
Waypoint Transformer: Reinforcement Learning via

Supervised Learning with Intermediate Targets

Anirudhan Badrinath Yannis Flet-Berliac Allen Nie Emma Brunskill
Department of Computer Science

Stanford University
{abadrina, yfletberliac, anie, ebrun}@cs.stanford.edu

Abstract

Despite the recent advancements in offline reinforcement learning via supervised
learning (RvS) and the success of the decision transformer (DT) architecture in
various domains, DTs have fallen short in several challenging benchmarks. The
root cause of this underperformance lies in their inability to seamlessly connect
segments of suboptimal trajectories. To overcome this limitation, we present a novel
approach to enhance RvS methods by integrating intermediate targets. We introduce
the Waypoint Transformer (WT), using an architecture that builds upon the DT
framework and conditioned on automatically-generated waypoints. The results
show a significant increase in the final return compared to existing RvS methods,
with performance on par or greater than existing popular temporal difference
learning-based methods. Additionally, the performance and stability improvements
are largest in the most challenging environments and data configurations, including
AntMaze Large Play/Diverse and Kitchen Mixed/Partial.

1 Introduction

Traditionally, offline reinforcement learning (RL) methods that compete with state-of-the-art (SOTA)
algorithms have relied on objectives encouraging pessimism in combination with value-based methods.
Notable examples of this approach include Batch Conservative Q-Learning (BCQ), Conservative
Q-Learning (CQL), and Pessimistic Q-Learning (PQL) [Fujimoto et al., 2019, Kumar et al., 2020,
Liu et al., 2020]. However, these methods can be challenging to train and often require intricate
hyperparameter tuning and various tricks to ensure stability and optimal performance across tasks.

Reinforcement learning via supervised learning (RvS) has emerged as a simpler alternative to
traditional offline RL methods [Emmons et al., 2021]. RvS approaches are based on behavioral
cloning (BC), either conditional or non-conditional, to train a policy. Importantly, these methods
eliminate the need for any temporal-difference (TD) learning, such as fitted value or action-value
functions. This results in a simpler algorithmic framework based on supervised learning, allowing
for progress in offline RL to build upon work in supervised learning. There are several successful
applications of RvS methods, including methods conditioned on goals and returns [Kumar et al.,
2019, Janner et al., 2021, Ding et al., 2019, Chen et al., 2021, Emmons et al., 2021].

However, RvS methods have typically struggled in tasks where seamlessly connecting (or "stitching")
appropriate segments of suboptimal training trajectories is critical for success [Kumar et al., 2022]. For
example, when tasked with reaching specific locations in the AntMaze maze navigation environment
or completing a series of tasks in the FrankaKitchen environment, RvS methods typically perform
significantly worse than TD learning methods such as Implicit Q-Learning [Fu et al., 2020, Kostrikov
et al., 2021].

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

a
rX

iv
:2

3
0
6
.1

4
0
6
9
v
2

[c

s.
L

G
]

 1
8
 N

o
v
 2

0
2
3

In this study, we leverage the transformer architecture [Vaswani et al., 2017] to construct an RvS
method. As introduced by Chen et al. [2021], the decision transformer (DT) can perform conditional
behavioral cloning in the context of offline RL. However, similar to other RvS methods, DT proves
inferior in performance across popular Gym-MuJoCo benchmarks compared to other value-based
offline RL methods, with a 15% relative reduction in average return and lowered stability (Table 1).

To tackle these limitations of existing RvS methods, we introduce a waypoint generation technique
that produces intermediate goals and more stable, proxy rewards, which serve as guidance to steer a
policy to desirable outcomes. By conditioning a transformer-based RvS method on these generated
targets, we obtain a trained policy that learns to follow them, leading to improved performance and
stability compared to prior offline RL methods. The highlights of our proposed approach are as
follows:

• We propose a novel RvS method, Waypoint Transformer, using waypoint generation net-
works and establish new state-of-the-art performance, in challenging tasks such as AntMaze
Large and Kitchen Partial/Mixed [Fu et al., 2020] (Table 1). On tasks from Gym-MuJoCo,
our method rivals the performance of TD learning-based methods such as Implicit Q-
Learning and Conservative Q-Learning [Kostrikov et al., 2021, Kumar et al., 2020], and
improve over existing RvS methods.

• We motivate the benefit of conditioning RvS on intermediate targets using a chain-MDP
example and an empirical analysis of maze navigation tasks. By providing such additional
guidance on suboptimal datasets, we show that a policy optimized with a behavioral cloning
objective chooses more optimal actions compared to conditioning on fixed targets (as in
Chen et al. [2021], Emmons et al. [2021]), facilitating improved stitching capability.

• Our work also provides practical insights for improving RvS, such as significantly reducing
training time, solving the hyperparameter tuning challenge in RvS posed by Emmons et al.
[2021], and notably improved stability in performance across runs.

2 Related Work

Many recent offline RL methods have used fitted value or action-value functions [Liu et al., 2020,
Fujimoto et al., 2019, Kostrikov et al., 2021, Kumar et al., 2020, Kidambi et al., 2020, Lyu et al.,
2022] or model-based approaches leveraging estimation of dynamics [Kidambi et al., 2020, Yu et al.,
2020, Argenson and Dulac-Arnold, 2020, Shen et al., 2021, Rigter et al., 2022, Zhan et al., 2021].

