Π ∪ {q} and for all f ∈ {gi|i ∈ [m]}.

WhenF and Π are finite, one can construct oracles such that Assumptions 1 and 2 hold with ξ(n, δ′) =
O(log(max(|F|, |Π|)/δ′)/n). One example of such a construction is given by using empirical
squared loss minimization for EstOracle, using inverse propensity scores (IPS) for estimating R(π)
in EvalOracle, and using the empirical average for estimating Rf (π) in EvalOracle. The guarantees
of these assumptions can be derived using Bernstein’s inequality and union bounding. When F has
pseudo-dimension [Koltchinskii, 2011] bounded by d and Π has the Natarajan-dimension bounded
by d [Jin et al., 2022, Jin, 2022], one can construct oracles such that Assumptions 1 and 2 hold with
ξ(n, δ′) = O(d log(nK/δ′)/n).

2 Algorithm

At a high level, our algorithm operates in two modes, indicated by a Boolean variable “safe". During
mode one (safe = True), where estimated reward models are sufficiently accurate at evaluating
policies in the class Π,11 we use our estimated models to update our action selection kernel used
during exploration. During mode two (safe = False), where the condition for mode one no longer
holds, we stop updating the action selection kernel used for exploration. Operationally our algorithm
runs in epochs/batches indexed by m. Epoch m begins at round t = τm−1 + 1 and ends at t = τm,
and we use m(t) to denote the epoch index containing round t. We let m̂ denote the critical epoch, at
the end of which our algorithm changes mode (with “safe" being updated from “True" to “False");
we refer to m̂ as the algorithmic safe epoch. For all rounds in epoch m ≤ m̂, our algorithm samples
action using the action selection kernel pm defined later in (4). For m > m̂, our algorithm samples
action using pm̂ –the action selection kernel used in the algorithmic safe epoch m̂.

We now describe the critical components of our algorithm. These include (i) data splitting and using
oracle sub-routines; (ii) misspecification tests, which we use to identify the safe-mode switching
epoch m̂; and (iii) conformal arm sets, which presents a new form of uncertainty quantification that
is critical in constructing pm+1 at the end of each epoch m ∈ [m̂]. Finally, we use these components
to describe our final algorithm.

Data splitting and oracle sub-routines. Consider an epoch m ∈ [m̂]. Let Sm denote the set of
samples collected in this epoch: Sm = {(xt, at, rt(at))|t ∈ [τm−1, τm]}. Our algorithm splits Sm

into three equally-sized subsets: Sm,1, Sm,2 and Sm,3. Algorithm 1 outlines using these subsets
and the oracles (described in Section 1.2) to estimate reward models and evaluate policies. Based

11Where the estimated reward models pass the misspecification test.
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Algorithm 1 ω Risk Adjusted Proportional Response (ω-RAPR)

input: Trade-off parameter ω ∈ [1,K], proportional response threshold βmax = 1/2, and confidence
parameter δ (used in definition of ξm).

1: Let p1(a|x) ≡ 1/µ(A) = 1/K, f̂1 ≡ 0, α1 = 3K, τ1 = 3, and safe = True.
2: for epoch m = 1, 2, . . . do
3: τm = 2τm−1. ▷ Doubling epochs.
4: if safe then
5: for round t = τm−1 + 1, . . . , τm do
6: Observe context xt, sample at ∼ pm(·|xt), and observe rt(at).
7: end for
8: Let Sm denote the data collected in epoch m.
9: We split Sm into three equally sized sets Sm,1, Sm,2 and Sm,3.

10: Let f̂m+1 ← EstOracle(pm, Sm,1), and let Cm+1 be given by Definition 2.
11: Let ηm+1 be the solution to (5) and let αm+1 := 3K/ηm+1. ▷ Sm,2 is used here.
12: Now let pm+1 be given by (4).

13: Let R̂m+1, {R̂m+1,f̂i
|i ∈ [m+ 1]} ← EvalOracle(pm, Sm,3, {f̂i|i ∈ [m+ 1]}, pm+1).

14: if (2) does not hold. then
15: m̂, safe← m,False.
16: end if
17: else
18: for round t = τm−1 + 1, . . . , τm do
19: Observe context xt, sample at ∼ pm̂(·|xt), and observe rt(at).
20: end for
21: Let Sm denote the data collected in epoch m.

22: Let R̂m+1, {R̂m+1,f̂i
|i ∈ [m̂]} ← EvalOracle(pm̂, Sm, {f̂i|i ∈ [m̂]}, pm̂).

23: end if
24: end for

on Assumptions 1 and 2, we bound the errors for these estimates in terms of ξm+1 = 2ξ((τm −
τm−1)/3, δ/(16m

3)), where δ is a specified confidence parameter. As we will see later, our algorithm
relies on these bounds to test for misspecification and construct action selection kernels.

Misspecification test. We first discuss the need for our misspecification test. Note that Assumption 1
is flexible and allows our reward model class F to be misspecified. In particular, the squared error of
our reward model estimate may depend on an unknown bias term B. To account for this unknown
B, it is useful to center our analysis around the safe epoch m∗ := argmax{m ≥ 1|ξm+1 ≥ 2B},
which denotes the last epoch where variance dominates bias. We show that for any epoch m ∈ [m∗],

the estimated reward model f̂m+1 is “sufficiently accurate” at evaluating the expected reward of any
policy in Π∪{pm+1}. This property is critical in ensuring that the constructed action selection kernel
pm+1 has low exploration regret Regf∗(pm+1) and a small optimal cover (V (pm+1, π

∗)). Since B
and m∗ are unknown, we need to test whether the estimated reward model is sufficiently accurate
at evaluating these policies. When the test fails, the algorithm sets the variable “safe” to False and
stops updating the action selection kernel used for exploration. The core idea for this test comes from
Krishnamurthy et al. [2023] although its application to simple regret minimization is new, and the
form of our test differs a bit. We now state our misspecification test (2). At the end of each epoch m,
the test is passed if (2) holds:

max
π∈Π∪{pm+1}

|R̂m+1,f̂m+1
(π)− R̂m+1(π)| −

√
αmξm+1

∑

m̄∈[m]

R̂m+1,f̂m̄
(πf̂m̄

)− R̂m+1,f̂m̄
(π)

40m̄2
√
αm̄−1ξm̄

≤ 2.05
√
αmξm+1 + 1.1

√
ξm+1,

(2)
where αm̄ empirically bounds V (pm̄, π∗), the optimal cover for the action selection kernel used

in epoch m̄ (see (49)). The first term in (2) measures how well the estimated reward model f̂m+1

evaluates the policy π, and the second term accounts for under-explored policies (policies that have

high regret under the reward model f̂m would be less explored in epoch m).
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Conformal arm sets. We proceed to introduce the notion of conformal arm sets (CASs), based on
which we construct the action selection kernels employed by our algorithms. At the beginning of
each epoch m, we construct CASs, denoted as {Cm(x, ζ)|x ∈ X , ζ ∈ [0, 1]}; here ζ controls the
probability with which the set Cm contains the optimal arm. The construction of these sets rely on

the models (f̂1, . . . , f̂m) estimated from data up to epoch m− 1, as defined below.

Definition 2 (Conformal Arm Sets). Consider ζ ∈ (0, 1). At epoch m, for context x, the arm set
Cm(x, ζ) is given by (3).

Cm(x, ζ) := πf̂m
(x)
⋃

C̄m(x, ζ), C̄m(x, ζ) :=
⋂

m̄∈[m]

C̃m̄

(
x,

ζ

2m̄2

)
,

C̃m̄(x, ζ ′) :=

{
a : f̂m̄(x, πf̂m̄

(x))− f̂m̄(x, a) ≤ 20
√
αm̄−1ξm̄

ζ ′

}
∀m̄ ∈ [m], ζ ′ ∈ (0, 1).

(3)

Similar to conformal prediction (CP) [Vovk et al., 2005, Shafer and Vovk, 2008], CASs have marginal
coverage guarantees. We show that with high probability, we have π∗(x) lies in Cm(x, ζ) with
probability at least 1− ζ over the context distribution. That is, Prx∼DX

(π∗(x) ∈ Cm(x, ζ)) ≥ 1− ζ
with high-probability (see Appendix E.1). However, there is also a key technical difference. While CP
provides coverage guarantees for the conditional random outcome, CASs provide coverage guarantees
for π∗(x) – which is not a random variable given the context x. Hence, intervals estimated by CP
need to be wide enough to account for conditional outcome noise, whereas CASs do not. CASs also
have several advantages compared to pointwise confidence intervals used in UCB algorithms. First,
CASs are computationally easier to construct. Second, CAS widths have a polynomial dependency
on model class complexity, whereas pointwise intervals may have an exponential dependence for
some function classes [see lower bound examples in Foster et al., 2020b]. Third, pointwise intervals
require realizability, whereas the guarantees of CASs hold even without realizability (as long as the
misspecification test in (2) holds). However, it’s important to remember that these benefits of CASs
come with the risk of only covering π∗(x) marginally over the context distribution – that is, these
sets may not contain π∗(x) at all x.

Risk Adjusted Proportional Response Algorithm. We now describe the design of our algorithm,
which is summarized in Algorithm 1. The algorithm depends on the following input parameters:
ω ∈ [1,K] which controls the trade-off between simple and cumulative regret, the proportional
response threshold βmax = 1/2, and confidence parameter δ. The algorithm also computes ηm+1

(risk adjustment parameter for pm+1), αm+1 (empirical bound on optimal cover for pm+1), and
λm+1(·) (empirical bound on average CAS size). At the end of every epoch m ∈ [m̂], we construct
the action selection kernel pm+1 given by (4).

pm+1(a|x) =
(1− βmax)I[a ∈ Cm+1(x, βmax/ηm+1)]

µ
(
Cm+1(x, βmax/ηm+1)

) +

∫ βmax

0

I[a ∈ Cm+1(x, β/ηm+1)]

µ
(
Cm+1(x, β/ηm+1)

) dβ.

(4)
At any context x, sampling arm a from pm+1(·|x) is equivalent to the following. Sample β uniformly
from [0, 1], then sample arm a uniformly from the set Cm+1(x,min(βmax, β)/ηm+1). A small β
results in a larger CAS and a higher probability of containing the optimal arm for the sampled context.
However, uniformly sampling an arm from a larger CAS also implies a lower probability on every
arm in the set. Sampling β uniformly allows us to respond proportionately to the risk of not sampling
the optimal arm while enjoying the benefits of smaller CASs. We refer to this as the Proportional
Response Principle.

Similarly note that, a larger risk-adjustment parameter ηm+1 encourages reliance on less risky albeit
larger CASs. We want to choose ηm+1 to tightly bound the the optimal cover (surrogate for simple
regret), subject to cumulative regret constrains imposed by the trade-off parameter ω. To do this,
we first let λm+1(η) be a high-probability empirical upper bound on Ex∼DX

[µ(Cm+1(x, βmax/η))].

Hence, using (49), we can upper bound the optimal cover (V (pm+1, π
∗)) by

λm+1(ηm+1)
1−βmax

+ K
ηm+1

.

Our choice of ηm+1 approximately minimizes this upper bound on the optimal cover, by choosing

the largest feasible η ∈ [ηm,
√
ωK/αm] such that λm+1(η) ≤ K

η (see (5)). Note that this choice of
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ηm+1 balances the risk of a small η (large K
η ) with the benefits of a small λm+1(η) (small

λm+1(η)
1−βmax

).

λm+1(η) := min

(
1 +

1

|Sm,2|
∑

t∈Sm,2

µ(C̄m+1

(
x,

βmax

η

)
) +

√
K2 ln(8|Sm,2|(m+ 1)2/δ)

2|Sm,2|
,K

)
,

ηm+1 ← max

{
ηm, max

{
η =
|Sm,2|
n

∣∣∣∣n ∈ [|Sm,2|], η ≤
√

ωK

αm
, λm+1(η) ≤

K

η

}}
.

(5)
With ηm+1 chosen, the action selection kernel pm+1 is decided. Now let αm+1 = 3K/ηm+1, which
is a high-probability empirical upper bound on V (pm+1, π

∗). We then use αm+1 at the end of epoch
m+ 1 to construct CASs, compute the risk-adjustment parameter, and test for misspecification.

Computation. We have O(log(T )) epochs. At the end of any epoch m ∈ [m̂], we solve three

optimization problems. The first is for estimating f̂m+1, which often reduces to empirical squared
loss minimization and is computationally tractable for several function classes F . The second is for
computing the risk-adjustment parameter in (5) which can be solved via binary search. The third is
for the misspecification test in (2), which can be solved via two calls to a cost-sensitive classification
(CSC) solver (don’t need this when assuming realizability, further if we only care about cumulative
regret, sufficient to use the simpler test in Krishnamurthy et al. [2021]). Finally, to learn a policy
π̂ at the end of T rounds, we need to solve (8) using a CSC solver (under realizability we can set
π̂ = πf̂m(T )−1

). Hence, overall, ω-RAPR makes exponentially fewer calls to solvers compared to

regression-free algorithms like Li et al. [2022].

3 Main Results

Our algorithm/analysis/results hold for both the discrete and continuous arm cases. As discussed
before, minimizing optimal cover helps us ensure improved simple regret guarantees. Hence αm ∈
[1, 3K] (the high-probability empirical upper bound on the optimal cover V (pm, π∗)) will play a
crititcal role thoughout this results section. We start with stating our cumulative regret bounds.

Theorem 1. Suppose Assumptions 1 and 2 hold. Then with probability 1− δ, ω-RAPR attains the
following cumulative regret guarantee. Here ξm+1 = ξ((τm − τm−1)/3, δ/(16m

3) for all m.

CRegT ≤ Õ
(

T∑

t=τ1+1

√
K

αm(t)

αm(t)−1

αm(t)

(√
KB +

√
Kξm(t)

))
(6a)

≤ Õ
(
√
ωKBT +

T∑

t=τ1+1

√
ωKξm(t)

)
. (6b)

Where we use Õ to hide terms logarithmic in T,K, ξ(T, δ).

We start with discussing (6b). The first part
√
ωKBT comes from the bias of the regression

oracle with model class F and will vanish under the realizability assumption. The second part∑T
t=τ1+1

√
ωKξm(t), when setting ω = 1, recovers near-optimal (upto logarithmic factors) minimax

cumulative regret guarantees for common model classes, as demonstrated by the following examples.

