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Abstract. There has been a recent interest to develop and standardize
Robust Authenticated Encryption (Robust AE) schemes. NIST, for ex-
ample, is considering an Accordion mode (a wideblock tweakable block-
cipher), with Robust AE as a primary application. On the other hand,
recent attacks and applications suggest that encryption needs to be com-
mitting. Indeed, committing security is also a design consideration in the
Accordion mode. Yet it is unclear how to build a Robust AE with com-
mitting security.

In this work, we give a modular solution for this problem. We first show
how to transform any wideblock tweakable blockcipher TE to a Robust
AE scheme SE that commits just the key. The overhead is cheap, just
a few finite-field multiplications and blockcipher calls. If one wants to
commit the entire encryption context, one can simply hash the context
to derive a 256-bit subkey, and uses SE on that subkey. The use of 256-bit
key on SE only means that it has to rely on AES-256 but doesn’t require
TE to have 256-bit key.

Our approach frees the Accordion designs from consideration of commit-
ting security. Moreover, it gives a big saving for several key-committing
applications that don’t want to pay the inherent hashing cost of full
committing.
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1 Introduction

Authenticated Encryption (AE) is widely used in practice to provide data privacy
and authenticity. Yet standard AE schemes such as GCM are both fragile and
inflexible. On the one hand, if some misuse happens, say nonce repetition, then
security is completely broken. On the other hand, for standard AE schemes, the
ciphertext C must be sufficiently longer than the message M , so that forgeries
will never happen in practice. In particular the ciphertext expansion τ = |C|−|M |
is typically 128 bits. But several applications, such as Voice-over-IP or IoT,
demand shorter expansion (say 64 bits, or even 32 bits) to minimize latency
or energy consumption. One cannot simply truncate the tag of a standard AE
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scheme because forgeries will happen sooner or later, and once a forgery happen,
all security guarantees are voided.3

Robust AE. There has been a long line of work to deal with the situation
above [26, 18, 2, 3], culminating in the Robust AE notion of Hoang, Krovetz, and
Rogaway [18]. Instead of using a fixed expansion τ , Robust AE explicitly accepts
a user-defined choice of τ for each encryption. If τ is small then forgeries of course
will happen, but just occasionally, roughly once per 2τ attempts. Robust AE also
provides misuse resistance for nonce reuse [26] and protects against releases of
unverified decrypted messages [2]. Because of such strong guarantees, standard
agencies are actively seeking Robust AE schemes for standardization. The UK
National Cyber Security Centre, for example, recently release their own Robust
AE schemes [9]. NIST is also considering an Accordion mode for a wideblock
tweakable blockcipher (TBC), with Robust AE as a primary application.

The need for committing security. Robust AE aims to provide the best
security possible, but it only covers privacy and authenticity. Recent attacks,
such as the Partitioning-Oracle attack on password-based encryption [20], high-
light the need for encryption to be committing. This guarantee is also needed by
several recent applications, such as Facebook’s Message Franking [16], Amazon
Cloud encryption, Subscribe with Google [1], or TLS Oracle [22]. Most appli-
cations require committing just the key K, but some need to commit all the
four inputs (K,N,A,M) of encryption. Due to such demand, it is desirable to
build a scheme that provides both Robust AE and committing security. Indeed,
committing security is also a property that NIST are considering in the call for
the Accordion mode.

Obstacles. Unfortunately, existing Robust AE schemes such as AEZ [18] or
HCTR2 [14] do not offer (full) committing security. The obvious reason is their
hashing of the associated data via a universal hash instead of a collision-resistant
one. However, there is a subtle, quantitative reason. In particular, suppose that
we only need s bits of expansion and target s bits of committing security.4

In prior constructions of committing AE schemes [1, 4, 11, 5], the common
approach is to make the tag a commitment of (K,N,A), and the message will be
committed due to decryption correctness. However, this approach doesn’t work
for Robust AE schemes. First, Robust AE can only be realized via the Encode-
then-Encipher (EtE) paradigm [7]: encode the message with s-bit redundancy
(say padding it with 0s) and then encipher it with a wideblock TBC. The EtE
method has no tag, defeating the prior approach of building committing AE.

3 If the expansion is short and an adversary can obtain decrypted messages, standard
AE schemes are inherently insecure because the encryption algorithm makes just
one pass over data. Specifically, two ciphertexts of the same prefix would decrypt to
two messages of the same prefix.

4 Generic attacks [5] show that we can at best hope for s-bit committing security
given s-bit expansion. Moreover, given that committing attacks are offline, we want
to achieve s bits of committing security instead of a “birthday-bound” s/2 bits of
security.
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Next, birthday attacks suggest that the commitment must be at least 2s bits,
but we only have s-bit space.

Given the birthday attacks, at the first glance, it seems that to provide s-bit of
committing security, we are doomed to use at least 2s bits of expansion. However,
a closer inspection reveals that the attacks only require that the ciphertext must
be at least 2s bits. Thus as long as messages are at least s bits long5 then the
attacks do not apply. This gives a way out of the impossibility, but it is unclear
how to exploit this opening.

Related work. Chen et al. [13] show that AEZ [18] offers 64-bit key-committing
security for 128-bit expansion, assuming that the underlying tweakable blockci-
pher is modeled as ideal. (The result is tight, with a matching attack.) However,
this security guarantee is weak, because given 128-bit expansion, we want 128-
bit security, not merely 64-bit. Moreover, committing security has never been a
design goal of AEZ, and thus the security by accident here gives no insight on
how one should build a committing Robust AE scheme.

A very recent work by Bellare and Hoang [5] considers adding s bits of
committing security to a base AE scheme using just s bits of expansion (assuming
that messages are at least s bits). Their work only deals with tag-based AE
schemes and thus doesn’t apply to Robust AE. However, implicitly their work
contains a technical tool that is central to our construction. We will elaborate
later how to use their ideas for our setting.

Contributions. We initiate the study of committing Robust AE. By extending
the definitions of Bellare and Hoang [4], we formalize two notions of commit-
ting security: (1) the CMT notion that commit all inputs (K,N,A, τ,M) of the
encryption algorithm, and (2) the CMT-1 notion that commits just the key K.

Achieving CMT security demands that one hashes the associated data A
with a cryptographic hash function, such as SHA-2 or SHA-3. While this cost is
O(1) in theory, the actual relative overhead is huge for small data. We therefore
consider a modular route. First, we focus on building a CMT-1 Robust AE
scheme SE that is enough for most applications and doesn’t have to pay the
hashing penalty. Next, for applications that demand the full CMT security, one
can non-intrusively add CMT security to SE via the Hash-then-Encrypt (HtE)
transform of Hoang and Bellare [4]: first hash (K,N,A, τ) to derive a subkey L,
and then encrypt with key L, the empty nonce, the empty AD, and expansion τ .
Using HtE means that SE needs to use 256-bit key, but this aligns well with (i)
NIST’s requirement that an Accordion mode must support 256-bit key, and (ii)
the fact that our CMT-1 construction has to use a blockcipher of 256-bit key
anyway.

For CMT-1 security, we build a transform EwC that turns any wideblock
TBC TE to another TE such that using the latter in the EtE method provides
CMT-1 security. While EwC uses a 256-bit key, it doesn’t require the base TE

5 This assumption is reasonable. Indeed, existing Robust AE schemes can’t encrypt
tiny messages, as AES-based wideblock TBC can only efficiently encipher messages
of at least 128 bits.
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to have a 256-bit key. This allows us to leverage a wealth of existing wideblock
TBC constructions and future Accordion submissions. The overhead of EwC is
cheap, just a few finite-field multiplications and blockcipher calls. The underlying
blockcipher E uses a 256-bit key, and thus can be instantiated via AES-256 or
Rijndael-256. Moreover, EwC only uses E in the forward direction, which saves
code size in hardware implementation.

If the underlying blockcipher E has 256-bit block length (such as Rijndael-
256), then EwC would encipher messages of at least 512 bits, and provides s
bits of CMT-1 security when used in EtE with s bits expansion. If E only has
128-bit block length (such as AES-256) then the CMT-1 security of EwC is more
nuanced, because implicitly it takes a parameter ` < 128, and enciphers messages
at least 256+ ` bits. Using EwC[`] in EtE still allows one to use any expansion s
but only guarantees to deliver CMT-1 security when s > `, and in that case it
provides just `− 8 bits of CMT-1 security.

At the bird’s-eye view, EwC is a four-round (unbalanced) Feistel-like struc-
ture. (See Fig. 15 for an illustration.) The first and last rounds, following Naor
and Reingold [24], are based on an AXU hash function. Since the input length
of the AXU is short, it amounts to just one or two finite-field multiplications
for each hashing. The second round uses TE. The third round uses a collision-
resistant PRFH and a committing concealer, a new primitive that we will discuss
later. The function H only needs to deal with short inputs and has to produce
a 256-bit output. Thus if the blockcipher E has 256-bit block length, we can
directly instantiate H via the Davies-Meyer construction, meaning H(K,M) =
EK(M)⊕M . If E has just 128-bit blockcipher, we show how to build H via “dou-
bling” Davies-Meyer, meaning H(K,M) = (EK(U)⊕U)‖(EK(V )⊕V ), where
U = M‖0 and V = M‖1.

Cost. The overhead of EwC is listed in Table 1. For each instantiation of
the blockcipher (AES-256 or Rijndael-256), we list two values for the number
of blockcipher calls because (i) if one only uses the standalone EwC for key-
committing security, we can cache the subkeys, but (ii) if one uses EwC with the
HtE transform for full committing security, then we must account for the cost of
subkey generation. While the subkey generation seems expensive (say six AES
calls), these blockcipher calls are fully parallelizable. On platforms with vector
AES instructions, these AES calls would take almost the same amount of time
as couple AES calls.

Block length n Blockcipher Blockcipher calls Mults in GF(2n)

128 AES-256 10 (4, if subkeys are cached) 4

256 Rijndael-256 6 (2, if subkes are cached) 2

Table 1: The overhead of the EwC transform. The third column shows the number
of blockcipher calls; two numbers are given, one includes the cost of subkey
generation and another doesn’t. The last column shows the number of finite-
field multiplications.
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Implementing a performant version of EwC is tricky. The major problem
comes from having three AES keys (one for the wideblock TBC, another for
the Davies-Meyer, and yet another for the committing concealer). Overall, that
generates a lot of AES subkeys, and it is tricky to ensure that we have no register
spill. See Fig. 17 for experimental data for the overhead of EwC on HCTR2. The
cost is significant for small data, but becomes negligible for messages bigger than
1KB.

