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Abstract. Moving object segmentation in the presence of atmospheric
turbulence is highly challenging due to turbulence-induced irregular and
time-varying distortions. In this paper, we present an unsupervised app-
roach for segmenting moving objects in videos downgraded by atmo-
spheric turbulence. Our key approach is a detect-then-grow scheme: we
first identify a small set of moving object pixels with high confidence,
then gradually grow a foreground mask from those seeds to segment
all moving objects. This method leverages rigid geometric consistency
among video frames to disentangle different types of motions, and then
uses the Sampson distance to initialize the seedling pixels. After growing
per-frame foreground masks, we use spatial grouping loss and tempo-
ral consistency loss to further refine the masks in order to ensure their
spatio-temporal consistency. Our method is unsupervised and does not
require training on labeled data. For validation, we collect and release
the first real-captured long-range turbulent video dataset with ground
truth masks for moving objects. Results show that our method achieves
good accuracy in segmenting moving objects and is robust for long-range
videos with various turbulence strengths.

Keywords: Unsupervised learning · Object segmentation · Turbulence

1 Introduction

Moving object segmentation is critical for motion understanding with an impor-
tant role in numerous vision applications such as security surveillance [24,35],
remote sensing [39,66], and environmental monitoring [5,18]. Although tremen-
dous success has been achieved in motion segmentation and analysis [6,26], the
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Fig. 1. Our method robustly segments moving objects under various turbulence
strengths, while state-of-the-art methods may fail under strong turbulence (2nd video).

problem becomes highly challenging for long-range videos captured with ultra-
telephoto lenses (e.g., focal length > 800 mm). These videos often suffer from
perturbations caused by atmospheric turbulence which can geometrically shift or
warp pixels in images. When mixed with rigid motions in a dynamic scene, they
break down the underlying assumption of most motion analysis algorithms: the
intensity structures of local regions are constant under motion. Further, when
averaged over time, the turbulent perturbation also yields blurriness in images,
which blurs out moving object edges and makes it challenging to maintain the
spatio-temporal consistency of segmentation masks.

Most motion segmentation algorithms solely consider static backgrounds
and assume rigid body movement. Under these premises, learning-based
approaches [6,26,53], either supervised or unsupervised, have achieved remark-
able success in motion segmentation. However, these algorithms’ performance
significantly downgrades when applied to videos with turbulence effects (see fail-
ure examples in Fig. 6). Supervised methods [19,28,53], even trained on extensive
labeled data, cannot generalize well on turbulent videos. Unsupervised meth-
ods [6,26], on the other hand, typically rely on optical flow, which becomes
inaccurate when rigid motion is perturbed by turbulence. Furthermore, imaging
at long distance makes videos highly susceptible to camera shake and motion due
to the limited field of view when zooming, further complicating the segmentation
task.

In this paper, we present an unsupervised approach for segmenting moving
objects in long-range videos affected by air turbulence. The unsupervised nature
of our approach is highly desirable, since real-captured turbulent video datasets
are scarce and difficult to acquire. Our method directly takes in a turbulent video
and outputs per-frame masks that segment all moving objects without the need
for data supervision. The overall pipeline of our approach is illustrated in Fig. 2.
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Fig. 2. Overall pipeline of our unsupervised motion segmentation method. We first gen-
erate motion feature maps by applying a geometry-based consistency check on optical
flows. We then adopt a region-growing scheme to generate coarse segmentation masks.
Finally, we refine the masks using cross entropy-based consistency losses to enforce
their spatio-temporal consistency.

Our method starts with calculating bidirectional optical flow. To disentangle
actual object motion from turbulent motion, we use a novel epipolar geometry-
based consistency check to generate motion feature maps that only preserve
object motions. We then adopt a region-growing scheme that generates per-
object motion segmentation masks from a small set of seed pixels. Finally, we
develop a U-Net [42] trained by our proposed bidirectional consistency losses
and a pixel grouping function to improve the spatio-temporal consistency of
estimated motion segmentation masks.

