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Abstract
Machine learning (ML) is vulnerable to inference (e.g., mem-
bership inference, property inference, and data reconstruction)
attacks that aim to infer the private information of training
data or dataset. Existing defenses are only designed for one
specific type of attack and sacrifice significant utility or are
soon broken by adaptive attacks. We address these limitations
by proposing an information-theoretic defense framework,
called Inf2Guard, against the three major types of inference
attacks. Our framework, inspired by the success of represen-
tation learning, posits that learning shared representations not
only saves time/costs but also benefits numerous downstream
tasks. Generally, Inf2Guard involves two mutual informa-
tion objectives, for privacy protection and utility preservation,
respectively. Inf2Guard exhibits many merits: it facilitates
the design of customized objectives against the specific infer-
ence attack; it provides a general defense framework which
can treat certain existing defenses as special cases; and im-
portantly, it aids in deriving theoretical results, e.g., inherent
utility-privacy tradeoff and guaranteed privacy leakage. Exten-
sive evaluations validate the effectiveness of Inf2Guard for
learning privacy-preserving representations against inference
attacks and demonstrate the superiority over the baselines.1

1 Introduction

Machine learning (ML) models (particularly deep neural net-
works) are vulnerable to inference attacks, which aim to infer
sensitive information about the training data/dataset that are
used to train the models. There are three well-known types of
inference attacks on training data/dataset: membership infer-
ence attacks (MIAs) [13, 61, 76], property inference attacks
(PIAs) (also called distribution inference attacks) [6, 22, 66],
and data reconstruction attacks (DRAs) (also called model
inversion attacks) [7, 31]. Given an ML model, in MIAs, an
adversary aims to infer whether a particular data sample was
in the training set, while in PIAs, an adversary aims to infer

1Source code: https://github.com/leilynourbakhsh/Inf2Guard.

statistical properties of the training dataset used to train the
targeted ML model. Furthermore, an adversary aims to di-
rectly reconstruct the training data in DRAs. Leaking the data
sample or information about the dataset raises serious privacy
issues. For instance, by performing MIAs, an adversary is
able to identify users included in sensitive medical datasets,
which itself is a privacy violation [33]. By performing PIAs,
an adversary can determine whether or not machines that
generated the bitcoin logs were patched for Meltdown and
Spectre attacks [22]. More seriously, DRAs performed by an
adversary leak all the information about the training data.

To mitigate the privacy risks, various defenses have been
proposed against MIAs [38, 48, 57, 59, 61, 62, 64, 74] and
DRAs [23, 28, 41, 51, 58, 65, 72, 84]2. However, there are two
fundamental limitations in existing defenses: 1) They are de-
signed against only one specific type of attack; 2) Provable
defenses (based on differential privacy [3, 20]) incur signifi-
cant utility losses to achieve reasonable defense performance
against inference attacks [36, 59] since the design of such
randomization-based defenses did not consider specific infer-
ence attacks (also see Section 5); and empirical defenses are
soon broken by stronger/adaptive attacks [9, 17, 62].

We aim to address these limitations and consider the ques-
tion: 1) Can we design a unified privacy protection framework
against these inference attacks, that also maintain utility? 2)
Under the framework, can we further theoretically under-
stand the utility-privacy tradeoff and the privacy leakage
against the inference attacks? To this end, we propose an
information-theoretic defense framework, termed Inf2Guard,
against inference attacks through the lens of representation
learning [11]. Representation learning has been one of the
biggest successes in modern ML/AI so far (e.g., it plays an
important role in today’s large language models such as Chat-
GPT [1] and PaLM2 [2]). Particularly, rather than training
large models from scratch, which requires huge computational
costs and time (e.g., GPT-3 has 175 billion parameters), learn-

2To our best knowledge, there exist no effective defenses against PIAs.
[29] analyzes sources of information leakage to cause PIAs, but their solutions
are difficult to be tested on real-world datasets due to lack of generality.
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ing shared representations (or pretrained encoder)3 presents
an economical alternative. For instance, the shared representa-
tions can be directly used or further fine-tuned with different
purposes, achieving considerable savings in time and cost.

More specifically, we formulate Inf2Guard via two mutual
information (MI)4 objectives in general, for privacy protection
and utility preservation, respectively. Under this framework,
we can design customized MI objectives to defend against
each inference attack. For instance, to defend against MIAs,
we design one MI objective to learn representations that con-
tain as less information as possible about the membership
of the training data—thus protecting membership privacy,
while the other one to ensure the learnt representations in-
clude as much information as possible about the training data
labels—thus maintaining utility. However, directly solving
the MI objectives for each inference attack is challenging,
since calculating an MI between arbitrary variables is often
infeasible [52]. To address it, we are inspired by the MI neural
estimation [4,10,16,32,50,53], which transfers the intractable
MI calculations to the tractable variational MI bounds. Then,
we are capable of parameterizing each bound with a (deep)
neural network, and train neural networks to approximate
the true MI and learn representations against the inference
attacks. Finally, we can derive theoretical results based on our
MI objectives: we obtain an inherent utility-privacy tradeoff,
and guaranteed privacy leakage against each inference attack.

We extensively evaluate Inf2Guard and compare it with
the existing defenses against the inference attacks on mul-
tiple benchmark datasets. Our experimental results validate
that Inf2Guard obtains a promising utility-privacy tradeoff
and significantly outperforms the existing defenses. For in-
stance, under the same defense performance against MIAs,
Inf2Guard has a 30% higher testing accuracy than the DP-
SGD [3]. Our results also validate the privacy-utility tradeoffs
obtained by Inf2Guard5.

Our main contributions are summarized as below:

• Algorithm: We design the first unified framework
Inf2Guard to defend against the three well-known types
of inference attacks via information theory. Our frame-
work can instantiate many existing defenses as special
cases, e.g., AdvReg [48] against MIAs (See Section 3.1)
and Soteria [65] against DRAs (See Section 3.3).

• Theory: Based on our formulation, we can derive novel
theoretical results, e.g., the inherent tradeoff between util-
ity and privacy, and guaranteed privacy leakage against
all the considered inference attacks.

3Pretrained encoder as a service has been widely deployed by industry,
e.g., OpenAI’s GPT-4 API [1] and Clarifai’s Embedding API [18]. We will
interchangeably use the pretrained encoder and learnt representations.

4In information theory, MI is a measure of shared information between
random variables, and offers a metric to quantify the “amount of information"
obtained about one random variable by observing the other random variable.

5A recent work [56] formulates defenses against inference attacks under a
privacy game framework, but it does not propose concrete defense solutions.

• Evaluation: Extensive evaluations verify the effective-
ness of Inf2Guard for learning privacy-preserving rep-
resentations against inference attacks.

2 Background and Problem Definition

Notations: We use s, s, S, and S to denote (random) scalar,
vector, matrix, and space, respectively. Accordingly, Pr(s),
Pr(s), and Pr(S) are the probability distribution over s, s, and
S. I(x;r) and H(x,r) are the mutual information and cross
entropy between a pair of random variables (x,r), respectively,
and H(x) = I(x;x) as the entropy of x. KL(p||q) is the KL-
divergence between two distributions p and q. We denote D
as the underlying distribution that data are sampled from. A
data sample is denoted as (x,y) ∼ D, where x ∈ X is data
features, y ∈ Y is the label, and X and Y are the data space
and label space, respectively. We further denote a dataset as
D = {X,y}= {(xi,yi)}, that consists of a set of data samples
(xi,yi)∼D, and will interchangeably use D and {X,y}. We
let u ∈U be the private attribute within the attribute space U.
For instance, in MIAs, u ∈U = {0,1} means a binary-valued
private membership; in PIAs, u∈U = {1,2, · · · ,K} indicates
a K-valued private dataset property; and u ∈U = X indicates
the private data itself in DRAs. The composition function of
two functions f and g is denoted as (g◦ f )(·) = g( f (·)).

2.1 Formalizing Privacy Attacks
We denote a classification model6 Fθ : X → Y as a function,
parameterized by θ, that maps a data sample x ∈ X to a label
y ∈ Y . Given a training set D∼D , we denote F ← T (D) as
learned by running a training algorithm T on the dataset D.
Formalizing MIAs: Assume a data sample (x,y)∼D with
a private membership u that is chosen uniformly at random
from {0,1}, where u = 1 means (x,y) is a member of D, and
0 otherwise. An MIA AMIA has access to D and F , takes (x,y)
as input, and outputs a binary AD,F

MIA(x,y). We omit D,F for
notation simplicity. Then, the attack performance of an MIA
AMIA is defined as Pr(x,y,u)(AMIA(x,y) = u).
Formalizing PIAs: PIAs define a private property on a
dataset. Given a dataset Du ∼ D with a private property u
chosen uniformly at random from {1,2, · · · ,K}. A PIA APIA
has access to D and F , and outputs a K-valued APIA(Du).
Then, the attack performance of a PIA APIA is defined as
Pr(Du,u)(APIA(Du) = u).
Formalizing DRAs: Given a random data (x,y) ∈ D, DRAs
aim to reconstruct the private x. A DRA ADRA has access to D
and F , and outputs a reconstructed x̂ = ADRA(x,y). The DRA
performance is measured by the similarity/difference between
x̂ and x. For instance, [7] introduces the (η,γ)-reconstruction
metric defined as Pr(x,y)(∥x̂−x∥2 ≤ η)≥ γ, where a smaller
η and a larger γ imply a more severe DRA.

6In this paper, we focus on classification models for simplicity.
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2.2 Threat Model and Problem Formulation

We have three roles: task learner, defender, and attacker. The
task learner (i.e., data owner) aims to learn an accurate classi-
fication model on its training data. The defender (e.g., data
owner or a trusted service provider) aims to protect the train-
ing data privacy—it designs a defense framework by learning
shared data representations that are robust against inference
attacks. The attacker can arbitrarily use data representations
to perform the inference attack. The attacker is also assumed
to know the underlying data distribution, but cannot access
the internal encoder (e.g., deployed as an API [1, 18]).

Formally, we denote fΘ : X →Z as the encoder, parameter-
ized by Θ, that maps a data sample x∈ X (or a dataset X∈ X )
to its representation vector r = f (x) ∈ Z (or representation
matrix R = f (X) ∈ Z), where Z is the representation space.
Moreover, we let C : Z→ Y be the classification model on
top of the representation r or encoder f , which predicts the
data label y (or dataset labels y). We further let A : Z→U be
the inference model, which infers the private attribute u using
the learnt representations r or R. Then, our defense goals are:

• Defend against MIAs: Given a random sample (x,y,u) ∈
D, we expect to learn f such that the MIA performance
Pr(AMIA( f (x),y) = u) is low, and the utility loss/risk, i.e.,
RiskMIA(C ◦ f ) = Pr(C ◦ f (x) ̸= y), is also small.

• Defend against PIAs: Given a random dataset (X,y,u) ∈
D, we expect to learn f with low PIA performance
Pr(APIA( f (X),y) = u), and also a small utility loss/risk,
i.e., RiskPIA(C ◦ f ) = 1

|y| ∑(x,y)∈{X,y}Pr(C ◦ f (x) ̸= y).

• Defend against DRAs: Given a random sample (x,y) ∈
D, we expect to learn f with low DRA performance, i.e.,
Pr(x,y)(∥x̂−x∥2 ≥ η)≥ γ with a large η and γ (flipping the
inequality direction on η for DRAs), and also a small utility
risk RiskDRA(C ◦ f ) = Pr(C ◦ f (x) ̸= y).

3 Design of Inf2Guard

3.1 Inf2Guard against MIAs

3.1.1 MI objectives

Given a data sample x∼D , from the training set D (i.e., u= 1)
or not (i.e., u = 0), the defender learns the representation
r = f (x) that satisfies the following two goals:

• Goal 1: Membership protection. r contains as less infor-
mation as possible about the private membership u. Ideally,
when r does not include information about u (i.e., r⊥ u), it
is impossible to infer u from r. Formally, we quantify the
membership protection using the MI objective as follows:

min
f

I(r;u), (1)

where we minimize such MI to maximally reduce the cor-
relation between r and u.

• Goal 2: Utility preservation. r should be effective for pre-
dicting the label y of the training data (i.e., u = 1), thus
preserving utility. Formally, we quantify the utility preser-
vation using the below MI objective:

max
f

I(y;r|u = 1), (2)

where we maximize such MI to make r accurately predict
the training data label y during training.

3.1.2 Estimating MI via tractable bounds

The key challenge of solving the above two MI objectives
is that calculating an MI between two arbitrary random vari-
ables is likely to be infeasible [52]. Inspired by the existing
MI neural estimation methods [4,10,16,32,50,53], we convert
the intractable exact MI calculations to the tractable varia-
tional MI bounds. Specifically, we first obtain an MI upper
bound for membership protection and an MI lower bound
for utility preserving via introducing two auxiliary posterior
distributions, respectively. Then, we parameterize each auxil-
iary distribution with a neural network, and approximate the
true MI by minimizing the upper bound and maximizing the
lower bound through training the involved neural networks.
We emphasize we do not design novel MI neural estimators,
but adopt existing ones to assist our MI objectives for learning
privacy-preserving representations. Note that, though the es-
timated MI bounds may not be tight (due to the MI estimators
or auxiliary distributions learnt by neural networks) [16, 32],
they have shown promising performance in practice. It is still
an active research topic to design better MI estimators that
lead to tighter MI bounds (which is orthogonal to this work).