Another way to get CMT security. So far, to get full CMT security, we
have to compose EwC with the HtE transform. But this means we no longer cache
the subkeys. Moreover, we have to pay for a key setup cost for the wideblock
TBC. To improve the running time, we give a variant EwC2 of EwC that directly
achieves full CMT security when used in EtE. This construction avoids all the
issues above and also cuts the cost of the Davies-Meyer in the third round of our
Feistel-like structure. The drawback is that we need to process the tweak twice,
one via a cryptographic hash function like SHA-512 (which is inherent for CMT
security), and another via the wideblock TBC. Still, if we use EwC2 in EtE, the
tweak is usually short, and in the wideblock TBC, it will be often processed by
a fast AXU hash function.

Committing concealer. Central to our EwC/EwC2 transforms is a new prim-
itive that we call committing concealer. Committing concealer can be viewed as
a blockcipher but the security requirement is different. Traditionally, we want a
blockcipher to be a strong PRP; if we build it from a Feistel network, we need
at least four rounds. For committing concealer, we only need it to be a one-time
strong PRP (meaning that the adversary can make just a single query per user),
and thus we can build it from just two-round Feistel. Still, we want committing
concealer to commit the key if used only on the set of messages that are encoded
with s-bit redundancy.

If we have a blockcipher E of 256-bit block length, one can directly use it
as a committing concealer; the key-committing property would be justified by
modeling E as an ideal cipher. However, it is tricky if E only has 128-bit block
length. The core idea is implicitly in the recent work of Bellare and Hoang [5].
Technically, they need to commit messages up to m < n bits to produce a
commitment of (m+n)-bit length and nearly n bits of binding security. They give
a construction via the SIV paradigm [26], but alternatively, their construction
can be viewed as padding the message with zeros, and then enciphering it with a
committing concealer. Their (implicit) committing concealer is based on a two-
round unbalanced Feistel, where the round functions are implemented via the
Davies-Meyer construction on a blockcipher of block length n. See Fig. 13 for an
illustration.

The use of ideal-cipher model. If one uses our EwC/EwC2 transforms in
the EtE construction, one would have Robust AE security in the standard model.
But the committing security has to be justified in the ideal-cipher model. The
use of idealized models in cryptographic constructions has always been a contro-
versial issue, and sometimes it can stand in the way towards adoption. The UK
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Game G
prf

F (A)

v ← 0; b←$ {0, 1}; b′←$ANew,Eval

Return (b′ = b)

New()

v ← v + 1; Kv←$K

fv←$ Func(Dom,Rng)

Eval(i,M)

If i 6∈ {1, . . . , v} return ⊥

C1 ← F(Ki,M); C0 ← fi(M)

Return Cb

Fig. 1: Game defining (multi-user) PRF security of F.

National Cyber Security Centre, for example, do not target committing security
in their Robust AE schemes due to concerns about the use of the ideal-cipher
model [9]. We argue that as long as the Robust AE is still justified in the stan-
dard model, we can only gain by additionally providing committing security
(even in the ideal-cipher model).

2 Preliminaries

2.1 Notation and Terminology

Let ε denote the empty string. For a string x we write |x| to refer to its bit
length, and x[i : j] is the bits i through j (inclusive) of x, for 1 ≤ i ≤ j ≤ |x|.
By Func(Dom,Rng) we denote the set of all functions f : Dom→ Rng. We use ⊥
as a special symbol to denote rejection, and it is assumed to be outside {0, 1}∗.
If X is a finite set, we let x←$ X denote picking an element of X uniformly at
random and assigning it to x. For an integer n ≥ 1, let {0, 1}≤n denote the set
of all bit strings whose length is at most n, and let {0, 1}≥n denote the set of all
bit strings whose length is at least n.

2.2 Some Standard Primitives

Collision resistance. Let H : Dom → Rng be a function. A collision for H
is a pair (X1, X2) of distinct points in Dom such that H(X1) = H(X2). For an
adversary A, define its advantage in breaking the collision resistance of H as

Advcoll
H (A) = Pr[(X1, X2) is a collision for H]

where the probability is over (X1, X2)←$A.

AXU hash. Let G : K ×M → {0, 1}n be a keyed hashed function. We say
that G is c-almost XOR-universal (c-AXU) if for any distinct X,Y ∈ M and
any ∆ ∈ {0, 1}n,

Pr
K←$K

[GK(X)⊕GK(Y ) = ∆] ≤
c

2n
.



Committing Robust AE 7

Game G
±prp
E (A)

v ← 0; b←$ {0, 1}

b′←$ANew,Enc,Dec

Return (b′ = b)

New()

v ← v + 1; Kv←$ {0, 1}k

Πv←$ Perm(n)

Enc(i,M)

If i 6∈ {1, . . . , v} return ⊥

C1 ← E(Ki,M); C0 ← Πi(M)

Return Cb

Dec(i, C)

If i 6∈ {1, . . . , v} return ⊥

M1 ← E−1(Ki, C); M0 ← Π−1

i (C)

Return Mb

Fig. 2: Game defining (multi-user) strong PRP security of E. Here Perm(n) de-
notes the set of all permutations in {0, 1}n

PRF. For a function F : K × Dom → Rng and an adversary A, we define the
advantage of A in breaking the (multi-user) PRF security of F as

Advprf
F (A) = 2Pr[Gprf

F (A)]− 1 ,

where game Gprf
F (A) is shown in Fig. 1.

PRP. For a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n and an adversary A,
we define the advantage of A in breaking the (multi-user) strong-PRP security
of E as

Adv±prpE (A) = 2Pr[G±prpE (A)]− 1 ,

where game G±prpE (A) is shown in Fig. 2.

(Wideblock) Tweakable Blockcipher. A tweakable blockcipher (TBC) TE
consists of two deterministic algorithms TE.Enc and TE.Dec, and is associated
with a key space K, a message spaceM, and a tweak space T . The enciphering
algorithm TE.Enc takes as input a key K ∈ K, a message M ∈ M, a tweak
T ∈ T , and outputs a ciphertext C ← TE.Enc(K,T,M). The deciphering al-
gorithm TE.Dec takes as input (K,T,C) and produces M ← TE.Dec(K,T,C).
For correctness, we require that deciphering reverses enciphering, meaning that
if C ← TE.Enc(K,T,M) then TE.Dec(K,T,C) = M .

In this paper, we consider wideblock TBC, meaning that the message space
consists of messages of different length, say M = {0, 1}≥m. We require that
enciphering preserves the message length, meaning that |C| = |M |.

Define the advantage of an adversary A breaking the strong tweakable-PRP
security of TE as

Adv±p̃rpTE (A) = 2Pr[G±p̃rpTE (A)]− 1 ,

where game G±p̃rpTE (A) is shown in Fig. 3.
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Game G
±p̃rp

TE (A)

v ← 0; b←$ {0, 1}

b′←$ANew,Enc,Dec

Return (b′ = b)

New()

v ← v + 1; Kv←$ {0, 1}k

For T ∈ T do Πv,T ←$ LP(M)

Enc(i, T,M)

If i 6∈ {1, . . . , v} return ⊥

C1 ← TE.Enc(Ki, T,M); C0 ← Πi,T (M)

Return Cb

Dec(i, T, C)

If i 6∈ {1, . . . , v} return ⊥

M1 ← TE.Dec(Ki, T, C); M0 ← Π−1

i,T (C)

Return Mb

Fig. 3: Game defining (multi-user) strong tweakable-PRP security of TE. Here
LP(M) denote the set of permutations π on M that are length-preserving,
meaning |π(M)| = |M | for every M ∈M.

2.3 Robust Authenticated Encryption

Syntax. An robust authenticated encryption (RAE) scheme SE consists of two
deterministic algorithms SE.Enc and SE.Dec; it is associated with a nonce spaceN ,
a message space M, key space K, and an expansion space X . The encryp-
tion algorithm takes as input a key K ∈ K, a nonce N ∈ N , associated data
A ∈ {0, 1}∗, a message M ∈ M, and an expansion τ ∈ X , and returns a ci-
phertext C ← SE.Enc(K,N,A,M, τ) such that |C| = |M | + τ . The decryption
algorithm takes as input (K,N,A,C, τ) and returns either a message M ∈ M
or a leakage L 6∈ M. The correctness requirement says that decryption reverses
encryption, namely if C ← SE.Enc(K,N,A,M, τ) then SE.Dec(K,N,A,C, τ)
returns M .

We say that SE is tidy [23] if M ← SE.Dec(K,N,A,C, τ) and M ∈M imply
that SE.Enc(K,N,A,M, τ) returns C. Combining correctness and tidiness means
that functions SE.Enc(K,N,A, ·, τ) and SE.Dec(K,N,A, ·, τ) are the inverse of
each other. The schemes we consider will be tidy.

Standard AE schemes are a special case of RAE schemes where the set X is
a singleton, meaning that the expansion is a constant, say 128. In general, RAE
schemes support a large range of expansion values, typically {0, 1, . . . , 128}, and
the expansion value can dynamically change within the same session.

RAE security. Let SE be an RAE scheme of message space M. Define the
advantage of an adversary A breaking the RAE security of SE with respect to a
(stateful) simulator Sim as

Advrae
SE,Sim(A) = 2 · Pr[Grae

SE,Sim(A)]− 1 ,

where game Grae
SE,Sim(A) is defined in Fig. 4. To prevent trivial attacks, we forbid

the adversary from first querying C ← Enc(i, N,A,M, τ) and then querying
Dec(i, N,A,C, τ).



Committing Robust AE 9

Game Grae

SE,Sim(A)

v ← 0; b←$ {0, 1}; st← ε

b′←$ANew,Enc,Dec

Return (b′ = b)

New()

v ← v + 1; Kv←$ {0, 1}k

For (N,A, τ) ∈ N ×{0, 1}∗×X do

Πv,N,A,τ ←$ Inj(τ)

Enc(i, N,A,M, τ)

If i 6∈ {1, . . . , v} return ⊥

C1 ← SE.Enc(Ki, N,A,M, τ)

C0 ← Πi,N,A,τ (M)

Return Cb

Dec(i, N,A,C, τ)

If i 6∈ {1, . . . , v} return ⊥

M1 ← SE.Dec(Ki, N,A,C, τ)

M0 ← Π−1

i,N,A,τ (C)

If M0 = ⊥ then

(M0, st)←$ Sim(i, N,A,C, τ, st)

Return Mb

Fig. 4: Game defining (multi-user) RAE security of SE with respect to a simulator
Sim. Here Inj(τ) denote the set of injective functions f : {0, 1}∗ → {0, 1}∗ such
that |f(M)| = |M |+ τ for all messages M .

EtE[TE].Enc(K,N,A,M, τ)

V ← pad(M, τ); T ← (N,A, τ)

C ← TE.Enc(K,T, V )

Return C

EtE[TE].Dec(K,N,A,C, τ)

T ← (N,A, τ)

V ← TE.Dec(K,T,C); M ← unpad(V, τ)

If M 6= ⊥ then return M

Else return (⊥, V ) //Decryption leakage

Fig. 5: The EtE method, with decryption leakage on invalid ciphertexts.