Corollary 1. We consider ω-RAPR with appropriate oracles in the following cases and let B
denote the corresponding bias terms. When F and Π are finite, CRegT ≤ Õ(

√
ωKBT +√

ωKT log(max(|F|, |Π|)/δ)) with probability at least 1 − δ. When F has a finite pseudo di-

mension d, Π has a finite Natarajan dimension d, and A is finite, CRegT ≤ Õ(
√
ωKBT +√

ωKTd log(TK/δ)) with probability at least 1 − δ. Note that under realizability (B = 0), 1-
RAPR achieves near-optimal minimax cumulative guarantees.

In (6a), we observe that the multiplicative
√
ω cost to cumulative regret is only incurred if the

empirical bound on optimal cover (αm ∈ [1, 3K]) can get small. That is, our cumulative regret
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bounds degrade only if our algorithm better bounds the optimal cover and thus ensures better simple
regret guarantees. 12 We now provide instance dependent simple regret guarantees for our algorithm.

Theorem 2. Suppose Assumptions 1 and 2 hold. For some (λ,∆, A) ∈ [0, 1] × (0, 1] × [1,K],
consider instances where for 1− λ fraction of contexts at most A arms are ∆ optimal (i.e. (7) holds).

Px∼DX

(
µ
(
{a ∈ A : f∗(x, πf∗(x))− f∗(x, a) ≤ ∆}

)
≤ A

)
≥ 1− λ. (7)

Let m′ = min(m̂,m(T )) − 1. Let the learned policy π̂ be given by (8) (equivalent to variance
penalized policy optimization).

π̂ ∈ argmax
π∈Π

R̂m(T )(π)−
1

2

√
αm′ξm(T )

∑

m̄∈[m′]

R̂m(T ),f̂m̄
(πf̂m̄

)− R̂m(T ),f̂m̄
(π)

40m̄2
√
αm̄−1ξm̄

. (8)

Then with probability 1− δ, ω-RAPR has the following simple regret bound when T samples.

RegΠ(π̂) ≤ O
(√

αm′ξm(T )

)

≤O
(√

ξm(T ) min

(
K,A+Kλ+

K

ω
+

K3/2ω1/2

∆

√
ξmin(m∗,m(T )−1)−⌈log2 log2(K)⌉

)))
.

Under (7), we can only argue that the expected (over context distribution) measure of ∆ optimal
arms is at most (1 − λ)A + Kλ = O(A + Kλ). Hence for large T , the best we can hope for
is instance-dependant simple regret guarantees that shrink/improve over minimax guarantees by a

factor of O(
√
(A+Kλ)/K). We show that this is guaranteed by Theorem 2. Suppose ω = K,

F has a finite pseudo dimension bounded by d, and Π has a finite Natarajan dimension bounded

by d. The simple regret guarantee of Theorem 2 reduces to Õ(min((
√

Kd/T ,
√
(A+Kλ)d/T +

(K/
√
∆)
√
d/T 4

√
B + d/T )). When the reward model estimation bias B is small enough, the term

(K/
√
∆)
√
d/T 4

√
B + d/T ) is dominated by the remaining terms for large T . Hence, in this case,

we get a simple regret bound of Õ(
√
(A+Kλ)d/T ) for large T . As promised, this improves upon

the minimax guarantees by a factor of O(
√
(A+Kλ)/K).

Note that Theorem 1 guarantees are better for ω closer to 1 whereas Theorem 2 guarantees are better
for ω closer to K. Hence these theorems show a tradeoff between the cumulative and simple regret
guarantees for ω-RAPR. Theorem 3 shows that improving upon minimax simple regret guarantees for
instances satisfying (7) may come at the unavoidable cost of worse than minimax optimal cumulative
regret guarantees. This contrasts with non-contextual bandits, where successive elimination ensures
improved (compared to minimax) gap-dependent guarantees for both simple and cumulative regret.

Theorem 3. Given parameters K,F, T ∈ N and ϕ ∈ [1,∞). There exists a context space X and a
function class F ⊆ (X × A → [0, 1]) with K actions such that |F| ≤ F and the following lower
bound on cumulative regret holds:

inf
A∈Ψϕ

sup
D∈D

E
D

[ T∑

t=1

(
rt(π

∗(xt))− rt(at)
)]
≥ Ω̃

(√
K

ϕ

√
KT logF

)

Here (a1, . . . aT ) denotes the actions selected by an algorithm A. D denotes the set of environments
such that f∗ ∈ F and (7) hold with (A, λ,∆) = (1, 0, 0.24). Π denotes policies induced by F .
Ψϕ denotes the set of CB algorithms that run for T rounds and output a learned policy with a

simple regret guarantee of
√
ϕ logF/T for any instance in D with confidence at least 0.95, i.e.,

Ψϕ := {A : P(Reg(π̂A) ≤
√
ϕ logF/T ) ≥ 0.95 for any instance in D}. Finally, Ω̃(·) hides factors

logarithmic in K and T .

12For large t, once our bounds on optimal cover can’t be significantly improved, we have αm(t)/αm(t)−1 =

O(1). Hence for large T , our cumulative regret is a factor of
√

K/αm(T )+1 larger than the near optimal
minimax guarantees. As we will see in Theorem 3, this multiplicative factor is unavoidable.
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Near optimal trade-off of RAPR. Note that the environments constructed in Theorem 3 satisfy f∗ ∈
F with max(|F|, |Π|) ≤ F and also satisfy (7) with (A, λ,∆) = (1, 0, 0.24). With appropriate ora-
cles, Assumptions 1 and 2 are satisfied with B = 0 (i.e. m∗ =∞) and ξ(n, δ′) = O(log(F/δ′)/n).
Hence for large enough T , ω-RAPR achieves a simple regret bound of Õ(

√
(K/ω) logF/T ) with

probability at least 0.95 and thus is a member of Ψϕ for some ϕ = Õ(K/ω). Theorem 3 lower bounds

the cumulative regret of such algorithms by Ω̃(
√

K/ϕ
√
KT logF ) = Ω̃(

√
ω
√
KT logF ). Up to

logarithmic factors, this matches the cumulative regret upper bound for ω-RAPR. Re-emphasizing
that the trade-off observed in Theorems 1 and 2 is near optimal for large T .

Simulations. To demonstrate the computational tractability of our approach, we ran a simulation on
setting within a R2context space, eight arms, linear models, and an exploration horizon of 5000. Our
algorithms ran in less than 9 seconds on a Macbook M1 Pro. We also compare with other baselines
on simple/cumulative regret. See Appendix E.4 for details.
Conclusion. We develop Risk Adjusted Proportional Response (RAPR), a computationally efficient
regression-based contextual bandit algorithm. It is the first contextual bandit algorithm capable of
trading-off worst-case cumulative regret guarantees with instance-dependent simple regret guarantees.
The versatility of our algorithm allows for general reward models, handles misspecification, extends
to finite and continuous arm settings, and allows us to choose the trade-off between simple and
cumulative regret guarantees. The key ideas underlying RAPR are conformal arm sets (CASs) to
quantify uncertainty, proportional response principle for cumulative regret minimization, optimal
cover as a surrogate for simple regret, and risk adjustment for better bounds on the optimal cover. 13

Limitations. A limitation of our approach is that we do not utilize the structure of the policy
class being explored. Further refining CASs with other forms of uncertainty quantification that
leverage such structure can lead to significant improvements, and potentially avoid trade-offs between
simple/cumulative regret when policy class structure allows for it.
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A Expanded Notations

We start with expanding our notation from Section 1.1 to include notation helpful for our proofs and
expand to the continuous arm setting.

Measure over arms. To recap, our algorithm and analysis adapt to both discrete and continuous arm
spaces, where we consider a finite measure space (A,Σ, µ) over the set of arms (i.e. µ(A) is finite)
to unify the notation.14 As short hand, we use K in lieu of µ(A). We let Σ1 be a set of arms in Σ
with measure one, i.e. Σ1 := {S ∈ Σ|µ(S) = 1}.
Policies. Let Π̃ denote the universal set of policies. That is, Π̃ is the set of all functions from X to

Σ1. The policy class Π is a subset of Π̃. We use π(x) to denote the set of arms given x ∈ X and
use pπ(a|x) = I(a ∈ π(x)) to denote the induced probability measure over arms at x.15 With some
abuse of notation, we use the notation π(a|x) in lieu of pπ(a|x). Below is the elaboration of our
notation to both discrete and continuous arm spaces.

• Discrete arm space. We choose µ to be the count-measure, where µ(S) = |S| for any S ⊆ A and

µ(A) = K. In this case, Σ1 contains singleton arm sets, and Π̃ denotes deterministic policies from
X to A where each policy maps a context to an action.

• Continuous arm space. We choose µ to any finite measure, where µ(S) =
∫
S
dµ(a) for any

S ⊆ A, and in particular µ(A) = K. In this case, Σ1 contains arm sets that may have an infinite
number of arms but with total measure be 1 with respect to µ.

Space of action selection kernels. In this paper, we will always define our action selection kernels
with respect to the reference measure µ, that is p(S|x) =

∫
a∈S

p(a|x)dµ for any S ∈ Σ and x ∈ X .

Based on the notation in Section 1.1, for any kernel p, we let Regf (p) = Rf (πf )−Rf (p).

Now let P denote the set of action selection kernels such that p(a|x) ≤ 1 for all (x, a) ∈ X ×A, and

in particular, we have the policy class Π̃ ⊂ P . We note that all action selection kernels (p) considered
in this paper belong to the set P , allowing our analysis to rely on the fact that p(·|·) ≤ 1.

Note that, Regf (p) is non-negative for any p ∈ P . To see this, consider any context x. Re-

call that πf (x) ∈ argmaxS∈Σ1
f(x, S) for all x. Since p(·|·) ≤ 1 for any p ∈ P , we have∫

a∈A
p(a|x)f(x, a)dµ is maximized when p(a|x) = 1 for all a ∈ πf (x). That is, f(x, πf (x)) =

maxp∈P Ea∼p(·|x)[f
∗(x, a)]. Hence, maxp∈P Rf (p) = Rf (πf ), so Regf (p) is non-negative for any

p ∈ P .

Connection to smooth regret Zhu and Mineiro [2022]. Recall that we define cumulative re-

gret as CRegT :=
∑T

t=1 Regf∗(pt), which measures regret w.r.t the benchmark Rf∗(πf∗) =

maxp∈P Rf∗(p). As discussed earlier, Zhu and Mineiro [2022] shows that smooth regret bounds
are stronger than several other definitions of cumulative regret in the continuous arm setting [e.g.,
Majzoubi et al., 2020]. Hence to show that our bounds are comparable/competitive for the continuous
arm setting, we argue that our definition of cumulative regret (CRegT ) is equivalent to the definition
of smooth regret in Zhu and Mineiro [2022].

Let the loss vectors lt in Zhu and Mineiro [2022] be given by −rt. Let the smoothness parameter h in
Zhu and Mineiro [2022] be given by 1/K. And, let the base probability measure in Zhu and Mineiro
[2022] be given by µ/K. Then, our benchmark (maxp∈P Rf∗(p)) is equal to the smooth benchmark
(E[Smoothh(x)]) considered in Zhu and Mineiro [2022]. Hence, our definition of cumulative regret
(CRegT ) is equal to smooth regret (RegCB,h(T )) when the loss, smoothness parameter, and base
probability measure are given as above. This shows the equivalence in our definitions.

Hence our near-optimal cumulative regret bounds (with ω = 1) recover several existing results for
the stochastic contextual bandit setting up to logarithmic factors using only offline regression oracles.
Our algorithm also handles reward model misspecification and does not assume realizability. We also
provide instance-dependent simple regret bounds (for larger choices of ω). The parameter ω allows
us to trade-off between simple and cumulative regret bounds.

Measure theoretic issues with continuous arms. To avoid measure-theoretic issues, we require that
for all models f ∈ F ∪ {f∗}, all contexts x ∈ X , and all real numbers z ∈ R, we have the level set

14Here Σ is a σ-algebra over A and µ is a bounded set function from Σ to the real line.
15Note that for any π ∈ Π̃, we have

∫

a∈A
pπ(a|x)dµ = µ(π(x)) = 1 at any x ∈ X .
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Environment distribution

X ,A set of contexts and set of arms (respectively).
D joint distribution over contexts and arm rewards.
DX marginal distribution over contexts.
D(p) distribution over X ×A× [0, 1] induced by action selection kernel p.
f∗ true conditional expected reward, f∗(x, a) := ED[rt(a)|xt = x].

Measure space over arm sets

(A,Σ, µ) measure space over the set of arms with K := µ(A).
Σ1 set of measurable arm sets with measure one, Σ1 := {S ∈ Σ|µ(S) = 1}.
Π̃ set of all policies (functions from X to Σ1).
P set of kernels such that p(a|x) ≤ 1 for all (x, a) ∈ X ×A.

Algorithm inputs

βmax proportional response threshold (βmax = 1/2).
ω trade-off parameter (ω ∈ [1,K]).
δ confidence parameter (δ ∈ (0, 1)).
F ,Π give reward model class and policy class.

Policy value and optimal policy

Rf (p) := Ex∼DX Ea∼p(·|x)[f(x, a)], denotes the value of kernel p under model f .
R(p) := Rf∗(p), denotes the true value of kernel p.
πf ∈ argmaxπ∈Π̃ Rf (π), denotes the best universal policy under model f .
π∗ ∈ argmaxπ∈Π R(π), denotes the best policy in the class Π.

Regret and cover

Regf (p) := Rf (πf )−Rf (p), denotes the regret of kernel p under model f .

R(p) := Rf∗(p), denotes the true value of kernel p.
RegΠ(p) := Rf (πf )−Rf (p), denotes the regret of kernel p under model f .

V (p, q) cover V (p, q) := Ex∼DX ,a∼q(·|x)

[
q(a|x)/p(a|x)

]
.

Epochs

m epoch index.

ξm+1 := 2ξ((τm − τm−1)/3, δ/(16m
3)), where ξ is given in Section 1.2.

m∗ safe epoch, last epoch where ξm+1 ≥ 2B (variance dominates bias).
m̂ last epoch that starts with safe set as True.

Algorithmic parameters

f̂m+1 ∈ F fitted reward model via regressions on samples collected in epoch m.
Cm+1 conformal arm set defined in Definition 2.
ηm+1 risk adjustment parameter (5).

αm+1 empirical bound on optimal cover (αm+1 = 3K
ηm+1

).

pm+1 action selection kernel corresponding to epoch m+ 1 defined in (4).