Minimizing the upper bound MI in Equation (1). We adapt
the variational upper bound proposed in [16]. Specifically,

I(r;u)≤ IvCLUB(r;u) = E
p(r,u)

[logqΨ(u|r)]− E
p(r)p(u)

[logqΨ(u|r)],

where qΨ(u|r) is an auxiliary posterior distribution of p(u|r)
needing to satisfy the below condition on KL divergence:
KL(p(r,u)||qΨ(r,u))≤ KL(p(r)p(u)||qΨ(r,u)). To achieve
this, we thus minimize:

min
Ψ

KL(p(r,u)||qΨ(r,u)) = min
Ψ

KL(p(u|r)||qΨ(u|r))

= min
Ψ

E
p(r,u)

[log p(u|r)]− E
p(r,u)

[logqΨ(u|r))]

⇐⇒max
Ψ

E
p(r,u)

[logqΨ(u|r)], (3)

where we note that Ep(r,u)[log p(u|r)] is irrelevant to Ψ. [16]
proved when qΨ(u|r) is parameterized by a neural network
with high expressiveness (e.g., deep neural network), the con-
dition is satisfied almost surely by maximizing Equation (3).
Finally, our Goal 1 for privacy protection is reformulated as
solving the below min-max objective function:

min
f

min
Ψ

IvCLUB(r;u)⇐⇒min
f

max
Ψ

E
p(r,u)

[logqΨ(u|r)] (4)
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Remark. Equation (4) can be interpreted as an adversarial
game between an adversary qΨ (i.e., a membership inference
classifier) who aims to infer the membership u from r; and
the encoder f who aims to protect u from being inferred.

Maximizing the lower bound MI in Equation (2). We adopt
the MI estimator proposed in [49] to estimate the lower bound
of Equation (2). Specifically, we have

I(y;r|u = 1) = H(y|u = 1)−H(y|r,u = 1)

= H(y|u = 1)+ E
p(y,r,u)

[log p(y|r,u = 1))]

= H(y|u = 1)+ E
p(y,r,u)

[logqΩ(y|r,u = 1))]

+ E
p(y,r,u)

[KL(p(·|r,u = 1)||qΩ(·|r,u = 1))]

≥ H(y|u = 1)+ E
p(y,r,u)

[logqΩ(y|r,u = 1))],

where qΩ is an arbitrary auxiliary posterior distribution that
aims to accurately predict the training data label y from the
representation r. Hence, our Goal 2 for utility preservation
can be rewritten as the following max-max objective function:

max
f

I(y;r|u = 1)⇐⇒max
f

max
Ω

E
p(y,r,u)

[logqΩ[(y|r,u = 1)] (5)

Remark. Equation (5) can be interpreted as a cooperative
game between the encoder f and qΩ (e.g., a label predictor)
that aims to preserve the utility collaboratively.

Objective function of Inf2Guard against MIAs. By com-
bining Equations (4) and (5), our objective function of learn-
ing privacy-preserving representations against MIAs is:

max
f

(
λmin

Ψ
− E

p(x,u)
[logqΨ(u| f (x))]

+(1−λ)max
Ω

E
p(x,y,u)

[logqΩ(y| f (x),u = 1)]
)
, (6)

where λ ∈ [0,1] tradeoffs privacy and utility. That is, a larger
λ indicates a stronger membership privacy protection, while
a smaller λ indicates a better utility preservation.

3.1.3 Implementation in practice

In practice, we solve Equation (6) via training three parameter-
ized neural networks (i.e., encoder f , membership protection
network gΨ associated with the posterior distribution qΨ, and
utility preservation network hΩ associated with the posterior
distribution qΩ) using data samples from the underlying data
distribution. Specifically, we first collect two datasets D1 and
D0 from a (larger) dataset, and they include the members and
non-members, respectively. Then, D1 is used for training the
utility network hΩ (i.e., predicting labels for training data D1)
and the encoder f ; and both D1 and D0 are used for training
the membership protection network gΨ (i.e., inferring whether
a data sample from D1/D0 is a member or not) and the en-
coder f . With it, we can approximate the expectation terms
in Equation (6) and use them to train the neural networks.

Sample
(𝒙, 𝑦)

𝐑𝐞𝐩. 𝐫

𝐄𝐧𝐜𝐨𝐝𝐞𝐫 𝐟𝚯

𝐔𝐭𝐢𝐥𝐢𝐭𝐲 𝐍𝐞𝐭𝐰𝐨𝐫𝐤 𝐡𝛀

𝐦𝐚𝐱 𝐈(y; 𝐫|𝐮 = 𝟏)

𝐌𝐞𝐦. 𝐏𝐫𝐨𝐭𝐞𝐜𝐭𝐢𝐨𝐧
𝐍𝐞𝐭𝐰𝐨𝐫𝐤 𝐠𝛙

𝐦𝐢𝐧 𝐈(𝐫; 𝐮)

𝐏𝐫𝐢𝐯𝐚𝐭𝐞
𝐌𝐞𝐦. u

Figure 1: Inf2Guard against MIAs.

Training the membership protection network gΨ: We ap-
proximate the first expectation w.r.t. qΨ as7

E
p(x,u)

logqΨ(u| f (x))≈− ∑
(x j ,u j)∈D1∪D0

H(u j,gΨ( f (x j))),

where H(a,b) is the cross-entropy loss between a and b.
Take a single data x with private u for example. The above
equation is obtained by:−H(u,gΨ( f (x))) = loggΨ( f (x))u =
logqΨ(u| f (x)), where gΨ( f (x))i indicates i-th entry proba-
bility, and qΨ(u| f (x)) means the probability of inferring x’s
member u. The adversary maximizes this expectation aiming
to enhance the membership inference performance.

Training the utility preservation network hΩ: We approxi-
mate the second expectation w.r.t. qΩ as:

E
p(x,y,u)

logqΩ(y| f (x),u = 1)≈− ∑
(x j ,y j)∈D1

H(y j,hΩ( f (x j))).

We maximize this expectation to enhance the utility.

Training the encoder f : With the updated gΨ and hΩ, the
defender performs gradient ascent on Equation (6) to update
f , which can learn representations that protect membership
privacy and further enhance the utility.

We iteratively train the three networks until reaching pre-
defined maximum rounds. Figure 1 illustrates our Inf2Guard
against MIAs. Algorithm 1 in Appendix details the training.

Connection with AdvReg [48]. We observe that AdvReg
is a special case of Inf2Guard. Specifically, the objective
function of AdvReg can be rewritten as:

max
f

(
λmin

Ψ
∑

(x j ,u j)∈D1∪D0

H(u j,gΨ( f (x j)))− (1−λ) ∑
(x j ,y j)∈D1

H(y j, f (x j))
)
,

where f : X → [0,1]|Y | now outputs a sample’s probabilistic
confidence score and gΨ is a membership inference model
aiming to distinguish between members and non-members.

3.2 Inf2Guard against PIAs
Different from MIAs, PIAs leak the training data properties
at the dataset-level. To align this, instead of using a random
sample (x,y), we consider a random dataset (X,y) in PIAs.
Specifically, let X = {xi} consist of a set of independent data
samples and y = {yi} the corresponding data labels that are
sampled from the underlying data distribution D; and X is
associated with a private (dataset) property u.

7We omit the sample size |D1|, |D0| for description brevity.
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3.2.1 MI objectives

Given a dataset X∼D with a property u, the defender learns
a dataset representation R = f (X) that satisfies two goals8:

• Goal 1: Property protection. R contains as less informa-
tion as possible about the private dataset property u. Ideally,
when R does not include information about u (i.e., R⊥ u),
it is impossible to infer u from R. Formally, we quantify
the property protection using the below MI objective:

min
f

I(R;u). (7)

• Goal 2: Utility preservation. R includes as much informa-
tion as possible about predicting y. Formally, we quantify
the utility preservation using the MI objective as below:

max
f

I(y;R). (8)

3.2.2 Estimating MI via tractable bounds

We estimate the bounds of Equations 7 and 8 as below.

Minimizing the upper bound MI in Equation (7). Follow-
ing membership protection, Goal 1 is reformulated as solving
the below min-max objective function:

min
f

I(R;u)⇐⇒min
f

max
Ψ

E
p(R,u)

[logqΨ(u|R)], (9)

where qΨ(u|R) is an arbitrary posterior distribution.

Remark. Similarly, Equation (9) can be interpreted as an ad-
versarial game between a property inference adversary qΨ

who aims to infer u from the dataset representations R and
the encoder f who aims to protect u from being inferred.

Maximizing the lower bound MI in Equations (8). Simi-
larly, we adopt the MI estimator [49] to estimate the lower
bound MI in our Goal 2, which can be rewritten as the fol-
lowing max-max objective function:

max
f

I(y;R)⇐⇒max
f

max
Ω

E
p(y,R)

[logqΩ(y|R)] , (10)

where qΩ is an arbitrary posterior distribution that aims to
predict each label y ∈ y from the data representation r ∈ R.

Remark. Equation (10) can be interpreted as a cooperative
game between f and qΩ to preserve the utility collaboratively.

Objective function of Inf2Guard against PIAs. By com-
bining Equations (9) and (10), our objective function of learn-
ing privacy-preserving representations against PIAs is:

max
f

(
λmin

Ψ
− E

p(X,u)
[logqΨ(u| f (X))]+(1−λ)max

Ω
E

p(X,y)
[logqΩ(y| f (X))]

)
,

(11)

where λ ∈ [0,1] tradeoffs between privacy and utility. That is,
a larger/smaller λ indicates less/more dataset property can be
inferred through the learnt dataset representation.

8For notation simplicity, we use the same f to indicate the encoder. Simi-
lar for subsequent notations such as gΨ, hΨ, qΩ, hΩ, etc.

D𝐚𝐭𝐚𝐬𝐞𝐭
(𝐗, 𝐲)

𝐑𝐞𝐩. 𝐑

𝐄𝐧𝐜𝐨𝐝𝐞𝐫 𝐟𝚯

𝐔𝐭𝐢𝐥𝐢𝐭𝐲 𝐍𝐞𝐭𝐰𝐨𝐫𝐤 𝐡𝛀

𝐦𝐚𝐱 𝐈(𝐲; 𝐑)

𝐏𝐫𝐨𝐩. 𝐏𝐫𝐨𝐭𝐞𝐜𝐭𝐢𝐨𝐧
𝐍𝐞𝐭𝐰𝐨𝐫𝐤 𝐠𝛙

𝐦𝐢𝐧 𝐈(𝐑; 𝐮)

𝐏𝐫𝐢𝐯𝐚𝐭𝐞
𝐏𝐫𝐨𝐩. u

Figure 2: Inf2Guard against PIAs.

3.2.3 Implementation in practice

Equation (11) is solved via three parameterized neural net-
works (i.e., the encoder fΘ, the property protection network
gΨ associated with qΨ, and the utility preservation network
hΩ associated with qΩ) using a set of datasets sampled from
a data distribution. Specifically, we first collect a large refer-
ence dataset Dr. Then, we randomly generate a set of small
datasets {D j = (X j,y j)} j from Dr. We denote the dataset
property value for each D j as u j. With it, we can approximate
the expectation terms in Equation (11).
Training the property inference network gΨ: We approxi-
mate the first expectation w.r.t. qΨ as

E
p(X,u)

logqΨ(u| f (X))≈− ∑
{X j∈D j}

H(u j,gΨ( f (X j))), (12)

where f (X j) is the aggregated representation of a dataset X j,
i.e., f (X j) = Agg({ f (x)}x∈X j). We will discuss the aggre-
gator Agg(·) in Section 5.2.2. The adversary maximizes this
expectation to enhance the property inference performance.
Training the utility preservation network hΩ: Similarly, we
approximate the second expectation w.r.t. qΩ as:

E
p(X,y)

logqΩ(y| f (X))≈− ∑
{D j}

∑
(xi,yi)∈D j

H(yi,hΩ( f (xi))), (13)

where we maximize this expectation to enhance the utility.

Training the encoder f : The defender then performs gradient
ascent on Equation (11) to update f , which mitigates the PIA
and further enhances the utility.

We iteratively train the three networks until reaching maxi-
mum rounds. Figure 2 illustrates our Inf2Guard against PIAs.
Algorithm 2 in Appendix details the training process.

3.3 Inf2Guard against DRAs
Different from MIAs and PIAs, DRAs aim to directly recover
the training data from the learnt representations. A recent
defense [65] shows perturbing the latent representations can
somewhat protect the data from being reconstructed. How-
ever, this defense is broken by an advanced attack [9]. One
key reason is the defense perturbs representations in a deter-
ministic fashion for already trained models. We address the
issues and propose an information-theoretic defense to learn
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randomized representations against the DRAs in an end-to-
end learning fashion. Our core idea is to learn a deterministic
encoder and a randomized perturbator that ensures learning
the perturbed representation in a controllable manner.

3.3.1 MI objectives

Given a data sample x∼D with a label y, the defender learns
a representation r = f (x) such that when r is perturbed by
certain perturbation (denoted as δδδ), the shared perturbed rep-
resentation r+ δδδ cannot be used to well recover x, but is
effective for predicting y, from the information-theoretic per-
spective. Then we aim to achieve the following two goals:

• Goal 1: Data reconstruction protection. r+ δδδ contains
as less information as possible about x. Moreover, the per-
turbation δδδ should be effective enough. Hence, we require
δδδ can cover all directions of x, and force the entropy of δδδ

to be as large as possible. Formally, we quantify the data
reconstruction protection using the below MI objective:

min
f ,p(δδδ)∼P

I(r+δδδ;x)−H(δδδ), (14)

• Goal 2: Utility preservation. To ensure r be useful, it
should be effective for predicting the label y. Further, as we
will share the perturbed representation r+δδδ, it should be
also effective for predicting y. Formally, we quantify the
utility preservation using the MI objective as follows:

max
f ,p(δδδ)∼P

I(r+δδδ;y)+ I(r;y), (15)

3.3.2 Estimating MI via tractable bounds

Minimizing the upper bound MI in Equation (14). Simi-
larly, we adapt the variational upper bound in [16]. Our Goal
1 for data reconstruction protection can be reformulated as
the below min-max objective function:

min
f ,p(δδδ)∼P

I(r+δδδ;x)−αH(δδδ) (16)

⇐⇒ min
f ,p(δδδ)∼P

(
max

Ψ
E

p(r,δδδ,x)
[logqΨ(x|r+δδδ)]−αH(δδδ)

)
.