For evaluation, we collect and release a turbulent video dataset captured
with an ultra-telephoto lens called Dynamic Object Segmentation in Turbulence
(DOST), and manually annotate ground-truth masks for moving objects, which,
to our knowledge, is the first dataset in this application domain. We benchmark
our approach, as well as other state-of-the-art segmentation algorithms, on this
real dataset. Our method is able to handle multiple objects in a dynamic scene
and is robust to videos captured with various turbulence strengths (see Fig. 1).
More details about DOST datasest can be found in https://turb-research.github.
io/DOST/. Our key contributions include:

– A rigid geometry-based and consistency enhanced framework for motion dis-
entanglement in long-range videos.

– Region-growing scheme for generating robust spatio-temporal consistent
masks with tight object boundaries.

– A refinement pipeline with novel training losses, which improve the spatio-
temporal consistency for segmenting dynamic objects in videos.

– The first real-captured long-range turbulent video dataset with ground-truth
motion segmentation masks.

https://turb-research.github.io/DOST/
https://turb-research.github.io/DOST/
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2 Related Work

Unsupervised Motion Segmentation. Early approaches tackle this problem
using handcrafted features such as objectness [63], saliency [52], and motion
trajectory [34]. Recent learning-based unsupervised methods largely rely on
either optical flow or feature alignment for locating moving objects. Common
optical flow models are RAFT [49], PWC-Net [48], and FLow-Net [8,14]. MP-
Net [50] uses optical flow as the only cue for motion segmentation. Many other
methods combine optical flow with other information, such as appearance fea-
tures [21,36,57], long-term temporal information [41,64], and boundary similar-
ity [25,68], to guide motion segmentation. Our method also uses optical flow but
segregates different types of motion using a geometry-based consistency check
to overcome turbulence-induced errors.

Another class of methods [10,27,58] rely more on appearance features and
reduce their dependency on optical flow, so to achieve robust performance
regardless of motion. The recent TMO [6] achieves state-of-the-art perfor-
mance on object segmentation by prioritizing feature alignment and fusion.
However, all these methods face challenges when the input video is recorded
under air turbulence. Further, the literature on supervised motion segmentation
(e.g., [22,29,61]) is not effective due to the lack of large, labelled turbulent video
datasets.

Geometric Constraints for Motion Analysis. Geometric constraints are
extensively studied for understanding spatial information, such as depth esti-
mation, pose estimation, camera calibration [40,62,70], and 3D reconstruc-
tion [47,69]. They can also be useful in understanding motion. Valgaerts et
al. [51] propose a variational model to estimate the optical flow, along with
the fundamental matrix. Wedel et al. [54] use the fundamental matrix as a weak
constraint to guide optical flow estimation. Yamaguchi et al. [56] convert the
problem of optical flow estimation into a 1D search problem by using precom-
puted fundamental matrices with small motion assumptions. Wulff et al. [55] use
semantic information to separate dynamic objects from static backgrounds and
apply strong geometric constraints to the static backgrounds. Zhong et al. [67]
integrate global geometric constraints into network learning for unsupervised
optical flow estimation. More recently, Ye et al. [59] use the Sampson error,
which measures the consistency of epipolar geometry, to model a loss function
for layer decomposition in videos.

Inspired by these works, our method adopts a geometry-based consistency
check to separate rigid motion from other types of motion (i.e., turbulent motion
and camera motion). Similar to [59], we use the Sampson distance to measure
the geometric consistency between neighboring video frames.