RvS, as introduced in Emmons et al. [2021], avoids fitting value functions and instead leverages
behavioral cloning. In many RvS-style methods, the conditioning variable for the policy is based
on the return [Kumar et al., 2019, Srivastava et al., 2019, Schmidhuber, 2019, Chen et al., 2021],
but other methods use goal-conditioning [Nair et al., 2018, Emmons et al., 2021, Ding et al., 2019,
Ghosh et al., 2019] or leverage inverse RL [Eysenbach et al., 2020]. Recent work by Brandfonbrener
et al. [2022] has explored the limitations of reward conditioning in RvS. In this study, we consider
both reward and goal-conditioning.

Transformers have demonstrated the ability to generalize to a vast array of tasks, such as language
modeling, image generation, and representation learning [Vaswani et al., 2017, Devlin et al., 2018,
He et al., 2022, Parmar et al., 2018]. In the context of offline RL, decision transformers (DT) leverage
a causal transformer architecture to fit a reward-conditioned policy [Chen et al., 2021]. Similarly,
[Janner et al., 2021] frame offline RL as a sequence modeling problem and introduce the Trajectory
Transformer, a model-based offline RL approach that uses the transformer architecture.

Algorithms building upon the DT, such as online DT [Zheng et al., 2022], prompt DT [Xu et al.,
2022] and Q-Learning DT [Yamagata et al., 2022], have extended the scope of DT’s usage. Furuta
et al. [2021] introduce a framework for hindsight information matching algorithms to unify several
hindsight-based algorithms, such as Hindsight Experience Replay [Andrychowicz et al., 2017], DT,
TT, and our proposed method.

Some critical issues with DT unresolved by existing work are (a) its instability (i.e., large variability
across initialization seeds) for some tasks in the offline setting (Table 1) and (b) its relatively poor
performance on some tasks due to an inability to stitch segments of suboptimal trajectories [Kumar
et al., 2022] – in such settings, RvS methods are outperformed by value-based methods such as

2

Implicit Q-Learning (IQL) [Kostrikov et al., 2021] and Conservative Q-Learning (CQL) [Kumar
et al., 2020]. We address both these concerns with our proposed approach, demonstrating notably
improved performance and reduced variance across seeds for tasks compared to DT and prior RvS
methods (Table 1).

One of the areas of further research in RvS, per Emmons et al. [2021], is to address the complex
and unreliable process of tuning hyperparameters, as studied in Zhang and Jiang [2021] and Nie
et al. [2022]. We demonstrate that our method displays low sensitivity to changes in hyperparameters
compared to Emmons et al. [2021] (Table 2). Further, all experiments involving our proposed method
use the same set of hyperparameters in achieving SOTA performance across many tasks (Table 1).

3 Preliminaries

We assume that there exists an agent interacting with a Markov decision process (MDP) with states
st ∈ S and actions at ∈ A with unknown transition dynamics p(st+1 | st, at) and initial state
distribution p(s0). The agent chooses an action sampled from a transformer policy at ∼ πθ(at |
st−k..t,Φt−k..t), parameterized by θ and conditioned on the known history of states st−k..t and a
conditioning variable Φt−k..t. Compared to the standard RL framework, where the policy is modeled
by π(at | st), we leverage a policy that considers past states within a fixed context window k.

The conditioning variable Φt is a specification of a goal or reward based on a target outcome ω. At
training time, ω is sampled from the data, as presented in Emmons et al. [2021]. At test time, we
assume that we can either generate or are provided global goal information ω for goal-conditioned
tasks. For reward-conditioned tasks, we specify a target return ω, following Chen et al. [2021].

To train our RvS-based algorithm on an offline datasetD consisting of trajectories τ with conditioning
variable Φt, we compute the output of an autoregressive transformer model based on past and current
states and conditioning variable provided in each trajectory. Using a negative log-likelihood loss, we
use gradient descent to update the policy πθ. This procedure is summarized in Algorithm 1.

Algorithm 1 Training algorithm for transformer-based policy trained on offline dataset D.

Input: Training dataset D = {τ1, τ2, τ3, ..., τn} of training trajectories.
for each τ = (s0, a0,Φ0, s1, a1,Φ1, ...) in D do

Compute πθ(at | st−k..t,Φt−k..t) for all t
Calculate Lθ(τ) = −

∑

t log πθ(at | st−k..t,Φt−k..t)
Backpropagate gradients w.r.t. Lθ(τ) to update model parameters

end for

4 Waypoint Generation

In this section, we propose using intermediate targets (or waypoints) as conditioning variables as
an alternative to fixed targets, proposed in Emmons et al. [2021]. Below, we motivate the necessity
for waypoints in RvS and present a practical technique to generate waypoints that can be used for
goal-conditioned (Section 4.2) and reward-conditioned tasks (Section 4.3) respectively.

4.1 Illustrative Example

s
(0)

s
(h) s

(H)
a

(2)

a
(1)

a
(1)

a
(2)a

(2)
a

(2)

Figure 1: Chain MDP to motivate the benefit of inter-
mediate goals for conditional BC-based policy training.

To motivate the benefits of using waypoints,
we consider an infinite-horizon, determinis-
tic MDP with H+1 states and two possible
actions at non-terminal states. A graphi-
cal representation of the MDP is shown in
Figure 1. For this scenario, we consider
the goal-conditioned setting where the tar-
get goal state during train and test time is

ω = s(H), and the episode terminates once we reach ω.

In offline RL, the data is often suboptimal for achieving the desired goal during testing. In this
example, suppose we have access to a dataset D that contains an infinite number of trajectories

3

Table 1: Normalized scores and training time per task on Gym-MuJoCo, AntMaze, and Kitchen tasks,
where bold highlighting indicates SOTA performance, defined by a method’s average performance
being contained within the interval of the method with highest average.

