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—— Abstract

We study the question of whether submodular functions of random variables satisfying various

notions of negative dependence satisfy Chernoff-like concentration inequalities. We prove such a
concentration inequality for the lower tail when the random variables satisfy negative association or
negative regression, partially resolving an open problem raised in ([23]). Previous work showed such
concentration results for random variables that come from specific dependent-rounding algorithms
([6, 14]). We discuss some applications of our results to combinatorial optimization and beyond. We
also show applications to the concentration of read-k families [13] under certain forms of negative
dependence; we further show a simplified proof of the entropy-method approach of [13].
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1 Introduction

Concentration inequalities are ubiquitous in discrete mathematics and theoretical computer
science [2, 9]. The most canonical examples are the Chernoff-Hoeffding bounds, which show
strong concentration for linear combinations of independent random variables [7, 15]. In some
applications, the condition of independence is too restrictive, so weaker notions have been
considered [3, 24, 25]. Of interest to us is the setting where the random variables are negatively
correlated, which arises naturally, for example, in designing approximation algorithms by
solving a linear or semidefinite program and applying some dependent randomized rounding
algorithm [11]. For this setting, [20] showed that the Chernoff-Hoeffding bounds can be
shown under the weak notion of negative cylinder dependence: this and other standard
notions of negative dependence are defined in Section 2.1.

For some applications in combinatorial optimization, algorithmic game theory, and
machine learning, one needs to consider the more general class of submodular functions f
of the random variables, rather than simple linear combinations. When the binary random
variables X1, ..., X,, are independent, it was shown that f(Xi,...,X,,) still satisfies Chernoff
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bounds exactly [6]. When there is dependence between the random variables, the results are
much weaker. The only known results are for random variables that are output by specific
dependent-rounding algorithms, known as swap rounding and pipage rounding [6, 14]. These
results showed that a Chernoff-like lower-tail bound also holds for submodular functions for
their specific dependent rounding procedure. As noted in the work of [12], it is not clear how
to generalize either of these proofs to any general notion of negative dependence.

We introduce a new notion of negative dependence, called 1-negative association, which is
weaker than negative association and negative regression but stronger than negative cylinder
dependence.

» Definition 1. A collection of random variables X1, ..., X, is said to satisfy 1-negative
assoctation if for any two monotone functions f and g, where g depends on a single random
variable X; and f depends on the remaining random variables {X;}jep\ (i}, we have E[fg] <

E[f]E[g]-

Importantly, while in general it is weaker than the notion of weak negative regression
introduced by [23], 1-negative association is equivalent to it when the variables X7,..., X,
are binary. Further details are provided in Section 3.1.

Our main result is that the Chernoff-like bound shown in [6, 14] also hold under 1-negative
association (see Section 3.2). In particular, this implies the following:

» Theorem 2. Let X1,..., X, be binary random variables with mean x1, ..., x, satisfying
negative association (or negative regression). Let f be a non-negative monotone submodular
function with marginal values in [0,1] and let F' be the multilinear extension of f. If we let
o = F(x1,...,2,), then we have the following:

Prif(X1,...,X,) < (1 =6) - o] < exp(—pd?/2).

A few remarks are in order. First, we highlight that the concentration in the above theorem
is with respect to the value of the multilinear extension F(x1,...,x,), rather than the
true expected value E[f(X1,...,X,)]. In general, the true expected value can be greater
than the value of multilinear extension [23]. Nevertheless, this suffices for applications
relating to submodular maximization, and is the same type of concentration result shown in
previous work. Second, recall that negative cylinder dependence does not suffice to show this
concentration bound [6, p. 583]. As a result, our results are, in some informal sense, almost
tight in terms of the condition on negative dependence.

In addition to providing submodular concentration results for a wide class of rounding
algorithms and distributions, our results also give a new path toward understanding why
pipage rounding and swap rounding satisfy the lower-tail Chernoff bound. By proving
that the rounding algorithms output random variables which are 1-negatively associated,
we immediately obtain a new proof of the lower tail bounds. This can be viewed as
evidence that the two rounding algorithms satisfy 1-negative association or even negative
association/regression. We leave this as an interesting open question.

Techniques

We use the standard method of bounding the exponential moments for lower-tail Chernoff
bounds. Our idea is to show that the exponential moments for our negatively-correlated
random variables is upper bounded by the exponential moments for independent copies of
the random variables. Formally, let X7, ..., X,, be random variables satisfying 1-negative
association and let X7,..., X} be independent copies of the random variables. We show for
any A < 0, we have

Elexp(A- f(X1,..., Xp))] < Elexp(A- f(XT, ..., X7))].

n
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Since the exponential-moments method has been used to prove Chernoff bounds for submod-
ular functions in the independent case [6], we can then repeat their proof and conclude with
our desired result. We believe this proof idea may be of independent interest. For example,
the same ideas can show that for a supermodular function g and any A > 0, we have

Elexp(A - g(X1,..., X)) < Elexp(A- (X7, ..., X3))]

In other words, we have morally proven the following statement: any upper-tail concentration
bound which can be proven for a supermodular function ¢ under independence based on the
exponential-moments method also holds when the underlying random variables are negatively
associated. As an example, we can apply this to a read-k family of supermodular functions
g1, - -, gr for negatively associated random variables [13]. A read-k family is defined as a set
of functions where each variable appears in at most &k functions. This concept is particularly
useful in scenarios where functions need to model or manage overlapping sets of variables
with constraints on their interaction. We highlight that the proof of concentration for read-k
families given in [13] doesn’t use the exponential-moments method, but instead it is based
on the entropy method. We address this by giving a simpler proof of their results, this time
using the exponential moments method. This gives the first concentration results for a class
of supermodular functions under negatively correlated random variables, and is detailed in
Section 3.3.