In the game above, the simulator Sim is only called on invalid ciphertexts to
simulate the decryption leakage, but is not given any information on messages of
encryption queries. The simulator is stateful and explicitly maintains its state st.

Encode-then-Encipher (EtE). Hoang, Krovetz, and Rogaway [18] show that
to achieve RAE security, one has to use the Encode-then-Enciphering (EtE)
paradigm of Bellare and Rogaway [7]. We now recall the details of the EtE

construction. Let pad : {0, 1}∗×X → {0, 1}∗ be a padding scheme such that (1)
for any τ ∈ X , the function pad(·, τ) is injective, and let unpad(·, τ) : {0, 1}∗ →
{0, 1}∗ ∪ {⊥} be its inverse, and (2) If Y ← pad(X, τ) then |Y | = |X| + τ . For
example, we can let pad(M, τ) = M‖0τ . Let TE be a wideblock TBC with tweak
space N × {0, 1}∗ × X . The scheme EtE[TE] is specified in Fig. 5; it has nonce
space N and expansion space X . Informally, to encryptM under (K,N,A, τ), we
pad M with pad(·, τ) and then encipher it with tweak (N,A, τ). On decryption,
we first recover V ← TE.Dec(K,T,C) and check the unpadding. If the unpadding
fails then we model the decryption leakage as L ← (⊥, V ). (Note that since we
require L 6∈ M, the invalidity symbol has to be included.)
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Game Gcmt

SE (A)
(

(K1, N1, A1,M1, τ1), (K2, N2, A2,M2, τ2)
)

←$A

C1 ← SE.Enc(K1, N1, A1,M1, τ1); C2 ← SE.Enc(K2, N2, A2,M2, τ2)

Return
(

(C1 = C2) ∧ (K1, N1, A1,M1, τ1) 6= (K2, N2, A2,M2, τ2)
)

Fig. 6: Game defining committing security, encryption-based style.

Game Gcmtd

SE (A)
(

C, (K1, N1, A1, τ1), (K2, N2, A2, τ2)
)

←$A

M1 ← SE.Dec(K1, N1, A1, C1, τ1); M2 ← SE.Dec(K2, N2, A2, C, τ2)

Return
(

(M1 ∈M) ∧ (M2 ∈M) ∧ (K1, N1, A1, τ1) 6= (K2, N2, A2, τ2)
)

Fig. 7: Game defining committing security, decryption-based style. Here M is
the message space.

3 Committing Security for RAE Schemes

In this section, we give a definitional treatment of committing security for RAE
schemes. The definitions are a straightforward extension of the work of Bellare
and Hoang [4] for standard AE schemes. The main issue is whether to restrict
adversaries from generating collisions on the same, or possibly different, expan-
sions τ1 and τ2. It is easy to see that allowing different ones is a strictly stronger
security goal, and so we opt for it.

3.1 Definitions

Committing security for RAE schemes. For an adversary A, we define its
advantage in breaking the committing security of an RAE scheme SE as

Advcmt
SE (A) = Pr[Gcmt

SE (A)] ,

where game Gcmt
SE (A) is defined in Fig. 6. Informally, committing security means

that an adversary cannot produce a ciphertext collision. This generalizes the
notion CMT-4 security of Bellare and Hoang [4].

The definition above uses an encryption-based style where the adversary
specifies the messages and the game encrypts them to compare the ciphertexts.
Alternatively, we can define a decryption-based one as follows. Define

Advcmtd
SE (A) = Pr[Gcmtd

SE (A)] ,

where game Gcmtd
SE (A) is defined in Fig. 7. Informally, this means that a cipher-

text cannot be properly decrypted under two different contexts (K1, N1, A1, τ1)
and (K2, N2, A2, τ2).

Relations. Following Bellare and Hoang [4], we show that CMT and CMT-D
security are equivalent.
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Game Gcmt-1
SE (A)

(

(K1, N1, A1,M1, τ1), (K2, N2, A2,M2, τ2)
)

←$A

C1 ← SE.Enc(K1, N1, A1,M1, τ1); C2 ← SE.Enc(K2, N2, A2,M2, τ2)

Return
(

(C1 = C2) ∧ (K1 6= K2)
)

Fig. 8: Game defining CMT-1 security.

� CMTD −→ CMT: First we show that CMTD implies CMT. Let SE be an RAE
scheme with message spaceM. Consider an adversary Ae that attacks the CMT
security of SE. We now construct an adversary Ad attacking the CMTD security
of SE. It runs Ae to get (K1, N1, A1,M1, τ1) and (K2, N2, A2,M2, τ2). It then
computes C ← SE.Enc(K1, N1, A1,M1, τ1), and outputs (C, (K1, N1, A1, τ1),
(K2, N2, A2, τ2)).

For analysis, without loss of generality, assume that Ae outputs distinct
tuples (K1, N1, A1,M1, τ1) and (K2, N2, A2,M2, τ2). Suppose that Ae wins its
game, meaning that SE.Enc(K2, N2, A2,M2, τ2) is also C. From the correct-
ness of SE, we have SE.Dec(Ki, Ni, Ai, C, τi) = Mi ∈ M for each i ∈ {1, 2}.
If (K1, N1, A1, τ1) = (K2, N2, A2, τ2) then M1 = M2, which is a contradiction.
Hence (K1, N1, A1, τ1) 6= (K2, N2, A2, τ2), thus Ad also wins its game. Therefore,

Advcmtd
SE (Ad) ≥ Advcmt

SE (Ae) .

� CMT 99K CMTD: Conversely, we show that for tidy schemes, CMT im-
plies CMTD. Let SE be a tidy RAE scheme with message space M. Con-
sider an adversary Ad that attacks the CMTD security of SE. We now con-
struct an adversary Ae that attacks the CMT security of SE. It runs Ad to get
(C, (K1, N1, A1, τ1), (K2, N2, A2, τ2)), and gets Mi ← SE.Dec(Ki, Ni, Ai, C, τi)
for each i ∈ {1, 2}. It then outputs ((K1, N1, A1,M1, τ1), (K2, N2, A2,M2, τ2)).

For analysis, without loss of generality, assume that Ad outputs distinct tu-
ples (K1, N1, A1, τ1), (K2, N2, A2, τ2). Suppose that Ad wins its game, meaning
thatM1 ∈M andM2 ∈M. Since SE is tidy, we have SE.Enc(Ki, Ni, Ai,Mi, τi) =
C for each i ∈ {1, 2}, and thus Ae also wins its game. Hence

Advcmt
SE (Ae) ≥ Advcmtd

SE (Ad) .

CMT-1 security. The notions CMT and CMTD above commit the entire con-
text (K,N,A,M, τ). Many applications however only need to commit just the
key. Following Bellare and Hoang [4], define the advantage of an adversary break-
ing the CMT-1 of an RAE scheme SE as

Advcmt-1
SE (A) = Pr[Gcmt-1

SE (A)] ,

where game Gcmt-1
SE (A) is defined in Fig. 8.

Discussion. Note that for CMT security, in the special case that the message is
empty, the ciphertext is a τ -bit commitment of the AD. This means that CMT
security requires hashing AD by a collision-resistant hash function such as SHA-
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HtE[H, SE].Enc(K,N,A,M, τ)

L← H(K,N,A, τ)

C ← SE.Enc(L, ε, ε,M, τ)

Return C

HtE[H, SE].Dec(K,N,A,C, τ)

L← H(K,N,A, τ)

M ← SE.Dec(K, ε, ε, C, τ)

Return M

Fig. 9: The HtE transform.

512 or SHA-3. While this overhead is constant, it’s expensive for small messages.
In contrast, CMT-1 security only needs to commit a short input (namely the
key), and we can use, for example, the Davies-Meyer construction with very low
overhead.

Lower bounds. RAE schemes cannot achieve commitment security for small
expansion. For example, if an adversary is allowed to choose τ1 = τ2 = 0, then
any ciphertext will decrypt to some message under any context. More formally,
let SE be a tidy RAE scheme of expansion space X . Let λ be the minimum value
in X , and let ` be the smallest message length that SE supports. Prior generic
committing attacks on standard AE schemes do apply to RAE schemes if we
restrict to λ-bit expansion, and treat decryption leakage as a symbol ⊥ 6∈ M. In
particular, from the attacks of Bellare and Hoang [5], one can at best hope for
min{λ, (λ+ `)/2} bits of CMT/CMT-1 security for SE.

The term λ + ` is also the smallest message length of the underlying wide-
block TBC TE of SE. Practical constructions of TE typically require that λ+ `
to be reasonably large, say 128, because otherwise TE has to include a Format-
Preserving Encryption scheme [6], which is expensive. For our schemes in Sec-
tion 6, λ+ ` is even larger, say 344 for the AES-based instantiation (if we want
80-bit committing security), or 512 for the Rijndael-256-based one.

3.2 From CMT-1 to CMT security

We extend the Hash-then-Encrypt (HtE) transform of Bellare and Hoang [4] for
RAE. This transform turns a CMT-1 secure scheme SE to a CMT-secure one
HtE[H, SE],

The HtE transform. Let SE be an RAE scheme of key space {0, 1}k, nonce
space {ε}, and expansion space X . Let H : K× (N × {0, 1}∗ ×X )→ {0, 1}k be
a (keyed) hash function. The code of HtE[H, SE] is specified in Fig. 9. The idea
is simple. We first hash L ← H(K,N,A, τ) to derive a subkey L, and then run
SE to encrypt M with the subkey key L and tweak (ε, ε, τ). Note that the AD A
is only processed once, because we use SE with the empty AD. The overhead
of HtE is essentially optimal, since the hashing of AD is required for achieving
CMT security. Therefore, in this paper, we only focus on building CMT-1 secure
RAE scheme.

CMT security of HtE. The following result shows that ifH is collision-resistant
then HtE promotes CMT-1 security to CMT one.
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Proposition 1. Let SE be an RAE scheme of key space {0, 1}k, nonce space N ,
and expansion space X . Let H : {0, 1}k×(N×{0, 1}∗×X )→ {0, 1}k be a (keyed)
hash function. For any adversary A, we can build adversaries B1 and B2 such
that

Advcmt
HtE[H,SE](A) ≤ Advcoll

H (B1) +Advcmt-1
SE (B2) .

Adversary B1 has the same running time and uses the same amount of resource
as A. Adversary B2 runs A and then runs H on A’s inputs.

Proof. We first describe the adversaries B0 and B1. Adversary B1 runs
(

(K1, N1, A1,M1, τ1), (K2, N2, A2,M2, τ2)
)

←$A .

It then outputs
(

(K1, (N1, A1, τ1)), (K2, (N2, A2, τ2)
)

.

Adversary B2 also runs
(

(K1, N1, A1,M1, τ1), (K2, N2, A2,M2, τ2)
)

←$A .