Environment TD3 + BC Onestep RL CQL IQL BC 10% BC RvS-R/G DT QDT WT (Ours)

halfcheetah-medium-v2 48.3 ± 0.3 48.4 ± 0.1 44.0 ± 5.4 47.4 ± 0.2 42.6 42.5 41.6 ± 0.3 42.4 ± 0.2 42.3 ± 0.4 43.0 ± 0.2
hopper-medium-v2 59.3 ± 4.2 59.6 ± 2.5 58.5 ± 2.1 66.2 ± 5.7 52.9 56.9 60.2 ± 3.0 63.5 ± 5.2 66.5 ± 6.3 63.1 ± 1.4

walker2d-medium-v2 83.7 ± 2.1 81.8 ± 2.2 72.5 ± 0.8 78.3 ± 8.7 75.3 75.0 71.7 ± 1.8 69.2 ± 4.9 67.1 ± 3.2 74.8 ± 1.0
halfcheetah-medium-replay-v2 44.6 ± 0.5 38.1 ± 1.3 45.5 ± 0.5 44.2 ± 1.2 36.6 40.6 38.0 ± 0.7 35.4 ± 1.6 35.6 ± 0.5 39.7 ± 0.3

hopper-medium-replay-v2 60.9 ± 18.8 97.5 ± 0.7 95.0 ± 6.4 94.7 ± 8.6 18.1 75.9 73.5 ± 12.8 43.3 ± 23.9 52.1 ± 20.1 88.9 ± 2.4
walker2d-medium-replay-v2 81.8 ± 5.5 49.5 ± 12.0 77.2 ± 5.5 73.8 ± 7.1 26.0 62.5 60.6 ± 6.7 58.9 ± 7.1 58.2 ± 5.1 67.9 ± 3.4

halfcheetah-medium-expert-v2 90.7 ± 4.3 93.4 ± 1.6 91.6 ± 2.8 86.7 ± 5.3 55.2 92.9 92.2 ± 1.2 84.9 ± 1.6 - 93.2 ± 0.5
hopper-medium-expert-v2 98.0 ± 9.4 103.3 ± 1.9 105.4 ± 6.8 91.5 ± 14.3 52.5 110.9 101.7 ± 16.5 100.6 ± 8.3 - 110.9 ± 0.6

walker2d-medium-expert-v2 110.1 ± 0.5 113.0 ± 0.4 108.8 ± 0.7 109.6 ± 1.0 107.5 109.0 106.0 ± 0.9 89.6 ± 38.4 - 109.6 ± 1.0

gym-avg-v2 75.3 ± 4.9 76.1 ± 2.5 77.6 ± 3.4 76.9 ± 5.8 51.9 74.0 71.7 ± 4.9 65.3 ± 10.1 - 76.8 ± 1.2

antmaze-umaze-v2 78.6 64.3 74.0 87.5 ± 2.6 54.6 62.8 65.4 ± 4.9 53.6 ± 7.3 - 64.9 ± 6.1
antmaze-umaze-diverse-v2 71.4 60.7 84.0 62.2 ± 13.8 45.6 50.2 60.9 ± 2.5 42.2 ± 5.4 - 71.5 ± 7.6
antmaze-medium-play-v2 10.6 0.3 61.2 71.2 ± 7.3 0.0 5.4 58.1 ± 12.7 0.0 ± 0.0 - 62.8 ± 5.8

antmaze-medium-diverse-v2 3.0 0.0 53.7 70.0 ± 10.9 0.0 9.8 67.3 ± 8.0 0.0 ± 0.0 - 66.7 ± 3.9
antmaze-large-play-v2 0.2 0.0 15.8 39.6 ± 5.8 0.0 0.0 32.4 ± 10.5 0.0 ± 0.0 - 72.5 ± 2.8

antmaze-large-diverse-v2 0.0 0.0 14.9 47.5 ± 9.5 0.0 6.0 36.9 ± 4.8 0.0 ± 0.0 - 72.0 ± 3.4

antmaze-avg-v2 27.3 20.9 50.6 63.0 ± 8.3 16.7 22.5 53.5 ± 7.2 16.0 ± 2.1 68.4 ± 4.9

kitchen-complete-v0 - - 43.8 62.5 65.0 4.0 50.2 ± 3.6 46.5 ± 3.0 - 49.2 ± 4.6
kitchen-partial-v0 - - 49.8 46.3 38.0 66.0 51.4 ± 2.6 31.4 ± 19.5 - 63.8 ± 3.5
kitchen-mixed-v0 - - 51.0 51.0 51.5 40.0 60.3 ± 9.4 25.8 ± 5.0 - 70.9 ± 2.1

kitchen-avg-v0 - - 48.2 53.3 ± 7.5 51.5 36.7 54.0 ± 5.2 34.6 ± 9.2 - 61.3 ± 3.4

average - - 63.7 68.3 ± 6.9 40.1 50.6 62.7 ± 5.7 43.8 ± 7.3 - 71.4 ± 2.8

training time (min) 20 20 80 20 10 10 80 150 - 20

For goal-conditioned and reward-conditioned tasks, we train the goal and reward waypoint network
Wϕ respectively on offline dataset D independently of the policy. To train the WT policy, we use
Algorithm 1 to iteratively optimize its parameters θ. During this process, the trained weights ϕ of
Wϕ are frozen to ensure the interpretability of the waypoint network’s generated goal and reward
waypoints. To further simplify the design and improve computational efficiency, the WT is not
conditioned on past actions at−k..t (i.e., unlike the DT) and we concatenate Φt with st to produce
one token per timestep t instead of multiple tokens as proposed in Chen et al. [2021].