Um+1 := 20
√
αmξm+1.

Table 1: Table of notations

of arms {a|f(x, a) ≤ z} must lie in Σ. That is the reward models f ∈ F ∪ {f∗} are measurable at
every context x with the Lebesgue measure on the range of f(x, ·) and the measure (A,Σ, µ) on the
domain of f(x, ·). We note that this isn’t a strong condition and usually trivially holds.

Moreover, we require an additional condition as follows to simplify our arguments and allow for easy
construction of our uncertainty sets (see Definition 2). We require that for all models f ∈ F and
all contexts x ∈ X , we have f(x, πf (x)) is equal to maxa∈A f(x, a). This condition trivially holds
for the finite-arm setting with µ as a count measure. For the continuous arm setting, this condition
follows from requiring argmaxa∈A f(x, a) lies in Σ and has measure of at least one.

Additional notation. For notational convenience, we let Um = 20
√

αm−1ξm for any epoch m.
Note that by construction ((5) and αm = 3K/ηm) αm is non-increasing in m. Further, from the
conditions in Section 1.2, we have ξm+1 = 2ξ((τm − τm−1)/3, δ/(16m

3)) is non-increasing in m.
Hence Um is also non-increasing in m. We also let α0 := α1 = 3K, and let αm := αm̂ for any
epoch m ≥ m̂. Similarly, we let η0 := η1 = 1, and let ηm := ηm̂ for any epoch m ≥ m̂. Sometimes,
we use use Cm(x, β, η) in lieu of Cm(x, β/η).

15



B Bounding Cumulative Regret

This section derives the cumulative regret bounds for ω-RAPR. We start with analyzing the output of
oracles described in Assumptions 1 and 2. Note that we do not make the “realizability" assumption
in this work – i.e., we do not assume that f∗ lies in F . Hence, as in Assumption 1, the expected
squared error of our estimated models need not go to zero (even with infinite data) and may contain
an unknown non-zero irreducible error term (B) that captures the bias of the model class F . It is
useful to split our analysis into two regimes to handle this unknown term B, similar to the approach in
Krishnamurthy et al. [2021]. In particular, we separately analyze oracle outputs for epochs before and
after a so-called “safe epoch". Where we define the safe epoch m∗ as the epoch where the variance
of estimating from the model class F (ξm) is dominated by the bias of estimating from the class F
(B). That is, m∗ := argmax{m ≥ 1|ξm+1 ≥ 2B}.

B.1 High Probability Events

We start with defining high-probability events under which our key theoretical guarantees hold. The
first high probability event characterizes the accuracy of estimated reward models and the policy
evaluation estimators, the tail bound of which can be obtained by taking a union bound of each

epoch-specific event that happens with probability 1− δ
4m2 under assumptions in Section 1.2.

Lemma 1. Suppose Assumption 1 and Assumption 2 hold. The following event holds with probability
1− δ/2,

W1 :=

{
∀m, ∀π ∈ Π ∪ {pm+1}, ∀f ∈ {f̂1, . . . , f̂m+1},

E
x∼DX

E
a∼pm(·|x)

[(f̂m+1(x, a)− f∗(x, a))2] ≤ B + ξm+1/2

|R̂m+1,f (π)−Rf (π)| ≤
√
ξm+1,

|R̂m+1(π)−R(π)| ≤
√

V (pm, π)ξm+1 + ξm+1/( min
(x,a)∈X×A

pm(a|x)).
)}

.

(9)

Where ξm+1 = 2ξ((τm − τm−1)/3, δ/(16m
3)).16

The second high probability event characterizes the measure of conformal arm sets, which directly
follows from Hoeffding’s inequality and union bound.

Lemma 2. The following event holds with probability 1− δ/2,

W2 :=

{
∀m, ∀η ∈

{ |Sm,2|
n
|n ∈ [|Sm,2|]

}
,

∣∣∣∣ E
x∼DX

[
µ

(
C̄m+1

(
x,

βmax

η

))]
− 1

|Sm,2|
∑

t∈Sm,2

µ

(
C̄m+1

(
xt,

βmax

η

))∣∣∣∣

≤
√

K2 ln(8|Sm,2|m2/δ)

2|Sm,2|

}
.

(10)

Together bothW1 andW2 hold with probability 1− δ. The rest of our analysis works under these
events.

B.2 Analyzing the Cover

In this sub-section, we upper bound the cover (V (pm, ·)) for the action selection kernel used in epoch
m.17 To upper bound V (pm, q), we first lower bound pm(·|·). Recall that in Appendix A, we define

16Our epoch schedules will always be increasing in epoch length. Under such conditions, we have ξm is
non-increasing in m.

17Recall that V (p, q) := Ex∼DX ,a∼q(·|x)[q(a|x)/p(a|x)].
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Um = 20
√
αm−1ξm for any epoch m. Starting from here, our lemmas and proofs will use Um and

20
√
αm−1ξm interchangeably.

Lemma 3. For any epoch m, we have (11) holds.

pm(a|x) ≥
{ 1−βmax

µ(Cm(x,βmax,ηm)) +
βmax

µ(A) , if a ∈ Cm(x, βmax, ηm)
ηm

µ(A) minm̄∈[m]
2m̄2Um̄

f̂m̄(x,π
f̂m̄

(x))−f̂m̄(x,a)
, if a /∈ Cm(x, βmax, ηm)

≥
{

1
µ(A) , if a ∈ Cm(x, βmax, ηm)
ηm minm̄∈[m] 2m̄

2Um̄

µ(A) , if a /∈ Cm(x, βmax, ηm)

(11)

Proof. Recall that pm given by (12).

pm(a|x) = (1− βmax)I[a ∈ Cm(x, βmax, ηm)]

µ
(
Cm(x, βmax, ηm)

) +

∫ βmax

0

I[a ∈ Cm(x, β, ηm)]

µ
(
Cm(x, β, ηm)

) dβ. (12)

We divide our analysis into two cases based on whether a lies in Cm(x, βmax, ηm), and lower bound
pm(a|x) in each case.

Case 1 (a ∈ Cm(x, βmax, ηm)). Note that Cm(x, βmax, ηm) ⊆ Cm(x, β, ηm) ⊆ A for all β ∈
[0, βmax]. Hence, a ∈ Cm(x, β, ηm) and µ(Cm(x, β, ηm)) ≤ µ(A) for all β ∈ [0, βmax]. Therefore,

in this case, pm(a|x) ≥ (1−βmax)

µ
(
Cm(x,βmax,ηm)

) + βmax

µ(A) ≥ 1
µ(A) .

Case 2 (a /∈ Cm(x, βmax, ηm)). For this case, the proof follows from (13).

pm(a|x) ≥
∫ βmax

0

I[a ∈ Cm(x, β, ηm)]

µ
(
Cm(x, β, ηm)

) dβ

(i)

≥ 1

µ(A)

∫ βmax

0

I[a ∈ Cm(x, β, ηm)]dβ

(ii)

≥ I(a /∈ Cm(x, βmax, ηm))

µ(A)

∫ βmax

0

I[a ∈ Cm(x, β, ηm)]dβ

(iii)
=

I(a /∈ Cm(x, βmax, ηm))

µ(A)

∫ 1

0

I[a ∈ Cm(x, β, ηm)]dβ

(iv)
=

I(a /∈ Cm(x, βmax, ηm))

µ(A)

∫ 1

0

∏

m̄∈[m]

I
[
f̂m̄(x, πf̂m̄

(x))− f̂m̄(x, a) ≤ 2m̄2ηmUm̄

β

]
dβ

=
I(a /∈ Cm(x, βmax, ηm))

µ(A)

∫ 1

0

∏

m̄∈[m]

I
[
β ≤ 2m̄2ηmUm̄

f̂m̄(x, πf̂m̄
(x))− f̂m̄(x, a)

]
dβ

=
ηmI(a /∈ Cm(x, βmax, ηm))

µ(A) min
m̄∈[m]

2m̄2Um̄

f̂m̄(x, πf̂m̄
(x))− f̂m̄(x, a)

(v)

≥ ηmI(a /∈ Cm(x, βmax, ηm))

µ(A) min
m̄∈[m]

2m̄2Um̄

(13)
where (i) is because the measure of the conformal set Cm can be no larger than the measure of the
action space A; (ii) follows from I(a /∈ Cm(x, βmax, ηm)) ≤ 1; (iii) follows from the fact that if
a /∈ Cm(x, βmax, ηm) then a /∈ Cm(x, β, ηm) for all β ≥ βmax; (iv) follows from Definition 2; and
(v) follows from .18

Using Lemma 3, we get an upper bound on V (pm, q) in terms of E[µ(Cm(x, βmax, ηm))], K/ηm,

and expected regret with respect to the models f̂1, . . . , f̂m.

18Note that if a ∈ πf̂m
(x) then I(a /∈ Cm(x, βmax, ηm)) = 0.
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Lemma 4. For any epoch m and any action selection kernel q ∈ P , we have (14) holds.

V (pm, q) ≤ E[µ(Cm(x, βmax, ηm))]

1− βmax
+

K

ηm

∑

m̄∈[m]

Regf̂m̄
(q)

2m̄2Um̄
. (14)

Proof. From Lemma 3, we have (15) holds. 19

I(a ∈ Cm(x, βmax, ηm))

pm(a|x) ≤ µ
(
Cm(x, βmax, ηm)

)

1− βmax
,

and
I(a /∈ Cm(x, βmax, ηm))

pm(a|x) ≤ µ(A)
ηm

max
m̄∈[m]

f̂m̄(x, πf̂m̄
(x))− f̂m̄(x, a)

2m̄2Um̄
.

(15)

We now bound the cover V (pm, q) as follows,

V (pm, q) = E
x∼DX ,a∼q(·|x)

[
q(a|x)
pm(a|x)

]

(i)

≤ E
x∼DX ,a∼q(·|x)

[
1

pm(a|x)

]

= E
x∼DX ,a∼q(·|x)

[
I[a ∈ Cm(x, βmax, ηm)] + I[a /∈ Cm(x, βmax, ηm)]

pm(a|x)

]

(ii)

≤ E
x∼DX ,a∼q(·|x)

[
µ
(
Cm(x, βmax, ηm)

)

1− βmax

]
+ E

x∼DX ,a∼q(·|x)

[
µ(A)
ηm

max
m̄∈[m]

f̂m̄(x, πf̂m̄
(x))− f̂m̄(x, a)

2m̄2Um̄

]

≤E[µ
(
Cm(x, βmax, ηm)

)
]

1− βmax
+

µ(A)
ηm

∑

m̄∈[m]

Regf̂m̄(q)

2m̄2Um̄
.

(16)
Here (i) follows from the fact that q ∈ P and (ii) follows from (15).

Having bounded the cover for the kernel pm in terms of E[µ(Cm(x, βmax, ηm))] and K/ηm. We
now bound these terms with αm.

Lemma 5. SupposeW2 holds. Then for any epoch m, we have (17) holds.

E[µ(Cm(x, βmax, ηm))]

1− βmax
+

K

ηm
≤ αm ≤

3K

ηm
. (17)

Proof. Since µ(Cm(x, βmax, ηm)) ≤ K and βmax = 1/2, the bound trivially holds if ηm = 1.
Suppose ηm > 1. Note that ηm̄ is non-decreasing in m̄ by construction. Let m′ be the smallest epoch
index such that ηm′ = ηm. We now have the following holds.

E[µ(Cm(x, βmax, ηm))]

1− βmax
+

K

ηm
(i)

≤ min{1 + E[µ(C̄m(x, βmax, ηm))],K}
1− βmax

+
K

ηm
(ii)

≤ min{1 + E[µ(C̄m′(x, βmax, ηm))],K}
1− βmax

+
K

ηm
(iii)

≤ λm′(ηm)

1− βmax
+

K

ηm
(iv)

≤ 2λm′(ηm) +
K

ηm
(v)

≤ 3K

ηm

(18)

19Note that we require f(x, πf (x)) ≥ f(x, a), for all x ∈ X , a ∈ A, and f ∈ F .
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Here (i) follows from the definition of CASs. (ii) follows from C̄m ⊆ C̄m′ which follows from the

fact that C̄m = ∩m̄∈[m]C̃m̄ and m′ ≤ m. (iii) follows fromW2 and the definition of λm′ in (5). (iv)

follows from the fact that βmax = 1/2. (v) follows from (5) and ηm′−1 < ηm′ = ηm – note that
ηm′−1 ̸= ηm′ gives us that ηm′ was set using the constrained maximization procedure in (5), hence
the constraint λm′(η) ≤ K/η is satisfied at η = ηm′ = ηm.

B.3 Evaluation Guarantees Under Safe Epoch

This sub-section provides guarantees on how accurate Rf̂m+1
is at evaluating policies when we are

within the safe epoch.

Lemma 6. SupposeW1 holds. For all epochs m ∈ [m∗], for any q ∈ P , we have,

|Rf̂m+1
(q)−R(q)| ≤

√
V (pm, q)ξm+1. (19)

Proof. Consider any epoch m ∈ [m∗] and policy q ∈ P . We then have,

|Rf̂m+1
(q)−R(q)| = | E

x∼DX ,a∼q
[f̂m+1(x, a)− f∗(x, a)]|

(i)
=

∣∣∣∣ E
x∼DX ,a∼pm

[ q(a|x)
pm(a|x)

(
f̂m+1(x, a)− f∗(x, a)

)]∣∣∣∣

≤ E
x∼DX ,a∼pm

[ q(a|x)
pm(a|x)

∣∣f̂m+1(x, a)− f∗(x, a)
∣∣
]

= E
x∼DX ,a∼pm

[√( q(a|x)
pm(a|x)

)2∣∣f̂m+1(x, a)− f∗(x, a)
∣∣2
]

(ii)

≤
√

E
x∼DX ,a∼pm

[( q(a|x)
pm(a|x)

)2]√
E

x∼DX ,a∼pm

[
(f̂m+1(x, a)− f∗(x, a))2

]

(iii)
=

√
E

x∼DX ,a∼q

[ q(a|x)
pm(a|x)

]√
E

x∼DX ,a∼pm

[
(f̂m+1(x, a)− f∗(x, a))2

]

(iv)

≤
√
V (pm, q)ξm+1,

(20)
where (i) and (iii) follow from change of measure arguments, (ii) follows from Cauchy-Schwartz
inequality, and (iv) follows fromW1.