Turbulent Image/Video Restoration and Segmentation. Analyzing
images or videos affected by air turbulence has been a challenging problem in
computer vision due to distortions and blur caused by turbulence. Most tech-
niques have focused on turbulent image and video restoration. Early physics-
based approaches [12,20,38] investigate the physical modeling of turbulence (e.g.,
the Kolmogorov model [20]), and then invert the model to restore clear images.
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A popular class of methods [3,9] uses “lucky patches” to reduce turbulent arti-
facts, although they typically assume static scenes. Motion cues, such as optical
flow, are also used for turbulent image restoration [33,46,71]. Notably, Mao et
al. [31] adopt an optical-flow guided lucky patch technique to restore images
of dynamic scenes. More recently, neural networks have been used to restore
turbulent images or videos. Mao et al. [32] introduce a physics-inspired trans-
former model for restoration, and Zhang et al. [65] improve this thread of work
to demonstrate state-of-the video restoration. Li et al. [23] propose an unsuper-
vised network to mitigate the turbulence effect using deformable grids. Jiang et
al. [16] extend this deformable grid model to handle more realistic turbulence
effects.

In contrast, object segmentation with atmospheric turbulence is relatively
understudied. Cui and Zhang [7] propose a supervised network for semantic
segmentation with turbulence. They generate a physically-realistic simulated
training dataset, but the method cannot handle scene motion and suffers from
real-world domain generalization. Saha et al. [45] use simple optical flow-based
segmentation in their turbulent video restoration pipeline. Unlike these exist-
ing methods, our approach aims to segment moving objects without restoring
or enhancing the turbulent video. In this way, our method is able to generate
segmentation masks that are consistent with the actual turbulent video.

3 Unsupervised Moving Object Segmentation

Algorithm Overview. Given an input turbulent video: {It|t = 1, 2, . . . , T}
(where T is the total number of frames, and It represents a frame in the video), we
first calculate its bidirectional optical flow: Ot = {Ft→t±i|i = 1, . . . , B} (where
B is the maximum number of frames used for calculation; Ft→t+i is the forward
flow, and Ft→t−i is the backward flow). We then perform an epipolar geometry-
based consistency check to disentangle rigid object motion from turbulence-
induced motions and camera motions (Sect. 3.1). We output per-frame motion
feature maps: {Mt|t = 1, 2, . . . , T} to characterize candidate motion regions.
Next, we leverage a detect-then-grow strategy, named “region growing”, to gen-
erate motion segmentation masks: {βm

t |t = 1, 2, . . . , T} for every moving object

m, from a small set of seedling pixels selected from {Mt}
T
t=1 (Sect. 3.2). Finally,

we further refine the masks by using a U-Net trained with our proposed bidirec-
tional spatial-temporal consistency losses and pixel grouping loss (Sect. 3.3). The
final output is a set of per-frame, per-object binary masks: {αm

t |t = 1, 2, . . . , T}
segmenting each moving object in a dynamic scene.

3.1 Epipolar Geometry-based Motion Disentanglement

We first tackle the problem of motion disentanglement, which is a major chal-
lenge posed by turbulence perturbation in rigid motion analysis. Our key idea
is to check on the rigid geometric consistency among video frames: pixels on
moving objects do not obey the geometric consistency constraint posed by the
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image formation model. Specifcially, we use the Sampson distance, which mea-
sures geometric consistency with a given epipolar geometry, to improve the
spatial-temporal consistency among video frames. We first average the opti-
cal flow between adjacent frames to stabilize the direct estimations {Ot}, since
they are susceptible to turbulence perturbation. We then calculate the Samp-
son distance using fundamental matrices estimated from the averaged optical
flow. Next, we merge the Sampson distance maps as the motion feature maps
{Mt|t = 1, 2, . . . , T}. We use the motion feature map values as indicators of how
likely a pixel has rigid motion (the higher the value, the higher the likelihood).
Our epipolar geometry-based motion disentanglement pipeline is shown in Fig. 3.

Fig. 3. Pipeline of epipolar geometry-based motion disentanglement. Since the raw
optical flows are downgraded by turbulence, we apply a geometry-based consistency
check to generate motion feature maps that only preserve object motion.