Let Li ← H(Ki, (Ni, Ai, τi)) for every i ∈ {1, 2}. Adversary B2 then outputs
(

(L1, ε, ε,M1, τ1), (L2, ε, ε,M2, τ2)
)

.

For analysis, let Ci ← HtE[H, SE].Enc(Ki, Ni, Ai,Mi, τi) for each i ∈ {1, 2}. Note
that Ci = SE.Enc(Li, ε, ε,Mi, τi). Assume that A succeeds in creating a collision,
meaning that C1 = C2. If L1 = L2 then B1 also creates a collision. Suppose that
L1 6= L2. Then B2 creates a collision. Hence

Advcmt
HtE[H,SE](A) ≤ Advcoll

H (B1) +Advcmt-1
SE (B2)

as claimed. ut

HtE preserves RAE security. The following result shows that if H is a PRF
then HtE preserves the RAE security.

Proposition 2. Let SE be an RAE scheme of key space {0, 1}k, nonce space {ε},
and expansion space X . Let H : {0, 1}k×(N×{0, 1}∗×X )→ {0, 1}k be a (keyed)
hash function. Consider an adversary A of q queries, with at most B queries per
(user, nonce, AD, expansion). For any simulator Simb, we can build adversaries
B1 and B2 and a simulator Sima such that

Advrae
HtE[H,SE],Sima

(A) ≤ Advprf
H (B1) +Advrae

SE,Simb
(B2) .

The running time of Sima is about the same as that of Simb. Adversary B1
makes q queries. Its running time is about that of A plus the cost of using SE to
encrypt/decrypt A’s queries. Adversary B2 has about the same running time as
A and also makes q queries of the total length as A, but it makes only B queries
per user.

Proof. We first construct the simulator Sima. It maintains a counter v for the
current number of users and a state st∗ for Simb, and lazily maintains a map Tbl

to translate a tuple (i, N,A, τ) to a user u. On (i, N,A,C, τ, st), it parses st into
(v, st∗,Tbl). It then checks if Tbl[i, N,A, τ ] is defined. If not then it increments
v and sets Tbl[i, N,A, τ ] ← v. In any case, it gets u ← Tbl[i, N,A, τ ] and runs
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(M, st∗)←$ Simb(u, ε, ε, C, τ, st
∗). It then update its own state st ← (v,Tbl, st∗),

and returns (M, st).
Consider the following sequence of games. Game G0 corresponds to game

Grae
HtE[H,SE],Sima

(A) with challenge bit 1. Game G1 is identical to game G0, except

that instead of using H(Ki, ·, ·, ·) to derive the subkeys for user i, we use a truly
random function fi : N × {0, 1}

∗ ×X → {0, 1}k. To bound the gap between G0

and G1, we construct an adversary B1 attacking the (multi-user) PRF security
of H. It runs A and simulates game G0, but each call to H(Ki, ·) is replaced by
a corresponding call to Eval(i, ·). Then

Advprf
H (B1) = Pr[G0(A)]− Pr[G1(A)] .

Next, game G2 corresponds to game Grae
HtE[H,SE],Sima

(A) with challenge bit 0.
To bound the gap between G1 and G2, we construct an adversary B2 attack-
ing the (multi-user) RAE security of SE. It runs A. For each encryption query
(i, N,A,M, τ) of A, it calls C ← Enc(u, ε, ε,M, τ) for the effective user u =
(i, N,A, τ), and returns C to A. (This means B2 must lazily maintain a map
from N × N × {0, 1}∗ × X → N to translate (i, N,A, τ) to an integer u.) Like-
wise, for each decryption query (i, N,A,C, τ) of A, it returns Dec(u, ε, ε, C, τ)
for the effective user u = (i, N,A, τ). Hence

Advrae
SE,Simb

(B2) = Pr[G1(A)]− Pr[G2(A)] .

Summing up,

Advrae
HtE[H,SE],Sima

(A) = Pr[G0(A)]− Pr[G2(A)]

= (Pr[G0(A)]− Pr[G1(A)]) + (Pr[G1(A)]− Pr[G2(A)])

= Advprf
H (B1) +Advrae

SE,Simb
(B2) .

This concludes the proof. ut

Instantiation. To have strong committing security, the key length k needs to
be 256-bit. If the nonce length is fixed then one can instantiate H(K,N,A, τ) via
SHA-512(K‖N‖A‖[τ ]16)[1 : 256] or SHA-3(K‖N‖A‖[τ ]16)[1 : 256], where [τ ]16
is a 16-bit representation of the number of τ . We stress that one should avoid
using SHA-256, because of the extension attack.

4 Fast Collision-Resistant PRF From Blockcipher

Recall that in CMT-1 security, we want to commit a short string (namely the
key). This doesn’t require a fully-fledged collision-resistant hash like SHA-512
or SHA-3. Instead, one can use cheaper constructions like Davies-Meyer applied
to AES, as first suggested in the context of commitment security in [4]. Running
Davies-Meyer on a blockcipher E : {0, 1}k ×{0, 1}n → {0, 1}n however can only
provide an n-bit commitment. In this section, we investigate how to produce a
λ-bit commitment, where n ≤ λ ≤ 2n. Specifically, we want to build a collision-
resistant PRF H : {0, 1}k × {0, 1}n−1 → {0, 1}λ on top of E with λ/2 bits of
security. Below, we show how to do that by “doubling” Davies-Meyer.
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DM2[E, λ](K,M)

U ←M‖0; V ←M‖1
C1 ← EK(U)⊕U ; C2 ← EK(V )⊕V
Return (C1‖C2)[1 : λ]

E
K

M �

E
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M �
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Fig. 10: The DM2 hashing.

The Double Davies-Meyer hash. The code of the hash function DM2[E, λ] :
{0, 1}k × {0, 1}n−1 → {0, 1}λ is given in Fig. 10. Informally, to hash M with
keyK, we run two Davies-Meyer, one with (K,M‖0), and another with (K,M‖1),
and then truncate the concatenated output. For λ = n, we recover the conven-
tional Davies-Meyer construction.

Collision resistance of DM2. The following result confirms that DM2[E, λ]
has λ/2-bit collision resistance if E is modeled as an ideal cipher.

Proposition 3. Let E : {0, 1}k×{0, 1}n → {0, 1}n be a blockcipher that we will
model as an ideal cipher. Let n ≤ λ ≤ 2n. Then for any adversary A that makes
at most q ideal-cipher queries,

Advcoll
DM2[E,λ](A) ≤

8q2

2λ
+

2

2n
.

Proof. Without loss of generality, assume that the adversary does not make
redundant queries. That is, it does not repeat prior queries, and if it queries
C ← EK(P ) then later it will not query E−1K (C), and if it queries P ← E−1K (C)
then it will not later query EK(P ). For each query C ← E(K,P ) we store a
log entry (K,P,C⊕P ). Likewise, for each query P ← E−1(K,C), we store a log
entry (K,P,C⊕P ). For an n-bit string P , let P denote the string obtained by
flipping the last bit of P .

If a query results in a log entry (K,P,C) and there is no prior entry (K,P ,C∗)
then we immediately grant the adversary a free query EK(P ) and store the
corresponding log entry. These free queries can only help the adversary. As a
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result, if we sort the log entries according to their querying order, then the ith
query is the granted ones, for every even i ≤ 2q.

Without loss of generality, assume that the right-hand side of the claimed
bound is smaller than 1; otherwise the bound is moot. That is, q ≤ 2n−1. Thus
for each entry (K,P,C), conditioning on prior entries, the value X is uniformly
chosen from a set of at least 2n − q ≥ 2n−1 members. Let r = λ− n.

Suppose that A outputs (K1,M1,K2,M2). Let Bad be the event that there
are entries (K1,M1‖0, X1), (K1,M1‖1, X

∗
1 ), (K2,M2‖0, X2), (K2,M2‖1, X

∗
2 ) in

the logs. We now bound the advantage of the adversary depending on whether
Bad happens.

If Bad does not happen. If Bad does not happen, because of the symmetry
and the way we grant free queries, without loss of generality, suppose that there is
no entry (K1,M1‖0, X1). In that case, the chance that E(K1,M1‖0)⊕(M1‖0) =
E(K2,M2‖0)⊕(M2‖0) is at most 21−n.

If Bad happens. By symmetry, without loss of generality, assume that among
the four corresponding entries, (K1,M1‖0, X1) happens first (meaning that it is
a non-granted query). For every (i, j) such that i is odd and 1 ≤ i < j ≤ 2q, let
Badi,j be the event that the query of (K1,M1‖0, X1) is the ith query, and the
first query of (K1,M2‖0, X2) and (K2,M2‖1, X

∗
2 ) is the jth query. Then

Bad =
⋃

Badi,j .

Note that there are at most

(2q − 1) + (2q − 3) + · · ·+ 1 = q2

pairs (i, j). Fix one such pair. We now bound the adversary’s advantage assuming
that Badi,j happens. We consider the following cases.

Case 1: The jth query creates the entry (K2,M2‖0, X2). Then X2 = X1 with
probability at most 21−n. Moreover, conditioning on X2 = X1, because the
entries (K1,M1‖1, X

∗
1 ) and (K2,M2‖1, X

∗
2 ) corresponds to the granted queries,

the conditional probability that X∗2 [1 : r] = X∗1 [1 : r] is at most 21−r. Summing
up over at most q2 pairs (i, j), the chance that this case happens is at most
4q2/2n+r = 4q2/2λ.

Case 2: The jth query creates the entry (K2,M2‖1, X2). Then the entries
(K1,M1‖1, X

∗
1 ) and (K2,M2‖0, X2) corresponds to the granted queries. Thus

the chance that (X∗1 [1 : r], X2) = (X∗2 [1 : r], X1) is at most 4/2λ. Summing up
over at most q2 pairs (i, j), the chance that this case happens is at most 4q2/2λ.

Wrapping up. Summing up all cases,

Advcoll
DM2[E,λ](A) ≤

8q2

2λ
+

2

2n

as claimed. ut

PRF security of DM2. The following result shows that if we model E as a
good PRF then DM2 is also a good PRF.
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Proposition 4. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher. Let n ≤
λ ≤ 2n. Then for any adversary A that makes at most q queries, we can construct
an adversary B of about the same time and 2q queries such that

Advprf
DM2[E,λ](A) ≤ Advprf

E (B) .

Proof. Without loss of generality, assume that A does not repeat a prior query.
Consider the following sequence of games. Game G0 is game Gprf

DM2[E,λ](A) with

challenge bit 1. Game G1 is identical to game G0, except that each call to
E(Ki, ·) is replaced with a corresponding call to a truly random function fi :
{0, 1}n → {0, 1}n. To bound the gap between the two games, we construct an
adversary B attacking the (multi-user) PRF security of E as follows. It runs A
and simulates game G0, but each call to E(Ki, ·) is replaced by a corresponding
call to Eval(i, ·). Then

Advprf
E (B) = Pr[G0(A)]− Pr[G1(A)] .