Remark. Equation (16) can be interpreted as an adversarial
game between an adversary qΨ (i.e., data reconstructor) who
aims to infer x from r+ δδδ; and the encoder f who aims to
protect x from being inferred via carefully perturbing r.

Maximizing the lower bound MI in Equation (15). Based
on [53], we can produce a lower bound on the MI I(r;y) due
to the non-negativity of the KL-divergence:

I(r;y) = E
p(y,r)

[logqΩ(y|r)/p(y)]+ E
p(r)

[KL(p(y|r)||qΩ(y||r))]

≥ E
p(y,r)

[logqΩ(y|r)]+H(y), (17)

where qΩ is an arbitrary posterior distribution that predicts
the label y from r and the entropy H(y) is a constant.

We have a similar form for the MI I(r+δδδ;y) as below

I(r+δδδ;y)≥ max
p(δδδ)∼P

E
p(y,r,δδδ)

[logqΩ(y|r+δδδ)]+H(y), (18)

where we use the same qΩ to predict the label y from the
perturbed representation r+δδδ.

Then, our Goal 2 for utility preservation can be rewritten
as the following max-max objective function:

max
f ,p(δδδ)∼P

I(r+δδδ;y)+ I(r;y) (19)

⇐⇒max
f ,Ω

(
max

p(δδδ)∼P
E

p(y,r,δδδ)
[logqΩ(y|r+δδδ)]+ E

p(y,r)
[logqΩ(y|r)]

)
.

Remark. Equation (19) can be interpreted as a cooperative
game between the encoder f and the label prediction network
qΩ, who aim to preserve the utility collaboratively.

Objective function of Inf2Guard against DRAs. By com-
bining Equations (16)-(19), our objective function of learning
privacy-preserving representations against DRAs is:

max
f ,p(δδδ)∼P

(
λ
(

min
Ψ
− E

p(x,δδδ)
[logqΨ(x| f (x)+δδδ)]+αH(δδδ)

)
(20)

+(1−λ)
(

max
Ω

E
p(x,δδδ,y)

[logqΩ(y| f (x)+δδδ)]+ E
p(x,y)

[logqΩ(y| f (x))]
))

,

where λ ∈ [0,1] tradeoffs privacy and utility. A larger λ im-
plies less data features can be inferred through the perturbed
representation, while a smaller λ implies the shared perturbed
representation is easier for predicting the label.

3.3.3 Parameterizing perturbation distributions

The key of our defense lies in defining the perturbation distri-
bution p(δδδ) in Equation (20). Directly specifying the optimal
perturbation distribution is challenging. Motivated by varia-
tional inference [39], we propose to parameterize p(δδδ) with
trainable parameters, e.g., Φ. Then the optimization prob-
lem w.r.t. the perturbation δδδ can be converted to be w.r.t. the
parameters Φ, which can be solved via back-propagation.

A natural way to model the perturbation around a represen-
tation is using a distribution with an explicit density function.
Here we adopt the method in [39] by transforming δδδ such
that the reparameterization trick can be used in training. For
instance, when considering pΦ(δδδ) as a Gaussian distribution
N (µµµ,σσσ2), we can reparameterize δδδ (with a scale ε) as:

δδδ = ε · tanh(u), u∼N (µµµ,diag(σσσ2)), (21)

That is, it first samples u from a diagonal Gaussian with a
mean vector µµµ and standard deviation vector σσσ, and δδδ is ob-
tained by compressing u to be [−1,1] via the tanh(·) function
and multiplying ε. Φ = (µµµ,σσσ) are the parameters to be learnt.

3.3.4 Implementation in practice

We train three neural networks (i.e., the encoder f , reconstruc-
tion protection network gΨ, and utility preservation network
hΩ) using data samples from certain data distribution. Sup-
pose we are given a set of data samples D = {x j,y j}.
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Sample
(𝒙, 𝑦)

𝐑𝐞𝐩. 𝐫

𝐄𝐧𝐜𝐨𝐝𝐞𝐫 𝐟𝚯

𝐔𝐭𝐢𝐥𝐢𝐭𝐲 𝐍𝐞𝐭𝐰𝐨𝐫𝐤 𝐡𝛀

𝐦𝐚𝐱 𝐈 y; 𝐫 + 𝛅 + 𝐈(y; 𝐫)

𝐑𝐞𝐜. 𝐏𝐫𝐨𝐭𝐞𝐜𝐭𝐢𝐨𝐧
𝐍𝐞𝐭𝐰𝐨𝐫𝐤 𝐠𝛙

𝐦𝐢𝐧 𝐈 𝐫 + 𝛅; 𝐱 − 𝐇(𝛅)

𝐩𝐞𝐫𝐭. 𝛅

Figure 3: Inf2Guard against DRAs.

Learning the data reconstruction network gΨ: As x and its
representation r are often high-dimensional, the previous MI
estimators are inappropriate in this setting. To address it, we
use the Jensen-Shannon divergence (JSD) [32] specially for
high-dimensional MI estimation. Assume we have updated
Φ. We can approximate the expectation w.r.t. gΨ as

E
p(x),pΦ(δδδ)

logqΨ(x| f (x)+δδδ) = I(JSD)
Θ,Ψ (x; fΘ(x)+δδδ)

≈ ∑
x j∈D,δδδ j∼pΦ(δδδ)

[−sp(−hΨ(x j, fΘ(x j)+δδδ j))]

− ∑
(x j ,x′j)∈D,δδδ j∼pΦ(δδδ)

[sp(hΨ(x′j, fΘ(x j)+δδδ j)], (22)

where x′j is an independent and random sample from the same
distribution as x j, and sp(z) = log(1+ exp(z)) is the softplus
function. We maximize I(JSD)

Θ,Ψ to update gΨ.

Learning the utility preservation network hΩ: We first
estimate the below expectation:

E
p(x,y)pΦ(δδδ)

logqΩ(y| f (x)+δδδ)≈− ∑
(x j ,y j)∈D,δδδ j∼pΦ(δδδ)

H(y j,hΩ( f (x j)+δδδ j)).

(23)

Similarly, we can approximate the third expectation as:
E

p(x,y)
logqΩ(y| f (x))≈− ∑

(x j ,y j)∈D
H(y j,hΩ( f (x j))). (24)

We minimize the two cross entropy losses to update hΩ.

Updating the distribution parameter Φ: Due to the repa-
rameterization trick, the gradient can be back-propagated
from each δδδ j to the parameters Φ. For simplicity, we do not
consider the JSD term in Equation (22) due to its complexity.
Then we have the terms relevant to Φ as below:

E
zzz∼N (0,1)

∑
(x j ,y j)

H(y j,hΩ( f (x j)+ ε · tanh(µµµ+σσσzzz)))−β ·H(ε · tanh(µµµ+σσσzzz)),

(25)

where β = λα/(1−λ). The first term is the cross entropy loss,
while the second term is the entropy. The gradient w.r.t. Φ

in each term can be calculated. In practice, we approximate
the expectation on zzz with (e.g., 5) Monte Carlo samples, and
perform stochastic gradient descent to update Φ. Details on
updating Φ are in Algorithm 3. With Φ, we use it to generate
δδδ and add it to r to produce the perturbed representation.

Learning the encoder f . Finally, after updating gΨ, hΩ, and
Φ, we can perform gradient ascent to update f .

We iteratively train the networks until reaching a prede-
fined maximum round. Figure 3 illustrates Inf2Guard against
DRAs. Algorithm 4 in Appendix details the training process.

4 Theoretical Results

We mainly show the guaranteed privacy leakage under
Inf2Guard, with proofs in Appendix A. We also derive an in-
herent utility-privacy tradeoff of Inf2Guard, which requires a
binary classification task, and binary-valued dataset property
in PIAs. Details and proofs are deferred to Appendix B.
Guaranteed privacy leakage of MIAs: Let AMIA be the set
of all MIAs AMIA = {AMIA : Z→ u∈ {0,1}} that have access
to the representations r by querying f with data x from the
distribution D . The MIA accuracy is bounded as below:
Theorem 1. Let f be the learnt encoder by Equation (6) over
a data distribution D ⊂ X . For a random data sample x∼D
with the learnt representation r = f (x) and membership u, we
have Pr(AMIA(r) = u)≤ 1− H(u|r)

2log2(6/H(u|r)) ,∀AMIA ∈ AMIA.
Remark. Theorem 1 shows if H(u|r) is larger, the bounded
MIA accuracy is smaller. Note H(u|r) = H(u)− I(u;r) and
H(u) is a constant. Achieving a large H(u|r) implies obtain-
ing a small I(u;r), which is our Goal 1 in Equation (1) does.
In practice, once the encoder f is learnt on a dataset from D ,
I(u;r) can be estimated, then the bounded MIA accuracy can
be calculated. A better encoder f or/and better MI estimator
of I(u;r) can yield a smaller MIA performance.
Guaranteed privacy leakage of PIAs: Let APIA be the set of
all PIAs that have access to the representations R of a dataset
X = {xi} sampled from the data distribution D, i.e., APIA =
{APIA : Z→ u = {0,1}}. The PIA accuracy is bounded as:
Theorem 2. Let f be the learnt encoder by Equation (11)
over a data distribution D . For a random dataset X∼D with
the learnt representation R = f (X) and dataset property u,
we have Pr(APIA(R) = u)≤ 1− H(u|R)

2log2(6/H(u|R)) ,∀APIA ∈APIA.

Remark. Theorem 2 shows when H(u|R) is larger, the PIA
accuracy is smaller, i.e., less dataset property is leaked. Also,
a large H(u|R) indicates a small I(u;R)—This is exactly our
Goal 1 in Equation (7) aims to achieve.
Guaranteed privacy leakage of DRAs: Let ADRA be the set
of all DRAs that have access to the perturbed data represen-
tations, i.e., ADRA = {ADRA : r+ δδδ ∈ Z×P → x ∈ X }. An
ℓp-norm ball centered at a point v with a radius ρ is denoted
as Bp(v,ρ), i.e., Bp(v,ρ) = {v′ : ∥v′−v∥p ≤ ρ}. For a space
S , we denote its boundary as ∂S , whose volume is denoted as
Vol(∂S). Then the reconstruction error (in terms of ℓp norm
difference) incurred by any DRA is bounded as below:
Theorem 3. Let f be the encoder learnt by Equation (20)
over a data distribution D ⊂ X and δδδ be the perturba-
tion for a random sample x ∼ X . Then, Pr(∥ADRA(r+ δδδ)−
x∥p ≥ η)≥ 1− I(x;r+δδδ)+log2

logVol(∂X )−logVol(∂X (η)) ,∀ADRA ∈ADRA, where
Vol(∂X (η)) = maxx∈X Vol(∂Bp(x,η)∩X ).
Remark. Theorem 3 shows a lower bound error achieved by
the strongest DRA. Given an η, when I(x;r+δδδ) is smaller,
the lower bound data reconstruction error is larger, meaning
the privacy of the data itself is better protected. Moreover,
minimizing I(x;r+δδδ) is exactly our Goal 1 in Equation (14).
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(a) CIFAR10 (b) Purchase100 (c) Texas100

Figure 4: TPR vs FPR of Inf2Guard against LiRA on different λ’s.

5 Evaluations

In this section, we will evaluate Inf2Guard against the MIAs,
PIAs, and DRAs on benchmark datasets. Inf2Guard involves
training the encoder, the privacy protection network, and the
utility preservation network. The detailed dataset description
and architectures of the networks are given in Appendix C.

5.1 Defense Results on MIAs
5.1.1 Experimental setup

Datasets: Following existing works [38, 48], we use the CI-
FAR10 [40], Purchase100 [48], and Texas100 [61] datasets,
to evaluate Inf2Guard against MIAs.
Defense/attack training and testing: The training sets and
test sets are listed in Table 9 in Appendix C.2. For instance,
in CIFAR10, we use 50K samples in total and split it into two
halves, where 25K samples are used as the utility training
set ("members") and the other 25K samples as the utility test
set ("non-members"). We select 80% of the members and
non-members as the attack training set and the remaining
members and non-members as the attack test set.

• Defense training: We use the utility training set and attack
training set to train the encoder, utility preservation network,
and membership protection network simultaneously. Then,
the learnt encoder is frozen and published as an API.

• Attack training: To mimic the strongest possible MIA,
we let the attacker know the exact membership protection
network and attack training set used in defense training.
Specifically, s/he feeds the attack training set to the learnt
encoder to get the data representations and trains the MIA
classifier (same as the membership protection network) on
these representations to maximally infer the membership.

• Defense and attack testing: We use the utility test set
to obtain the utility (i.e., test accuracy) via querying the
trained encoder and utility network. Moreover, we use the
attack test set to obtain the MIA performance.

Privacy metric: We measure the MIA performance via both
the MIA accuracy and the true positive rate (TPR) vs. false
positive rate (FPR), suggested by the SOTA LiRA MIA [13].

Table 1: Inf2Guard results against MIAs on the three dataset.
λ = 0 means no privacy protection, while λ = 1 means no
utility preservation. Random guessing MIA accuracy is 50%.

CIFAR10
λ Utility MIA Acc

0 78.9% 70.1%
0.25 78.2% 55.9%
0.5 78% 53.5%
0.75 77.2% 51.1%

1 20% 50%

Purchase100
λ Utility MIA Acc

0 81.7% 68.4%
0.25 80.9% 60%
0.5 80% 51%

0.75 78% 50%
1 20% 50%

Texas100
λ Utility MIA Acc

0 49.9% 70.2%
0.25 49.1% 61%
0.5 47% 53%

0.75 46% 50%
1 2% 50%

Specifically, the MIA accuracy is obtained by querying the
trained encoder and trained MIA classifier with the attack test
set. Moreover, we treat the representations and membership
network learnt by Inf2Guard as the input data and target
model for LiRA. We then train 16 white-box shadow models
(i.e., assume LiRA uses the exact membership network in
Inf2Guard) on the data representations of the utility training
set, and report the TPR vs. FPR on the attack test set.