Optical Flow Stabilization. Since atmospheric turbulence causes erratic pixel
shifts in video frames [31], estimating optical flow is prone to error. We address
this by first stabilizing the optical flow estimations: we assume consistent object
motion during a short period of time, and then average the optical flow within a
small time step to reduce the error caused by turbulence perturbation without
losing features of the actual rigid motion. Specifically, given a sequence of bi-
directional optical flow Ot = {Ft→t±i}

B
i=0, we calculate a sequence of per-frame

stabilized flow Ôt = {F̂
j
t |j = 1, 2, ..., A} (where A is the total number of sta-

bilized flows for each frame) by averaging the original sequence within a short
interval:

F̂
j
t =

1

|Kj |

∑

i∈Kj

Ft→t+i

i
, (1)

where Kj is the temporal interval used for calculating F̂
j
t , namely the subset of

{x | x ∈ Z,−B ≤ x ≤ B}

Geometric Consistency Check. Our fundamental assumption is that pix-
els on moving objects have larger geometric consistency errors compared with
static background, when mapping a frame to its neighboring time frame using
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foundamental matrix. The Sampson distance [13] measures rigid geometric con-
sistency by calculating the distance between a frame pair in video, constrained
by epipolar geometry. Since moving objects do not obey the epipolar geometry
that assumes a static scene, their correspondences will have a large Sampson
distance. Although the turbulent perturbation also breaks down the epipolar
geometry, the errors that they introduce are much smaller and more random,
and thus easily eliminated through averaging.

Given a stabilized optical flow F̂
j
t , we calculate its Sampson distance map

M̂
j
t as:

M̂
j
t (p1,p2) =

(pT

2 F̄p1)
2

(F̄p1)21 + (F̄p1)22 + (F̄Tp2)21 + (F̄Tp2)22
, (2)

where p1 and p2 are the homogeneous coordinates of a pair of corresponding
points in two neighboring frames. We determine the correspondence using the
stabilized optical flow: p2 = p1 + F̂

j
t (p1). F̄ is the fundamental matrix between

the two frames estimated by Least Median of Squares (LMedS) regression [44].

Fig. 4. Step-by-step intermediate results for motion feature map estimation.

We further average all available Sampson distance maps {M̂
j
t |j = 1, 2, ..., A}

for a frame It to obtain the per-frame motion feature map: Mt = 1
A

∑A
j=1 M̂

j
t .

This map indicates how likely a pixel is to belong to a moving object. Figure 4
compares the intermediate results when generating the motion feature map. Note
that the original optical flow map is corrupted by turbulence and cannot resolve
the airplane. After our stabilization and consistency check, the final motion
feature map preserves the airplane’s shape including the highlighted wheels.

3.2 Region Growing-Based Segmentation

Next, based on the motion feature maps, we adopt a “region growing” scheme
to generate segmentation masks for moving objects (see Fig. 5). Note that while
motion feature maps effectively characterize object motions, they tend to be
non-binary and exhibit fuzziness at the object boundaries.

Initial Seed Selection. We first select a small set of seedling pixels that have
high confidence of being on a moving object. This selection is based on the motion
feature map which encodes how likely a pixel is to be in motion. Note that since
we apply the sliding window on the motion map Mt, the size and appearance of
the object would not affect the seed selection. Specifically, our sliding windows
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{Wk}K
k=1 are of size D × D, where D is adaptively chosen based on the input

resolution, to scan through Mt to determine the initial seed of each moving
object k. A seed is detected when pixels within the search window are of similar
large values, indicating large Sampson distances in this area. Specifically, for a
search window Wk, we consider it has found a seed when it satisfies two criteria:
(1) its average value M̄t(Wk) is greater than a threshold δ1; and (2) its variance
σ2(Mt(Wk)) is less than a small threshold δ2. Each selected seedling region is
assigned an integer mask ID to uniquely identify multiple moving objects.

Fig. 5. Pipeline of region growing-based segmentation. We select seeds on the motion
feature map using a sliding window. We then grow the seeds to full segmentation masks.