By combining the guarantees of Lemma 4 and Lemma 6, we get Lemma 7.

Lemma 7. SupposeW1 andW2 hold. Then for any action selection kernel q ∈ P , we have:

|Rf̂m+1
(q)−R(q)| ≤

√
αmξm+1 +

1

2

√
αmξm+1

∑

m̄∈[m]

Regf̂m̄
(q)

2m̄2Um̄
. (21)

Proof. From Lemma 4, we have (22) holds for any q ∈ P .

V (pm, q)

≤ E[µ(Cm(x, βmax, ηm))]

1− βmax
+

K

ηm

∑

m̄∈[m]

Regf̂m̄(q)

2m̄2Um̄

≤
(
E[µ(Cm(x, βmax, ηm))]

1− βmax
+

K

ηm

)
+
(
E[µ(Cm(x, βmax, ηm))]

1− βmax
+

K

ηm

) ∑

m̄∈[m]

Regf̂m̄
(q)

2m̄2Um̄

= αm + αm

∑

m̄∈[m]

Regf̂m̄
(q)

2m̄2Um̄

(22)
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Combining (22) with Lemma 6 we have:

|Rf̂m+1
(q)−R(q)|

≤
√

V (pm, q)ξm+1

(i)

≤ 1

2

√
αmξm+1 +

1

2

√
ξm+1

αm
V (pm, q)

(i)

≤
√

αmξm+1 +
1

2

√
αmξm+1

∑

m̄∈[m]

Regf̂m̄
(q)

2m̄2Um̄
.

(23)

Where (i) follows from AM-GM inequality and (ii) follows from (22).

B.4 Testing Safety

The misspecification test (2) is designed to test if we are within the safe epoch. In principle, it

works by comparing the accuracy of Rf̂m+1
(Lemma 7) and R̂m+1 (Lemma 8). Formally, Lemma 11

shows that the misspecification test in (2) fails only after m∗. Hence, m̂ ≥ m∗ + 1. Lemma 12

then describes the implication of (2) continuing to hold. In what follows, we let R̂egm+1,f̂m̄
(π) :=

R̂m+1,f̂m̄
(πf̂m̄

) − R̂m+1,f̂m̄
(π). We start with Lemma 8 which provides accuracy guarantees for

R̂m+1 in any epoch.

Lemma 8. SupposeW1 andW2 hold. Then for any epoch m and all π ∈ Π ∪ {pm+1}, we have,

|R̂m+1(π)−R(π)| ≤
√

αmξm+1 +
1

2

√
αmξm+1

∑

m̄∈[m]

Regf̂m̄
(π)

2m̄2Um̄
+

Kξm+1

ηm minm̄∈[m] Um̄
. (24)

Proof. From Lemma 3, we have (25) holds, which provides a worst-case lower bound on pm.

min
(x,a)∈X×A

pm(a|x) ≥ min

(
1

K
,
ηm minm̄∈[m](2m̄

2)Um̄

K

)
≥ ηm minm̄∈[m] Um̄

K
(25)

Where the last inequality follows from Um ≤ 1. Now fromW1, we have,

|R̂m+1(π)−R(π)|
(W1)

≤
√
V (pm, π)ξm+1 +

Kξm+1

ηm minm̄∈[m] Um̄

(i)

≤ 1

2

√
αmξm+1 +

1

2

√
ξm+1

αm
V (pm, π) +

Kξm+1

ηm minm̄∈[m] Um̄

(ii)

≤
√
αmξm+1 +

1

2

√
αmξm+1

∑

m̄∈[m]

Regf̂m̄(π)

2m̄2Um̄
+

Kξm+1

ηm minm̄∈[m] Um̄
.

(26)

Where (i) follows from AM-GM inequality, and (ii) follows from (22) in the proof of Lemma 7.

Lemmas 9 and 10 provide useful inequalities that help construct the misspecification test (2).

Lemma 9. For any epoch m, policy π ∈ P , and model f ∈ {f̂1, f̂2, . . . , f̂m+1}. We have,

||Rf (π)−R(π)| − |R̂m+1,f (π)− R̂m+1(π)||
≤ |R̂m+1(π)−R(π)|+ |Rf (π)− R̂m+1,f (π)|.

Proof. The proof follows from noting that,

|Rf (π)−R(π)|
= |R̂m+1(π)−R(π) +Rf (π)− R̂m+1,f (π) + R̂m+1,f (π)− R̂m+1(π)|
≤ |R̂m+1(π)−R(π)|+ |Rf (π)− R̂m+1,f (π)|+ |R̂m+1,f (π)− R̂m+1(π)|.

(27)
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and from noting that,

|R̂m+1(π)− R̂m+1,f (π)|
= |R̂m+1(π)−R(π) +Rf (π)− R̂m+1,f (π) +R(π)−Rf (π)|
≤ |R̂m+1(π)−R(π)|+ |Rf (π)− R̂m+1,f (π)|+ |Rf (π)−R(π)|.

(28)

Lemma 10. SupposeW1 andW2 hold. Then for any epoch m, any model f ∈ {f̂i|i ∈ [m + 1]},
and any policy π ∈ Π ∪ {pm+1}, we have,

|Regf (π)− R̂egm+1,f (π)| ≤ 2
√
ξm+1

Proof. Follows from triangle inequality andW1,

|Regf (π)− R̂egm+1,f (π)|
≤ |Rf (πf )− R̂m+1,f (πf )|+ |Rf (π)− R̂m+1,f (π)| ≤ 2

√
ξm+1

(29)

As discussed earlier, Lemma 11 shows that the misspecification test in (2) fails only after m∗. Hence,
m̂ ≥ m∗ + 1.

Lemma 11. SupposeW1 andW2 hold. Now for any epoch m ∈ [m∗] we have that,

max
π∈Π∪{pm+1}

|R̂m+1,f̂m+1
(π)− R̂m+1(π)| −

√
αmξm+1

∑

m̄∈[m]

R̂egm+1,f̂m̄
(π)

2m̄2Um̄

≤ 2.05
√

αmξm+1 + 1.1
√

ξm+1.

(30)

Proof. For any epoch m ∈ [m∗] and for any π ∈ Π ∪ {pm+1}, we have,

|R̂f̂m+1
(π)− R̂m+1(π)|

(i)

≤ |R̂m+1(π)−R(π)|+ |Rf̂m+1
(π)−R(π)|+ |Rf̂m+1

(π)− R̂f̂m+1
(π)|

(ii)

≤ 2
√
αmξm+1 +

√
αmξm+1

∑

m̄∈[m]

Regf̂m̄
(π)

2m̄2Um̄
+

Kξm+1

ηm minm̄∈[m] Um̄
+
√

ξm+1

(iii)

≤ 2
√

αmξm+1 +
√
αmξm+1

∑

m̄∈[m]

Regf̂m̄(π)

2m̄2Um̄
+

αmξm+1

Um
+
√
ξm+1

(iv)

≤ 2
√
αmξm+1 +

√
αmξm+1

∑

m̄∈[m]

R̂egm+1,f̂m̄
(π)

2m̄2Um̄
+

2
√
αmξm+1

Um
+

αmξm+1

Um
+
√

ξm+1

(v)

≤ 2.05
√
αmξm+1 +

√
αmξm+1

∑

m̄∈[m]

R̂egm+1,f̂m̄
(π)

2m̄2Um̄
+ 1.1

√
ξm+1

(31)
Where (i) follows from Lemma 9. (ii) follows from Lemma 7, Lemma 8, andW1. (iii) follows from
Equation (17) and the fact that Um̄ is non-increasing in m̄ (giving us minm̄∈[m] Um̄ = Um). (iv)

follows from Lemma 10, the fact that Um̄ is non-increasing in m̄, and the fact that
∑∞

m̄=1 1/(2m̄
2) ≤

1. (v) follows from Um = 20
√

αm−1ξm, αm ≤ αm−1, and ξm+1 ≤ ξm.

Lemma 12 now describes the implication of (2) continuing to hold.

Lemma 12. Suppose W1 and W2 hold. Now for any epoch m ∈ [m̂ − 1] and any policy π ∈
Π ∪ {pm+1}, we then have that,

|Rf̂m+1
(π)−R(π)| ≤ 2.2

√
ξm+1 + 3.1

√
αmξm+1 +

3

2

√
αmξm+1

∑

m̄∈[m]

Regf̂m̄(π)

2m̄2Um̄
. (32)
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Proof.

|Rf̂m+1
(π)−R(π)|

(i)

≤ |R̂m+1(π)−R(π)|+ |R̂f̂m+1
(π)− R̂m+1(π)|+ |Rf̂m+1

(π)− R̂f̂m+1
(π)|

(ii)

≤ 3.1
√
αmξm+1 +

3

2

√
αmξm+1

∑

m̄∈[m]

Regf̂m̄(π)

2m̄2Um̄
+ 2.2

√
ξm+1

(33)

Where (i) follows from Lemma 9. And (ii) follows from Equation (2), Lemma 8, Lemma 10, and
W1.

B.5 Inductive Argument

This sub-section leverages the guarantee of Lemma 12 and applies it inductively to derive Lemma 14.
This lemma bounds RegΠ(π) in terms of Regf̂m+1

(π) and vice-versa for any policy π ∈ Π. The

proof of Lemma 14, relies on the following helpful lemma.

Lemma 13. Consider any class of policies Π′ ⊇ Π and consider any fixed constants l1, l2, l3, C
′ > 0.

At any epoch m, suppose the policy evaluation guarantee of Equation (34) holds.

∀π ∈ Π′, |Rf̂m+1
(π)−R(π)| ≤ l1

√
ξm+1 + l2

√
αmξm+1 +

l3
C ′

∑

m̄∈[m]

zm̄,m+1Regf̂m̄(π)

2m̄2

(34)
Now consider fixed constants C1, C2 ≥ 0. As an inductive hypothesis, suppose Equation (35) holds.

∀m̄ ∈ [m], ∀π ∈ Π′, Regf̂m̄(π) ≤ 4

3
RegΠ(π) + C1

√
ξm̄ + C2

√
αm̄−1ξm̄. (35)

We then have that Equation (36) holds.

∀π ∈ Π′,RegΠ(π) ≤
6

5
Regf̂m+1

(π) +
12

5

(
l1 +

l3C1

C ′

)√
ξm+1 +

12

5

(
l2 +

l3C2

C ′

)√
αmξm+1.

(36)
Now consider C3 ≥ 0 and further suppose Equation (37) holds.

∀m̄ ∈ [m],Regf̂m̄
(πf̂m+1

) ≤ C3

√
αm̄−1ξm̄. (37)

We then also have that Equation (38) holds,

∀π ∈ Π′,Regf̂m+1
(π) ≤ 7

6
RegΠ(π) +

(
2l1 +

l3C1

C ′

)√
ξm+1 +

(
2l2 +

l3(C2 + C3)

C ′

)√
αmξm+1.

(38)

Where C ′ ≥ 8l3, zm̄,m+1 :=
√

αmξm+1

αm̄−1ξm̄
≤ 1, and αm ≤ αm̄−1 for all m̄ ∈ [m].
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Proof. Consider any policy π ∈ Π′. Suppose (34) and (35) hold. We first show (39).

RegΠ(π)− Regf̂m+1
(π)

= R(π∗)−R(π)−Rf̂m+1
(πf̂m+1

) +Rf̂m+1
(π)

≤ R(π∗)−Rf̂m+1
(π∗) + (Rf̂m+1

(π)−R(π))

(i)

≤ 2l1
√
ξm+1 + 2l2

√
αmξm+1 +

l3
C ′

∑

m̄∈[m]

zm̄,m+1

2m̄2
(Regf̂m̄

(π) + Regf̂m̄(π∗))

(ii)

≤ 2l1
√
ξm+1 + 2l2

√
αmξm+1

+
l3
C ′

∑

m̄∈[m]

zm̄,m+1

2m̄2

(
4

3
RegΠ(π) + 2C1

√
ξm̄ + 2C2

√
αm̄−1ξm̄

)

= 2l1
√

ξm+1 + 2l2
√

αmξm+1

+
l3
C ′

∑

m̄∈[m]

1

2m̄2

(
4zm̄,m+1

3
RegΠ(π) +

2C1

√
ξm+1√

αm̄−1/αm

+ 2C2

√
αmξm+1

)

(iii)

≤
(
2l1 +

2l3C1

C ′

)√
ξm+1 +

(
2l2 +

2l3C2

C ′

)√
αmξm+1 +

4

3

l3
C ′

RegΠ(π),

(39)

Where (i) follows from (34), (ii) follows from (35) and from RegΠ(π
∗) = 0, and finally (iii) follows

from zm̄,m+1 ≤ 1, αm ≤ αm̄−1, and
∑

m̄∈[m] 1/(2m̄
2) ≤ 1. Now (39) immediately implies (40).

(
1− 4l3

3C ′

)
RegΠ(π) ≤ Regf̂m+1

(π) +
(
2l1 +

2l3C1

C ′

)√
ξm+1 +

(
2l2 +

2l3C2

C ′

)√
αmξm+1

(i)
=⇒ RegΠ(π) ≤

6

5
Regf̂m+1

(π) +
12

5

(
l1 +

l3C1

C ′

)√
ξm+1 +

12

5

(
l2 +

l3C2

C ′

)√
αmξm+1

(40)
Where (i) follows from the fact that C ′ ≥ 8l3. Similar to (39), we will now show (41).

Regf̂m+1
(π)− RegΠ(π)

= Rf̂m+1
(πf̂m+1

)−Rf̂m+1
(π)− (R(π∗)−R(π))

≤
(
Rf̂m+1

(πf̂m+1
)−R(πf̂m+1

)
)
+
(
R(π)−Rf̂m+1

(π)
)

(i)

≤ 2l1
√
ξm+1 + 2l2

√
αmξm+1 +

l3
C ′

∑

m̄∈[m]

zm̄,m+1

2m̄2
(Regf̂m̄(πf̂m+1

) + Regf̂m̄
(π))

(ii)

≤ 2l1
√
ξm+1 + 2l2

√
αmξm+1

+
l3
C ′

∑

m̄∈[m]

zm̄,m+1

2m̄2

(
4

3
RegΠ(π) + C1

√
ξm̄ + (C2 + C3)

√
αm̄−1ξm̄

)

= 2l1
√
ξm+1 + 2l2

√
αmξm+1

+
l3
C ′

∑

m̄∈[m]

1

2m̄2

(
4zm̄,m+1

3
RegΠ(π) +

C1

√
ξm+1√

αm̄−1/αm

+ (C2 + C3)
√
αmξm+1

)

(iii)

≤
(
2l1 +

l3C1

C ′

)√
ξm+1 +

(
2l2 +

l3(C2 + C3)

C ′

)√
αmξm+1 +

4l3
3C ′

RegΠ(π)

(41)

Where (i) follows from (34), (ii) follows from (35), (37), and (iii) follows from zm̄,m+1 ≤ 1,

αm ≤ αm̄−1, and
∑

m̄∈[m] 1/(2m̄
2) ≤ 1. Now (41) immediately implies (42).