6 Experiments

We present a series of evaluations of WT across tasks involving reward and goal-conditioning, with
comparisons to prior offline RL methods. For this, we leverage D4RL, an open-source benchmark for
offline RL, consisting of varying datasets for tasks from Gym-MuJoCo, AntMaze, and FrankaKitchen
[Fu et al., 2020].

Tasks in the AntMaze and FrankaKitchen environments have presented a challenge for offline RL
methods as they contain little to no optimal trajectories and perform critical evaluations of a model’s
stitching ability [Fu et al., 2020]. Specifically, in FrankaKitchen, the aim is to interact with a set of
kitchen items to reach a target configuration, but the partial and mixed offline datasets consist
of suboptimal, undirected data, where the demonstrations are unrelated to the target configuration.
Similarly, AntMaze is a maze navigation environment with sparse rewards, where the play and
diverse datasets contain target locations unaligned with the evaluation task. For our experiments on
these environments, we use goal-conditioning on the target goal state (i.e., ω = starget), constructing
intermediate targets with the goal waypoint network.

Gym-MuJoCo serves as a popular benchmark for prior work in offline RL, consisting of environments
such as Walker2D, HalfCheetah, and Hopper. Importantly, we evaluate across offline datasets with
varying degrees of optimality by considering the medium, medium-replay, and medium-expert
datasets [Fu et al., 2020]. For these tasks, we use reward-conditioning given a target return, construct-
ing intermediate reward targets using the reward waypoint network; as noted in Emmons et al. [2021],
we find that the notion of goals in undirected locomotion tasks is ill-defined.

Across all environments and tasks, we use the same set of hyperparameters, as reported in Appendix
B. To measure the stability (i.e., variability) in our method across random initializations, we run each
experiment across 5 seeds and report the mean and standard deviation.

6.1 Comparing WT with Prior Methods

To evaluate the performance of WT, we perform comparisons with prior offline RL methods, including
conditional BC methods such as DT and RvS-R/G; value-based methods such as Onestep RL

6

performance as that is examined in Figure 6). Importantly, to account for performance differences
between the policies trained with either method that may influence the variability of the attained
CRTG, we sample a subset of runs for both methods such that the average performance is constant.
Based on Figure 6 (right), it is clear that as a function of the timestep, when accounting for difference
in average performance, the standard deviation in the CRTG predicted by WT grows at a slower rate
compared to updating CRTG with attained rewards.

Transformer Configuration Based on the work in Emmons et al. [2021], we balance between
expressiveness and regularization to maximize policy performance. We ablate the probability of node
dropout pdrop and the number of transformer layers L. To further examine this balance, we experi-
ment with conditioning on past actions at−k..t−1, similarly to the DT, to characterize its impact on
performance and computational efficiency. In this section, we consider antmaze-large-play-v2,
hopper-medium-replay-v2 and kitchen-mixed-v0, one task from each category of environ-
ments.

Based on Table 2, we observe that the sensitivity to the various ablated hyperparameters is relatively
low in terms of performance, and removing action conditioning results in reduced training time and
increased performance, perhaps due to reduced distribution shift at evaluation. In context of prior
RvS work where dropout (pdrop = 0.1) decreased performance compared to no dropout by 1.5-3x on
AntMaze, the largest decrease in average performance on WT is only by a factor of 1.1x [Emmons
et al., 2021].

Table 2: Ablation of transformer configuration showing normalized score on MuJoCo (v2), AntMaze
(v2) and Kitchen (v0), including dropout (pdrop), transformer layers (L), and action conditioning (at),
where bolded hyperparameters (e.g., 0.150) are used for final models and bolded scores are optimal.

pdrop hopper-medium-replay antmaze-large-play kitchen-mixed Average

0.000 75.5 ± 8.3 68.3 ± 5.9 72.9 ± 0.5 72.2 ± 4.9
0.075 89.8 ± 2.8 70.8 ± 4.5 71.8 ± 1.2 77.5 ± 2.8
0.150 88.9 ± 2.4 72.5 ± 2.8 70.9 ± 2.1 77.4 ± 2.4
0.225 75.7 ± 9.4 72.2 ± 2.7 71.2 ± 1.0 73.0 ± 4.4
0.300 74.7 ± 10.2 73.5 ± 2.5 69.2 ± 2.0 72.5 ± 4.9
0.600 58.4 ± 7.5 73.8 ± 5.2 66.5 ± 2.7 66.2 ± 5.1

L hopper-medium-replay antmaze-large-play kitchen-mixed Average

1 82.1 ± 8.8 72.1 ± 5.7 71.6 ± 1.6 75.3 ± 5.4
2 88.9 ± 2.4 72.5 ± 2.8 70.9 ± 2.1 77.4 ± 2.4
3 89.9 ± 1.6 71.8 ± 3.0 70.3 ± 2.1 77.3 ± 2.2
4 91.1 ± 2.8 65.8 ± 3.8 69.7 ± 1.0 75.5 ± 2.5
5 88.8 ± 4.5 66.7 ± 4.7 70.0 ± 0.8 75.2 ± 3.3

at hopper-medium-replay antmaze-large-play kitchen-mixed Average

Yes 76.9 ± 9.0 66.5 ± 5.6 65.2 ± 2.8 69.5 ± 5.8
No 88.9 ± 2.4 72.5 ± 2.8 70.9 ± 2.1 77.4 ± 2.4

7 Discussion

In this study, we address the issues with existing conditioning techniques used in RvS, such as the
"stitching" problem associated with global goals and the high bias and variance of reward-to-go
targets, through the automatic generation of intermediate targets. Based on empirical evaluations, we
demonstrate significantly improved performance and stability compared to existing RvS methods,
often on par with or outperforming TD learning methods. Especially on challenging tasks with
suboptimal dataset composition, such as AntMaze Large and Kitchen Partial/Mixed, the guidance pro-
vided by the waypoint network through intermediate targets (e.g., as shown in Figure 4) significantly
improves upon existing state-of-the-art performance.