Seeded Region Growing. We then grow full segmentation masks from the
initialized seedling pixels. We gradually expand each seeded region outwards to
the nearest neighbors of boundary pixels using this criteria for pixel inclusion:

|Mt(pnew) − Mt(pseed)| < δseed, (3)

where Mt is the motion feature map; pnew is the pixel under consideration;
pseed is the seed pixel that we grow from; and δseed = 0.2 × Mt(pseed) is the
threshold for stopping the growth. Note that this threshold value depends on
turbulence strength and needs to be adjusted for extreme cases. For stronger
turbulence, we prefer larger δseed and increase the multiplier from 0.2 to 0.3. For
weak turbulence, we decrease the multiplier to 0.1. The object’s border tends
to get blurred for videos with severe turbulence. Meanwhile, a larger threshold
makes the region grow harder, resulting in more reliable results.

When growing from multiple seeds, we skip the pixels already examined so
that different object masks are non-overlapping. We thus obtain a set of per-
frame segmentation masks {βm

t }T
t=1.

Mask ID Unification. When a scene has multiple moving objects (say K), our
region-growing algorithm will generate K segmentation masks with IDs ranging
from 1 to K for each frame. Since the region-growing module is applied to each
frame independently, the mask ID among different frames may be inconsistent
with respect to objects. There is a need to unify the mask IDs across frames, so
that the same mask ID always maps to the same object. We propose a K-means-
based filtering technique to do so.

We first represent each mask region by its centroid: cm
t = mean(pm

t ) (where
pm

t is the coordinates of all foreground pixels in the mask). We take the mask
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centroids for all frames and all objects, and optimize K K-means cluster centroids
μm:

argmin
µm

K∑

m=1

T∑

t=1

||cm
t − μm||2, (4)

where K is the total number of objects, and T is the total number of frames.
We then re-ID the masks for each frame by comparing their centroids to the

K-means cluster centroids. The K-means cluster IDs act as a global reference
for all frames. Each mask is assigned the ID m of a K-means cluster that it is
closest to: m∗ = argmin

m
||cm

t − μm||. After this re-assignment, the mask IDs for

all frames are consistent with each ID uniquely identifying a moving object in
the scene. This allows our method to handle multiple moving objects in a scene.

3.3 Spatio-temporal Refinement

Finally, we further refine the masks to improve their spatio-temporal consistency.
We develop a Refine-Net Φθ with a U-Net [43] backbone to refine the masks
generated by region growing.

Parameter Initialization. We concatenate the video frame It with its motion
feature map Mt. The concatenated tensor is fed as input to the Refine-Net Φθ:
αm

t = Φθ(It,Mt) (here αm
t is the output of Φθ, which is a refined mask). We use

the following loss function for initializing the parameters of Φθ:

Lini = γ1L1 + γ2

∑

g

Lg
2 + γ3

∑

g

Lg
3, (5)

where γ1, γ2, and γ3 are balancing weights for each loss term. We run 20–30
epochs for initialization. Below, we describe our loss terms in detail.

L1 is a pixel-wise cross-entropy loss that enforces consistency between the
refined output mask αm

t and coarse input mask βm
t . It is calculated as:

L1 =
1

Ω

∑

p∈Ω

(−α
m
t (p) log α

m
t (p) + β

m
t (p) log β

m
t (p)), (6)

where p is the pixel coordinates, and Ω represents the spatial domain.
Lg

2 is a bidirectional consistency loss that enforces flow consistency between

αm
t+g and the optical flow-warped input mask: β̂m

t = Ft→t+g(β
m
t ). We also use

the cross-entropy for comparison, and Lg
2 is written as:

L
g
2 =

1

Ω

∑

p∈Ω

(−α
m
t+g(p) log α

m
t+g(p) + β̂

m
t (p) log β̂

m
t (p)). (7)

Lg
3 is another bidirectional consistency loss that enforces flow consistency

between αm
t+g and the optical flow-warped version of itself: α̂m

t = Ft→t+g(α
m
t ).