Let G2 be game Gprf

DM2[E,λ](A) with challenge bit 0. We now bound the gap

between G1 and G2 for a computationally unbounded adversary A. Without loss
of generality, assume that A is deterministic and never repeats a prior query.
Note that in game G1, thanks to the domain separation in DM2, each fi is never
called on the same input twice, and thus effectively, in game G1, for each Eval
call, adversary A receives a truly random answer. Likewise, in game G2, for each
Eval call, adversary A receives a truly random answer. Hence

Pr[G1(A)] = Pr[G2(A)] .

Summing up,

Advprf
DM2[E,λ](A) = Pr[G0(A)]− Pr[G2(A)]

= (Pr[G0(A)]− Pr[G1(A)]) + (Pr[G1(A)]− Pr[G2(A)])

= Advprf
E (B) .

This concludes the proof. ut

5 Committing Concealer

In this section, we formalize a new primitive that we call a committing concealer.
Functionality wise, a committing concealer C : K × {0, 1}m → {0, 1}m is simply
a blockcipher on {0, 1}m, with C−1 denoting its inverse. But traditionally a
blockcipher is only secure if it is a strong PRP, but we will weaken this security
goal in order to allow more efficient constructions. Looking ahead to our Feistel-
based approach to committing concealers, we’ll show a weaker security goal that
allows us to get by with a two-round Feistel network, rather than the four rounds
that would be required to achieve security as a strong PRP [21].

Hiding security. Our weaker security goal is what we call hiding security.
It requires a committing concealer be a one-time strong PRP, meaning that
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Game Ghide

C (A)

v ← 0; b←$ {0, 1}; Used ← ∅

b′←$ANew,Enc,Dec

Return (b′ = b)

New()

v ← v + 1; Kv←$ {0, 1}k

Enc(i,M)

If i 6∈ {1, . . . , v}\Used return ⊥

C1 ← C(Ki,M); C0←$ {0, 1}|M|

Used ← Used ∪ {i}; Return Cb

Dec(i, C)

If i 6∈ {1, . . . , v}\Used return ⊥

M1 ← C−1(Ki, C); M0←$ {0, 1}|M|

Used ← Used ∪ {i}; Return Mb

Fig. 11: Game defining hiding security of C. The game maintains a set Used of
users that A has queried.

Game Gbind

C,encode(A)

(K1,M1,K2,M2)←$A
Return

(

K1 6= K2

)

∧
(

C(K1, encode(M1)) = C(K2, encode(M2))

Fig. 12: Game defining binding security of C.

an adversary is allowed only a single query per user. In particular, define the
advantage of an adversary A breaking the hiding security of C as

Advhide
C (A) = Pr[Ghide

C (A)] ,

where game Ghide
C (A) is defined in Fig. 11.

Binding security. Let s ≤ m be an integer, and let {0, 1}≤m−s denote the set
of bit strings whose length is at most m− s. Let encode : {0, 1}≤m−s → {0, 1}m

be a function. Define the binding advantage of an adversary A against C with
respect to encode as

Advbind
C,encode(A) = Pr[Gbind

C,encode(A)] ,

where game Gbind
C,encode(A) is defined in Fig. 12. Informally, we want the ciphertext

of C to be a commitment of the key, if we restrict to messages in {encode(X) |
X ∈ {0, 1}≤m−s}.

Relation to prior work. Bellare and Hoang [5] recently consider how to add
committing security to a standard AE scheme without expanding the ciphertext
length. Their method requires that the scheme is tag-based, meaning that the
ciphertext consists of a ciphertext core C∗ and a tag T , and one can recover the
message from just C∗ (but of course without authenticity guarantees). As such,
their method doesn’t work for SIV constructions [26] (because the tag is needed
for decryption), or EtE constructions (because there is no tag).

The work of Bellare and Hoang relies on an invertible PRF (IPF) that is
also collision-resistant. Their construction of collision-resistant IPF encodes the
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message and then enciphers it with what is implicitly a committing concealer.
In Section 5.2 we will study this committing concealer construction.

5.1 Committing Concealer from Ideal Cipher

As a warmup, we show that a blockcipher E : {0, 1}k×{0, 1}n → {0, 1}n can be
used directly as a committing concealer if we model E as an ideal cipher. Still,
if we want E to have strong binding security, the block length n needs to be at
least 256 bits, meaning that we can’t instantiate E from AES.

Hiding security. If E is modeled as a strong PRP then it obviously has good
hiding security. We state the formal result for completeness.

Proposition 5. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher. Then for
any adversary A,

Advhide
E (A) ≤ Adv±prpE (A) .

Binding security. The following result, from Bellare and Hoang [5], shows
that if we model E as an ideal cipher then it also has good binding security, for
any encoding mechanism. Due to the term q2/2n, if we aim for strong binding
security, we need n ≥ 256, meaning we need to instantiate E from, say Rijndael-
256.

Proposition 6 ([5]). Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher that
we model as an ideal cipher. Let encode : {0, 1}≤n−s → {0, 1}n be a function.
Then for any adversary A that makes at most q ideal-cipher queries,

Advbind
E,encode(A) ≤

4q

2s
+

2q2

2n
.

5.2 Committing Concealer from Two-Round Feistel

In this section, we show how to build a committing concealer FF from a two-
round Feistel network. The round functions are built on top of a blockcipher
E : {0, 1}k × {0, 1}n → {0, 1}n that we can instantiate via AES.

The FF construction. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher.
Let ` < n be an integer. Define pad(·, 0) : {0, 1}n → {0, 1}n via pad(X, 0) =
X[1 : n − 1]‖0, and define pad(·, 1) : {0, 1}` → {0, 1}n via pad(Y, 1) = Y ‖1n−`.
Note that pad is a domain separation in the sense that pad(X, 0) 6= pad(Y, 1) for
any X,Y .

The committing concealer FF[E, `] has message space {0, 1}n+`. It is a two-
round unbalanced Feistel network, where the left-hand side is n bits, and the
right-hand side is ` bits. The round functions are based on the Davies-Meyer con-
struction of E. See Fig. 13 for the code and also an illustration. This committing
concealer is implicit in the recent work of Bellare and Hoang [5].

Hiding security of FF. The following result shows that FF has good hiding
security, assuming that E is a good PRF.
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C(K,L‖R) // |L| = n

U ← pad(L, 0)

B ←
(

EK(U)⊕U
)

[1 : |R|]⊕R

V ← pad(B, 1)

A←
(

EK(V )⊕V
)

⊕L

Return A‖B

C−1(K,A‖B) // |A| = n

V ← pad(B, 1)

L←
(

EK(V )⊕V
)

⊕A

U ← pad(L, 0)

R← (EK(U)⊕U)[1 : |B|]⊕B

Return L‖R

BA

0

1

L R

��������

���

Fig. 13: The committing concealer C = FF[E, `]. In the illustration, the func-
tion H denotes the Davies-Meyer construction on E, meaning H(K,M) =
EK(M)⊕M .

Proposition 7. Let n, ` be integers such that ` < n. Let E : {0, 1}k×{0, 1}n →
{0, 1}n be a blockcipher. Then for an adversary A that makes at most q queries,
we can construct an adversary B of about the same time and 2q queries, with
two queries per user, such that

Advhide
FF[E,`](A) ≤ Advprf

E (B) .

Proof. Consider the following sequence of games. Game G0 coincides with game
Ghide

C (A) with challenge bit 1. Game G1 is identical to game G1, except that
each E(Ki, ·) is replaced by a truly random function fi : {0, 1}

n → {0, 1}n. To
bound the gap between the two games, we construct an adversary B attacking
the (multi-user) PRF security of E as follows. It runs A and simulates game G0,
but each call to E(Ki, ·) is replaced by a corresponding call to Eval(i, ·). Then

Advprf
E (B) = Pr[G0(A)]− Pr[G1(A)] .

Note that in game G1, each fi is never run on the same input twice, thanks to
the domain separation in FF and the requirement that the adversary can make a
single query per user. Then we can rewrite game G1 as game G2 in Fig. 14, and
the two games are equivalent. Note that effectively, in game G2, each Enc/Dec
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Game G2(A)

v ← 0; Used ← ∅; b′←$ANew,Enc,Dec

Return (b′ = 1)

Enc(i, L‖R)

If i 6∈ {1, . . . , v}\Used return ⊥

U ← pad(L, 0); X←$ {0, 1}n

B ← (X⊕U)[1 : |R|]⊕R

V ← pad(B, 1); Y ←$ {0, 1}n

A← (Y⊕V )⊕L

Used ← Used ∪ {i}; Return A‖B

New()

v ← v + 1

Dec(i, A‖B)

If i 6∈ {1, . . . , v}\Used return ⊥

V ← pad(B, 1); Y ←$ {0, 1}n

L← (Y⊕V )⊕A

U ← pad(L, 0); X←$ {0, 1}n

R← (X⊕U)[1 : |B|]⊕B

Used ← Used ∪ {i}; Return L‖R

Fig. 14: Game G2 in the proof of Proposition 7.

query returns a truly random answer. Thus game G2 is equivalent to game
Ghide

C (A) with challenge bit 0. Summing up,

Advhide
FF[E,`](A) = Pr[G0(A)]− Pr[G2(A)]

= (Pr[G0(A)]− Pr[G1(A)]) + (Pr[G1(A)]− Pr[G2(A)])

= Advprf
E (B) .

This concludes the proof. ut

Binding security of FF. Let 1 ≤ t ≤ n. Let encode : {0, 1}≤n−t → {0, 1}n+`

be a function such that encode(X) must end with 0`+1. The following result of
Bellare and Hoang [5] shows that FF[E, `] has about (`− log2(n)) bits of binding
security in the ideal-cipher model.

Proposition 8 ([5]). Let n, ` be integers such that n ≥ 32 and ` < n. Let
E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher that we will model as an ideal
cipher. Let encode be as above. Then for an adversary A that makes at most q
ideal-cipher queries,

Advbind
FF[E,`],encode(A) ≤

4(n+ `)q + 5

2`
.

6 A Committing Transform for Wideblock TBC

Let TE be a wideblock TBC with message space {0, 1}≥k, key space {0, 1}k, and
tweak space T . Our goal is to turn it into a wideblock TBC TE of the same tweak
space and key space such that using TE in the EtE transform gives a scheme of
both CMT-1 and RAE security. We achieve this via the Encipher-with-Concealer
(EwC) transform below.
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EwC[TE,C, H,G].Enc(K,T,M)

P‖S ←M // |S| = m

J ← HK([0]r)[1 : n]; U ← P⊕GJ(S)

J∗ ← HK([1]r)[1 : n]

L← HK([2]r); I ← HK([3]r)

V ← TE.Enc(L, T, U)

R← HI(U [1 : r]⊕V [1 : r])

C2 ← C(R,S); C1 ← V⊕GJ∗(C2)

Return C1‖C2

EwC[TE,C, H,G].Dec(K,T,C)

C1‖C2 ← C // |C2| = m

J ← HK([0]r)[1 : n]

J∗ ← HK([1]r)[1 : n]; V ← C1⊕GJ∗(C2)

L← HK([2]r); I ← HK([3]r)

U ← TE.Dec(L, T, V )

R← HI(U [1 : r]⊕V [1 : r])

S ← C−1(R,C2); P ← U⊕GJ(S)

Return P‖S

������

SP

��������M

���
�

L

�����

T

Fig. 15: The EwC transform. We omit the derivation of subkeys J, J∗, L, I in the
illustration.