Regf̂m+1
(π) ≤

(
1 +

4l3
3C ′

)
RegΠ(π) +

(
2l1 +

l3C1

C ′

)√
ξm+1 +

(
2l2 +

l3(C2 + C3)

C ′

)√
αmξm+1

(i)
=⇒ Regf̂m+1

(π) ≤ 7

6
RegΠ(π) +

(
2l1 +

l3C1

C ′

)√
ξm+1 +

(
2l2 +

l3(C2 + C4)

C ′

)√
αmξm+1.

(42)
Where (i) follows from the fact that C ′ ≥ 8l3.
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Lemma 14. SupposeW1 andW2 hold. Now for any epoch m ∈ [m̂ − 1], we then have that (43)
holds.

∀π ∈ Π, RegΠ(π) ≤
4

3
Regf̂m+1

(π) + 6.5
√

ξm+1 + 12
√
αmξm+1,

Regf̂m+1
(π) ≤ 4

3
RegΠ(π) + 6.5

√
ξm+1 + 12

√
αmξm+1.

(43)

Moreover when m ∈ [m∗], we have (43) holds for all policies π ∈ P .

Proof. Note that (43) trivially holds for m = 0. We will now use an inductive argument. Consider
any epoch m ∈ [m̂]. As an inductive hypothesis, let us assume (44) holds. (i.e. (43) holds for epoch
m− 1.)

∀π ∈ Π, m̄ ∈ [m],

RegΠ(π) ≤
4

3
Regf̂m̄

(π) + 6.5
√
ξm̄ + 12

√
αm̄−1ξm̄,

Regf̂m̄(π) ≤ 4

3
RegΠ(π) + 6.5

√
ξm̄ + 12

√
αm̄−1ξm̄.

(44)

Hence from (44), we have (35) holds with C1 = 6.5 and C2 = 12. Since m ∈ [m̂], from Lemma 12,
we have (45) holds.

∀π ∈ Π ∪ {pm+1},

|Rf̂m+1
(π)−R(π)| ≤ 22

10

√
ξm+1 +

31

10

√
αmξm+1 +

3

40

∑

m̄∈[m]

zm̄,m+1Regf̂m̄
(π)

2m̄2

(45)

Hence from (45), we have (34) holds with l1 = 2.2, l2 = 3.1, l3 = 1.5, C ′ = 20, and Π̃ = Π. Hence
from Lemma 13, we have (46) holds.

∀π ∈ Π,

RegΠ(π) ≤
6

5
Regf̂m+1

(π) +
12

5

(22
10

+
1.5 ∗ 6.5

20

)√
ξm+1 +

12

5

(31
10

+
1.5 ∗ 12

20

)√
αmξm+1

=
6

5
Regf̂m+1

(π) + 6.45
√

ξm+1 + 9.6
√
αmξm+1

≤ 4

3
Regf̂m+1

(π) + 6.5
√
ξm+1 + 12

√
αmξm+1

(46)
Now from (44) and (46), we have (47) holds.

∀m̄ ∈ [m],

Regf̂m̄(πf̂m+1
) ≤ 4

3
RegΠ(πf̂m+1

) + 6.5
√
ξm̄ + 12

√
αm̄−1ξm̄

≤ 4

3

(
0 + 6.5

√
ξm+1 + 12

√
αmξm+1

)
+ 6.5

√
ξm̄ + 12

√
αm̄−1ξm̄

≤ 43.2
√
αm̄−1ξm̄

(47)

Hence from (47), we have (37) holds with C3 = 43.2. Therefore from Lemma 13 we have (48).

∀π ∈ Π,

Regf̂m+1
(π) ≤ 7

6
RegΠ(π) +

(
2l1 +

l3C1

C ′

)√
ξm+1 +

(
2l2 +

l3(C2 + C3)

C ′

)√
αmξm+1

=
7

6
RegΠ(π) +

(
2 ∗ 2.2 + 1.5 ∗ 6.5

20

)√
ξm+1 +

(
2 ∗ 3.1 + 1.5(12 + 43.2)

20

)√
αmξm+1

=
7

6
RegΠ(π) + 4.8875

√
ξm+1 + 10.34

√
αmξm+1

≤ 4

3
RegΠ(π) + 6.5

√
ξm+1 + 12

√
αmξm+1

(48)

From (46) and (48), we have (43) holds for epoch m. This completes our inductive argument.
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An immediate implication of Lemma 14 is that we have Regf̂m
(π∗) ≤ Um for all m ∈ [m̂]. Hence,

from Lemma 4 and Lemma 5, we have (49) holds.

V (pm, π∗) ≤ E[µ(Cm(x, βmax, ηm))]

1− βmax
+

K

ηm
≤ αm, ∀m ∈ [m̂]. (49)

B.6 Bounding Exploration and Cumulative Regret

This sub-section leverages the structure of the kernel pm+1, and the guarantees in Lemmas 12 and 14
to bound the expected regret during exploration (Lemma 17). Then, summing up these exploration
regret bounds, we get our cumulative regret bound in Theorem 1. We start with Lemma 15 which
leverages structure in pm to bound Regf̂m̄

(pm) for any m̄ ∈ [m].

Lemma 15. For any pair of epochs m ∈ [m̂+ 1] and m̄ ∈ [m], we have that (50) holds.

Regf̂m̄(pm) ≤ 15.2
√
ξm̄ + 28

√
αm̄−1ξm̄ + 2m̄2ηmUm̄

(
1

βmax
+ ln

βmax

2m̄2ηmUm̄

)
(50)

Proof. We first make the following observation.

E
x∼Dx

E
a∼pm(a|x)

[I(a /∈ πf̂m
(x)) · (f̂m̄(x, πf̂m̄

(x))− f̂m̄(x, a))]

= E
x∼Dx

[ ∫

a∈A\π
f̂m

(x)

(f̂m̄(x, πf̂m̄
(x))− f̂m̄(x, a))pm(a|x)dµ(a)

]

(i)
= E

x∼Dx

[ ∫

a∈A\π
f̂m

(x)

∫

β∈[0,1]

(f̂m̄(x, πf̂m̄
(x))− f̂m̄(x, a))

I[a ∈ Cm(x,min(β, βmax)/ηm)]

µ
(
Cm(x,min(β, βmax)/ηm)

) dβdµ(a)

]

(ii)

≤ E
x∼Dx

[ ∫

β∈[0,1]

∫

a∈A\π
f̂m

(x)

min

(
1,

2m̄2ηmUm̄

min(β, βmax)

)
I[a ∈ Cm(x,min(β, βmax)/ηm)]

µ
(
Cm(x,min(β, βmax)/ηm)

) dµ(a)dβ

]

≤
∫

β∈[0,1]

min

(
1,

2m̄2ηmUm̄

min(β, βmax)

)
dβ ≤ (1− βmax)

2m̄2ηmUm̄

βmax
+

∫ βmax

0

min

(
1,

2m̄2ηmUm̄

β

)
dβ

(51)
where (i) follows from the definition of pm given in (4). (ii) follows from the fact that for any

ζ ∈ (0, 1) and a ∈ Cm(x, ζ) \ πf̂m
(x) we have f̂m̄(x, πf̂m̄

(x))− f̂m̄(x, a) ≤ min(1, 2m̄2/ζ), since

Cm(x, ζ) \ πf̂m
(x) ⊆ C̄m(x, ζ) ⊆ C̃m̄(x, ζ/(2m̄2)) by Definition 2, . We now bound Regf̂m̄(pm).

Regf̂m̄(pm) = E
x∼Dx

E
a∼pm(a|x)

[f̂m̄(x, πf̂m̄
(x))− f̂m̄(x, a)]

= E
x∼Dx

E
a∼pm(a|x)

[(I(a ∈ πf̂m
(x)) + I(a /∈ πf̂m

(x))) · (f̂m̄(x, πf̂m̄
(x))− f̂m̄(x, a))]

(i)

≤ Regf̂m̄(πf̂m
) +

(
(1− βmax)

2m̄2ηmUm̄

βmax
+

∫ βmax

0

min

(
1,

2m̄2ηmUm̄

β

)
dβ

)

≤ Regf̂m̄
(πf̂m

) +

(
2m̄2ηmUm̄(1− βmax)

βmax
+ 2m̄2ηmUm̄ + 2m̄2ηmUm̄

∫ βmax

2m̄2ηmUm̄

1

β
dβ

)

= Regf̂m̄
(πf̂m

) + 2m̄2ηmUm̄

(
1

βmax
+ ln

βmax

2m̄2ηmUm̄

)

(ii)

≤ 4

3
RegΠ(πf̂m

) + 6.5
√
ξm̄ + 12

√
αm̄−1ξm̄ + 2m̄2ηmUm̄

(
1

βmax
+ ln

βmax

2m̄2ηmUm̄

)

(iii)

≤ 4

3

(
6.5
√
ξm + 12

√
αm−1ξm

)
+ 6.5

√
ξm̄ + 12

√
αm̄−1ξm̄

+ 2m̄2ηmUm̄

(
1

βmax
+ ln

βmax

2m̄2ηmUm̄

)

(iv)

≤ 15.2
√
ξm̄ + 28

√
αm̄−1ξm̄ + 2m̄2ηmUm̄

(
1

βmax
+ ln

βmax

2m̄2ηmUm̄

)

(52)
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where (i) follows from (51), (ii) follows from Lemma 14, (iii) follows from Lemma 14 and
Regf̂m(πf̂m

) = 0, and (iv) follows from m̄ ≤ m.

Now from the guarantees in Lemmas 12, 14, and 15 we get the following bound on RegΠ(pm+1).

Lemma 16. SupposeW1 andW2 hold. Now for any epoch m ∈ [m̂− 1], we have that (53) holds.

RegΠ(pm+1) ≤ 100(m+ 1)2ηm+1

√
αmξm+1

(
1

βmax
+ ln

βmax

40ηm+1

√
αmξm+1

)
(53)

Proof. Since m ∈ [m̂], from Lemma 12, we have (54) holds.

∀π ∈ Π ∪ {pm+1},

|Rf̂m+1
(π)−R(π)| ≤ 22

10

√
ξm+1 +

31

10

√
αmξm+1 +

3

40

∑

m̄∈[m]

zm̄,m+1Regf̂m̄
(π)

2m̄2

(54)

We will now bound RegΠ(pm+1) in terms of Regf̂m̄
(pm+1) for m̄ ∈ [m+ 1].

RegΠ(pm+1)− Regf̂m+1
(pm+1)

= R(π∗)−R(pm+1)−Rf̂m+1
(πf̂m+1

) +Rf̂m+1
(pm+1)

≤ R(π∗)−Rf̂m+1
(π∗) + (Rf̂m+1

(pm+1)−R(pm+1))

(i)

≤ 44

10

√
ξm+1 +

62

10

√
αmξm+1 +

3

40

∑

m̄∈[m]

zm̄,m+1

2m̄2
(Regf̂m̄(pm+1) + Regf̂m̄(π∗))

(ii)

≤ 44

10

√
ξm+1 +

62

10

√
αmξm+1

+
3

40

∑

m̄∈[m]

zm̄,m+1

2m̄2
(Regf̂m̄

(pm+1) + 6.5
√
ξm̄ + 12

√
αm̄−1ξm̄)

(iii)

≤ 44

10

√
ξm+1 +

62

10

√
αmξm+1

+
3

40

∑

m̄∈[m]

1

2m̄2
(zm̄,m+1Regf̂m̄

(pm+1) + 6.5
√
ξm+1 + 12

√
αmξm+1)

(iv)

≤ 4.9
√

ξm+1 + 7.1
√
αmξm+1 +

3

40

∑

m̄∈[m]

zm̄,m+1

2m̄2
Regf̂m̄(pm+1).

(55)

Where (i) follows from (54), (ii) follows from Lemma 14 and from RegΠ(π
∗) = 0, (iii) follows from

zm̄,m+1 :=
√

αmξm+1

αm̄−1ξm̄
and αm ≤ αm̄−1, finally (iv) follows from

∑
m̄∈[m] 1/(2m̄

2) ≤ 1. We now

simplify the last term in the upper bound of (55).
∑

m̄∈[m]

zm̄,m+1

2m̄2
Regf̂m̄

(pm+1)

(i)

≤
∑

m̄∈[m]

zm̄,m+1

2m̄2

(
15.2

√
ξm̄ + 28

√
αm̄−1ξm̄ + 2m̄2ηm+1Um̄

(
1

βmax
+ ln

βmax

2m̄2ηm+1Um̄

))

(ii)

≤
∑

m̄∈[m]

1

2m̄2

(
15.2

√
ξm+1 + 28

√
αmξm+1

+ 40m̄2ηm+1

√
αmξm+1

(
1

βmax
+ ln

βmax

40ηm+1

√
αmξm+1

))

(iii)

≤ 15.2
√
ξm+1 + 28

√
αmξm+1 + 20mηm+1

√
αmξm+1

(
1

βmax
+ ln

βmax

40ηm+1

√
αmξm+1

)

(56)
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Where (i) follows from Lemma 15, (ii) follows from zm̄,m+1 :=
√

αmξm+1

αm̄−1ξm̄
, choice of Um, and

αm ≤ αm̄−1, finally (iii) follows from
∑

m̄∈[m] 1/(2m̄
2) ≤ 1. By combining (55), (56), and

Lemma 15, we get our final result.

RegΠ(pm+1)

(i)

≤ Regf̂m+1
(pm+1) + 6.04

√
ξm+1 + 9.2

√
αmξm+1

+ 1.5mηm+1

√
αmξm+1

(
1

βmax
+ ln

βmax

40ηm+1

√
αmξm+1

)

(ii)

≤ 21.3
√
ξm+1 + 37.2

√
αmξm+1

+ 41.5(m+ 1)2ηm+1

√
αmξm+1

(
1

βmax
+ ln

βmax

40ηm+1

√
αmξm+1

)

(57)

Where (i) follows from (55) and (56), and (ii) follows from Lemma 15.