Lg
3 is written as:

L
g
3 =

1

Ω

∑

p∈Ω

(−α
m
t+g(p) log α

m
t+g(p) + α̂

m
t (p) log α̂

m
t (p)). (8)
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After initialization, the output mask αm
t is aligned with the input mask βm

t

and has improved temporal consistency with the two bidirectional losses.

Iterative Refinement Using Grouping Function. To further improve the
mask quality and consistency, we adopt an iterative refinement constrained by
a grouping function. The refinement runs for 10 epochs. We update the input
reference mask βm

t using a K-means-based grouping function for every 3 epochs.
Specifically, we concatenate each pixel’s mask values {βm

t (p)}T
t=1, with its coor-

dinates p = (x, y), to form a new tensor {Tm
t (p)}T

t=1 that combines both the
motion and spatial information. The combined tensor Tm

t (p) of all pixels is used
to optimize two K-means cluster centroids θ1, θ2: one for foreground cluster (θ1)
and the other for background (θ2). The centroids are optimized using the fol-
lowing function:

argmin
θ1,θ2

2∑

i=1

Ω∑

p∈Ω

||T i
t − θi

t||
2, (9)

where Ω is the domain of all pixels. We then re-assign the values of βm
t : if Tm

t (p)
is closer to θ1, we assign the mask value as 1; otherwise, we consider the pixel
as background and assign the mask value as 0.

The loss function we use for network optimization is the same as the initial-
ization step, but in this refinement step, βm

t is updated using the K-means-based
grouping every 3 epochs. Without this grouping-based refinement, the output
mask tends to have gaps or other spatial inconsistent artifacts.

Table 1. Comparison of existing datasets on turbulent images or videos.

Dataset Source Format Purpose Num. of video Availability

Turb Pascal VOC [7] Synthetic Image Segmentation� �

Turb ADE20K [7] Synthetic Image Segmentation� �

TSRW-GAN [17] Real Video Restoration 27* �

OTIS [11] Real Video Restoration 5 �

BVI-CLEAR [2] Real Video Restoration 3 �

DOST (ours) Real Video Segmentation 38 �

* The actual number of videos in TSRW-GAN is greater than 27, but many of
the videos have large overlaps. The number of unique (or non-overlapped) videos
is 27.

4 Experiments

4.1 DOST Dataset

We capture a long-range turbulent video dataset, which we call Dynamic Object
Segmentation in Turbulence (DOST), to evaluate our method. DOST consists of
38 videos, all collected outdoors in hot weather using long focal length settings.
All videos contain instances of moving objects, such as vehicles, aircraft, and
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pedestrians. We manually annotate the video to provide per-frame ground truth
masks for segmenting moving objects. Specifically, we use a Nikon Coolpix P1000
to capture the videos. The camera has an adjustable focal length of up to 539mm
(125× optical zoom), which is equivalent to 3000mm focal length in 35mm sensor
format. We record videos with a resolution of 1920 × 1080. In total, our dataset
has 38 videos with 1719 frames. We annotate moving objects in each video
frame using the Computer Vision Annotation Tool (CVAT) [1]. Our dataset
is the first of its kind to provide a ground truth moving object segmentation
mask in the context of long-range turbulent video. DOST is designed for motion
segmentation, but can be used for other tasks (e.g., turbulent video restoration).

Table 1 compares DOST with existing datasets designed for turbulent image
or video processing. Since real images/videos with air turbulence are very diffi-
cult to acquire, real datasets are scarce, and existing ones are usually small in
size. Cui and Zhang [7] synthesize large turbulent image datasets using standard
image datasets (Pascal VOC 2012 [7] and ADE20K [7]) and a turbulence sim-
ulator. However, there is a domain gap between simulated data and real data.
Further, their datasets only contain single images and cannot be used for study-
ing motion. Other real turbulent video datasets [2,11,17] are all designed for the
restoration task. Although some [11,17] have bounding box annotations, none
provide object-tight segmentation masks.

Table 2. Quantitative comparisons with state-of-the-art unsupervised methods on
DOST w.r.t. various turbulence strengths.