5.1.2 Experimental results

Utility-privacy results: According to Equation (6), λ = 0
indicates no privacy protection. Increasing λ’s value enhances
Inf2Guard’s resilience against MIAs. λ = 1 means the max-
imum privacy protection without preserving utility. Table 1
shows the utility-MIA Accuracy results of Inf2Guard. We
have the following observations: 1) The MIA accuracy is the
largest when λ = 0, implying leaking the most membership
privacy by MIAs. 2) When only protecting privacy (λ = 1),
the MIA accuracy reaches to the optimal random guessing,
but the utility is the lowest. 3) When 0 < λ < 1, Inf2Guard
obtains reasonable utility and MIA accuracy. Especially, when
λ = 0.75, the utility loss is marginal (i.e., < 4%), while the
MIA accuracy is (close to) random guessing. The results
show the learnt privacy-preserving encoder/representations
are effective against MIAs, and maintain utility as well.

Further, Figure 4 shows the TPR vs FPR of Inf2Guard
against LiRA. Similarly, we observe that the TPR at low
FPRs is relatively large (strong membership inference) in
case of no privacy protection, but it can be largely reduced by
increasing λ. This implies that Inf2Guard indeed learns the
representations that can defend against LiRA to some extent.
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(a) Utility w/o. defense (78.9%) (b) MIA Acc w/o. defense (70.1%) (c) Utility w. defense (77.2%) (d) MIA Acc w. defense (51.1%)

Figure 5: Inf2Guard against MIAs: 3D t-SNE embeddings results on the learnt representation of on CIFAR10.

(a) Utility w/o. defense (81.7%) (b) MIA Acc w/o. defense (68.4%) (c) Utility w. defense (80%) (d) MIA Acc w. defense (51%)

Figure 6: Inf2Guard against MIAs: 3D t-SNE embeddings results on the learnt representation on Purchase100.

(a) Utility w/o. defense (49.8%) (b) MIA Acc w/o. defense (70.2%) (c) Utility w. defense (46%) (d) MIA Acc w. defense (50%)

Figure 7: Inf2Guard against MIAs: 3D t-SNE embeddings results on the learnt representation on Texas100.

Visualizing the learnt representations: To better understand
the learnt representations by Inf2Guard, we adopt the t-SNE
algorithm [67] to visualize the low-dimensional embeddings
of them. λ is chosen in Table 1 that achieves the best utility-
privacy tradeoff. We also compare with the case without pri-
vacy protection. Figures 5-7 show the 3D t-SNE embeddings,
where each color corresponds to a label in the learning task
or (non)member in the privacy task, and each point is a data
sample. We can observe the t-SNE embeddings of the learnt
representations without privacy protection for members and
non-members are separated to some extent, meaning the mem-
bership can be inferred via the learnt MIA classifier. On the
contrary, the t-SNE embeddings of the learnt representations
by our Inf2Guard for members and non-members are mixed—
hence making it difficult for the (best) MIA classifier to infer
the membership from these learnt representations.
Comparing with the existing defenses against MIAs: All
empirical defenses are broken by stronger attacks [17, 62],
except adversarial training-based AdvReg [48] (a special case

Table 2: Comparing Inf2Guard with existing defenses against
MIAs on the three datasets. DP methods are under the
same/close defense performance as Inf2Guard.

Defense CIFAR10 Purchase100 Texas100
Utility MIA Acc Utility MIA Acc Utility MIA Acc

DP-SGD 48% 51% 40% 52% 11% 51%
DP-enc 45% 51% 32% 51% 10% 50%
AdvReg 75% 53% 75% 51% 44% 52%

NeuGuard 74% 56% 77% 53% 43% 52%
Inf2Guard 77% 51% 80% 51% 46% 50%

of Inf2Guard). NeuGuard [74] is a recent empirical defense
and shows better performance than, e.g., [38,60]. Differential
privacy is the only defense with privacy guarantees. We pro-
pose to use two DP variants, i.e., DP-SGD [3] and DP-encoder
(details in Appendix C.2). The comparison results of these
defenses are shown in Table 2 (more DP results in Table 16
in Appendix C.4) and Figure 8. From Table 2, we observe
DP methods have bad utility when ensuring the same level
defense performance (w.r.t. MIA accuracy) as Inf2Guard.
AdvReg and NeuGuard also perform worse than Inf2Guard.
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(a) CIFAR10 (b) Purchase100 (c) Texas100

Figure 8: Comparing Inf2Guard (λ = 0.75) with the existing defenses against LiRA.

Figure 8 shows the TPR vs. FPR of these defenses against
LiRA under the results in Table 2. For DP methods, we also
plot the TPR vs FPR when their utility is close to Inf2Guard.
With an MIA accuracy close to random guessing (but low
utility), we see DP methods have the smallest TPR at a given
low FPR. This means DP methods can most reduce the attack
effectiveness of LiRA, which is also verified in [13]. However,
if DP methods have a close utility as Inf2Guard, their TPRs
are much higher than Inf2Guard’s at a low FPR. Besides,
Inf2Guard has smaller TPRs than AdvReg and NeuGuard.
Overhead comparison: All MIA defenses train a task classi-
fier. AdvReg trains a task classifier and membership inference
network. NeuGuard trains a task classifier with two regular-
izations. DP-SGD trains the task classifier on noisy models,
while DP-encoder normally trains the encoder first and then
trains the utility network on (Gaussian) noisy representations.
In the experiments, we define the task classifier of the com-
pared defenses as the concatenation of our encoder and util-
ity network. In our platform (NVIDIA GeForce RTX 3070
Ti), it took Inf2Guard (72,7,6), AdvReg (66,6,6), NeuGuard
(62,5,5), DP-SGD (60,4,3) and DP-encoder (59,4,3) seconds
to run each iteration on the three datasets, respectively9.

5.2 Defense Results on PIAs
5.2.1 Experimental setup

Datasets: Following recent works [14, 66], we use three
datasets (Census [66], RSNA [66], and CelebA [43]) and
treat the female ratio as the private dataset property.
Defense/attack training and testing: We first predefine a
(different) female ratio set in each dataset. For each female ra-
tio, we generate a number of subsets from the training set and
test set with different subset sizes. The generated training/test
subsets and all data samples in these subsets are treated as the
attack training/test set and the utility training/test set, respec-
tively. More details are in Table 10 in Appendix C.2.

• Defense training: We use the utility training set and attack
training set to train the encoder, utility preservation network,
and property protection network simultaneously. Then, the
learnt encoder is frozen and published as an API.
9We have similar conclusions on defending against the other two attacks.

Table 3: Inf2Guard results against PIAs with a mean-
aggregation. λ = 0 means no privacy protection, while λ = 1
means no utility preservation. Random guessing PIA accuracy
on the three datasets are 25%, 14.3%, and 9.1%, respectively.

Census
λ Utility PIA Acc

0 85% 68%
0.25 80% 61%
0.5 78% 52%
0.75 76% 34%

1 45% 26%

RSNA
λ Utility PIA Acc

0 83% 52%
0.25 82% 25%
0.5 82% 24%

0.75 80% 19%
1 50% 15%

CelebA
λ Utility PIA Acc

0 91% 50%
0.25 91% 28%
0.5 91% 17%

0.75 89% 11%
1 53% 10%

• Attack training: We mimic the strongest possible PIA,
where the attacker knows the exact property protection net-
work, the aggregator, and attack training set used in defense
training. Specifically, s/he feeds each subset in the attack
training set to the learn encoder to get the subset represen-
tation, applies the aggregator to obtained the aggregated
representation, and trains the PIA classifier (same as the
property protection network) on these aggregated represen-
tations to maximally infer the private female ratio.

• Defense/attack testing: We utilize the utility test set to
obtain the utility via querying the trained encoder and utility
network, and the attack test set to obtain the PIA accuracy
via querying the trained encoder and trained PIA classifier.

5.2.2 Experimental results

Utility-privacy results: Table 3 shows the utility-privacy
results of Inf2Guard, where the encoder uses a mean-
aggregator (i.e., average the representations of a subset of
data. Note different subsets have different sizes). We have
similar observations as in defending against MIAs: 1) The
PIA accuracy can be as large as 68% without privacy protec-
tion (λ = 0 in Equation (11)), implying the PIA is effective;
2) When focusing on protecting privacy (λ = 1), the PIA per-
formance can be largely reduced. However, the utility is also
significantly decreased, e.g., from 85% to 45%. 3) Utility and
privacy show a tradeoff w.r.t. 0 < λ < 1. In most of the cases,
the best tradeoff is obtained when λ = 0.75. Again, the results
show the learnt privacy-preserving encoder/representations
are effective against PIAs, and also maintain utility.
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Table 4: Inf2Guard results against PIAs with a max-
aggregation. Random guessing PIA accuracy on the three
datasets are 25%, 14.3%, and 9.1%, respectively.

Census
λ Utility PIA Acc

0 85% 65%
0.25 83% 51%
0.5 79% 49%
0.75 77% 37%

1 47% 30%

RSNA
λ Utility PIA Acc

0 83% 52%
0.25 82% 24%
0.5 82% 24%

0.75 81% 21%
1 50% 16%

CelebA
λ Utility PIA Acc

0 91% 50%
0.25 91% 25%
0.5 91% 15%
0.75 88% 15%

1 53% 9%

Table 5: Comparing Inf2Guard with DP against PIAs.
Defense Census RSNA CelebA

Utility PIA Acc Utility PIA Acc Utility PIA Acc
DP-encoder 52% 34% 57% 19% 66% 11%
Inf2Guard 76% 34% 80% 19% 89% 11%

Visualizing the learnt representations: Figures 12-14 in Ap-
pendix C.4 show the 3D t-SNE embeddings of the learnt rep-
resentations with λ= 0,0.75. Similarly, we observe the t-SNE
embeddings of the aggregated representations without privacy
protection can be separated to a large extent, while those with
privacy protection by Inf2Guard are mixed. This again veri-
fies it is difficult for the (best) PIA to infer the private female
ratio from the representations learnt by Inf2Guard.
Impact of the aggregator used by the encoder: In this ex-
periment, we test the impact of the aggregator and choose a
max-aggregator for evaluation, where we select the element-
wise maximum value of the representations of each subset of
data. Table 4 shows the results. We have similar conclusions
as those with the mean-aggregator. In addition, Inf2Guard
with the max-aggregator has slightly worse utility-privacy
tradeoff, compared with the mean-aggregator. A possible rea-
son could be the mean-aggregator uses more information of
the subset representations than the max-aggregator.
Comparing with the DP-based defense: There exists no
effective defense against PIAs, and [66] shows DP-SGD [3]
does not work well. Here, we propose to use a DP variant
called DP-encoder, similar to that against MIAs. More details
about DP-encoder are in Appendix C.2. The compared results
are shown in Table 5. We can see that, with the same level
privacy protection as Inf2Guard, DP has much worse utility.

5.3 Defense Results on DRAs
5.3.1 Experimental setup
Datasets: We select two image datasets: CIFAR10 [40] and
CIFAR100 [40], and one human activity recognition dataset
Activity [54] to evaluate Inf2Guard against DRAs.
Defense/attack training and testing: Table 11 in Appendix
shows the statistics of the utility/attack training and test sets.

• Defense training: We use the training set to train the en-
coder, utility preservation network, reconstruction protec-
tion network, and update the perturbation distribution pa-
rameters, simultaneously. Then, the learnt encoder and per-
turbation distribution are published.

Table 6: Inf2Guard results against DRAs. A smaller SSIM
or PSNR indicates better defense performance (λ =0.4).

CIFAR10
Scale ε Utility SSIM/PSNR

0 89.5% 0.78 / 15.97
0.75 85.2% 0.42 / 12.09
1.25 78.0% 0.21 / 11.87
1.75 68.9% 0.17 / 11.21

CIFAR100
ε Utility SSIM/PSNR

0 52.7% 0.92 / 22.79
0.75 49.1% 0.36 / 13.36
1.00 46.5% 0.19 / 12.70
1.25 43.3% 0.14 / 12.29

Activity
ε Utility MSE

0 95.1% 0.81
0.5 90.1% 1.06
1.0 85.6% 1.32
1.5 81.0% 1.64

Table 7: Impact of λ on Inf2Guard against DRAs (ε = 1.25).
CIFAR10

λ Utility SSIM/PSNR

0.1 83.2% 0.52 / 12.79
0.4 78.0% 0.21 / 11.87
0.7 67.9% 0.15 / 11.43

CIFAR100
λ Utility SSIM/PSNR

0.1 46.8% 0.46 / 14.75
0.4 46.5% 0.21 / 12.70
0.7 46.5% 0.20 / 12.42

Activity
λ Utility MSE

0.1 90.0% 1.25
0.4 85.6% 1.32
0.7 85.0% 1.62

• Attack training: We mimic the strongest DRA, where the
attacker knows the reconstruction protection network, train-
ing set, and perturbation distribution. S/he feeds each train-
ing data to the learnt encoder + perturbation distribution to
get the perturbed representation. Then the attacker trains
the reconstruction network (using the pair of input data and
its perturbed representation) to infer the training data.

• Defense/attack testing: We use the utility test set to obtain
the utility via querying the encoder and utility network; and
use the attack test set to obtain the DRA performance by
querying the trained encoder and reconstruction network.

Privacy metric: For image datasets, we use the common
Structural Similarity Index Measure (SSIM) and PSNR met-
rics [30]. A larger SSIM (or PSNR) between two images
indicate they look more similar. An effective attack aims to
achieve a large SSIM (or PSNR), while the defender does the
opposite. For human activity dataset, we use the mean-square
error (MSE) between two samples to measure similarity. A
smaller/larger MSE indicates a more effective attack/defense.