9

We believe that this work can present a pathway forward to developing practical offline RL methods
leveraging the simplicity of RvS and exploring more effective conditioning techniques, as formalized
by Emmons et al. [2021]. In addition to state-of-the-art performance, we demonstrate several desirable
practical qualities of the WT: it is less sensitive to changes in hyperparameters, significantly faster to
train than prior RvS work, and more consistent across initialization seeds.

However, despite improvements across challenging tasks, WT’s margin of improvement on AntMaze
U-Maze and Kitchen Complete (i.e., easier tasks) is lower: its normalized scores are more comparable
to DT and other RvS methods. We believe this is likely due to stitching being less necessary in
such tasks compared to difficult tasks, rendering the impact of the waypoint network negligible. To
further characterize the performance of the waypoint networks and WT on such tasks is an interesting
direction for future work. In addition, there are several limitations inherited by the usage of the RvS
framework, such as manual tuning of the target return at test time for reward-conditioned tasks using
a grid search, issues with stochasticity, and an inability to learn from data with multimodal outcomes.

8 Conclusion

We propose a method for reinforcement learning via supervised learning, Waypoint Transformer,
conditioned on generated intermediate targets for reward and goal-conditioned tasks. We show
that RvS with waypoints significantly surpasses existing RvS methods and achieves on par with
or surpasses popular state-of-the-art methods across a wide range of tasks from Gym-MuJoCo,
AntMaze, and Kitchen. With improved stability across runs and competitive computational efficiency,
we believe that our method advances the performance and applicability of RvS within the context of
offline RL.

Acknowledgments and Disclosure of Funding

This work was supported in part by NSF grant #2112926.

We thank Scott Emmons and Ilya Kostrikov for their discussions on and contributions to providing
results for prior offline RL methods.

References

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in neural information
processing systems, 34:29304–29320, 2021.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
Advances in neural information processing systems, 30, 2017.

Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. arXiv preprint
arXiv:2008.05556, 2020.

David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. Offline rl without off-policy
evaluation. Advances in neural information processing systems, 34:4933–4946, 2021.

David Brandfonbrener, Alberto Bietti, Jacob Buckman, Romain Laroche, and Joan Bruna. When does
return-conditioned supervised learning work for offline reinforcement learning? arXiv preprint
arXiv:2206.01079, 2022.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-conditioned imitation
learning. Advances in neural information processing systems, 32, 2019.

10

Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is essential for
offline rl via supervised learning? arXiv preprint arXiv:2112.10751, 2021.

Ben Eysenbach, Xinyang Geng, Sergey Levine, and Russ R Salakhutdinov. Rewriting history with
inverse rl: Hindsight inference for policy improvement. Advances in neural information processing
systems, 33:14783–14795, 2020.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pages 2052–2062. PMLR, 2019.

Hiroki Furuta, Yutaka Matsuo, and Shixiang Shane Gu. Generalized decision transformer for offline
hindsight information matching. arXiv preprint arXiv:2111.10364, 2021.

Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Devin, Benjamin Eysenbach,
and Sergey Levine. Learning to reach goals via iterated supervised learning. arXiv preprint
arXiv:1912.06088, 2019.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 16000–16009, 2022.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. Advances in neural information processing systems, 33:
21810–21823, 2020.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Xue Bin Peng, and Sergey Levine. Reward-conditioned policies. arXiv preprint
arXiv:1912.13465, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Aviral Kumar, Joey Hong, Anikait Singh, and Sergey Levine. When should we prefer offline
reinforcement learning over behavioral cloning? arXiv preprint arXiv:2204.05618, 2022.

Hao Liu and Pieter Abbeel. Emergent agentic transformer from chain of hindsight experience. arXiv
preprint arXiv:2305.16554, 2023.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Provably good batch off-policy
reinforcement learning without great exploration. Advances in neural information processing
systems, 33:1264–1274, 2020.

Jiafei Lyu, Xiaoteng Ma, Xiu Li, and Zongqing Lu. Mildly conservative q-learning for offline
reinforcement learning. arXiv preprint arXiv:2206.04745, 2022.

Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual
reinforcement learning with imagined goals. Advances in neural information processing systems,
31, 2018.

Allen Nie, Yannis Flet-Berliac, Deon Jordan, William Steenbergen, and Emma Brunskill. Data-
efficient pipeline for offline reinforcement learning with limited data. Advances in Neural Informa-
tion Processing Systems, 35:14810–14823, 2022.

11

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku,
and Dustin Tran. Image transformer. In International conference on machine learning, pages
4055–4064. PMLR, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Marc Rigter, Bruno Lacerda, and Nick Hawes. Rambo-rl: Robust adversarial model-based offline
reinforcement learning. arXiv preprint arXiv:2204.12581, 2022.

Juergen Schmidhuber. Reinforcement learning upside down: Don’t predict rewards–just map them to
actions. arXiv preprint arXiv:1912.02875, 2019.