Model J F G

Normal turb. Severe turb. Overall Normal turb. Severe turb. Overall Overall

TMO [6] 0.643 0.235 0.439 0.757 0.315 0.536 0.487

DSprites [60] 0.427 0.101 0.264 0.772 0.203 0.374 0.319

DS-net [26] 0.361 0.191 0.276 0.422 0.232 0.327 0.302

Ours 0.851 ↑ 0.557 ↑ 0.703 ↑ 0.812 ↑ 0.634 ↑ 0.723 ↑ 0.713 ↑

4.2 Implementation Details

We implemented our network using PyTorch on a supercomputing node equipped
with an NVIDIA GTX A100 GPU. The input frames are resized to a lower reso-
lution of 240×432 for faster optical flow calculation and network training. We use
RAFT [49] for optical flow estimation with a maximum frame interval of 4. The
stabilized optical flow and Sampson distance maps are subsequently calculated
based on the RAFT output. The region-growing algorithm’s stopping threshold
δseed (see Eq. 3) is dependent on the turbulence strength, and we need to adjust
this parameter for varied strength turbulent videos (see more details in the sup-
plementary material). For the bidirectional consistency losses, we compare with
four neighboring time frames, g ∈ {−2,−1, 1, 2} in Eqs. 7–8.

Evaluation Metrics. Given a ground-truth mask, we evaluate the accuracy of
the estimated segmentation mask using two standard metrics [4]: (1) Jaccard’s
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Index (J ) that calculates the intersection over the union of two sets (also known
as intersection-over-union or IoU measure); and (2) F1-Score (F) that calculates
the harmonic mean of precision and recall (also known as dice coefficient). We
also calculate the average of J and F , and denote this overall metric as G.

4.3 Comparison with State-of-the-Art Methods

We compare our method against recent state-of-the-art unsupervised methods
for motion segmentation, including TMO [6], Deformable Sprites [60], and DS-
Net [26]. TMO [6] achieves high accuracy in object segmentation regardless
of motion. It therefore has certain advantages in handling turbulent videos,
although it is not specifically designed for this purpose. Deformable Sprites [60]
integrates appearance features with optical flow, and further enforces consis-
tency with optical flow-guided grouping loss and warping loss. DS-Net [26] uses
multi-scale spatial and temporal features for segmentation and is able to achieve
good performance when the input is noisy. For all three methods, we use the
code implementations provided by authors and train their networks using set-
tings described in papers. For methods that need optical flow, we use RAFT to
estimate optical flow between consecutive frames.

Quantitative Comparisons. We show quantitative comparison results in
Table 2. All methods are evaluated on our DOST dataset. We organize videos
into two sets, “normal turb.” and “severe turb.”, according to their exhibited
turbulence strength. Our method significantly outperforms these state-of-the-art
on motion segmentation accuracy under various turbulence strengths. In normal
cases, some can still achieve decent performance, whereas our method scores
much higher in all metrics. Compared to TMO, whose overall score is the high-
est among the three state-of-the-art, our accuracy is increasing by 60.1% in J
and 34.9% in F . In severe cases, the performance of all state-of-the-art signifi-
cantly downgrades, with all J values lower than 0.25 and F lower than 0.35. In
contrast, our method is relatively robust to strong turbulence.

We also experiment on a larger synthetic dataset to evaluate our robustness
with respect to turbulence strength. We use a physics-based turbulence simulator
[30] and the DAVIS 2016 dataset [37] to synthesize videos with various strengths
of turbulence. We test the three state-of-the-art methods on the synthetic data
as well. J score (or IoU) plots with respect to turbulence strength are shown in
Fig. 7b. The results demonstrate that our method is robust to various turbulence
strengths. Note that when there is no turbulence in the scene (strength = 0),
TMO has a slightly higher J score, as it incorporates more visual cues for
segmentation, whereas our method focuses on turbulence artifacts.