The earlier bound on RegΠ(pm+1) now immediately gives us the following bound on Regf∗(pm+1).

Lemma 17. SupposeW1 andW2 hold. Now for any epoch m ∈ [m̂− 1], we have that (58)

Regf∗(pm+1) ≤ 2
√
KB + 100(m+ 1)2ηm+1

√
αmξm+1

(
1

βmax
+ ln

βmax

40ηm+1

√
αmξm+1

)

(58)

Proof. From Assumption 1 (properties of EstOracle), we know the bias of the model class F is
bounded by B. In particular, we know there exists g ∈ F such that Ex∼DX ,a∼Unif(A)

[
(g(x, a) −

f∗(x, a))2
]
≤ B. Hence, we have, the following.

Regf∗(π∗)
(i)

≤ Regf∗(πg) = R(πf∗)−R(πg)

= (R(πf∗)−Rg(πf∗))− Regg(πf∗) + (Rg(πg)−R(πg))

(ii)

≤ |R(πf∗)−Rg(πf∗)|+ |Rg(πg)−R(πg)|
(iii)

≤
(√

E
x∼DX ,a∼πf∗

[πf∗(a|x)
1/K

]
+

√
E

x∼DX ,a∼πg

[πg(a|x)
1/K

])

·
√

E
x∼DX ,a∼Unif(A)

[
(g(x, a)− f∗(x, a))2

]

(iv)

≤ 2
√
KB.

(59)

Here (i) follows from the fact that πg ∈ Π since g ∈ F . (ii) follows from triangle inequality and
the fact that Regg(πf∗) ≥ 0. (iii) follows from the proof of Lemma 7. And (iv) follows from

Ex∼DX ,a∼Unif(A)

[
(g(x, a)− f∗(x, a))2

]
≤ B and πf (a|x) = I(a ∈ πf (x)).

Since Regf∗(pm+1) = R(πf∗) − R(π∗) + R(π∗) − R(pm+1) = Regf∗(π∗) + RegΠ(pm+1), the
result follows from combining the above with Lemma 16.

We now get our final cumulative regret bound by summing up the exploration regret bounds in
Lemma 17.

Theorem 1. Suppose Assumptions 1 and 2 hold. Then with probability 1− δ, ω-RAPR attains the
following cumulative regret guarantee. Here ξm+1 = ξ((τm − τm−1)/3, δ/(16m

3) for all m.

CRegT ≤ Õ
(

T∑

t=τ1+1

√
K

αm(t)

αm(t)−1

αm(t)

(√
KB +

√
Kξm(t)

))
(6a)

≤ Õ
(
√
ωKBT +

T∑

t=τ1+1

√
ωKξm(t)

)
. (6b)
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Where we use Õ to hide terms logarithmic in T,K, ξ(T, δ).

Proof. From Appendix B.1, bothW1 andW2 hold with probability 1− δ. We prove our cumulative
regret bounds under these events. UnderW1, from Lemma 11, we have m̂ ≥ m∗ + 1. Further, from
conditions in Section 1.2, we have ξm is non-increasing in m. Since ξ(n, δ′) scales polynomially in
1/n and log(1/δ′), there exists a constant Q0 > 1 such that the doubling epoch structure ensures
ξm ≤ Q0ξm+1 for all m. Hence ξm̂ ≤ Q0ξm̂+1 ≤ Q0ξm∗+2 ≤ 2Q0B. Let m′(t) = min(m(t), m̂).
Hence, ξm′(t) ≤ max(ξm(t), ξm̂) ≤ 2Q0B + ξm(t). Therefore, by summing up the bounds in
Lemma 17, we have the following cumulative regret bound.

CRegT ≤
T∑

t=1

Regf∗(pm′(t))

≤ τ1 +

T∑

t=τ1+1

(
2
√
KB

+ 100(m′(t))2ηm′(t)

√
αm′(t)−1ξm′(t)

(
1

βmax
+ ln

βmax

40ηm′(t)

√
αm′(t)−1ξm′(t)

))

≤ Õ
(

T∑

t=τ1+1

(
ηm′(t)

√
αm′(t)−1ξm′(t)

))
= Õ

(
T∑

t=τ1+1

ηm(t)

√
αm(t)−1

K

(√
Kξm′(t)

)
)

≤ Õ
(

T∑

t=τ1+1

ηm(t)

√
αm(t)−1

K

(√
KB +

√
Kξm(t)

))

(60)

Now the theorem follows from the fact that we have:

ηm

√
αm−1

K

Lemma 5
≤ 3

√
K

αm

αm−1

αm

Lemma 5
≤ 3ηm

√
αm−1

K

(5)

≤ 3
√
ω. (61)

C Bounding Simple Regret

In this section, we prove our simple regret bound (Theorem 2). Our analysis starts with Lemma 18,

which provides instance dependent bounds on Ex∼DX

[
µ
(
Cm(x, β, η)

)]
. We will later use

Lemma 18 to derive instance-dependent bounds on αm. This bound then helps us derive instance-
dependant bounds on simple regret.

Lemma 18. For some environment parameters λ ∈ (0, 1), ∆ > 0, and A ∈ [1,K], consider an
instance where (7) holds.

Px∼DX

(
µ
(
{a ∈ A : f∗(x, πf∗(x))− f∗(x, a) ≤ ∆}

)
≤ A

)
≥ 1− λ. (62)

SupposeW1 andW2 hold. For all epochs m, suppose the action selection kernel is given by eq. (4),
and suppose (2) holds for all m̄ ∈ [m]. Then for any epoch m ∈ [m∗], we have (63) holds.

E
x∼DX

[
µ
(
Cm(x, β, η)

)]
≤
(
1 +A+Kλ

)
+ 25

K

∆

η

β

√
αm−1ξm. (63)

For any β ∈ (0, 1/2] and η ∈ [1,K].

Proof. Consider any epoch m ∈ [m∗]. In this proof, for short-hand, let C := E[µ(Cm(x, β, η))].
We then have,

C = E[µ(Cm(x, β, η))]

≤ (A+ 1)P (µ(Cm(x, β, η)) ≤ A+ 1) +KP (µ(Cm(x, β, η)) > A+ 1)

≤ A+ 1 +KP (µ(Cm(x, β, η)) > A+ 1)

≤ A+ 1 +K −KP (µ(Cm(x, β, η)) ≤ A+ 1)
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The above immediately implies (64).

P
(
µ(Cm(x, β, η)) ≤ A+ 1

)
≤ A+ 1 +K − C

K
. (64)

Let π0 ∈ Π̃ be defined by (65).

∀x ∈ X , π0(x) ∈ argmin
S∈Σ1|S⊆Cm(x,β,η)

f∗(x, S). (65)

Since π0 only selects arms in Cm(x, β, η), from Definition 2, we have (66).

Regf̂m(π0) ≤
η

β
Um. (66)

We can lower bound the regret of π0 as follows,

Regf∗(π0)

≥P (f∗(x, πf∗(x))− f∗(x, π0(x)) > ∆) ·∆
(i)
=P (∃ S ∈ Σ1| S ⊆ Cm(x, β, η), f∗(x, πf∗(x))− f∗(x, S) > ∆) ·∆
(ii)

≥ P
(
µ
(
Cm(x, β, η)

)
≥ A+ 1 and µ

(
{a : (f∗(x, πf∗(x))− f∗(x, a) > ∆}

)
≥ K −A

)
·∆

=P
(
µ
(
Cm(x, β, η)

)
≥ A+ 1 and µ

(
{a : (f∗(x, πf∗(x))− f∗(x, a) ≤ ∆}

)
≤ A

)
·∆

=

(
1− P

(
µ
(
Cm(x, β, η)

)
< A+ 1 or µ

(
{a : (f∗(x, πf∗(x))− f∗(x, a) ≤ ∆}

)
> A

))
·∆

(iii)

≥
(
1− P

(
µ
(
Cm(x, β, η)

)
< A+ 1

)
− P

(
µ
(
{a : (f∗(x, πf∗(x))− f∗(x, a) ≤ ∆}

)
> A

))
·∆

=

(
P
(
µ
(
{a : (f∗(x, πf∗(x))− f∗(x, a) ≤ ∆}

)
≤ A

)
− P

(
µ
(
Cm(x, β, η)

)
< A+ 1

))
·∆

(iv)

≥
(
1− λ− A+ 1 +K − C

K

)
∆ =

(
C −A− 1

K
− λ

)
∆.

(67)
where (i) is because by construction π0(x) ⊆ Cm(x, β, η) for all x, (ii) is by the fact that µ is a finite
measure with µ(A) =: K, (iii) follows from union bound, and (iv) follows from (64) and (7).

We will now work towards upper bounding Regf∗(π0), and use this bound in conjunction with (67)

to obtain our desired bound on C. To upper bound Regf∗(π0) using Lemma 14, we will upper bound

Regf̂m−1
(π0) and Regf̂m−1

(πf∗).

Regf̂m−1
(π0)

(i)

≤ 4

3
RegΠ(π0) + 12

√
αm−2ξm−1 + 6.5

√
ξm−1

(ii)

≤ 4

3

(
4

3
Regf̂m(π0) + 12

√
αm−1ξm + 6.5

√
ξm

)
+ 12

√
αm−2ξm−1 + 6.5

√
ξm−1

(iii)

≤ 16

9
Regf̂m

(π0) + 28
√
αm−2ξm−1 +

91

6

√
ξm−1

(iv)

≤ 16

9
Regf̂m

(π0) +
259

6

√
αm−2ξm−1.

(68)

Where (i) and (ii) follow from Lemma 14, (iii) follows from zm−1 =
√

αm−1ξm
αm−2ξm−1

≤ 1, and (iv)

follows from αm−2 ≥ 1.

Regf̂m−1
(πf∗)

(i)

≤ 12
√
αm−2ξm−1 + 6.5

√
ξm−1

(ii)

≤ 37

2

√
αm−2ξm−1.

(69)

Where (i) follows from Lemma 14, (ii) follows from αm−2 ≥ 1.
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Regf∗(π0)

= R(πf∗)−R(π0)

=
(
R(πf∗)−Rf̂m

(πf∗)
)
−
(
R(π0)−Rf̂m

(π0)
)
+
(
Rf̂m

(πf∗)−Rf̂m
(π0)

)

(i)

≤ 2
√
αm−1ξm +

1

2

√
αm−1ξm

∑

m̄∈[m]

1

2m̄2Um̄

(
Regf̂m−1

(πf∗) + Regf̂m−1
(π0)

)
+ Regf̂m

(π0)

(ii)

≤ 2
√
αm−1ξm +

1

40

∑

m̄∈[m]

zm̄,m−1

2m̄2

(16
9

Regf̂m(π0) +
(
37 + 18.5 ∗ 4

3

)√
αm−2ξm−1

)
+ Regf̂m(π0)

(iii)

≤ 3.6
√
αm−1ξm +

47

45
Regf̂m(π0)

(iv)

≤
√
αm−1ξm

(
3.6 +

47

45
∗ 20 η

β

)
≤ 25

η

β

√
αm−1ξm

(70)
Where (i) follows from Lemma 7. (ii) follows from (68), (69), and Um−1 = 20

√
αm−2ξm−1, (iii)

follows from zm−1 ≤ 1, and (iv) follows from (66) and Um = 20
√
αm−1ξm. Finally, combining

(67) and (70), we have,
(
C −A− 1

K
− λ

)
∆ ≤ Regf∗(π0) ≤ 25

η

β

√
αm−1ξm

=⇒ C ≤ A+ 1 +Kλ+ 25
K

∆

η

β

√
αm−1ξm.

(71)

In Lemma 19, we use the bound from Lemma 18 to derive instance-dependent bounds on αm.
Corollary 2 is an immediate implication of Lemma 19, and provides a bound on αm that doesn’t
depend on αm−1. Finally, Corollary 2 is used to derive our instance-dependant bound on simple
regret.

Lemma 19. For some environment parameters λ ∈ (0, 1), ∆ > 0, and A ∈ [1,K], consider an
instance where (7) holds. SupposeW1 andW2 hold, and ηm is chosen using (5). For all epochs m,
suppose the action selection kernel is given by eq. (4), suppose eq. (17) holds, and suppose (2) holds
for all m̄ ∈ [m]. Then for any epoch m ∈ [m∗], we have (72) holds.

αm ≤ O
(
max

(√
Kαm−1

ω
,A+Kλ+

√
K3ωξm
∆

))
(72)

Proof. Suppose ηm ≤
√

Kω
αm−1

− 1/|Sm−1,2|, we then have,

K

ηm

(i)

≤ |Sm−1,2|+ 1

|Sm−1,2|
K

ηm + 1
|Sm−1,2|

(ii)

≤ |Sm−1,2|+ 1

|Sm−1,2|
λm

(
ηm +

1

|Sm−1,2|

)

(iii)

≤ |Sm−1,2|+ 1

|Sm−1,2|

(
1 + E

[
µ

(
Cm

(
xt, βmax, ηm +

1

|Sm−1,2|

))]
+

√
2K2 ln(8|Sm−1,2|m2/δ)

|Sm−1,2|

)

(iv)

≤ |Sm−1,2|+ 1

|Sm−1,2|

(
(2 +A+Kλ) + 25

K

∆

ηm + 1
|Sm−1,2|

βmax

√
αm−1ξm +

√
2K2 ln(8|Sm−1,2|m2/δ)

|Sm−1,2|

)

(v)

≤ |Sm−1,2|+ 1

|Sm−1,2|

(
(1 +A+Kλ) +

50

∆

√
K3ωξm +

√
2K2 ln(8|Sm−1,2|m2/δ)

|Sm−1,2|

)

(73)
Where (i) follows from ηm ≥ 1, (ii) follows from (5), (iii) follows from W2, (iv) follows from
Lemma 18, and (v) follows from (5) and the fact that βmax = 0.5. Finally, the result now follows
from Lemma 5.

30



Corollary 2. For some environment parameters λ ∈ (0, 1), ∆ > 0, and A ∈ [1,K], consider an
instance where (7) holds. SupposeW1 andW2 hold. For all epochs m, suppose the action selection
kernel is given by eq. (4), suppose eq. (17) holds, and suppose suppose (2) holds for all m̄ ∈ [m].
Then for any epoch m ∈ [m∗], we have (74) holds.