Jian Shen, Mingcheng Chen, Zhicheng Zhang, Zhengyu Yang, Weinan Zhang, and Yong Yu. Model-
based offline policy optimization with distribution correcting regularization. In Machine Learning
and Knowledge Discovery in Databases. Research Track: European Conference, ECML PKDD
2021, Bilbao, Spain, September 13–17, 2021, Proceedings, Part I 21, pages 174–189. Springer,
2021.

Rupesh Kumar Srivastava, Pranav Shyam, Filipe Mutz, Wojciech Jaśkowski, and Jürgen Schmidhuber.
Training agents using upside-down reinforcement learning. arXiv preprint arXiv:1912.02877,
2019.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. Robotica, 17(2):
229–235, 1999.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding Zhao, Joshua Tenenbaum, and Chuang Gan.
Prompting decision transformer for few-shot policy generalization. In International Conference on
Machine Learning, pages 24631–24645. PMLR, 2022.

Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. Q-learning decision transformer:
Leveraging dynamic programming for conditional sequence modelling in offline rl. arXiv preprint
arXiv:2209.03993, 2022.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020.

Xianyuan Zhan, Xiangyu Zhu, and Haoran Xu. Model-based offline planning with trajectory pruning.
arXiv preprint arXiv:2105.07351, 2021.

Siyuan Zhang and Nan Jiang. Towards hyperparameter-free policy selection for offline reinforcement
learning. Advances in Neural Information Processing Systems, 34:12864–12875, 2021.

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In International
Conference on Machine Learning, pages 27042–27059. PMLR, 2022.

12

A Derivation for Illustrative Example

We provide detailed derivations based on the simple deterministic MDP shown in Section 4.1, in
the context of an offline dataset D collected by a random behavioural policy πb. We show that
minimization of a maximum likelihood objective on πG yields πb, the behavioural policy. Note

πG(at | st, ω) = πG(at | st) as ω = s(H) is a constant (and as a result, at is conditionally
independent). To obtain the optimal policy π∗

G, we maximize the following objective:

argmax
πG

E(st,at)∈D[log πG(at | st, ω)]

We simplify an expectation over an infinitely large dataset D collected by πb:

E(st,at)∈D[log πG(at | st, ω)] = Est∈D[λ log πG(at = a(1) | st, ω) + (1− λ) log πG(at = a(2) | st, ω)]

Since the actions are conditionally independent of the states, let p̂ = πG(at = a(1) | st, ω) for any
state st. Then:

E(st,at)∈D[log πG(at | st, ω)] = λ log p̂+ (1− λ) log(1− p̂)
We can use calculus to maximize the above objective with respect to p̂.

d

dp̂
[λ log p̂+ (1− λ) log(1− p̂)] =

λ

p̂
−

1− λ

1− p̂

=
λ(1− p̂)− (1− λ)p̂

p̂(1− p̂)

Setting the derivative to 0:

λ(1− p̂)− (1− λ)p̂ = λ− λp̂− p̂+ λp̂ = 0 =⇒ p̂ = λ

This yields an identical policy to the behavioural policy πb. Next, consider the derivation of the

probability of taking action a(2) conditioned on Φt and st based on data D from πb:

Prπb
[at = a(2) | st = s(h), st+K = s(h+1)]

=
Prπb

[at = a(2), st+K = s(h+1) | st = s(h)]

Prπb
[st+K = s(h+1) | st = s(h)]

In the above step, we used the definition of conditional probability. To compute these probabilities,

we recognize that to end up with st+K = s(h+1) from st = s(h), the agent must take action a(2)

exactly once between timestep t and t+K− 1; any more implies the agent has moved beyond s(h+1)

and any less implies the agent is still at s(h).

The probability in the numerator can be written as a product of taking action a(2) at timestep t,

followed by taking action a(1) at timestep t+ 1 to t+K − 1:

Prπb
[at = a(2), st+K = s(h+1) | st = s(h)] = (1− λ)

t+K−1
∏

t′=t+1

λ

= (1− λ)λK−1

The probability in the denominator can be written as a product of taking action a(2) at exactly one

timestep t ≤ t′ < t +K, followed by taking action a(1) at the remaining timesteps. This can be

modeled by a binomial probability where there are K slots to take action a(1), each with probability
1− λ. Hence:

Prπb
[st+K = s(h+1) | st = s(h) =

(

K

1

)

(1− λ)λK−1

= K(1− λ)λK−1

The overall probability is computed as:

13

Prπb
[at = a(2), st+K = s(h+1) | st = s(h)]

Prπb
[st+K = s(h+1) | st = s(h)]

=
(1− λ)λK−1

K(1− λ)λK−1

=
1

K

We can apply a similar argument to show that π∗
W (i.e., at optimum) must clone the derived prob-

ability when a maximum likelihood objective is applied. Hence, for the optimal intermediate
goal-conditioned policy π∗

W , we know it obeys:

π∗
W (at = a(2) | st = s(h),Φt = s(h+1)) =

1

K

Since π∗
G(at = a(2) | st = s(h), ω) = πb(at = a(2) | st = s(h)) = 1 − λ and we choose

K < 1
1−λ

=⇒ 1
K

> 1− λ, we conclude that:

π∗
W (at = a(2) | st,Φt) > π∗

G(at = a(2) | st, ω)

This concludes the derivation.

B Experimental Details

In this section, we provide more details about the experiments, including hyperparameter configura-
tion, sources of reported results for each method, and details of each environment (i.e., version). For
all experiments on WT, the proposed method, we run 5 trials with different random seeds and report
the mean and standard deviation across them. On AntMaze and Kitchen, we use goal-conditioning,
whereas reward-conditioning is used for Gym-MuJoCo. For all experiments on DT, including Gym-
MuJoCo, we run 5 trials with random initializations using the default hyperparameters proposed in
Chen et al. [2021] and used in the official GitHub repository. We are unable to reproduce some of the
results demonstrated in Chen et al. [2021] and reported in succeeding work such as Kostrikov et al.
[2021], Emmons et al. [2021].