5.3.2 Experimental results

Utility-privacy results: Table 6 shows the defense results of
Inf2Guard with the Gaussian perturbation distribution, where
λ = 0.4 in Equation (20). We can observe ε acts a utility-
privacy tradeoff. A larger ε implies adding more perturbation
to the representation during defense training. This makes the
DRA more challenging, but also sacrifice the utility more.

We also test the impact of λ and the results are shown in
Table 7. We can see λ also acts as a tradeoff—a larger λ can
protect data privacy more, while having larger utility loss.
Comparing with the DP-based defense: All empirical de-
fenses against DRAs are broken are by an advanced attack [9].
A few papers [7, 56] show if a randomized algorithm satisfies
DP, it can defend against DRAs with provable guarantees.
We compare Inf2Guard with DP and Table 8 shows the DP
results. Viewing with results in Table 6, we see Inf2Guard
obtains better utility-privacy tradeoffs than DP-SGD.
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Table 8: DP-SGD defense results against DRAs. A smaller
SSIM or PSNR indicates better defense performance.

CIFAR10
Scale ε Utility SSIM/PSNR

0 89.5% 0.78 / 15.97
0.75 85.6% 0.50 / 13.21
1.25 77.4% 0.37 / 12.45
1.75 65.3% 0.36 / 12.35

CIFAR100
ε Utility SSIM/PSNR

0 52.7% 0.92 / 22.79
0.75 49.5% 0.43 / 13.77
1.00 46.7% 0.24 / 12.87
1.25 43.3% 0.18 / 12.54

Activity
ε Utility MSE

0 95.1% 0.81
0.5 91.8% 0.88
1.0 90.1% 0.90
1.5 84.1% 1.01

(a) Raw images (b) No defense (c) DP (d) Inf2Guard

Figure 9: Raw images vs. reconstructions on CIFAR10. DP
Utility: 77%, Inf2Guard Utility: 78%.

Visualizing data reconstruction results: Figure 9 and Fig-
ure 10 show the reconstruction results on some CIFAR10
and CIFAR100 images, respectively. We see that, without de-
fense, the attacker can accurately reconstruct the raw images.
With a similar utility, visually, Inf2Guard can better defend
against image reconstruction than DP. Figure 11 summarizes
the reconstruction results on 50 samples in Activity, where we
report the difference between each reconstructed feature by
Inf2Guard and that by DP to the true feature. A (larger) pos-
itive value implies Inf2Guard is (more) dissimilar than DP
to the true feature. We can see Inf2Guard has better defense
results than DP in most (413 out of 516) of the features.

6 Discussion and Future Work
Inf2Guard and DP: Essentially, Inf2Guard and DP are
two different provable privacy mechanisms, and they com-
plement each other. First, DP mainly measures the user or
sample-level privacy risks in the worst case while Inf2Guard
can accurately measure the average privacy risks at the dataset
level with the derived bounds. Second, DP has been shown
to provide some resilience transferability across some infer-
ence attacks [56] (but not all of them). It is also interest-
ing to study the resilience transferability for the proposed
Inf2Guard, which we will explore in the future. More im-
portantly, our Inf2Guard can complement DP. For instance,
we can use the learnt (deterministic) data representations by
Inf2Guard as input to DP-SGD or add (Gaussian) noise to
the representations to ensure DP guarantees against MIAs.
Task-agnostic representation learning: Our current MI for-
mulation for utility preservation knows the labels of the learn-

(a) Raw images (b) No defense (c) DP (d) Inf2Guard

Figure 10: Raw images vs. reconstructions on CIFAR100. DP
Utility: 47%, Inf2Guard Utility: 47%. Better zoom in.

Figure 11: Inf2Guard vs. DP on 50 samples in Activity (both
utility=86%). We count #features located in each bin. The
value range in each bin means the difference between the
reconstructed feature by Inf2Guard and that by DP to the
true feature. A positive value implies Inf2Guard produces
more dissimilar reconstruction than DP.

ing task (e.g., see Equation (2)). A more promising solution
would be task-agnostic, i.e., learning task-agnostic represen-
tations that can benefit many (unknown) downstream tasks.
We note that our framework can be easily extended to this
scenario. For instance, in MIAs, we now require the learnt rep-
resentation r includes as much information about the training
sample x as possible (i.e., u = 1). Intuitively, when r retains
all information about x, the model trained on r will have the
same performance as trained on the raw x, despite the learning
task. Formally, the MI objective becomes max f I(x;r|u = 1).
Defending against multiple inference attacks simultane-
ously: We design the customized MI objectives to defend
against each inference attack in the paper. A natural solution
to defend against multiple inference attacks is unifying their
training objectives (by summarizing them with tradeoff hy-
perparameters). While this is possible, we emphasize that the
learnt encoder is weak against all attacks. This is because
the encoder should balance the defense effectiveness among
these attacks, and cannot be optimal against all of them.
Generalizing our theoretical results: Our theoretical results
assume the learning task is binary classification and dataset
property is binary-valued. We will generalize our theoretical
results to multiclass classification and other types of learning
such as regression, and multi-valued dataset property.
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Generalizing our framework against security attacks: In
our current framework, each privacy protection task is formal-
ized via an MI objective. An important future work would be
generalizing our framework to design customized MI objec-
tives to learn robust representations against security attacks
such as evasion, poisoning, and backdoor attacks.

7 Related Work

7.1 MIAs and Defenses
MIAs [13,15,17,34,42,57,61–63,73,76,79]. Existing MIAs
can be classified as training based [13,15,17,42,55,57,61,63,
75,76] and non-training based [17,62]. Given a (non)training
sample and its output by a target ML model, training based
MIAs use the (sample, output) pair to train a binary classifier,
which is then used to determine whether a testing sample
belongs to the training set or not. For instance, [61] intro-
duces multiple shadow models to perform training. In contrast,
non-training based MIAs directly use the samples’ predicted
score/label to make decisions. For instance, [62] designs a
metric prediction correctness, which infers the membership
based on whether a given sample is correctly classified by the
target model or not. Overall, an MIA that has more informa-
tion is often more effective than that has less information.
Defenses [38, 48, 57, 59, 61, 62, 64, 74]. They can be catego-
rized as training time based defense (e.g., dropout [57], L2
norm regularization [61], model stacking [57], adversary reg-
ularization [48], loss variance deduction [74], DP [3, 35, 78],
early stopping [62], knowledge distillation [59]) and inference
time based defense (e.g., MemGuard [38]). Almost all of them
are empirical and broken by stronger attacks [17, 62]. DP is
only defense offering privacy guarantees. Its main idea is to
add noise to the gradient [3, 78] or objective function [35]
during training. The main drawback of current DP methods
is that they have significant utility losses [36, 59].

7.2 PIAs and Defenses
PIAs [5,6,14,22,27,44,45,66,69,80,82]. Ateniese et al. [6] are
the first to describe the problem of the PIA (against support
vector machines and hidden Markov models), where the attack
is performed in the the white-box setting and consists of train-
ing a meta-classifier on top of many shadow models. Ganju
et al. [22] extend PIAs to neural networks, particularly fully
connected neural networks (FCNNs). Zhang et al. [80] pro-
pose PIAs in the black-box setting and train a meta-classifier
based on shadow models. Mahloujifar et al. [44] observe that
data poisoning attacks can be incorporated into training the
shadow model and increase the effectiveness of PIAs. Suri and
Evans [66] are the first to formally formalize PIAs as a cryp-
tographic game, inspired by the way to formalize MIAs [76].
They also extend the white-box attack on FCNNs [22] to con-
volutional neural networks (CNNs). Zhou et al. [82] develop

the first PIA against generative models, i.e., generative ad-
versarial networks (GANs) [26], under the black-box setting.
Chaudhari et al. [14] propose a data poisoning strategy to
perform the efficient private property inference.
Defenses. To our best knowledge, there exist no known ef-
fective defenses against PIAs. DP cannot mitigate PIAs since
it obfuscates individual samples, while PIAs care about the
entire datasets [66]. [66] also shows that DP does not work as
a potential defense (also verified in Section 5).

7.3 DRAs and Defenses
DRAs [7–9,21,24,30,31,37,70,71,77,81,84]. Existing DRAs
mainly reconstruct the training data from the model parame-
ters or representations. They are formulated as an optimiza-
tion problem that minimizes the difference between gradient
from the raw training data and that from the reconstructed data.
For instance, Zhu et al. [84] proposed a DLG attack method
which relies entirely on minimization of the difference of
gradients. Furthermore, several methods [24, 31, 37, 70, 77]
propose to incorporate prior knowledge (e.g., total variation
regularization [24, 77], batch normalization statistics [77])
into the training data, or introduce an auxiliary dataset to
simulate the training data distribution [31, 37, 70] (e.g., via
GANs [26]). A few works [24, 83] derive close-formed so-
lutions to reconstruct the data, by constraining the neural
networks to be fully connected [24] or convolutional [83].
Defenses [23, 28, 41, 51, 58, 65, 72, 84]. Most of these de-
fenses have none/little privacy guarantees. For instance, Zhu
et al. [84] propose to prune model parameters with smaller
magnitudes. Sun et al. [65] propose to obfuscate the gradi-
ent for a single layer (called defender layer) such that the
reconstructed data and the original data are dissimilar. Gao
et al. [23] propose to generate augmented images that, when
they are used to train the network, produce non-invertible
gradients. These defenses are broken by an advanced attack
based on Bayesian learning [9]. Only defenses based on DP-
SGD [3], a version of SGD with clipping and adding Gaussian
noise, provide formal privacy guarantees.

8 Conclusion

We propose a unified information-theoretic framework,
dubbed Inf2Guard, to learn privacy-preserving representa-
tions against the three major types of inferences attacks
(i.e., membership inference, property inference, and data re-
construction attacks). The framework formalizes the util-
ity preservation and privacy protection against each attack
via customized mutual information objectives. The frame-
work also enables deriving theoretical results, e.g., inher-
ent utility-privacy tradeoff, and guaranteed privacy leakage
against each attack. Extensive evaluations verify the effective-
ness of Inf2Guard for learning privacy-preserving represen-
tations and show the superiority over the compared baselines.
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Algorithm 1 Inf2Guard against MIAs
Input: Dataset D1 of members and dataset D0 of non-members, tradeoff
hyperparameter λ ∈ [0,1], learning rates lr1, lr2, lr3; #local gradients I,
#global rounds T .
Output: Network parameters: Θ,Ψ,Ω.
1: Initialize Θ,Ψ,Ω for the encoder f , membership protection network gΨ,

and utility preservation network hφ;
2: for t = 1 to T do
3: L1 = ∑(x j ,u j)∈D1∪D0 H(u j,gΨ( f (x j)));
4: L2 = ∑(x j ,y j)∈D1 H(y j,hΩ( f (x j)));
5: for i = 1 to I do
6: Ψ←Ψ− lr1 · ∂L1

∂Ψ
;

7: Ω←Ω− lr2 · ∂L2
∂Ω

;

8: Θ← Θ+ lr3 · ∂(λL1−(1−λ)L2)
∂Θ

;

Algorithm 2 Inf2Guard against PIAs
Input: N datasets {D j}N

j=1 sampled from a reference dataset Dr with each
D j having a property value u j , tradeoff hyperparameter λ ∈ [0,1], learning
rates lr1, lr2, lr3; #local gradients I, #global rounds T .
Output: Network parameters: Θ,Ω,Ψ.
1: Initialize Θ,Ψ,Ω for the encoder f , property protection network gΨ, and

utility preservation network hφ;
2: for round t = 1 to T do
3: L1 = ∑{(X j ,y j)=D j} j H(u j,gΨ( f (X j)));
4: L2 = ∑(xi ,yi)∈

⋃
j D j H(yi,hΩ( f (xi)));

5: for i = 1 to I do
6: Ψ←Ψ− lr1 · ∂L1

∂Ψ
;

7: Ω←Ω− lr2 · ∂L2
∂Ω

;

8: Θ← Θ+ lr3 · ∂(λL1−(1−λ)L2
∂Θ

.

Algorithm 3 Update perturbation distribution parameter Φ

Input: K Monte Carlo samples, the encoder fΘ in the previous round,
objective function Eqn (20). learning rate lr, #epochs Il
Output: Perturbation distribution parameters Φ

1: Initialize Φ = (µµµ,σσσ).
2: for i = 1 to Il do
3: for j = 1 to K do
4: Sample z j from N (0,1) and compute δδδ j = µµµ+σσσzzz j;
5: Calculate the gradient gΦ of Eqn (25) w.r.t. Φ;
6: Update Φ by: Φ←Φ− lr ·gΦ.
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A Proofs of Privacy Guarantees

The following lemmas will be useful in the proofs.
Lemma 1 ( [12] Theorem 2.2). Let H−1

2 (p) be the inverse bi-
nary entropy function for p ∈ [0,1], then H−1

2 (p)≥ p
2log2(6/p) .