αm ≤ O
(
K

ω
+A+Kλ+

√
K3ωξm−⌈log2 log2(K)⌉

∆

)
(74)

Where for notational convenience, we let ξi = 1 for i ≤ 0.

Proof. By repeatedly applying Lemma 19, we have:

αm

≤ O
(
max

((
K

ω

) 1
2+

1
4+···+ 1

2⌈log2 log2(K)⌉

K0.5⌈log2 log2(K)⌉

, A+Kλ+

√
K3ωξm−⌈log2 log2(K)⌉

∆

))

(i)

≤ O
(
max

((
K

ω

)
K0.5⌈log2 log2(K)⌉

, A+Kλ+

√
K3ωξm−⌈log2 log2(K)⌉

∆

))

(ii)

≤ O
(
max

((
K

ω

)
, A+Kλ+

√
K3ωξm−⌈log2 log2(K)⌉

∆

))

≤ O
(
K

ω
+A+Kλ+

√
K3ωξm−⌈log2 log2(K)⌉

∆

)

(75)

where (i) follows from
∑∞

i=1 1/2
i = 1, and (ii) follows from K1/2⌈log2 log2(K)⌉ ≤ K1/2log2 log2(K)

=

K1/ log2 K = K logK 2 = 2.

We now re-state and prove Theorem 2. As discussed earlier, this result relies on the bound in
Corollary 2.

Theorem 2. Suppose Assumptions 1 and 2 hold. For some (λ,∆, A) ∈ [0, 1] × (0, 1] × [1,K],
consider instances where for 1− λ fraction of contexts at most A arms are ∆ optimal (i.e. (7) holds).

Px∼DX

(
µ
(
{a ∈ A : f∗(x, πf∗(x))− f∗(x, a) ≤ ∆}

)
≤ A

)
≥ 1− λ. (7)

Let m′ = min(m̂,m(T )) − 1. Let the learned policy π̂ be given by (8) (equivalent to variance
penalized policy optimization).

π̂ ∈ argmax
π∈Π

R̂m(T )(π)−
1

2

√
αm′ξm(T )

∑

m̄∈[m′]

R̂m(T ),f̂m̄
(πf̂m̄

)− R̂m(T ),f̂m̄
(π)

40m̄2
√
αm̄−1ξm̄

. (8)

Then with probability 1− δ, ω-RAPR has the following simple regret bound when T samples.

RegΠ(π̂) ≤ O
(√

αm′ξm(T )

)

≤O
(√

ξm(T ) min

(
K,A+Kλ+

K

ω
+

K3/2ω1/2

∆

√
ξmin(m∗,m(T )−1)−⌈log2 log2(K)⌉

)))
.
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Proof. From Appendix B.1, both W1 and W2 hold with probability 1 − δ. We prove our simple
regret bounds under these events. Let m = m(T ), we then have the following bound.

R(π̂)
(i)

≥ R̂m(π̂)−
√

αm′ξm −
1

2

√
αm′ξm

∑

m̄∈[m′]

Regf̂m̄
(π̂)

2m̄2Um̄
− Kξm

ηm′ minm̄∈[m′] Um̄

(ii)

≥ R̂m(π̂)−
√
αm′ξm −

1

2

√
αm′ξm

∑

m̄∈[m′]

R̂egm,f̂m̄
(π̂)

2m̄2Um̄
− 2
√
αm′ξm
Um′

− αm′ξm
Um′

(iii)

≥ R̂m(π∗)−
√
αm′ξm −

1

2

√
αm′ξm

∑

m̄∈[m′]

R̂egm,f̂m̄
(π∗)

2m̄2Um̄
− 2
√
αm′ξm
Um′

− αm′ξm
Um′

(iv)

≥ R̂m(π∗)−
√
αm′ξm −

1

2

√
αm′ξm

∑

m̄∈[m′]

Regf̂m̄(π∗)

2m̄2Um̄
− 4
√
αm′ξm
Um′

− αm′ξm
Um′

(v)

≥ R(π∗)− 2
√
αm′ξm −

√
αm′ξm

∑

m̄∈[m′]

Regf̂m̄(π∗)

2m̄2Um̄
− 4
√
αm′ξm
Um′

− 2αm′ξm
Um′

(vi)

≥ R(π∗)− 3.3
√
αm′ξm.

(76)

Here (i) follows from Lemma 8. (ii) follows from Lemma 10, Lemma 5, and the fact that Um′ ≤ Um̄

for any m̄ ∈ [m′]. (iii) follows from (8). (iv) follows from Lemma 10. (v) follows from Lemma 8,
Lemma 5, and the fact that Um′ ≤ Um̄ for any m̄ ∈ [m′]. Finally, (vi) follows from Lemma 14 and
Um′ ≤ 20

√
αm′ξm. Hence RegΠ(π̂) ≤ O(

√
αm′ξm). Now the final bound follows from the fact

that αm′ ≤ α1 = 3K, αm′ ≤ αmin(m∗,m(T )−1), and Corollary 2.

D Lower bound

Theorem 3. Given parameters K,F, T ∈ N and ϕ ∈ [1,∞). There exists a context space X and a
function class F ⊆ (X × A → [0, 1]) with K actions such that |F| ≤ F and the following lower
bound on cumulative regret holds:

inf
A∈Ψϕ

sup
D∈D

E
D

[ T∑

t=1

(
rt(π

∗(xt))− rt(at)
)]
≥ Ω̃

(√
K

ϕ

√
KT logF

)

Here (a1, . . . aT ) denotes the actions selected by an algorithm A. D denotes the set of environments
such that f∗ ∈ F and (7) hold with (A, λ,∆) = (1, 0, 0.24). Π denotes policies induced by F .
Ψϕ denotes the set of CB algorithms that run for T rounds and output a learned policy with a

simple regret guarantee of
√
ϕ logF/T for any instance in D with confidence at least 0.95, i.e.,

Ψϕ := {A : P(Reg(π̂A) ≤
√
ϕ logF/T ) ≥ 0.95 for any instance in D}. Finally, Ω̃(·) hides factors

logarithmic in K and T .

We prove theorem 3 in the following sub-sections.

D.1 Basic Technical Results

The following result is established in Raginsky and Rakhlin [2011], with this version taken from the
proof of Lemma D.2 in Foster et al. [2020b].

Lemma 20 (Fano’s inequality with reverse KL-divergence). Let

H = (x1, a1, r1(a1)), . . . , (xT , aT , rT (aT )),

and let {P(i)}i∈[M ] be a collection of measures over H, where M ≥ 2. Let Q be any reference

measure overH, and let P be the law of (m∗,H) under the following process:

• Sample m∗ uniformly from [M ].

• SampleH ∼ P
(m∗).
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Then for any function m̂(H), if P(m̂ = m∗) ≥ 1− δ, then

(
1− 1

M

)
log(1/δ)− log 2 ≤ 1

M

M∑

i=1

DKL(Q||P(i)). (77)

D.2 Construction

If K ≤ 10 or T ≤ 1522K logF or ϕ ≥ K, our lower bound directly follows from the cumulative
regret lower bound in Foster et al. [2020b]. Hence, without loss of generality, we can assume
K ≥ 10, T ≥ 1522K logF, and ϕ ≤ K.

The following construction closely follows lower bound arguments in Foster et al. [2020b]. Let A =
{a(1), a(2), . . . , a(K)} be an arbitrary set of discrete actions. Let k = ⌊1/ϵ⌋, and d be parameters that
will be fixed later. With ϵ ∈ (0, 1), note that 1/(2ϵ) ≤ k ≤ 1/ϵ. We will now define the context set X
as the union of d disjoint partitions X (1),X (2), . . . ,X (d), where X (i) = {x(i,0), x(i,1), . . . , x(i,k)}
for all i ∈ [d]. Hence, we have X = ∪X (i) and |X | = d(k + 1).

For each partition index i ∈ [d], we construct a policy class Π(i) ⊆ (X (i) → A) as follows. First

we let π(i,0) : X (i) → A be the policy that always selects arm a(1), and let π(i,l,b) : X (i) → A be

defined as follows for all l ∈ [k] and b ∈ A0 := A \ {a(1)},

∀x(i,j) ∈ X (i), π(i,l,b)(x(i,j)) =

{
a(1), if j ̸= l,

b, if j = l.
(78)

Construct Π(i) := {π(i,l,b)|l ∈ [k] and b ∈ A0} ∪ {π(i,0)}.20 Finally, we let Π := Π(1) × Π(2) ×
· · · ×Π(d). We will now construct a reward model class F that induces Π.

Let ∆ := 1/4. For each partition index i ∈ [d], we construct a reward model class F (i) ⊆
(X (i) ×A → [0, 1]) as follows. First we let f (i,0) : X (i) ×A → [0, 1] be defined as follows,

∀(x(i,j), a) ∈ X (i) ×A, f (i,0)(x(i,j), a) =

{
1
2 +∆, if a = a(0),
1
2 , if a ∈ A0.

(79)

For all l ∈ [k] and b ∈ A0, we define f (i,l,b) : X (i) ×A → [0, 1] as follows,

∀(x(i,j), a) ∈ X (i) ×A, f (i,l,b)(x(i,j), a) =





1
2 +∆, if a = a(0)

1
2 + 2∆, if j = l and a = b,
1
2 , otherwise.

(80)

Note that f (i,l,b) differs from f (i,0) only at context (x(i,l), b). Construct F (i) := {f (i,l,b)|l ∈
[k] and b ∈ A0} ∪ {f (i,0)}. Finally, we let F := F (1) ×F (2) × · · · × F (d). Hence, we have,

|F| = |F (i)|d ≤ (k ·K)d =⇒ d ≥ log |F|
log(K · k) ≥

log |F|
log(K/ϵ)

. (81)

We choose d to be the largest value such that F ≥ (k ·K)d. Hence we choose d = ⌊logF/ log(K ·
k)⌋ ≥ logF/(2 log(K · k)).
To use lemma 20, we will describe a collection of environments that share a common distribution
over contexts and only differ in the reward distribution. The context distribution DX is given by

DX := 1
d

∑
i DX

(i), where DX
(i) is a distribution over X (i), with ϵ probability of sampling each

context in X (i) \ {x(i,0)}, and 1− kϵ probability of sampling the context x(i,0).

For each block X (i), we let P
(i,0) denote the law given by the reward distribution r(a) ∼

Ber(f (i,0)(x, a)) for all x ∈ X (i). Further, for any l ∈ [k] and b ∈ A0, we let P(i,l,b) denote

the law given by the reward distribution r(a) ∼ Ber(f (i,l,b)(x, a)) for all x ∈ X (i). For any pol-

icy π ∈ Π(i), we let R(i,l,b)(π) = EP(i,l,b) [r(π(x))] denote expected reward under P(i,l,b), and let

Reg(i,l,b)(π) = R(i,l,b)(π(i,l,b))−R(i,l,b)(π) denote expected simple regret under P(i,l,b).

20Here [k] = {1, 2, . . . , k}
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We use ρ to index environments. Here ρ = (ρ1, . . . , ρd), where ρi = (li, bi) for li ∈ {0, 1, . . . , k}
and bi ∈ A0. We let Pρ denote an environment with the law P

(i,li,bi) for contexts in X (i).21 Finally

let πρ denote the optimal policy under Pρ, and let πρ
(i) denote its restriction to X (i). Let Eρ[·] denote

the expectation under Pρ. Let Rρ(π) = Eρ[r(π(x))] denote the expected reward of π under Pρ, and
let Regρ(π) = Rρ(πρ)−Rρ(π) denote the simple regret of π under Pρ.

D.3 Lower bound argument

We sample ρ from a distribution ν defined as follows. For each i ∈ [d], set li = 0 with probability
0.5, otherwise li is selected uniformly from [k]. Select bi uniformly from A0. Note that when li = 0,
we disregard the value of bi.

We let π̂A ∈ Π denotes the policy recommended by the contextual bandit algorithm A at the end of T

rounds, and let π̂
(i)
A
∈ Π(i) be the restriction of π̂A to block X (i). Note that the policy recommended

by A will depend on the environment ρ.

Let I := {i ∈ [d]|Reg(i,li,bi)(πA
(i)) ≤ 19

√
ϕ logF/T}. Since we only consider algorithms that

guarantee the following with probability at least 19/20,

1

d

d∑

i=1

Reg(i,li,bi)(πA
(i)) = Regρ(π̂A) ≤

√
ϕ logF/T . (82)

Under this event, we have that at most d/19 block indices satisfy Reg(i,li,bi)(πA
(i)) >

19
√
ϕ logF/T . Therefore, we have |I| ≥ 18d/19.

Define event Mi = {i ∈ I}. We have

d∑

i=1

P (Mi) =

d∑

i=1

E[1{i ∈ I}}] ≥
19

20
E[|I||Regρ(π̂A) ≤

√
ϕ logF/T ] ≥ 9d

10
. (83)

Consider any fixed index i, under the event Mi, we have the following. First observe for any

(l, b) ̸= (l′, b′), we have Reg(i,l,b)(π(i,l′,b′)) ≥ ϵ∆. Let (l̂i, b̂i) be indices such that πA
(i) = π(i,l̂i,b̂i).

We now choose ϵ such that,

ϵ =
38

∆

√
ϕ logF

T
⇐⇒ ϵ∆

2
= 19

√
ϕ logF

T
. (84)

Hence from definition of I, we have Reg(i,li,bi)(πA
(i)) ≤ ϵ∆/2. Further since Reg(i,li,bi)(π) ≥ ϵ∆

for all π ∈ Π(i) \ {π(i,li,bi)}, we have (l̂i, b̂i) = (l∗i , b
∗
i ).

Restating the above result, we have the following. For any i ∈ I , with probability 1− 1/16, we have

(l̂i, b̂i) = (l∗i , b
∗
i ). Hence from lemma 20, we have,

(
1− 1

(K − 1)k

)
log
(
1/P

(
M1

))
− log 2

≤ 1

(K − 1)k

k∑

l=1

∑

b∈A0

DKL(P
(i,0)||P(i,l,b))

(i)
=

1

(K − 1)k

k∑

l=1

∑

b∈A0

DKL(Ber(1/2)||Ber(1/2 + 2∆)) E
P(i,0)

[|{t|xt = x(i,l), at = b}|]

(ii)

≤ 1

(K − 1)k

k∑

l=1

∑

b∈A0

4∆2
E

P(i,0)

[|{t|xt = x(i,l), at = b}|]

=
4∆2

(K − 1)k
E

P(i,0)

[|{t|xt ∈ X (i) \ {x(i,0)}, at ∈ A0}|].