Applications

Our motivation for studying the problem comes from the randomized-rounding paradigm in
approximation algorithms for converting a fractional solution to a linear program into an
integral one. In many such randomized-rounding schemes, the output random variables have
been shown to satisfy strong negative dependence properties, such as negative association
[26, 11]. For all such rounding algorithms, our results immediately imply the submodular
Chernoff lower-tail bound. It remains an interesting open question to efficiently sample
negatively dependent distributions for a wider class of set systems. A particularly interesting
algorithm is given in the work of [22]; they show that a fractional point in a matroid polytope
can be rounded to an integral one such that the resulting distribution preserves marginals
and satisfies negative association. However, a gap identified in their proof [23] complicates
the application of their approach. The implications of this issue for the applicability of our
results remain an area for further investigation.

As a concrete application, we consider the maximum coverage problem under group
fairness constraints. Here, we have a universe of elements {1,...,n}, a collection Sy, ..., Sy,
of subsets of the universe, and a budget k. We are further given subsets C1,...,C; C [n]
(which should be thought of as demographic groups) along with thresholds wy, ..., w,. Our
goal is to choose k sets from the collection to maximize the number of elements covered
subject to the fairness constraint each demographic group is sufficiently covered (i.e., at least
w; elements from C; are covered). Since this is a special case of multiobjective submodular
maximization, there exists a (1 — 1/e — e)-approximation to the problem such that each
fairness constraint is approximately satisfied [6, 28]. Unfortunately, these results rely on the
randomized swap-rounding algorithm due to its submodular concentration properties, which
requires a super-linear time complexity. While swap rounding can be implemented with
poly-logarithmic depth [5], a simpler dependent-rounding algorithm of [26] requires linear
work and only O(logn) depth, which improves the efficiency. Observe that the pre-processing
step in [28] only requires O(nf) time. Since we can solve the linear program for fair maximum
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coverage in near-linear time [1], we obtain a near-linear time algorithm for the problem after
using the efficient rounding algorithm of [26]. These same ideas can be used to improve
the time complexity of the algorithm by [27] for influence maximization with group-fairness
constraints. Since the proofs are similar to previous work, we defer the details to a future
version of the paper.

More generally, negatively-associated random variables show up naturally in many settings
(see e.g., the primer by [29]). [8] studied the canonical example of balls and bins, and showed
that it satisfied both negative association and negative regression. Another example satisfying
the negative-association conditions are any product measure over the set of bases of a balanced
matroid, as shown by [10]. A final setting where such random variables occur are random
spanning trees, which have been vital in the recent improvements to approximation algorithms
for the traveling salesperson problem (see, e.g., [16]). Random spanning trees are known to
be strongly Rayleigh, which immediately implies that they are negatively associated. Our
results may be interesting here as well.

We also observe that the online rounding scheme of [18] has the strongly Rayleigh
property: we immediately get strong concentration (on the lower-tail side) for monotone
submodular functions, when the inputs for the function arrive online along with their
(Bernoulli) distributions as in the setup of [18].

Related Work

The concentration of negatively-dependent random variables was first formally studied by [19],
which showed a central limit theorem for a certain notion of negative dependence. Later on,
[20] showed that cylinder negatively dependent random variables yield the Chernoff-Hoeffding
concentration inequalities, just like independent random variables. In the context of our
paper, these results are somewhat specialized since they focus on linear combinations of
random variables.

For non-linear functions of the random variables, the majority of work has focused on
the concentration of Lipschitz functions under various notions of negative dependence. [21]
showed that for strong Rayleigh measures, one has Gaussian concentration for any Lipschitz
function. Later on, [12] corrected an earlier proof of [8], showing that McDiarmid-like
concentration results hold for Lipschitz functions of random variables satisfying negative
regression. These results are complementary to ours since we are trying to give dimension-free
concentration results.

2 Preliminaries

2.1 Notions of Negative Dependence

We begin by defining the notion of negative dependence commonly found in the literature.

Negative Cylinder Dependence

A collection of Boolean random variables X1, ..., X, is said to be negative cylinder dependent
if for every S C [n],

E[[Lics Xi] < [Les BIXI]

and

E [HieS (1- Xi)] < HieSE [1 - Xi] .
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Negative cylinder dependence is the weaker notion considered here. It is known to imply
Chernoff bounds for linear combinations of Xy,...,X,, but it is insufficient to show our
submodular concentration results.