Lemma 2 (Data processing inequality). Given random vari-
ables X, Y , and Z that form a Markov chain in the order
X →Y → Z, then the mutual information between X and Y is
greater than or equal to the mutual information between X
and Z. That is I(X ;Y )≥ I(X ;Z).
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Algorithm 4 Inf2Guard against DRAs
Input: A dataset D = {xn,yn}, hyperparameters λ ∈ [0,1], learning rates
lr1, lr2, lr3, #local gradients I, #global rounds T .
Output: Network parameters: Ω,Ψ,Θ.
1: Initialize Θ,Ψ,Ω,Φ for the encoder f , data reconstruction network gΨ,

utility preservation network hΩ, and perturbation distribution parameter.
2: for round t = 1 to T do
3: for each batch bs⊂ D do
4: Update Φ via Algorithm 3;
5: Update gΨ (given Θ and {δδδi}): Calculate I(JSD)

Θ,Ψ on bs with {δδδi}
via Eqn (22); Ψ←Ψ+ lr1 ·∂I(JSD)

Θ,Ψ /∂Ψ;
6: Update hΩ (given Θ and {δδδi}): Calculate CE loss L1 on bs with

{δδδi} via Eqn (23); Calculate CE loss L2 on bs with clean data via
Eqn (24); Ω←Ω− lr2 ·∂(L1 +L2)/∂Ω;

7: Update fΘ (given Ψ, Ω, and {δδδi}): Θ← Θ− lr3 · ∂

∂Θ
(λI(JSD)

Θ,Ψ +

(1−λ)(L1 +L2));

A.1 Proof of Theorem 1 for MIAs
Theorem 1. Let f be the learnt encoder by Equation (6) over
a data distribution D ⊂ X . For a random data sample x∼D
with the learnt representation r = f (x) and membership u, we
have Pr(AMIA(r) = u)≤ 1− H(u|r)

2log2(6/H(u|r)) ,∀AMIA ∈ AMIA.

Proof. For brevity, we define the optimal MIA as A∗. Let s be
an indicator that takes value 1 if and only if A∗(r) ̸= u, and 0
otherwise, i.e., s= 1[A∗(r) ̸= u]. Now consider the conditional
entropy H(s,u|A∗(r)). By decomposing it via two different
ways, we have

H(s,u|A∗(r)) = H(u|A∗(r))+H(s|u,A∗(r))
= H(s|A∗(r))+H(u|s,A∗(r)), (26)

Note that H(s|u,A∗(r))= 0 as when u and A∗(r) are known,
s is also known. Moreover,

H(u|s,A∗(r))
= Pr(s = 1)H(u|s = 1,A∗(r))+Pr(s = 0)H(u|s = 0,A∗(r))
= 0+0 = 0, (27)

because when knowing s and A∗(r), we also know u.
Thus, Equation 26 reduces to H(u|A∗(r)) = H(s|A∗(r)).

As conditioning does not increase entropy, i.e., H(s|A∗(r))≤
H(s), we further have

H(u|A∗(r))≤ H(s). (28)

On the other hand, using mutual information and entropy
properties, we have I(u;A∗(r)) = H(u)−H(u|A∗(r)) and
I(u;r) = H(u)−H(u|r). Hence,

I(u;A∗(r))+H(u|A∗(r)) = I(u;r)+H(u|r). (29)

Note that u⊥ A∗(r)|r. Hence, we have the Markov chain
u → r → A∗(r). Based on the data processing inequality
in Lemma 2, I(u;A∗(r)) ≤ I(u;r). Combining it with Equa-
tion 29, we have

H(u|A∗(r))≥ H(u|r). (30)

Combing Equations 28 and 30, we have H(s) = H2(Pr(s =

1))≥ H(u|r), which implies

Pr(A∗(r) ̸= u) = Pr(s = 1)≥ H−1
2 (H(u|r)), (31)

where H2(t) =−t log2 t− (1− t) log2(1− t).
Finally, by applying Lemma 1, we have

Pr(A∗(r) ̸= u)≥ H(u|r)
2log2(6/H(u|r))

. (32)

Hence the membership privacy leakage is bounded by
Pr(A∗(r) = u)≤ 1− H(u|r)

2log2(6/H(u|r)) .

A.2 Proof of Theorem 2 for PIAs
Theorem 2. Let f be the learnt encoder by Equation (11)
over a data distribution D . For a random dataset X∼D with
the learnt representation R = f (X) and dataset property u,
we have Pr(APIA(R) = u)≤ 1− H(u|R)

2log2(6/H(u|R)) ,∀APIA ∈APIA.

Proof. The proof is identical to that for Theorem 1. The only
differences are: 1) replace r to be R; and 2) s is an indicator
that takes value 1 if and only if A(R) ̸= u, and 0 otherwise, i.e.,
s = 1[A(R) ̸= u], where u is the private dataset property.

A.3 Proof of Theorem 3 for DRAs

Different from MIAs and PIAs where the adversary makes
decisions in a discrete space, i.e., inferring member or non-
member and property value, DRAs aim to infer the continuous
data. To deal with this challenging scenario, we need to first
introduce the following lemma.

Recall that for a set S in a d-dimension space, we denote
∂S as its boundary in the (d − 1)-dimensional space, and
denote the volume of ∂S as Vol(∂S). For a v ∈V , an lp-norm
ball centered at v with a radius t as Bp(v, t) = {v′ ∈ Rd :
∥v′−v∥p ≤ t}.

Lemma 3 (Proposition 2 in [19]). Assume the set V ⊂ Rd

has a non-zero and finite volume. Then, if v is uniform over
V and for any Markov chain v→ ··· → w→ ··· → v′, we
have Pr(∥v′− v∥p ≥ t) ≥ 1− I(v;w)+log2

logVol(∂V )−logVol(∂V (t)) , where

Vol(∂V (t)) = maxv∈V Vol(∂Bp(v, t)∩V ).

Now we prove the Theorem 3 restated as below.

Theorem 3. Let f be the encoder learnt by Equation (20)
over a data distribution D ⊂ X and δδδ be the perturba-
tion for a random sample x ∼ X . Then, Pr(∥ADRA(r+ δδδ)−
x∥p ≥ η)≥ 1− I(x;r+δδδ)+log2

logVol(∂X )−logVol(∂X (η)) ,∀ADRA ∈ADRA, where
Vol(∂X (η)) = maxx∈X Vol(∂Bp(x,η)∩X ).

Proof. We have the following Markov chain: x→ r= f (x)→
r+δδδ→ ADRA(r+δδδ). W.l.o.g., we assume x is uniform over
the input set X . We let x = v, r+δδδ = w, and ADRA(r+δδδ) = v′.
Then by applying Lemma 3, we reach out Theorem 3.
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B Theoretical Utility-Privacy Tradeoff

B.1 Tradeoff of Inf2Guard against MIAs
Let AMIA be the set of all MIAs, i.e., AMIA = {AMIA : r =
f (x) ∈ Z→ u ∈ {0,1}}, with data x randomly sampled from
the data distribution D . W.l.o.g, we assume the representation
space Z is bounded by R, i.e., maxr∈Z ∥r∥ ≤ R. Remember
the learning task classifier C : Z→ Y = {0,1} is on top of
the representations r. We further define the advantage of any
MIA with respect to the data distribution D as:

AdvD(AMIA) = max
AMIA∈AMIA

|Pr(AMIA(r) = a|u = a)

−Pr(AMIA(r) = a|u = 1−a)|, ∀a ∈ {0,1}, (33)

where AdvD(AMIA) = 1 means the strongest MIA can com-
pletely infer the privacy membership through the learnt rep-
resentation. In contrast, an MIA obtains a random guessing
MIA performance if AdvD(AMIA) = 0.
Theorem 4. Let r = f (x) be the representation with a
bounded norm R outputted by the encoder f by Equation
(6) on x with label y, u be x’s membership. Assume the task
classifier C is CL-Lipschitz. Then the utility loss/risk induced
by all MIAs AMIA is bounded as below:

RiskMIA(C ◦ f )≥ ∆y|u−2R ·CL ·AdvD(AMIA), (34)

where ∆y|u = |Pr(y = 1|u = 0)−Pr(y = 1|u = 1)| is a (task-
dependent) constant.
Remark. Theorem 4 states any learning task classifier us-
ing representations learnt by the encoder incurs a risk, at
the cost of membership protection—The larger the advan-
tage AdvD(AMIA), the smaller the lower bound risk, and vice
versa. Note that the lower bound is independent of the adver-
sary. Hence, Theorem 4 reflects an inherent trade-off between
utility preservation and membership protection.

B.2 Tradeoff of Inf2Guard against PIAs
Let APIA be the set of all PIAs that have access to the rep-
resentations R of a dataset X = {xi} sampled from the data
distribution D, i.e., APIA = {APIA : R = f (X) ∈ Z → u =
{0,1}}. Let the dataset representation space is bounded, i.e.,
maxR∈Z ∥R∥≤ R. We further define the advantage of any PIA
with respect to the data distribution D as:

AdvD(APIA) = max
APIA∈APIA

|Pr(APIA(R) = a|u = a)

−Pr(APIA(R) = a|u = 1−a)|, ∀a ∈ {0,1}, (35)

where AdvD(APIA) = 1 means the strongest PIA can com-
pletely infer the privacy dataset property through the learnt
dataset representations, while AdvD(APIA) = 0 implies a ran-
dom guessing PI performance.

Theorem 5. Let (X,y) be a dataset randomly sampled from
the data distribution D and R = f (X) be the dataset repre-
sentation outputted by the encoder f by Equation (11) on X.
Assume the representation space is bounded by R and task

classifier C is CL-Lipschitz. Let u be X’s private property.
Then, the risk induced by all PIAs APIA is bounded as below:

RiskPIA(C ◦ f )≥ ∆y|u−2R ·CL ·AdvD(APIA). (36)

where ∆y|u is same as in Equation 34.
Remark. Similarly, Theorem 5 states any learning task clas-
sifier using representations learnt by the encoder incurs a
utility loss. The larger/smaller the advantage AdvD(APIA),
the smaller/larger the lower bound risk. Also, the lower bound
is independent of the adversary, and thus covers the strongest
PIA. Hence, Theorem 5 shows an inherent tradeoff between
utility preservation and dataset property protection.

B.3 Tradeoff of Inf2Guard against DRAs
Let ADRA be the set of all DRAs that have access to the
perturbed data representations, i.e., ADRA = {ADRA : r+δδδ ∈
Z×P → x ∈ X }. We assume the perturbed representation
space Z is bounded, i.e., maxr+δδδ∈Z×P ∥r+δδδ∥ ≤ R′. We also
denote the perturbed representation as r′ = r+ δδδ for short.
We further define the advantage10 of any DRA with respect
to the data distribution D as:

AdvD(ADRA) = max
ADRA∈ADRA

|Pr(ADRA(r′) = x|y = 0)

−Pr(ADRA(r′) = x|y = 1)|, (37)

where AdvD(ADRA) = 1 means the strongest DRA can com-
pletely reconstruct the private data through the perturbed rep-
resentation. In contrast, AdvD(ADRA) = 0 means the adver-
sary cannot infer any raw data information.
Theorem 6. Let f and r′ be the learnt encoder and perturbed
representation with a bounded norm R′ outputted by Equation
(20) on x with label y, respectively. Assume the task classifier
C is CL-Lipschitz. Then the utility loss induced by all DR
adversaries ADRA is bounded as below:

RiskDRA(C ◦ f )≥ ∆y−2R′ ·CL ·AdvD(ADRA), (38)

where ∆y = |Pr(y = 1)−Pr(y = 0)| is a constant.
Remark. Theorem 6 states that, given a task-dependent con-
stant ∆y, any learning task classifier using representations
learnt by the encoder f incurs a risk. The larger the advan-
tage AdvD(ADRA), the smaller the lower bound risk, and vice
versa. Note that the lower bound covers the strongest DRA.
Hence, Theorem 6 reflects an inherent trade-off between util-
ity preservation and data sample protection.

B.4 Proof of Theorem 4 for MIAs
We first introduce the following definitions and lemmas.

Definition 1 (Lipschitz function and Lipschitz norm). A func-
tion f : A→ Rm is L-Lipschitz continuous, if for any a,b ∈ A,
∥ f (a)− f (b)∥ ≤ L · ∥a−b∥. Lipschitz norm of f , i.e., ∥ f∥L,
is defined as ∥ f∥L = max ∥ f (a)− f (b)∥L

∥a−b∥L .
10Note that our defined advantage is different from that in [56].
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Definition 2 (Total variance (TV) distance). Let D1 and D2
be two distributions over the same sample space Γ, the TV
distance between D1 and D2 is defined as: dTV (D1,D2) =
maxE⊆Γ |D1(E)−D2(E)|.

Definition 3 (1-Wasserstein distance). Let D1 and D2 be two
distributions over the same sample space Γ, the 1-Wasserstein
distance between D1 and D2 is defined as W1(D1,D2) =
max∥ f∥L≤1 |

∫
Γ

f dD1−
∫

Γ
f dD2|, where ∥ · ∥L is the Lipschitz

norm of a real-valued function.

Definition 4 (Pushforward distribution). Let D be a distri-
bution over a sample space and g be a function of the same
space. Then we call g(D) the induced pushforward distribu-
tion of D .

Lemma 4 (Contraction of the 1-Wasserstein distance). Let g
be a function defined on a space and CL be the constant such
that ∥g∥L ≤ CL. Then for any two distributions D1 and D2
over this space, W1(g(D1),g(D2))≤CL ·W1(D1,D2).

Lemma 5 (1-Wasserstein distance over two Bernoulli random
scalars). Let y1 and y2 be two Bernoulli random scalars with
distributions D1 and D2, respectively. Then, W1(D1,D2) =
|Pr(y1 = 1)−Pr(y2 = 1)|.

Lemma 6 (Relationship between the 1-Wasserstein distance
and the TV distance [25]). Let g be a function defined
on a norm-bounded space Z, where maxr∈Z ∥r∥ ≤ R, and
D1 and D1 are two distributions over the space Z. Then
W1(g(D1),g(D2))≤ 2R ·dTV (g(D1),g(D2)).

We now prove Theorem 4.