(85)

21Here P
(i,0) ≡ P

(i,0,b) for all b ∈ A0.
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Where (i) follows from the fact that P(i,0) and P
(i,l,b) are identical unless xt = x(i,l) and at = b, and

(ii) follows from ∆ ≤ 1/4. Clearly we have:

E
ρ∼ν

E
ρ

[ T∑

t=1

(
rt(π

∗(xt))− rt(at)
)]

≥ ∆ E
ρ∼ν

E
ρ

[ T∑

t=1

d∑

i=1

I

({
xt ∈ X (i) \ {x(i,0)}, at ∈ A0, li = 0

})]

(i)

≥ ∆

2

d∑

i=1

E
P(i,0)

[
|
{
t| xt ∈ X (i) \ {x(i,0)}, at ∈ A0

}
|
]

(ii)

≥ ∆

2

d∑

i=1

(
−
(
1− 1

k(K − 1)

)
log
(
P
(
Mi

))
− log 2

)
· (K − 1)k

4∆2

=
d∑

i=1

(
−
(
1− 1

k(K − 1)

)
log
(
1− P (Mi)

)
− log 2

)
· (K − 1)k

8∆

(iii)

≥
d∑

i=1

((
1− 1

k(K − 1)

)
P (Mi)− log 2

)
· (K − 1)k

8∆

(iv)

≥
{(

1− 1

k(K − 1)

) 9

10
− log 2

}
· (K − 1)kd

8∆

(v)

≥ Kkd

100∆

(vi)

≥ dK

200∆ϵ

(vii)
=

1

7600

√
Td2K2

ϕ logF

(viii)

≥ 1

15200

√
K2T logF

ϕ log2(K · k)
(ix)

≥ 1

15200

√
K2T logF

ϕ log2(K · T )
.

(86)

Where (i) follows from the fact that ν(li = 0) = 1/2, (ii) follows from (85) and that |I| ≥ d/2,
(iii) uses log(1 + x) ≤ x, for x > −1, , (iv) uses (83), (v) follows from k ≥ 1 and K ≥ 10, (vi)
follows from k ≥ 1/(2ϵ), (vii) follows from choice of ϵ, (viii) follows from (81), and (ix) since

k ≤ 1/ϵ
84
= 1

152

√
T

ϕ logF ≤ T . This completes the proof of theorem 3.

E Additional Details

E.1 Conformal Arm Sets

The below lemma shows that, for any given policy π, the conformal arm sets given in definition 2
can be probabilistically relied on (over the distribution of contexts) to contain arms recommended
by π, with low regret under the models estimated up to epoch m. Recall we earlier define Um =
20
√
αm−1ξm.

Lemma 21 (Conformal Uncertainty). For any policy π and epoch m, we have:

Pr
x∼DX ,a∼π(·|x)

(a ∈ Cm(x, ζ)) ≥ 1− ζ
∑

m̄∈[m]

Regf̂m̄
(π)

(2m̄2)Um̄
(87)
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Proof. For any policy π, we have (88) holds.

Pr
x∼DX ,a∼π(·|x)

(a /∈ Cm(x, ζ))

≤ Pr
x∼DX ,a∼π(·|x)

( ⋃

m̄∈[m]

{a /∈ C̃m̄(x, ζ/(2m̄2))}
)

(i)

≤
∑

m̄∈[m]

Pr
x∼DX ,a∼π(·|x)

(
f̂m̄(x, πf̂m̄

(x))− f̂m̄(x, a) >
(2m̄2)Um̄

ζ

)

(ii)

≤
∑

m̄∈[m]

Regf̂m̄(π)

(2m̄2)Um̄/ζ
.

(88)

Where (i) follows from union bound and (ii) follows from Markov’s inequality.

Recall that right after Lemma 14, we show that Regf̂m̄ ≤ Um̄ with high-probability for any m̄ ∈ [m̂].

Hence, Lemma 21 gives us that with high-probability we have Prx∼DX ,a∼π∗(·|x)(a ∈ Cm(x, ζ)) ≥
1− ζ. While we don’t directly use Lemma 21, this lemma helps demonstrate the utility of CASs.

E.2 Argument for Surrogate Objective

Lemma 22 is a self-contained result proving that guarantying tighter bounds on the optimal cover
leads to tighter simple regret bounds for any contextual bandit algorithm. Hence the optimal cover
is a valid surrogate objective for simple regret. This lemma is not directly used in the analysis of
ω-RAPR, however similar results (see Theorem 2) were proved and used. Note that the parameters
below (including α) are not directly related to parameters maintained by ω-RAPR.

Lemma 22 (Valid Surrogate Objective). Suppose Π is a finite class and suppose a contextual bandit

algorithm collects T samples using kernels (pt)t∈[T ] such that pt(·|·) ≥
√

ln(4|Π|/δ)
αT . Further

suppose that the following condition holds with some α ∈ [1,∞):

1

T

T∑

t=1

V (pt, π
∗) ≤ α (89)

Then we can estimate a policy π̂ ∈ Π such that with probability at least 1− δ, we have:

|R(π∗)−R(π̂)| ≤ O
(√

α ln(4|Π|/δ)
T

)
. (90)

Proof. WOLG we assume T ≥ ln(4|Π|/δ), since otherwise the result trivially holds. Now consider

any policy π. Let yt :=
rtI(π(xt)=at)
pt(π(xt)|xt)

. Now note that:

Vart[yt] ≤ E
D(pt)

[y2t ] = E
(xt,at,rt)∼D(pt)

[
r2t I(π(xt) = at)

p2t (π(xt)|xt)

]
≤ E

x∼DX

[
1

pt(π(xt)|xt)

]
= V (pt, π).

(91)
Then from from a Freedman-style inequality [See theorem 13 in Dudik et al., 2011], we have with
probability at least 1− δ/(2|Π|) that the following holds:

∣∣∣∣
T∑

t=1

(yt −R(π))

∣∣∣∣ ≤ 2max

{√√√√
T∑

t=1

Var(yt) ln(4|Π|/δ),
ln(4|Π|/δ)√

ln(4|Π|/δ)
αT

}

(i)
=⇒

∣∣∣∣
1

T

T∑

t=1

rtI(π(xt) = at)

pt(π(xt)|xt)
−R(π)

∣∣∣∣ ≤ 2

√√√√ ln(4|Π|/δ)
T

max

{
1

T

T∑

t=1

V (pt, π), α

} (92)
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Here (i) follows from (91). Similarly with probability at least 1− δ/(2|Π|) the following holds:
∣∣∣∣
1

T

T∑

t=1

1

pt(π(xt)|xt)
− 1

T

T∑

t=1

V (pt, π)

∣∣∣∣

(i)

≤ 2

T
max

{√√√√
T∑

t=1

Var
( 1

pt(π(xt)|xt)

)
ln(4|Π|/δ), ln(4|Π|/δ)√

ln(4|Π|/δ)
αT

}

(ii)

≤ 2

T
max

{√
T

αT

ln(4|Π|/δ) ln(4|Π|/δ),
√

αT ln(4|Π|/δ)
}

(iii)

≤ 2
√
α

(iv)

≤ 2α.

(93)

Here (i) follows from Freedman’s inequality, (ii) follows from the lower bound on pt, (iii) follows
from T ≥ ln(4|Π|/δ), and (iv) follows from α ≥ 1. Hence the above events hold with probability at
least 1− δ for all policies π ∈ Π. Now let π̂ be given as follows.

π̂ ∈ argmax
π∈Π

1

T

T∑

t=1

rtI(π(xt) = at)

pt(π(xt)|xt)
− 2

√√√√ ln(4|Π|/δ)
T

(
2α+

1

T

T∑

t=1

1

pt(π(xt)|xt)

)
(94)

We then have the following lower bound on R(π̂) using the definition of π̂ and the above to high-
probability events.

R(π̂)
(i)

≥ 1

T

T∑

t=1

rtI(π̂(xt) = at)

pt(π̂(xt)|xt)
− 2

√√√√ ln(4|Π|/δ)
T

max

{
1

T

T∑

t=1

V (pt, π̂), α

}

(ii)

≥ 1

T

T∑

t=1

rtI(π̂(xt) = at)

pt(π̂(xt)|xt)
− 2

√√√√ ln(4|Π|/δ)
T

(
2α+

1

T

T∑

t=1

1

pt(π̂(xt)|xt)

)

(iii)

≥ 1

T

T∑

t=1

rtI(π
∗(xt) = at)

pt(π∗(xt)|xt)
− 2

√√√√ ln(4|Π|/δ)
T

(
2α+

1

T

T∑

t=1

1

pt(π∗(xt)|xt)

)

(iv)

≥ R(π∗)− 4

√√√√ ln(4|Π|/δ)
T

(
4α+

1

T

T∑

t=1

V (pt, π∗)

)
≥ R(π∗)− 4

√
5α ln(4|Π|/δ)

T

(95)

Here (i) follows from (92), (ii) follows from (93), (iii) follows from (94), and (iv) follows from (92)
and (93). This completes the proof.

E.3 Testing Misspecification via CSC

We restate the misspecification test that is used at the end of epoch m and argue how this test can be
solved via two calls to a cost sensitive classification solver. First, let us restate the test in (96).

max
π∈Π∪{pm+1}

|R̂m+1,f̂m+1
(π)− R̂m+1(π)| −

√
αmξm+1

∑

m̄∈[m]

R̂m+1,f̂m̄
(πf̂m̄

)− R̂m+1,f̂m̄
(π)

40m̄2
√
αm̄−1ξm̄

≤ 2.05
√
αmξm+1 + 1.1

√
ξm+1,

(96)
We are interested in calculating the value of the maximization problem in (96). To calculate this

maximum, we need to fix our estimators. Let R̂m+1,f (π) := 1
|Sm,3|

∑
t∈Sm,3

f(xt, π(xt)) =
1

|Sm,3|

∑
t∈Sm,3

Ea∼π(·|xt) f(xt, a) for any policy π and reward model f , which is the only obvious

estimator we could think off for Rf (π). Also let us use IPS estimaton for policy evaluation (the same

argument works for DR), R̂m+1(π) :=
1

|Sm,3|

∑
t∈Sm,3

π(at|xt)rt(at)
pm(at|xt)

. 22 23 Note that the value of

22When evaluating a general kernel q, we use the natural extension of these estimators of policy value. In
particular, simply replace π(·|x) with q(·|x) in their formulas.

23Up to constant factors, these estimators give us the best rates in Assumption 2 with finite classes. These
estimators are also used in several contextual bandit papers [e.g., Agarwal et al., 2014, Li et al., 2022].

37



the maximization problem in (96) is equal to max(L1, L2, L3), where {Li|i ∈ [3]} are defined as
follows.

L1 := max
π∈Π

R̂m+1,f̂m+1
(π)− R̂m+1(π)−

√
αmξm+1

∑

m̄∈[m]

R̂m+1,f̂m̄
(πf̂m̄

)− R̂m+1,f̂m̄
(π)

40m̄2
√

αm̄−1ξm̄

L2 := max
π∈Π

R̂m+1(π)− R̂m+1,f̂m+1
(π)−

√
αmξm+1

∑

m̄∈[m]

R̂m+1,f̂m̄
(πf̂m̄

)− R̂m+1,f̂m̄
(π)

40m̄2
√

αm̄−1ξm̄

L3 := |R̂m+1,f̂m+1
(pm+1)− R̂m+1(pm+1)| −

√
αmξm+1

∑

m̄∈[m]

R̂m+1,f̂m̄
(πf̂m̄

)− R̂m+1,f̂m̄
(pm+1)

40m̄2
√
αm̄−1ξm̄

(97)
Note that L3 doesn’t involve any optimization and can be easily calculated. Substituting value of
these estimators for L1 and L2, we get.

L1 = max
π∈Π

∑

t∈Sm,3

1

|Sm,3|

(
f̂m+1(xt, π(xt))−

π(at|xt)rt(at)

pm(at|xt)

−
√
αmξm+1

∑

m̄∈[m]

f̂m̄(xt, πf̂m̄
(xt))− f̂m̄(xt, π(xt))

40m̄2
√
αm̄−1ξm̄

)

L2 = max
π∈Π

∑

t∈Sm,3

1

|Sm,3|

(
π(at|xt)rt(at)

pm(at|xt)
− f̂m+1(xt, π(xt))

−
√

αmξm+1

∑

m̄∈[m]

f̂m̄(xt, πf̂m̄
(xt))− f̂m̄(xt, π(xt))

40m̄2
√
αm̄−1ξm̄

)

(98)

Clearly, both L1 and L2 are cost-sensitive classification problems [see Krishnamurthy et al., 2017, for
problem definition].In both, we need to find a policy (classifier) that maps contexts to arms (classes),
incurring a score (cost) for each decision such that the total score (cost) is maximized (minimized).
Hence the misspecification test we use only requires two calls to CSC solvers.

E.4 Simulation

We ran uniform RCT, LinUCB, LinTS, 1-RAPR, and 4-RAPR with linear function classes and an
exploration horizon of 5000 on a synthetic data generating process (DGP).24

Data generating process. We consider four arms, i.e., A = [8]. The context x = (x1, x2) is
uniformly sampled from four regions on the two-dimensional unit ball; and in specific, x is generated
via the following distribution:

1. x̃1 ∼ Uniform(0.8, 1.0)

2. x̃2 =
√

1− x̃2
1 · z, where z ∼ Uniform{−1, 1}.

3. Sample region index r ∼ Uniform{0, 1, 2, 3}:
• if r = 0: {x1, x2} = {x̃1, x̃2}.
• if r = 1: {x1, x2} = {x̃2, x̃1}.
• if r = 2: {x1, x2} = {−x̃1,−x̃2}.
• if r = 3: {x1, x2} = {−x̃1,−x̃2}.

4. The reward for each arm is 0.4 plus a linear function of the contexts. The linear parameters
for the 8 arms are {(a, b)||a| + |b| = 1, |a|, |b| ∈ {0, 0.4, 0.6, 1}}. Hence, the conditional
expected rewards lies in the range [0.2, 0.6]. Finally, the noise was sampled uniformly at
random from [−0.4, 0.4].

24The LinUCB scaling parameter was set to a default of 0.25, we similarly let
√

ξ(T, 0.5) = 0.25×
√

d/T .
We also set the bloated constant of 20 in Definition 2 to be 1.
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