B.1 Environments and Tasks

AntMaze For AntMaze tasks, we include previously reported results for all methods except RvS-G
from Kostrikov et al. [2021]. The results for the RvS-G are from Emmons et al. [2021]. We run
experiments for DT (reward-conditioned, as per Chen et al. [2021]) and WT across 5 seeds. For all
reported results, including WT, AntMaze v2 is used as opposed to AntMaze v0.

FrankaKitchen On Kitchen, we include available reported results from Kostrikov et al. [2021]
for all methods except RvS-G and Emmons et al. [2021] for RvS-G, with results omitted for TD3 +
BC and Onestep RL as they are not available in other work or provided by the authors. Similarly
to AntMaze, we run experiments for DT and WT across 5 seeds. The target goal configuration for
WT is "all" (i.e., where all the tasks are solved), per Emmons et al. [2021]. For all reported results,
including WT, Kitchen v0 is used.

Gym-MuJoCo On the evaluated locomotion tasks, we use reported results from Kostrikov et al.
[2021] for all methods except RvS-R and Emmons et al. [2021] (RvS-R). We run experiments for DT
and WT across 5 seeds. The MuJoCo v2 environments are used for all methods.

B.2 WT Hyperparameters

In Table 3, we show the chosen hyperparameter configuration for WT across all experiments. Consis-
tent with the neural network model in RvS-R/G with 1.1M parameters Emmons et al. [2021], the WT
contains 1.1M trainable parameters. For the most part, the chosen hyperparameters align closely with
default values in deep learning; for example, we use the ReLU activation function and a learning rate
of 0.001 with the Adam optimizer.

In Table 4, we show the chosen hyperparameter configuration for the reward and goal waypoint
networks across all experiments. The reward waypoint network always outputs 2 values, the ARTG
and CRTG. In general, the goal waypoint network outputs the same dimension as the state since

14

Table 3: Hyperparameters and configuration details for WT across all experiments.

Hyperparameter Value

Transformer Layers 2
Transformer Heads 16

Dropout Probability (attn) 0.15
Dropout Probability (resid) 0.15

Dropout Probability (embd) 0.0
Non-Linearity ReLU
Learning Rate 0.001
Gradient Steps 30,000

Batch Size 1024

it makes k-step predictions. Depending on the environment, the goal waypoint outputs either a
2-dimensional location for AntMaze or a 30-dimensional state for Kitchen.

Table 4: Hyperparameters and configuration details for goal and reward waypoint networks across all
experiments.

Hyperparameter Value

Number of Layers 3
Dropout Probability 0.0

Non-Linearity ReLU
Learning Rate 0.001
Gradient Steps 40,000

Batch Size 1024

B.3 Evaluation Return Targets

The target return for the Gym-MuJoCo tasks are specified in Table 5, in the form of normalized
scores. These were obtained typically by performing exhaustive grid searches over 4-6 candidate
target return values, following prior work [Chen et al., 2021, Emmons et al., 2021]. Typically, we
choose the range of the grid search based on the interval close to or higher than the state-of-the-art
normalized scores on each of the tasks.

Table 5: Normalized score targets for WT on reward-conditioned tasks in Gym-Mujoco.

Task Normalized Score Target

hopper-medium-replay-v2 95
hopper-medium-v2 73.3

hopper-medium-expert-v2 125
walker2d-medium-replay-v2 90

walker2d-medium-v2 85
walker2d-medium-expert-v2 122.5

halfcheetah-medium-replay-v2 45
halfcheetah-medium-v2 52.5

halfcheetah-medium-expert-v2 105

C Analysis of Bias and Variance of Reward-Conditioning Variables

We analyze the bias and variance of existing reward-conditioning techniques: a constant average
reward-to-go (ARTG) target, as used in Emmons et al. [2021], and a cumulative return target updated
with rewards collected during the episode (CRTG), as in Chen et al. [2021]. By analyzing the bias and
variance of these techniques, we can determine the potential issues that may explain the performance
of methods that condition using these techniques.

15

Consider the definitions of the true ARTG (Ra) and CRTG (Rc) below, based on a given trajectory τ
where the length of the trajectory |τ | = T . These definitions are used to train the policy,

Ra(τ, t) =
1

T − t

T
∑

t′=t

γtrt (3)

Rc(τ, t) =

T
∑

t′=t

γtrt (4)

At evaluation time, it is impossible to calculate rt′ for any t′ ≥ t. As a result, we provide ARTG and
CRTG targets, θa and θc respectively. At evaluation time, the values of the ARTG and CRTG are
estimated and used as follows in Chen et al. [2021] and Emmons et al. [2021]:

R̂a(τ, t) = θa (5)

R̂c(τ, t) = θc −
t

∑

t′=1

γtrt (6)

Ideally, the errors of the estimated R̂a and R̂c are minimal so as to accurately approximate the true
average or cumulative reward-to-go respectively, but that is often infeasible. To characterize the error
of each of the evaluation estimates of ARTG and CRTG, consider the decomposition of the error for

a particular reward conditioning variable R and estimated evaluation R̂ presented in Theorem C.1.