The EwC transform. Let C be a committing concealer of message space {0, 1}m

and key space {0, 1}k. Let G : {0, 1}n×{0, 1}m → {0, 1}n be a c-AXU hash func-
tion, with n ≤ k. Let H : {0, 1}k×{0, 1}r → {0, 1}k be a collision-resistant PRF,
with r ≤ n. For an integer i ∈ {0, . . . , 2r − 1}, let [i]r denote the r-bit represen-
tation of i. For two strings X and Y with |X| ≤ |Y |, we write X⊕Y to denote
(X‖0|Y |−|X|)⊕Y . The code of the transform EwC[TE,C, H,G] is given in Fig. 15.
The scheme has message space {0, 1}≥m+k.

Informally, we use a four-round Feistel-like structure, where the right-hand
side is m bits. Following Naor and Reingold [24], the first and last rounds are im-
plemented via the AXU hash G (whose output is padded with 0’s). In the second



Committing Robust AE 23

round, we encipher the intermediate left-hand side U via V ← TE.Enc(L, T, U),
where the subkey L is derived via L← HK([2]r). In the third round, we derive
a one-time key R← HI(U [1 : r]⊕V [1 : r]) for C, where I ← HK([3]r), and use C
to encipher the intermediate right-hand side.

Since we only need to use the r-bit prefix of the output of TE for C, on
long messages, the evaluation of TE and C can be parallelized, for off-the-shelf
constructions of TE such as AEZ [18] or HCTR2 [14]. Conversely, on decryp-
tion, this allows fast rejection of invalid ciphertexts, which is important to resist
denial-of-service attacks. The subkeys J, J∗, L, I can be cached and the cost of
their derivation can be ignored if EwC is used in a stand-alone way. Still, if we
compose it with the HtE transform in Section 3.2 then we have to account for
this key derivation. However, in that case, the overhead of EwC is negligible
compared to the hashing cost in HtE.

Discussion. Structurally, EwC resembles the Hash-CTR-Hash (HCH) method [10]
but there are nuances in the design. Here the message is split into two uneven
halves, one of |M | −O(1) bits, and the other just O(1) bits. HCH runs the uni-
versal hash on the big half, meaning the hashing cost is Θ(|M |). In contrast,
EwC runs the universal hash on the small half, and thus the hashing cost is
merely O(1). On the other hand, while both have to encrypt Θ(|M |) bits with
their base encryption schemes, EwC has to use the expensive TE but HCH only
needs to run the cheap CTR.

Instantiations. If we want to use AES, we can instantiate H from the DM2
construction in Section 4, with AES-256 as the underlying blockcipher, and in-
stantiate G from GHASH or POLYVAL [17]. This means k = 256 and r = 127
and n = 128 and c = 1.5. The committing concealer C can be built from the
FF construction in Section 5.2, again on AES-256. If we want to achieve around
` − 8 bits of CMT-1 security, with ` < 128, the input length of C should be
m = ` + 128. In addition, in EtE, if we want CMT-1 security, the minimum
expansion must be `+ 1 bits. Moreover, EwC only uses AES-256 in the forward
direction. The overhead of EwC (assuming that the subkeys are cached) is four
multiplications in GF(2128) and four AES-256 calls plus an AES key setup. If
AES-NI is available, the AES cost is approximately three sequential AES-256,
because a good implementation can hide the key setup cost, and running two
parallel AES calls in DM2 has the same cost as one.6

If we instead have a blockcipher of 256-bit block length, say Rijndael-256,
the instantiation is much simpler. In particular, we can instantiate H from the
Davies-Meyer construction of Rijndael-256, and C directly from Rijndael-256,
meaning k = m = r = 256. Moreover, we can pick n = 256 and instantiate
GJ(X) as X × J , where × denotes the finite-field multiplication in GF(2256),
meaning c = 1. Thus the overhead of EwC in this case is two multiplications in

6 If we count the cost of subkey generation, we need six extra AES calls (instead of
eight). In particular, since J and J∗ are 128-bit long, each only needs one AES call
(instead of two). These six AES are fully parallel, so running them costs as much as
one AES call in AES-NI platforms.
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GF(2256) and two sequential Rijndael-256 calls plus the Rijndael-256 key setup
cost (that can be hidden with a good implementation if AES-NI is available).7

For both instantiations, in EtE, we can pad with either 10∗ or 0∗.

CMT-1 security of EtE[EwC]. Suppose that C has good binding security with

respect to an encoding encode : {0, 1}≤m−s → {0, 1}m. Define the following
padding mechanism in EtE. If we have a messageM and want to pad τ ≥ s bits to
it, we parse M to M1‖M2, with |M2| = m−τ , and then output M1‖encode(M2).
(We assume that one can efficiently recover the message X from encode(X)
and |X|, so that EtE is decryptable under the padding above.) For example, if
encode(X) = X‖0m−|X|, the padding mechanism simply adds 0τ to the message.
The following result shows that EtE[EwC] has good CMT-1 security. Intuitively,

we have a commitment chain K
H
−→ I

H
−→ R

C
−→ C2, and thus C2 is a commitment

of K.

Theorem 9. Let TE = EwC[TE,C, H,G] be as above. For any adversary A, we
can construct adversaries B1 and B2 such that

Advcmt-1
EtE[TE]

(A) ≤ Advcoll
H (B1) +Advbind

C,encode(B2) .

The running time of each Bi is about that of A plus the time to run EtE[TE] on
A’s output.

Proof. We first construct adversary B1. It runs
(

(K,N,A, P‖S, τ), (K∗, N∗, A∗, P ∗‖S∗, τ∗)
)

←$A .

It then runs EtE[TE] on (K,N,A, P‖S, τ) to obtain the subkeys I and R ←
H(I,X). It also runs EtE[TE] on (K∗, N∗, A∗, P ∗‖S∗, τ∗) to obtain (I∗, R∗, X∗).
If I = I∗ then it outputs ((K, [3]r), (K

∗, [3]r)). Otherwise, it outputs ((I,X),
(I∗, X∗)).

Next, we construct B2. It runs
(

(K,N,A, P‖S, τ), (K∗, N∗, A∗, P ∗‖S∗, τ∗)
)

←$A .

It then runs EtE[TE] on those inputs to obtain subkeys R and R∗, and outputs
((R,S), (R∗, S∗)).

For analysis, let C1‖C2 and C∗1‖C
∗
2 be the corresponding ciphertexts. Suppose

that A can create a ciphertext collision, meaning C1 = C∗1 and C2 = C∗2 and
K 6= K∗. If R = R∗ then B1 also creates a collision. If R 6= R∗ then B2 creates
a collision. Hence

Advcmt-1
EtE[TE]

(A) ≤ Advcoll
H (B1) +Advbind

C,encode(B2) .

This concludes the proof. ut

Strong tweakable-PRP security of EwC. The following result shows that
EwC is a strong tweakable-PRP. The proof is deferred to Section 8.

7 If we count the cost of subkey generation, we need four extra (parallel) Rijndael-256
calls.
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EwC2[TE,C,KD, H,G].Enc(K,T,M)

P‖S ←M // |S| = m

J ← KDK([0]r)[1 : n]; U ← P⊕GJ(S)

J∗ ← KDK([1]r)[1 : n]

L← KDK([2]r); I ← KDK([3]r)

V ← TE.Enc(L, T, U)

R← HI(T‖(U [1 : r]⊕V [1 : r]))

C2 ← C(R,S); C1 ← V⊕GJ∗(C2)

Return C1‖C2

EwC2[TE,C,KD, H,G].Dec(K,T,C)

C1‖C2 ← C // |C2| = m

J ← KDK([0]r)[1 : n]

J∗ ← KDK([1]r)[1 : n]; V ← C1⊕GJ∗(C2)

L← KDK([2]r); I ← KDK([3]r)

U ← TE.Dec(L, T, V )

R← HI(T‖(U [1 : r]⊕V [1 : r]))

S ← C−1(R,C2); P ← U⊕GJ(S)

Return P‖S

Fig. 16: The EwC2 transform.

Theorem 10. Let TE = EwC[TE,C, H,G] be as above. For any adversary A
making q queries, with at most B queries per user, we can construct adversaries
B1, B2, and B3 of at most 4q queries such that

Adv±p̃rp
TE

(A) ≤ 2Advprf
H (B1) +Adv±p̃rpTE (B2) +Advhide

C (B3) +
6cqB

2r
+

6qB

2m
.

The running time of each Bi is about that of A plus the time to run TE on A’s
queries.

Another way to get CMT security. To achieve full CMT security, one can
combine the Hash-then-Encrypt transform with EwC. However, this means that
we now can no longer cache the subkeys (I, J, J∗, L) and have to account for
the cost of subkey derivation. Moreover, we’ll have to pay the key setup cost
for TE. To improve the speed, we give another wideblock TBC EwC2 such
that EtE[EwC2] directly achieves CMT security; the code is in Fig. 16. This
resembles EwC but here the subkeys are derived with a collision-resistant PRF
KD : {0, 1}k × {0, 1}r → {0, 1}k (that we’ll again instantiate via the DM2 con-
struction), and the hash function H : {0, 1}k × {0, 1}∗ → {0, 1}k needs to hash
(I, T‖(U [1 : r]⊕V [1 : r])) instead of just (I, U [1 : r]⊕V [1 : r]). Because the
hash H takes a long input now, we have to instantiate it via, say (truncated)
SHA-512.

In EwC2 we can cache the subkeys (I, J, J∗, L) and avoid the key setup cost
for TE. We also manage to eliminate the use of DM2 to generate the subkey for C.
The drawback is that we need to process the tweak T twice, one by the hash H,
and another via TE. However, when we use TE in EtE, the tweak T is (N,A, τ),
which is usually short. Moreover, in modern wideblock TBC constructions like
AEZ or HCTR2, the tweak is processed via an AXU hash, and thus its processing
is cheap.

CMT security of EtE[EwC2]. The following Theorem 11 formally confirms
that EtE[EwC2] does achieve CMT security. Informally, when we use EwC2 within

EtE (meaning T = (N,A, τ)), we have the committing chain (K,N,A, τ)
KD
−−→

(I,N,A, τ)
H
−→ R

C
−→ C2.
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Theorem 11. Let TE = EwC[TE,C,KD, H,G] be as above. For any adver-
sary A, we can construct adversaries B1,B2,B3 such that

Advcmt
EtE[TE]

(A) ≤ Advcoll
KD (B1) +Advcoll

H (B2) +Advbind
C,encode(B3) .