Proof. We denote Dx|u as the conditional data distribution of
D given u, i.e., x|u∼Dx|u, and Dy|u as the conditional label
distribution given u, i.e., y|u∼Dy|u. As C is a binary task clas-
sifier on top of the encoder f , it follows that the pushforward
C◦ f (Dx|u=0) and C◦ f (Dx|u=1) induce two distributions over
{0,1}. We denote C f as C ◦ f for short. By leveraging the
triangle inequalities of 1-Wasserstein distance, we have

W1(Dy|u=0,Dy|u=1)≤W1(Dy|u=0,C f (Dx|u=0))

+W1(C f (Dx|u=0),C f (Dx|u=1))+W1(C f (Dx|u=1),Dy|u=1) (39)

Using Lemma 5 on Bernoulli r.v. y|u = a, we have

W1(Dy|u=0,Dy|u=1) = |PrD(y = 1|u = 0)−PrD(y = 1|u = 1)|

= ∆y|u. (40)

Using Lemma 4 on the contraction of the 1-Wasserstein
distance and that ∥C∥L ≤CL, we have

W1(C f (Dx|u=0),C f (Dx|u=1))≤CL ·W1( f (Dx|u=0), f (Dx|u=1)).

(41)

Using Lemma 6 with maxr ∥r∥ ≤ R, we have

W1( f (Dx|u=0), f (Dx|u=1))≤ 2R ·dTV ( f (Dx|u=0), f (Dx|u=1)).

(42)

We next show dTV ( f (Dx|u=0), f (Dx|u=1)) = AdvD(AMIA).

dTV ( f (Dx|u=0), f (Dx|u=1)) = max
E
|Pr f (Dx|u=0)(E)−Pr f (Dx|u=1)(E)|

= max
AE∈AMIA

|Prr∼ f (Dx|u=0)(AE(r) = 1)−Prr∼ f (Dx|u=1)(AE(r) = 1)|

= max
AE∈AMIA

|Pr(AE(r) = 1|u = 0)−Pr(AE(r) = 1|u = 1)|

= AdvD(AMIA), (43)

where the first equation uses the definition of TV distance,
and AE(·) is the characteristic function of the event E in the
second equation. With Equations 41-43, we have

W1(C f (Dx|u=0),C f (Dx|u=1))≤ 2R ·CL ·AdvD(AMIA). (44)

Furthermore, using Lemma 5 on Bernoulli random variables
y and C f (x), we have

W1(Dy|u=a,C f (Dx|u=a))

= |PrD(y = 1|u = a)−PrD(C f (x) = 1|u = a))|
= |ED [y|u = a]−ED [C f (x)|u = a]|
≤ ED [|y−C f (x)||u = a] = PrD(y ̸=C f (x)|u = a) (45)

Finally, by combining Equations 39-45, we have:

∆y|u ≤ PrD(y ̸=C f (x)|u = 0)+PrD(y ̸=C f (x)|u = 1)

+2R ·CL ·AdvD(AMIA). (46)

Hence, RiskMI(C ◦ f ) = PrD(y ̸= C f (x)|u = 0) + PrD(y ̸=
C f (x)|u = 1)≥ ∆y|u−2R ·CL ·AdvD(AMIA).

B.5 Proof of Theorem 5 for PIAs
Proof. We follow the similar strategy for proving Theorem 4.
To differential the conditional data sample distribution Dx|u in
MIAs, we denote DX|u as the conditional dataset distribution
of D given the dataset property u, and Dy|u as the conditional
distribution of dataset labels y given u. Also, the pushforward
C f (DX|u=0) and C f (DX|u=1) induce two distributions over
{0,1}|y|. First, by leveraging the triangle inequalities of the
1-Wasserstein distance, we have

W1(Dy|u=0,Dy|u=1)≤W1(Dy|u=0,C f (DX|u=0)) (47)

+W1(C f (DX|u=0),C f (DX|u=1))+W1(C f (DX|u=1),Dy|u=1)

Using Lemma 5 on Bernoulli random variables yi|u = a
and that yi ∈ y are independent, we have

W1(Dy|u=0,Dy|u=1) =
1
|y| ∑

yi∈y
W1(Dyi|u=0,Dyi|u=1)

=
1
|y| ∑

yi∈y
|PrD(yi = 1|u = 0)−PrD(yi = 1|u = 1)|

= |PrD(y = 1|u = 0)−PrD(y = 1|u = 1)|
= ∆y|u, (48)

where in the first equality and third equality we use the inde-
pendence of {yi}’s and second equality uses Equation 40.
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Using Lemma 4 on the contraction of the 1-Wasserstein
distance and that ∥c∥L ≤CL, we have

W1(C f (DX|u=0),C f (DX|u=1))≤CL ·W1( f (DX|u=0), f (DX|u=1)).

(49)

Using Lemma 6 with maxR ∥R∥ ≤ R, we have

W1( f (DX|u=0), f (DX|u=1))≤ 2R ·dTV ( f (DX|u=0), f (DX|u=1)).

We next show dTV ( f (DX|u=0), f (DX|u=1)) = AdvD(APIA).

dTV ( f (DX|u=0), f (DX|u=1)) = max
E
|Pr f (DX|u=0)(E)−Pr f (DX|u=1)(E)|

= max
AE∈APIA

|PrR∼ f (DX|u=0)(AE(R) = 1)−PrR∼ f (DX|u=1)(AE(R) = 1)|

= max
AE∈APIA

|Pr(AE(R) = 1|u = 0)−Pr(AE(R) = 1|u = 1)|

= AdvD(APIA). (50)

With Equations 49-50, we thus have

W1(C f (DX|u=0),C f (DX|u=1))≤ 2R ·CL ·AdvD(APIA).

Further, as {yi}’s are independent and using Lemma 5 on
Bernoulli random variables yi and C f (xi), we have

W1(Dy|u=a,C f (DX|u=a))

=
1
|y| ∑

(xi,yi)∈(X,y)
W1(Dyi|u=a,C f (Dxi|u))

=
1
|y| ∑

(xi,yi)∈(X,y)
|PrD(yi = 1|u = a)−PrD(C f (xi) = 1|u = a))|

=
1
|y| ∑

(xi,yi)∈(X,y)
|ED [yi|u = a]−ED [C f (xi)|u = a]|

≤ 1
|y| ∑

(xi,yi)∈(X,y)
ED [|yi−C f (xi)||u = a]

=
1
|y| ∑

(xi,yi)∈(X,y)
PrD(yi ̸=C f (xi)|u = a), (51)

where again the first equality uses independence of {yi}’s.
Finally, by combining Equations 47-51,

∆y|u ≤
1
|y| ∑

(xi,yi)∈(X,y)
PrD(yi ̸=C f (xi)|u = 0)

+
1
|y| ∑

(xi,yi)∈(X,y)
PrD(yi ̸=C f (xi)|u = 1)

+2R ·CL ·AdvD(APIA). (52)

Hence, RiskPI(C ◦ f ) = 1
|y| ∑(xi,yi)∈(X,y) PrD(yi ̸= C f (xi)) ≥

∆y|u−2R ·CL ·AdvD(APIA).

B.6 Proof of Theorem 6 for DRAs
Proof. We denote Dx|y as the conditional data sample distri-
bution of D given y and Pδδδ as the perturbation distribution on
δδδ. We further denote Dx|y⊕Pδδδ as the combined distribution

of the two. Accordingly, r′ = r+δδδ is sampled from this com-
bined distribution. By leveraging the triangle inequalities of
the 1-Wasserstein distance, we have

W1(Dy=0|x,Dy=1|x)≤W1(Dy=0|x,C f (Dx|y=0⊕Pδδδ))

+W1(C f (Dx|y=0⊕Pδδδ),C f (Dx|y=1⊕Pδδδ))

+W1(C f (Dx|y=1⊕Pδδδ),Dy=1|x). (53)

Using Lemma 5 on Bernoulli r.v. y, we have

W1(Dy=0|x,Dy=1|x) = |PrD(y = 0)−PrD(y = 1)|= ∆y. (54)

Using Lemma 4 on the contraction of the 1-Wasserstein
distance and that ∥C∥L ≤CL, we have

W1(C f (Dx|y=0⊕Pδδδ),C f (Dx|y=1⊕Pδδδ))

≤CL ·W1( f (Dx|y=0⊕Pδδδ), f (Dx|y=1⊕Pδδδ)). (55)

Using Lemma 6 with maxr′ ∥r′∥ ≤ R′, we have

W1( f (Dx|y=0⊕Pδδδ), f (Dx|y=1⊕Pδδδ))

≤ 2R′ ·dTV ( f (Dx|y=0⊕Pδδδ), f (Dx|y=1⊕Pδδδ)). (56)

We further show that dTV ( f (Dx|y=0⊕Pδδδ), f (Dx|y=1⊕Pδδδ))=
AdvD(ADRA). Specifically,

dTV ( f (Dx|y=0⊕Pδδδ), f (Dx|y=1⊕Pδδδ))

= max
E
|Pr f (Dx|y=0⊕Pδδδ)

(E)−Pr f (Dx|y=1⊕Pδδδ)
(E)|

= max
AE∈ADRA

|Prr′∼ f (Dx|y=0⊕Pδδδ)
(AE(r′) = x)−Prr′∼ f (Dx|y=1⊕Pδδδ)

(AE(r′) = x)|

= max
AE∈ADRA

|Pr(AE(r′) = x|y = 0)−Pr(AE(r′) = x|y = 1)|

= AdvD(ADRA), (57)

where the first equation uses the definition of TV distance,
and AE(·) is the characteristic function of the event E in the
second equation. With Equations 55-57, we have

W1(C f (Dx|y=0⊕Pδδδ),C f (Dx|y=1⊕Pδδδ))≤ 2R′ ·CL ·AdvD(ADRA).

Furthermore, using Lemma 5 on Bernoulli r.v.s y and C f (x):

W1(Dy=1|x,C f (Dx|y=1)⊕Pδδδ)

= |PrD(y = 1)−PrD×P (C( f (x)+δδδ) = 1|y = 1)|
= |ED [y]−ED×P [C( f (x)+δδδ)|y = 1]|
≤ ED×P [|y−C( f (x)+δδδ)|y = 1|].
= PrD×P (y ̸=C( f (x)+δδδ)|y = 1). (58)

Similarly,

W1(Dy=0|x,C f (Dx|y=0)⊕Pδδδ)≤ PrD×P (y ̸=C( f (x)+δδδ)|y = 0).
(59)

Finally, by combining Equation 53-Equation 59,

∆y ≤ PrD×P (y ̸=C( f (x)+δδδ|y = 1)+2R′ ·CL ·AdvD(ADRA)

+PrD×P (y ̸=C( f (x)+δδδ)|y = 0) (60)

Hence, RiskDR(C ◦ f ) = PrD×P (y ̸= C( f (x) + δδδ)|y = 1) +
PrD×P (y ̸=C( f (x)+δδδ)|y= 0)≥∆y−2R′ ·CL ·AdvD(ADRA).
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C Datasets and Network Architectures

C.1 Detailed Dataset Description

CIFAR-10 [40]. It contains 60,000 colored images of 32x32
resolution. The dataset consists of images belonging to 10
classes: airplane, automobile, bird, cat, deer, dog, frog, horse,
ship and truck. There are 6,000 images per class. In this
dataset, the primary task is to predict the label of the image.
Purchase100 [48]. The dataset includes 197,324 shopping
records, where each data record corresponds to one costumer
and has 600 binary features (each corresponding to one item).
Each feature reflects if the item is purchased by the costumer
or not. The data is clustered into 100 classes and the task is to
predict the class for each costumer.
Texas100 [61]. This dataset includes hospital discharge data
published by the Texas Department of State Health Services.
Data records have features about the external causes of injury
(e.g., suicide, drug misuse), the diagnosis (e.g., schizophrenia,
illegal abortion), the procedures the patient underwent (e.g.,
surgery), and generic information such as gender, age, race,
hospital ID, and length of stay. The dataset contains 67,330
records and 6,170 binary features which represent the 100
most frequent medical procedures. The records are clustered
into 100 classes, each representing a type of patient.
Census [66]. It consists of several categorical and numerical
attributes like age, race, education level to predict whether a
person makes over $50K a year. We focus on the ratios of
females (sex) as property.
RSNA Bone Age [66]. It contains X-Ray images of hands,
with the task being predicting the patients’ age in months.
We convert the task to binary classification based on an age
threshold, 132 months, as a binary primary task. We focus on
the ratios of the females (available as metadata) as properties.
CelebA [43]. It is a large-scale wild face attributes dataset
that consists of 200,000 RGB celebrity images. Each image
has 40 annotated binary attributes such as “gender", “race".
We focus on smile detection as a primary task and the ratios
of females (sex) as the private property.
CIFAR100 [40]. This dataset has 100 classes containing 600
colored images each, with size 32x32. There are 500 training
images and 100 testing images per class. The learning task is
classifying the 100 classes.
Activity [54]. This dataset contains data collected from smart-
phones carried by a person while performing 1 of 6 activities.
There is a total of 516 features in a single row format. All
features are pre-normalized and bounded by [-1, 1]. The data
collected include statistical summaries of sensory data col-
lected by the phone, including acceleration, orientation, etc.

C.2 More Experimental Setup

Training and testing: Table 9-Table 11 show the utility train-
ing/test and attack training/test sets.

Table 9: Training and test sets for primary and MIA tasks.
CIFAR10 Purchase100 Texas100

Utility training set 25,000 98,662 33,665
Utility test set 25,000 98,662 33,665

Attack training set 40,000 157,859 53,864
Attack test set 10,000 39,465 13,466

Table 10: Training and test sets for primary and PIA tasks.
Census RSNA CelebA

Subset size [2,32k] [2,100] [2,20]
female ratios {0.2,0.3, · · · ,0.5} {0.2,0.3, · · · ,0.8} {0.0,0.1, · · · ,1.0}

Attack train set 8k subsets 14k subsets 22k subsets
Attack test set 2k subsets 3.5k subsets 5.5k subsets
Utility train set data in 8k subsets in 14k subsets in 22k subsets
Utility test set data in 2k subsets in 3.5k subsets in 5.5k subsets

Table 11: Training and test sets for primary and DRA tasks.
CIFAR10 CIFAR100 Activity

Utility/Attack training set 50,000 50,000 7,352
Utility test set 10,000 10,000 2,947
Attack test set 50 50 50

Differential Privacy (DP) against MIAs: DP provides an
upper bound on the success of any MIA. We can add noise in
several ways (e.g., to input data, model parameters, gradients,
latent features, output scores) to ensure DP. Note that there
exists an inherent trade-off between utility and privacy: a
larger added noise often leads to a higher level of privacy
protection, but incurs a larger utility loss. Here, we propose
to use the below two ways.
• DP-SGD [3]: 1) DP-SGD training: It clips gradients (with

a gradient norm bound) and adds Gaussian noise to the
gradient in each SGD round when training the ML model
(i.e., encoder + utility network). More details can be seen
in Algorithm 1 in [3]. After training, the model ensures DP
guarantees and the encoder is published. 2) Attack training:
The attacker obtains the representations of the attack train-
ing data via querying the trained encoder and uses these
representations to train the MIA classifier. 3) Defense/attack
testing: The utility test set is used to obtain the utility via
querying the trained ML model; and the attack test set to
obtain the MIA accuracy via querying the trained encoder
and trained MIA classifier.