Theorem C.1. The general bias-variance decomposition of the expected squared error between a true

R(τ, t) (e.g., Equations 1 or 2) and an estimator R̂(τ, t) (e.g., Equations 3 or 4) under the trajectory
distribution induced by an arbitrary policy π and unknown transition dynamics p(st+1 | st, at) is
given by:

Eτ [(R(τ, t)− R̂(τ, t))2] = E[R(τ, t)− R̂(τ, t)]2 +Var[R̂(τ, t)−R(τ, t)]

Proof. Similarly to the derivation of the standard bias-variance tradeoff, we expand terms and
separate into multiple expectations using the linearity of expectation. We leverage the definition of
the covariance, Cov(X,Y) = E[XY] − E[X]E[Y], and variance, Var[X] = E[X2] − E[X]2, in
several steps.

Eτ [(R(τ, t)− R̂(τ, t))2] = E[R(τ, t)2] + E[R̂(τ, t)2]− 2E[R̂(τ, t)R(τ, t)]

We can simplify the first term using the definition of the variance and the third term using the
definition of the covariance.

Eτ [(R(τ, t)− R̂(τ, t))2] = Var[R(τ, t)] + E[R(τ, t)]2 + E[R̂(τ, t)2]− 2E[R̂(τ, t)R(τ, t)]

= Var[R(τ, t)] + E[R(τ, t)]2 + E[R̂(τ, t)2]− 2(Cov(R̂(τ, t), R(τ, t))+

E[R(τ, t)] · E[R̂(τ, t)]))

Similarly, we simplify the E[R̂(τ, t)2] term using the definition of the variance and collect terms.

Eτ [(R(τ, t)− R̂(τ, t))2] = (E[R(τ, t)]− E[R̂(τ, t)])2 +Var[R̂(τ, t)]− 2Cov(R̂(τ, t), R(τ, t))+

Var[R(τ, t)]

= E[R(τ, t)− R̂(τ, t)]2 +Var[R̂(τ, t)]− 2Cov(R̂(τ, t), R(τ, t))+

Var[R(τ, t)]

Equivalently, since Var[X − Y] = Var[X] + Var[Y] − 2Cov(X,Y), we can rewrite the result as
follows.

Eτ [(R(τ, t)− R̂(τ, t))2] = E[R(τ, t)− R̂(τ, t)]2 +Var[R̂(τ, t)−R(τ, t)]

16

D.3 Comparisons to Manual Waypoint Selection

We compare the performance of the proposed goal waypoint network with a finite set of manual
waypoints, hand-selected based on prior oracular knowledge about the critical points within the maze
for achieving success (i.e., turns, midpoints). Based on the selected manual waypoints, shown in
Figure 11, we use a simple algorithm to provide intermediate targets Φt based on a distance-based
sorting approach, shown in Algorithm 2.

Figure 11: Manually selected waypoints (blue pluses) for antmaze-large-play-v2, the chosen
task to evaluate the proposed approach. As before, the start location is marked with a maroon dot,
and the target location is marked wit a gold star.

Algorithm 2 Manual waypoint selection with Wm and st using L2 distance and a given global goal
ω.

Wc ← {wm : ||wm − ω||2 ≤ ||st − ω||2} {consider waypoints that brings agent closer to ω}
return argminwc∈Wc

||wc − st||2

With all configuration and hyperparameters identical to WT, we compare the performance of a global
goal-conditioned policy, WT with manual waypoints, and WT with the goal waypoint network on
antmaze-large-play-v2 in Table 7.

The results demonstrate that WT clearly outperforms manual waypoint selection in succeeding in
the AntMaze Large environment. However, while comparing a global-goal conditioned policy and a
policy conditioned on manual waypoints, it is clear that the latter improves upon average performance
and variability across initialization seeds. We believe that this illustrates that (a) waypoints, whether
manual or generated, tend to improve performance of the policy and (b) finer-grained waypoints
provide more valuable information for the policy to succeed more.

Table 7: Normalized evaluation scores for different waypoint selection techniques on the
antmaze-large-play-v2 task.

Technique Normalized Score

No Waypoints 33.0 ± 10.3
Manual Waypoints 44.5 ± 2.8
Waypoint Network 72.5 ± 2.8

We believe that this provides further verification and justification for both the generation of intermedi-
ate targets and the procedure of generation through a goal waypoint network that performs k-step
prediction.

D.4 Delayed Rewards

An important case to consider for reward-conditioned tasks is when the rewards are delayed (often,
provided at the end of the trajectory). By providing nearly no intermediate targets, it is often chal-
lenging to complete these tasks. To verify that our design choices to construct modeled intermediate

20

Table 9: Average normalized score of TD3+BC baseline across 5 seeds by varying number of actor
(LA) and critic network hidden layers (LC) on hopper-medium-replay-v2.

LC

LA 1 2 3 4

1 48.7 80.1 73.1 73.9
2 55.2 64.4 50.2 61.3
3 59.8 59.1 69.6 64.6
4 42.9 60.5 63.6 54.4

22

	Introduction
	Related Work
	Preliminaries
	Waypoint Generation
	Illustrative Example
	Intermediate Goal Generation for Spatial Compositionality
	Proxy Reward Generation for Bias-Variance Reduction

	Waypoint Transformer
	Experiments
	Comparing WT with Prior Methods
	Utility of Waypoint Networks
	Ablation Studies

	Discussion
	Conclusion
	Derivation for Illustrative Example
	Experimental Details
	Environments and Tasks
	WT Hyperparameters
	Evaluation Return Targets

	Analysis of Bias and Variance of Reward-Conditioning Variables
	Additional Experiments
	Analysis of Stitching Region Behavior
	Target Reward Interpolation
	Comparisons to Manual Waypoint Selection
	Delayed Rewards

	Baseline Reproduction