The running time of each Bi is about that of A plus the time to run EtE[TE] on
A’s output.

Proof. We first construct adversary B1. It runs
(

(K,N,A, P‖S, τ), (K∗, N∗, A∗, P ∗‖S∗, τ∗)
)

←$A .

It then outputs ((K, [3]r), (K
∗, [3]r)).

Next, we construct B2. It runs
(

(K,N,A, P‖S, τ), (K∗, N∗, A∗, P ∗‖S∗, τ∗)
)

←$A .

It then runs EtE[TE] on those inputs to obtain (I, U, V ) and (I∗, U∗, V ∗). Let
X = U [1 : r]⊕V [1 : r] and X∗ = U∗[1 : r]⊕V ∗[1 : r]. It then outputs

(

(

I, (N,A, τ)‖X
)

,
(

I∗, (N∗, A∗, τ∗)‖X∗
)

)

.

Finally, we construct B3. It runs
(

(K,N,A, P‖S, τ), (K∗, N∗, A∗, P ∗‖S∗, τ∗)
)

←$A .

It then runs EtE[TE] on those inputs to obtain subkeys R and R∗ of C, and
outputs ((R,S), (R∗, S∗)).

For analysis, let C1‖C2 and C∗1‖C
∗
2 be the corresponding ciphertexts. Suppose

that A can create a ciphertext collision, meaning C1 = C∗1 and C2 = C∗2 and
K 6= K∗. If I = I∗ then B1 creates a collision. If I 6= I∗ but R = R∗ then B2
creates a collision. Finally, if R 6= R∗ then B3 creates a collision. Hence

Advcmt
EtE[TE]

(A) ≤ Advcoll
KD (B1) +Advcoll

H (B2) +Advbind
C,encode(B3) .

This concludes the proof. ut

Strong tweakable-PRP security of EwC2. The following result shows that
EwC2 is a strong tweakable-PRP. The proof is similar to that of Theorem 12.

Theorem 12. Let TE = EwC[TE,C,KD, H,G] be as above. For any adversary A
making q queries, with at most B queries per user, we can construct adversaries
B1, B2, B3, and B4 of at most 4q queries such that

Adv±p̃rp
TE

(A) ≤ Advprf
KD(B1) +Advprf

H (B2) +Adv±p̃rpTE (B3)

+Advhide
C (B4) +

6cqB

2r
+

6qB

2m
.

The running time of each Bi is about that of A plus the time to run TE on A’s
queries.
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Fig. 17: Performance of EwC transform. The graph shows CPU cycles-per-byte
(y-axis, lower is better) for encrypting messages of varying sizes (x-axis, in bytes)
on a x86 64 processor.

7 Performance

Schemes. We start from HCTR2 [14] as our baseline wideblock tweakable block
cipher. We use HCTR2 on AES-256 since the Accordion call targets 256-bit (key-
recovery) security, but note that one can use EwC on HCTR2-AES-128 as well.
We implement EwC with the committing concealer C being the FF construction
from Section 5.2, the hash H being the DM2 construction from Section 4, the
AXU hash G being POLYVAL [17], and set ` = 120.

Experimental setup. We evaluated the schemes on a range of message lengths
from 64 bytes to 16384 bytes. For each message length, after warming up the
operation 2048 invocations, we measured the elapsed time in cycles for 2048
invocations. We divided this elapsed time by the number of encrypted bytes to
compute the number of cycles per byte. To minimize variance, we repeated this
eight times, checked that the standard deviation across the repetitions was less
than 0.05 cycles per byte, and took the mean.

Our benchmarking program used the implementation accompanying the pa-
per [14] and was executed on an Intel i7-1360P, on a specified core running at
2.4GHz with frequency scaling disabled.

Results. The statistics is given in Fig. 17. Overall, the overhead is significant
for small data, but becomes negligible for messages bigger than 1KB.

8 Proof of Theorem 12

8.1 A Technique To Simplify Game-based Proofs

Our proof relies on a novel use of the H-coefficient technique [25, 12] to simplify
game-based proofs [8]. This technique is generic, and in this section, we will
elaborate on its details.

The setting. Suppose we have a construction based on an indistinguishability-
based primitive Π, such as a PRF, an encryption scheme, or in our case, a
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committing concealer. The security notion of this construction involves bounding
the gap between the real game G0 (where Π is used) and an ideal game G2.
The standard approach is to (i) define an intermediate game G1 where Π is
replaced by its ideal reference, (ii) give a reduction to bound the gap between
G0 and G1, and (iii) bound the (information-theoretic) gap between G1 and G2.
This approach doesn’t work if in step (ii), the reduction only works as long as
G0 doesn’t set a flag bad. For example, in our case, we have to derive the key
for the committing concealer, and the key is uniformly random only when G0

doesn’t set bad.
To deal with the situation above, define G1 as the analogue of G0 where Π

is replaced by its ideal reference; this means that G1 also includes a flag bad.
The reduction still works as usual, but keeps track of the flag bad. If bad is set,
then the reduction returns 1, suggesting that it’s interacting with the real world.
Otherwise, it follows the guess of the adversary.

In this case, the reduction advantage ∆ doesn’t bound Pr[G0] − Pr[G1]. In-
stead, Pr[G0]−Pr[G1] ≤ ∆+Pr[G1 sets bad]. This means that we need to bound
(1) the chance that G1 sets bad, and also (2) the gap Pr[G1]− Pr[G2]. Here we
only consider information-theoretic bounds, meaning the adversary is compu-
tationally unbounded, and thus can be assumed to be deterministic. There are
many techniques [25, 12, 19, 15] for simplifying the analysis in (2), but none
considers (1). In this section, we show how to extend the H-coefficient tech-
nique [25, 12] to simultaneously bound both (1) and (2). That is, not only can
we simplify the analysis of (1), but we can kill two birds with one stone.

The H-coefficient technique. Following [19], it is convenient to consider
interactions of a distinguisher A with an abstract system S which answers A’s
queries. This system takes inputs and produces outputs, and is randomized and
possibly stateful. The interaction between an adversary A and a system S defines
a transcript θ =

(

(u1, v1), . . . , (uq, vq)
)

containing the ordered sequence of query-
answer pairs. Let pS(θ) be the probability that if the adversary queries u1, . . . , uq

in that order, the answers will be v1, . . . , vq respectively.
In the H-coefficient technique, one wants to bound the distinguishing advan-

tage of a real system Sreal and an ideal one Sideal. The adversary’s interactions
with those systems define transcripts Treal and Tideal, respectively. The following
result bounds the distinguishing advantage of A.

Lemma 13. [25, 12] Suppose we can partition the set of valid transcripts for
the ideal system into good and bad ones. Further, suppose that there exists a

constant ε ≥ 0 such that 1−
pSreal

(θ)

pSideal
(θ) ≤ ε for every good transcript θ. Then, the

advantage of A in distinguishing Sreal and Sideal is at most ε+Pr[Tideal is bad] .

Application to our setting. Recall that we have two games G1 and G2,
and we need to bound (1) Pr[G1 sets bad] and (2) Pr[G1] − Pr[G2]. To use the
H-coefficient technique, we view G1 as the real system Sreal, and G2 as the ideal
system Sideal, and define what’s meant for transcripts to be bad. Then one can
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use Lemma 13 to bound (2). Our key idea here is that it’s often possible to
extend the definition of bad transcripts (say adding some certain conditions, or
revealing some extra information when the adversary finishes querying) so that
if G1 sets bad then the transcript must be bad. In that case, the following result
shows that the same bound of Lemma 13 can be used to bound (1) as well. In
fact, the actual bound is even slightly better.

Lemma 14. Suppose we can partition the set of valid transcripts for the ideal
system into good and bad ones such that if G1 sets bad then the transcript must be

bad. Further, suppose that there exists a constant ε ≥ 0 such that 1−
pSreal

(θ)

pSideal
(θ) ≤ ε

for every good transcript θ. Then

Pr[G1 sets bad] ≤ ε+ (1− ε) Pr[Tideal is bad] .

Proof. Since G1’s setting bad will lead to a bad transcript,

Pr[G1 sets bad] ≤ Pr[Treal is bad] ≤ 1− Pr[Treal is good] . (1)

Recall that for any good transcript θ,

pSreal
(θ) ≥ (1− ε)pSideal

(θ) .

Summing this over all good transcripts,

Pr[Treal is good] ≥ (1− ε) Pr[Tideal is good] . (2)

By combining Equation (1) and Equation (2), we obtain

Pr[G1 sets bad] ≤ 1− (1− ε) Pr[Tideal is good]

= 1− (1− ε)
(

1− Pr[Tideal is bad]
)

= ε+ (1− ε) Pr[Tideal is bad] .

This concludes the proof. ut

Discussion. Let Badreal be the event that G1 sets bad. Our approach requires
extending the definition of bad transcripts so that if Badreal happens, the result-
ing transcript will be bad. Effectively, this requires bounding the probability of
an extra event Badideal in the ideal system when we deal with Pr[Tideal is bad].
This doesn’t mean we gain nothing, because events in the ideal system are often
much easier to analyze.

8.2 Proof of Theorem 12

Without loss of generality, assume that the adversary doesn’t repeat prior queries.
Moreover, if it queries C ← Enc(i, T,M) then it won’t later query Dec(i, T, C),
and vice versa.

Consider the following sequence of games. Game G0 coincides to game G±p̃rp
TE

(A)
with challenge bit 1. Game G1 is identical to game G0, except that each call to
H(Ki, ·) is replaced by a corresponding call to a truly random function fi :
{0, 1}r → {0, 1}k. To bound the gap between the two games, we construct an
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adversary D1 attacking the (multi-user) PRF security of H as follows. It runs A
and simulates game G0, but each call to H(Ki, ·) is replaced by a corresponding
call to Eval(i, ·). Then

Advprf
H (D1) = Pr[G0(A)]− Pr[G1(A)] .

Then in gameG1, the subkeys Ji, J
∗
i , Li, Ii will be uniformly random. In gameG2,

instead of using H(Ii, ·), we uses truly random functions gi : {0, 1}
r → {0, 1}k.

To bound the gap between G2 and G1, we construct an adversary D2 attacking
the (multi-user) security of H as follows. It runs A and simulates game G1, but
each call to H(Ii, ·) is replaced by a corresponding call to Eval(i, ·). Then

Advprf
H (D2) = Pr[G1(A)]− Pr[G2(A)] .