We used the Opacus library (https://opacus.ai/), a Py-
Torch extension that enables training models with DP-SGD
and dynamically tracks privacy budget and utility. In the
experiments, we tried ε in DP-SGD from 0.5 to 16.

• DP-encoder: 1) Normal training: It first trains the encoder
+ utility network using the (utility) training set. The encoder
is then frozen and can be used to produce data representa-
tions when queried by data samples. 2) Defense via adding
noise to the representations: We add Gaussian noise (i.e.,
N (0,σ2)) to the representations by querying the encoder
with the attack training data to produce the noisy representa-
tions. Notice that, since the Gaussian noises are injected to
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Table 12: Network architectures for the used datasets (MIAs)

Encoder Membership Network Utility Network
CIFAR10

conv3-64 (ResNet Block 6) 2xconv3-512 2xconv3-512
BN-64 (ResNet Block 6) avgpool & Flatten

MaxPool avgpool & Flatten
2xconv3-64 (ResNet Block) Linear-512 Linear-512
2xconv3-64 (ResNet Block) Linear-2 classes Linear-#labels
3xconv3-64 (CustomBlock)

2xconv3-128 (ResNet Block)
2xconv3-128 (ResNet Block)
3xconv3-128 (CustomBlock)
2xconv3-256 (ResNet Block)

conv3-512 (ResNet Block)
Purchase100

Linear-600 & Tanh Linear-1024 & ReLU Linear-128 & ReLU
Linear-512 & Tanh Linear-512 & ReLU Linear-256 & ReLU
Linear-256 & Tanh Linear-256 & Tanh Linear-128

Linear-128 & Tanh 3xLinear-256
Linear-2 classes Linear-#labels

Texas 100
Linear-6169 & ReLU Linear-128 & ReLU Linear-128
Linear-1024 & ReLU Linear-256 & ReLU Linear-#labels
Linear-2048 & ReLU Linear-128 & ReLU
Linear-1024 & ReLU Linear-128
Linear-512 & ReLU Linear-2 classes
Linear-256 & ReLU
Linear-128 & ReLU

the matrix-outputs (data representations), if needed, the ac-
tual DP guarantee (i.e., privacy bounds) can be derived via
Rényi Differential Privacy [46], similar to the theoretical
studies in [47, 68]. We skip the details here since this work
does not focus on the derivation for the privacy bounds
of DP-encoder. 3) Attack training: The attacker uses the
noisy representations of attack training data to train the
MIA classifier. 4) Defense/attack testing: We use the utility
test set to obtain the utility via querying the trained encoder
and utility network; and use the attack test set to obtain
the MIA accuracy on the trained encoder and trained MIA
classifier. We call this DP-encoder as we add noise to the
representations outputted by the well-trained encoder.

DP-encoder against PIAs: We follow the strategy in DP
against MIAs and choose the DP-encoder, as DP-SGD is inef-
fective in this setting [66]. The only difference is that we now
add Gaussian noise to the mean-aggregated representation of
a subset, instead of the individual representation.
Data reconstruction attack/defense on shallow encoder:
As shown in [30], when the encoder is deep, it is difficult for
the attacker to reconstruct the input data from the representa-
tion. To ensure DRAs be effective, we use a shallow 2-layer
encoder. As a result, this makes the defense more challenging.

C.3 Network Architectures

Network architectures for the neural networks used in defense
training are detailed in Table 12-Table 14.

Table 13: Network architectures for the used datasets (PIAs).
BN: BatchNorm, SC: Shortcut Connection

Encoder Property Network Utility Network
RSNA Bone Age

conv2-64 & BN-64 Linear-1024 con2d-1024
ReLU & MaxPool ReLU ReLU

DenseBlock-64 Linear-512 AdaptiveAvgPool2d
TransitionLayer-64 ReLU

DenseBlock-128 Linear-256
TransitionLayer-128 ReLU Linear-#labels

DenseBlock-256 Linear-128
TransitionLayer-256 ReLU

DenseBlock-512 Linear-#property values
AdaptiveAvgPool

Census
conv1d-256 & ReLU Linear-128 & ReLU Conv1d-64 & ReLU
conv1d-128 & ReLU Linear-64 & ReLU Conv1d-32 & ReLU

AdaptiveMaxPool1d-1 Linear-#property values AdaptiveAvgPool1d-1
Linear-128 AdaptiveAvgPool1d-1

AdaptiveMaxPool1d-1 Linear-#labels
CelebA

conv3-64 & BN-64 FCResidualBlock Linear-512
ReLU & MaxPool (512->256)

Residual Block 1& 2 FCResidualBlock Linear-#labels
conv3-64 & BN-64 (256->128)
ReLU & conv3-64

BN-64 & SC & ReLU
Residual Block 3& 4 Linear-128
conv3-128 & BN-128
ReLU & conv3-128

BN-128 & SC & ReLU
Residual Block 5& 6 Linear-#property values
conv3-256 & BN-256
ReLU & conv3-256

BN-256 & SC & ReLU
Residual Block 7& 8
conv3-512 & BN-512
ReLU & conv3-512

BN-512 & SC & ReLU

Table 14: Network architectures for the used datasets (DRA)

Encoder Reconstruction Network Utility Network
CIFAR10 (CIFAR100)

conv2-32 & BN-32 conv2-32 & BN-32 conv2-64 & BN-64
conv2-32 & BN-32 conv2-128 & BN-128

ReLU
conv2-128 & BN-128 U

ReLU
conv2-128 & BN-128

ReLU
conv2-128 & BN-128

ReLU
conv2-64 & BN-64

ReLU
Flatten

Linear-1024 & BN-1024
ReLU

Linear-64 (256)
BN-64 (256)

ReLU
Linear-#labels

Activity
Linear-256 Linear-128 Linear-32

BN-256 & ReLU BN-128 & ReLU BN-32& ReLU
Linear-128 Linear-32 Linear-12

BN-128 & ReLU BN-32 & ReLU BN-12 & ReLU
Linear-32 Linear-#labels

BN-32 & ReLU
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Table 15: Impact of the size of the encoder on Inf2Guard
defense results against MIAs (we fix the utility classifier and
privacy protection/attack classifier). A larger encoder can have
(marginally) better MIA performance without defense.

CIFAR10
#parameters λ Utility MIA Acc
Encoder: 4,898,112 0 77.83% 63.62%
Utility: 4,725,770 0.25 77.53% 56.2%
Pri/Atk: 4,721,153 0.5 77% 52.08%

0.75 76% 50%
1 10% 49.99%

Encoder: 6,448,192 0 80.88% 68.78 %
Utility: 4,725,770 0.25 78.66% 55.39%
Pri/Atk: 4,721,153 0.5 77.80% 51.78%

0.75 76.85% 50.31%
1 13.44% 50%

Encoder: 7,018,944 0 78.85% 70.05%
Utility: 4,725,770 0.25 78.15% 55.88%
Pri/Atk: 4,721,153 0.5 78.00% 53.53%

0.75 77.20% 51.08%
1 20% 50%

Purchase100
#parameters λ Utility MIA Acc
Encoder: 471,936 0 80.08% 59.31%
Utility: 25,700 0.25 80.08% 51%
Pri/Atk: 66,049 0.5 80% 50%

0.75 80% 50%
1 20% 49.99%

Encoder: 734,592 0 81.65% 68.36%
Utility: 25,700 0.25 80.87% 60%
Pri/Atk: 66,049 0.5 80% 51%

0.75 78% 50%
1 20% 50%

Encoder: 1,304,448 0 80.65% 69.65%
Utility: 25,700 0.25 80.87% 61%
Pri/Atk: 66,049 0.5 80% 53%

0.75 78% 50%
1 20% 50%

Texas100
#parameters λ Utility MIA Acc
Encoder: 7,532,416 0 46.52% 68.96%
Utility: 25,700 0.25 46.20% 60%
Pri/Atk: 66,049 0.5 46% 50%

0.75 46% 50%
1 2% 50%

Encoder: 9,106,304 0 49.76% 70.21%
Utility: 25,700 0.25 49.05% 61%
Pri/Atk: 66,049 0.5 46% 50%

0.75 46% 50%
1 2% 50%

Encoder: 11,204,480 0 51.05% 69.10%
Utility: 25,700 0.25 51% 61%
Pri/Atk: 66,049 0.5 51% 50%

0.75 46.82% 50%
1 2% 50%

C.4 More Experimental Results

More results on defending against MIAs: Table 15 shows
the Inf2Guard results against MIAs, with varying sizes of the
encoder. We can see a larger encoder can have (marginally)
better MIA performance without defense. One possible is that

Table 16: More DP results against MIAs.
DP-SGD CIFAR10 Purchase100 Texas100

Utility MIA Acc Utility MIA Acc Utility MIA Acc
ε = 0.5 46% 50% 40% 52% 11% 51%
ε = 1 48% 51% 48% 54% 15% 52%
ε = 2 59% 55% 53% 57% 26% 54%
ε = 4 61% 57% 60% 59% 33% 55%
ε = 8 65% 59% 71% 62% 39% 57%
ε = 16 68% 62% 78% 66% 45% 59%

DP-encoder CIFAR10 Purchase100 Texas100
Utility MIA Acc Utility MIA Acc Utility MIA Acc

σ2 = 10 48% 51% 32% 51% 10% 50%
σ2 = 1 59% 56% 54% 56% 26% 54%

σ2 = 0.1 71% 66% 65% 59% 46% 55%
σ2 = 0.01 78% 79% 78% 64% 49% 60%

Inf2Guard 77% 51% 80% 51% 46% 50%

Table 17: Inf2Guard results against PIAs, where the attacker
is unknown to the true (mean) aggregator and uses a substitute
(max) one to aggregate the subset representations.

Census
λ Utility PIA Acc

0 85% 48%
0.25 83% 45%
0.5 82% 44%
0.75 81% 28%

1 60% 25%

RSNA
Utility PIA Acc

0 83% 42%
0.25 82% 24%
0.5 82% 21%
0.75 81% 15%

1 60% 14%

CelebA
Utility PIA Acc

0 91% 40%
0.25 91% 22%
0.5 91% 15%

0.75 88% 9%
1 63% 9%

Table 18: Inf2Guard results against DRAs with uniform per-
turbation distribution. A smaller SSIM or PSNR indicates
better defense performance (λ =0.4).

CIFAR10
Scale ε Utility SSIM/PSNR

0 89.5% 0.78 / 15.97
1.25 85.7% 0.28 / 13.23
2.25 77.7% 0.24 / 12.34
3.25 64.9% 0.20 / 12.93

a larger model can better memorize the training data. Table 16
shows more DP results (vs varying ε’s) against MIAs. We can
see Inf2Guard obtains higher utility than DP methods under
the same privacy protection performance.

More results on defending against PIAs: Figure 12-
Figure 14 shows the t-SNE embeddings of Inf2Guard against
PIAs. Table 17 shows Inf2Guard results against PIAs, where
the attacker does not the true (mean) aggregator and use a
substitute one (i.e., max-aggregator). We can see the attack
performance is less effective and Inf2Guard can yield (close
to) random guessing attack performance (when γ = 0.75),
with a slight utility loss. This implies the aggregator plays a
critical role in designing effective PIAs against Inf2Guard.

More results on defending against DRAs: Table 18 shows
the Inf2Guard results against DRAs, where the perturbation
distribution is uniform distribution. We observe similar utility-
privacy tradeoff in terms of the noise scale ε.
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(a) Utility w/o. defense (85%) (b) Attack acc. w/o. defense (68%) (c) Utility w. defense (76%) (d) Attack acc. w. defense (34%)

Figure 12: Inf2Guard against PIAs: 3D t-SNE embeddings results on the learnt representation on Census Income. Each color
indicates a label or a female ratio, and each point is a data representation in (a) and (c) or an aggregated representation in (b) and
(d) of a subset in the learning task and in the privacy task, respectively. Same for the other two datasets.

(a) Utility w/o. defense (83%) (b) Attack acc. w/o. defense (52%) (c) Utility w. defense (80%) (d) Attack acc. w. defense (19%)

Figure 13: Inf2Guard against PIAs: 3D t-SNE embeddings results on the learnt representation on RSNA Bone Age.

(a) Utility w/o. defense (91%) (b) Attack acc. w/o. defense (50%) (c) Utility w. defense (89%) (d) Attack acc. w. defense (11%)

Figure 14: Inf2Guard against PIAs: 3D t-SNE embeddings results on the learnt representation on CelebA.

D Optimal Solution of Inf2Guard

Inf2Guard involves training three (deep) neural networks
whose loss functions are highly non-convex. To protect the
data privacy, Inf2Guard needs to solve a min-max adversary
game, whose optimal solution could be Nash Equilibrium.
However, finding Nash Equilibrium for highly non-convex
functions can be a challenging problem, as traditional opti-
mization techniques may not work effectively in such cases.
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