Qualitative Comparisons. We show visual comparisons with state-of-the-art
in Fig. 6. We can see that the optical estimations are largely affected by turbu-
lence, especially in severe cases. Our method is able to generate segmentation
masks that are tight to the object and works well for multiple moving objects.
State-of-the-art methods face challenges when the turbulence strength is strong,
or the moving object is too small. Their segmentation masks are incomplete in
many cases. In the airplane scenes, DS-Net and DSprites fail to detect moving
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Fig. 6. Qualitative comparisons with state-of-the-art methods on DOST w.r.t. various
turbulence strengths. Here we also show the raw optical flows (“Flow”), our motion
feature maps (“Mt”), and our ground truth masks (“GT”).

objects. Notably, our method achieves the highest robustness to turbulent dis-
tortions, and camera shakes, as shown in Fig. 7. We analyzed the effects of vari-
ous camera motions, including complex multi-directional shake, on segmentation
results in video sequences, as illustrated in Fig. 7a. Quantitatively, our method
achieved an average IoU score of 0.712 on videos featured by camera shaking

Fig. 7. Example results of handling videos (a) with camera motion and (b) impacted by
different turbulence strength. (a) Our results achieves robust performance on different
time frames (2nd to 4th columns) in videos suffering from significant camera shake.
(b) We can also tell that our method achieves the best robustness across different
turbulence strengths, even when it is very strong.
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Fig. 8. Ablation studies. (a) Variants of our network. A: Simply using region-growing;
B: Full pipeline without grouping loss; C: Our full pipeline. (b) The interval i = 1...5
is the maximum temporal gap we used to stablize optical flow in Eq. 1.

in our dataset, compared with TMO/0.305, DS-Net/0.267, and DSprites/0.235,
respectively.

We notice that supervised segmentation methods can hardly generalize to
DOST, since these methods were trained solely using turbulence-free data. For
instance, the foundation model for segmentation, i.e., SAM [19], which has been
trained on 11 million images, and over 1B masks, still fails at segmenting whole
objects under strong turbulence, as shown in Fig. 6 (last row). Additionally,
SAM does not interpret motion , and SAM requires a user to click or prompt
the algorithm, whereas we only segment moving objects without any need for
user input. More comparison results can be found in supplemental material.

4.4 Ablation Studies

We perform ablation studies to evaluate individual components of our method.
All experiments are performed on DOST. We test on three variants of
our method: A only employs the region-growing algorithm (with Refine-Net
excluded); B uses both region-growing and Refine-Net, but excludes the group-
ing loss for refinement; and C is implemented as our full approach. Their J score
comparison results are shown in Fig. 8a. Each component is clearly effective, and
our full model achieves the best performance. We also evaluate the influence of
the optical flow interval (i.e., the number of temporal frames used for optical
flow calculation). Accuracy scores with respect to the interval length are shown
in Fig. 8b. We can see that the score achieves the plateau when the interval is
greater than 4. Therefore, we set the interval to 4.

We also evaluated the effectiveness of our optical flow stabilization and geo-
metric consistency check. Without the optical flow stabilization step, the IoU
immediately drops to 0.354; without the geometric consistency check step, the
IoU is 0.685, compared with IoU of 0.703 in our full pipeline.

5 Conclusions

In summary, we present an unsupervised approach for segmenting moving objects
in videos affected by air turbulence. Our method uses a geometry-based consis-
tency check to disambiguate motions and a region-growing scheme to generate
tight segmentation masks. The masks are further refined with spatio-temporal
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consistency losses. Our method significantly outperforms the existing state-of-
the-art in terms of accuracy and robustness when handling turbulent videos. We
also contribute the first long-range turbulent video dataset designed for motion
segmentation. Nevertheless, due to the unsupervised nature of our method, the
current version can only achieve a latency of 0.95 FPS. Our future work will focus
on optimizing the approach to reduce this latency by embedding results from
foundations models such as SAM. Our method also has limited performance in
separating overlapping moving objects in the videos. To address this, we plan to
integrate additional visual cues, such as appearance and saliency.
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