So far we have two adversaries attacking the PRF security of H. We can unify
them to an adversary B1 as follow: adversary B1 picks a coin b←$ {0, 1}, and
runs Db. Then

Advprf
H (B1) =

1

2
Advprf

H (D1) +
1

2
Advprf

H (D2) ,

and thus

Pr[G0(A)]− Pr[G2(A)] = 2 ·Advprf
H (B1) .

LetM be the domain of TE, and let LP(M) denote the set of permutations onM
that are length-preserving, meaning |π(M)| = |M | for every M ∈M. Game G3

is identical to game G2, but calls to TE.Enc(Li, T, ·) and TE.Dec(Li, T, ·) are
replaced by corresponding calls to Πi,T ←$ LP(M) and its inverse. To bound
the gap between the two games, we construct an adversary B2 attacking the
(multi-user) strong tweakable-PRP security of TE as follows. It runs A and
simulates game G2, but calls to calls to TE.Enc(Li, T, ·) and TE.Dec(Li, T, ·) are
replaced by corresponding calls to Enc(i, T, ·) and Dec(i, T, ·). Then

Adv±p̃rpTE (B2) = Pr[G2(A)]− Pr[G3(A)] .

Game G4 is specified in Fig. 18. It is the same as G3 with some bookkeeping,
and thus

Pr[G4(A)] = Pr[G3(A)] .

We are now in the setting of Section 8.1, as the keys for C are uniformly only
when G4 doesn’t set bad. Let G5 be identical to game G4, except that the answers
of C and C−1 are replaced by uniformly random strings. The code of game G5

is specified in Fig. 18. To bound the gap between the two games, we construct
an adversary B3 attacking the hiding security of C as follows. It runs A and
simulates game G4. For each call to C(R, ·), it creates a new user u and makes a
corresponding call to Enc(u, ·). Likewise, for each call to C−1(R, ·), it creates a
new user u∗ and makes a corresponding call to Dec(u∗, ·). If the simulated game
sets bad then B3 returns 1, indicating that it’s in the real world. Otherwise, it
returns the same guess as A.

Let d be the challenge bit of game Ghide
C (B3). Then on the one hand,

Pr[Ghide
C (B3)⇒ true | d = 1] ≥ Pr[G4(A)] .
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Game G4(A), G5(A)

v ← 0; b′←$ANew,Enc,Dec

Return (b′ = 1)

Enc(i, T, P‖S)

U ← P⊕G(Ji, S); V ← Πi,T (U)

X ← U [1 : r]⊕V [1 : r]; R← H(Ii, X)

If X ∈ Domi then bad← true

Domi ← Domi ∪ {X}

C2 ← C(R,S); C2←$ {0, 1}m

C1 ← V⊕G(J∗
i , C2)

Return C1‖C2

New()

v ← v + 1; Domv ← ∅

Jv, J
∗
v ←$ {0, 1}n; Iv←$ {0, 1}k

For T ∈ T do Πv,T ←$ LP(M)

Dec(i, T, C1‖C2)

V ← C1⊕G(J∗
i , C2); U ← Π−1

i,T (V )

X ← U [1 : r]⊕V [1 : r]; R← H(Ii, X)

If X ∈ Domi then bad← true

Domi ← Domi ∪ {X}

S ← C−1(R,C2); S←$ {0, 1}m

P ← U⊕G(Ji, S)

Return P‖S

Fig. 18: Games G4 and G5 in the proof of Theorem 12. Game G5 contains the
highlighted code but game G4 does not.

On the other hand,

Pr[Ghide
C (B3)⇒ false | d = 0] ≤ Pr[G5(A)] + Pr[G5(A) sets bad] .

Subtracting, we obtain

Pr[G4(A)]− Pr[G5(A)] ≤ Advhide
C (B3) + Pr[G5(A) sets bad] .

Let G6 be game G±p̃rp
TE

(A) with challenge bit 0. Using the technique in Sec-
tion 8.1, we obtain the following result; the proof is is deferred to Section 8.3.

Lemma 15. Let G5 and G6 be as above. Then

Pr[G5(A) sets bad] + (Pr[G5(A)]− Pr[G6(A)]) ≤
2qB

2m
+

6cqB

2r
.

Summing up,

Adv±p̃rpTE (A) = Pr[G0(A)]− Pr[G6(A)]

=

5
∑

i=0

Pr[Gi(A)]− Pr[Gi+1(A)]

≤ 2Advprf
H (B1) +Adv±p̃rpTE (B2) +Advhide

C (B3) +
6cqB

2r
+

2qB

2m
.

8.3 Proof of Lemma 15

We will use the technique in Section 8.1 . In particular, we will consider computa-
tionally unbounded adversaries, and thus without loss of generality, assume that
the adversary is deterministic. The real system corresponds to game G5, and the
ideal system corresponds to game G6. When the adversary finishes querying, in
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the real world, we will grant it the subkeys Ji, J
∗
i of the AXU hash G, and in

the ideal world, we will give it fresh uniformly random n-bit strings. This key
revelation can only help the adversary.

Defining bad transcripts. A transcript consists of the revealed hash keys
Ji, J

∗
i and the following information:

– For each query C1‖C2 ← Enc(i, T, P‖S), we store a corresponding entry
(i, T, P‖S,C1‖C2, U, V,X), where U ← P⊕G(Ji, S), V ← C1⊕G(J∗i , C2),
and X ← U [1 : r]⊕V [1 : r].

– For each query P‖S ← Dec(i, T, C1‖C2), we store a corresponding entry
(i, T, P‖S,C1‖C2, U, V,X), where U ← P⊕G(Ji, S), V ← C1⊕G(J∗i , C2),
and X ← U [1 : r]⊕V [1 : r].

A transcript is bad if one of the following happens:

1. There are entries (i, T, P‖S,C1‖C2, U, V,X) and (i, T ∗, P ∗‖S∗, C∗1‖C
∗
2 , U

∗,
V ∗, X∗) such that X = X∗. This ensures that if G4 sets bad then the tran-
script is bad.

2. There are (i, T, P‖S,C1‖C2, U, V,X) and (i, T, P ∗‖S∗, C∗1‖C
∗
2 , U

∗, V ∗, X∗)
such that U = U∗. This forces V = V ∗ in the real world, but it is unlikely
to happen in the ideal world.

3. There are (i, T, P‖S,C1‖C2, U, V,X) and (i, T, P ∗‖S∗, C∗1‖C
∗
2 , U

∗, V ∗, X∗)
such that V = V ∗. This forces U = U∗ in the real world, but it is unlikely
to happen in the ideal world.

Entries are stored in the order of the queries. If a transcript is not bad and is
valid for the ideal system then we say that it is good.

Probability of bad transcripts. Let Tideal be the random variable for the
transcript in the ideal world. We now bound the probability that Tideal is bad.
Let Badj be the set of transcripts that violate the j-th constraint of badness.
Then from the union bound,

Pr[Tideal is bad] ≤ Pr[Tideal ∈ Bad1 ∪ Bad2 ∪ Bad3] ≤
3

∑

j=1

Pr[Tideal ∈ Badj ] .

We first bound Pr[Tideal ∈ Bad1]. Consider two entries (i, T, P‖S,C1‖C2, U, V,X)
and (i, T ∗, P ∗‖S∗, C∗1‖C

∗
2 , U

∗, V ∗, X∗) in Tideal in that order. Due to symmetry,
without loss of generality, we only need to consider the case that second entry is
created by a decryption query. In that case, S∗ is uniformly random, independent
of S, and thus the chance that S∗ = S is at most 2−m. Suppose that S∗ 6= S.
Note that if X = X∗ then

(

P⊕P ∗⊕G(J∗i , C2)⊕G(J∗i , C
∗
2 )
)

[1 : r] =
(

G(Ji, S)⊕G(Ji, S
∗)
)

[1 : r] . (3)

Since Ji is independent of (J∗i , P, P
∗, C2, C

∗
2 , S, S

∗), we can consider a fixed
choice of (J∗i , P, P

∗, C2, C
∗
2 , S, S

∗) but still treat Ji as uniformly random, and
bound the conditional probability that Equation (3) happens. For any ∆ ∈
{0, 1}n−r, since G is c-AXU and S 6= S∗, the chance that G(Ji, S)⊕G(Ji, S

∗)
is

(

P⊕P ∗⊕G(J∗i , C2)⊕G(J∗i , C
∗
2 )
)

[1 : r]‖∆ is at most c/2n. Summing this over
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all 2n−r choices of ∆, the chance that Equation (3) happens is at most c/2r.
Summing over at most all qB pairs of entries of the same user in Tideal,

Pr[Tideal ∈ Bad1] ≤
qB

2m
+

cqB

2r
.

Next, we bound Pr[Tideal ∈ Bad2]. Consider two entries (i, T, P‖S,C1‖C2, U, V,X)
and (i, T, P ∗‖S∗, C∗1‖C

∗
2 , U

∗, V ∗, X∗) in Tideal. Due to the assumption on the way
the adversary makes queries, we must have (P, S) 6= (P ∗, S∗). We consider the
following cases.

Case 1: S = S∗, meaning P 6= P ∗. If U = U∗ then

U⊕U∗ = (P⊕G(Ji, S))⊕(P
∗⊕G(Ji, S

∗)) = P⊕P ∗

which is a contradiction because U⊕U∗ is the all-zero string, whereas P⊕P ∗

can’t be the all-zero string.

Case 2: S 6= S∗. If U = U∗ then we must have

G(Ji, S)⊕G(Ji, S
∗) = (P⊕P ∗)[1 : n] .

Since G is c-AXU, and Ji is independent of (S, S∗, P, P ∗), this happens with
probability at most c/2n.

Summing both cases over at most qB pairs of entries of the same user,

Pr[Tideal ∈ Bad2] ≤
cqB

2n
≤

cqB

2r
.

Similarly, we can bound Pr[Tideal ∈ Bad3] ≤ cqB/2r. Hence

Pr[Tideal is bad] ≤
qB

2m
+

3cqB

2r
. (4)

Transcript ratio. Fix a good transcript θ. For each system S ∈ {Sreal,Sideal},
the event that S produces θ is the sequence of the following events:

– For each user i, its revealed hash keys Ji, J
∗
i are as indicated by θ. Given

prior events, the conditional probability that this happens is 2−2n for both
the real and ideal systems.

– For each entry (i, T, P‖S,C1‖C2, U, V,X) in θ, if we query (i, T, P‖S) then
we obtain C1‖C2. Given prior events, the condition probability that this
happens in the ideal system is

1

2|P |+m −Q
.

where Q is the number of prior entries of the same (i, T ) and |P | in θ. In
contrast, the conditional probability that this happens in the real system is

1

(2|P | −Q)2m
≥

1

2|P |+m −Q
.

Hence pSreal
(θ) ≥ pSideal

(θ).

Wrapping up.Applying Lemma 13 and Lemma 14 with ε = 0 and Pr[Tideal is bad]
as indicated from Equation (4), we obtain the claimed bound.
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