Negative Association

A collection of random variables X7,..., X, is said to be negatively associated if for any
I,J C[n],INJ =0 and any pair of non-decreasing functions f : Rl - R, g: R/ - R,

E[f(X1)g(X)] <E[f(XD)]E[g(X,)].

Here and in the following, Xg refers to those random variables that are indexed by the
elements in S, Xg = {X; : i € S}. Negative association is a significant strengthening of
negative cylinder dependence, and has many additional useful closure properties. This will
be one of the focuses of the paper.

Negative Regression

A collection of random variables X1, ..., X, is said to satisfy negative regression, if for any
I,J C [n],INJ =0, any non-decreasing function f: R — R and a < b€ R”,

E[f (X1) | Xy =a] ZE[f (X1) | X; =1].

Negative regression is a strengthening of negative cylinder dependence, but its relationship
with negative association is not yet well understood. It is known that negative association
doesn’t imply negative regression [8], but the opposite implication is not known. This will
be the other focus of the paper.

Strong Rayleigh

A collection of random variables X7, ..., X, is said to satisfy the strong Rayleigh property if
the generating function

F(z1,...,20) = B[], 2]

J=1%j
is a real stable polynomial (i.e., it has no root (z1,...,z,) € C" with all positive imaginary
components). The strong Rayleigh property is the strongest notion of negative dependence,
and has been shown to imply all other studied negative dependence definitions [4]. As a
result, all of our results apply here as well.

2.2 Submodular Functions

We also give a quick review of the basics of submodular functions.

Submodular Functions
We say that a function f: {0,1}" — R is submodular if
f(le' .- 7X7L717]-7Xi+17 .. X’n) - f(X17 s 7Xi71707Xi+17' . Xn)

is a non-increasing function of Xy,..., X;—1, X;4+1,..., X, for each i € [n]. When viewing
the binary input of f as the indicator vector for a set, this is equivalent to the more common
definition that f is submodular if for any X, Y C [n] with X CY and any ¢ Y, we have

fXU{a}) = F(X) = F(Y U{a}) = F(Y).

47:5
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Supermodular Functions

We say that a function g : {0,1}"™ — R is supermodular if
g(Xl, . 7,Xvi,l, 17Xi+17 .. Xn) — g(Xl, Ce 7Xi,17O,Xi+17 .. Xn)

is a non-decreasing function of Xi,..., X; 1, X;41,..., X, for each i € [n]. When viewing
the binary input of g as the indicator vector for a set, this is equivalent to the more common
definition that g is supermodular if for any X,Y C [n] with X CY and any = € Y, we have

g(X U{z}) — g(X) < g(Y U{a}) — g(Y).

Mutlilinear Extension

The multilinear extension of a function f is

F(x) =E[f(2)] = Xgcn f(5) [Lies wi [ Ligs(1 — i),

for x € [0,1]™. If we view x as a probability vector, the multilinear extension F is simply the
expected value of f when each coordinate is rounded independently in {0, 1}.

3 Submodular Chernoff Bounds

3.1 1-Negative Association and Weak Negative Regression

We first define the weaker notion of negative dependence which we work with, called 1-
negative association, and prove some simple properties about it. We also define a related
notion of weak negative regression, which is the analogue of 1-negative association for the
notion of negative regression, and we show the equivalence between the two for binary random
variables and show that weak negative regression is strictly stronger in general. After an
initial draft, we discovered that [23] had already introduced the notion of weak negative
regression for binary random variables in a context complementary to ours. Using their work,
we can immediately show nice properties about 1-negative association.

» Definition 3. A collection of random wvariables X1, ..., X, is said to satisfy 1-negative
assoctation if for any two monotone functions f and g, where g depends on a single random
variable X; and f depends on the remaining random variables {X;}jem\ (i}, we have E[fg] <

E[f]E[g].

» Definition 4. A collection of random variables X1, ..., X, is said to satisfy weak negative
regression if for any index i and any monotone function f depending on the remaining
random variables {X;}jem)\ iy, we have E[f|X; = b] < E[f|X; = a] for all a <b.

In the following lemmata, we show that weak negative regression implies 1-negative
association in general. We then show that the reverse implication holds for binary random
variables, but give an example showing that it does not hold in general.

> Claim 5. If a collection of random variables X1, ..., X, satisfies weak negative regression,
then it satisfies 1-negative association.

Proof. Assume X, ..., X, satisfy weak negative regression; we will prove that it also satisfies
1-negative association. Let f and g be monotone functions such that f depends on X; for
some subset I C [n] and g depends on X; for ¢ ¢ I. Without loss of generality, let us assume
that f and g are non-decreasing.
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First, define the function F(a) = E[f(X)|X; = a]. Evaluating the expectation
E[f(X1)g(X;)], we can express it via the law of total expectation as

E[f(X1)g(Xi)] = E[E[f(X1)|Xi]g(Xi)] = E[F(X;)g(X)].

Next, we observe that by the definition of weak negative regression, F'(a) is non-increasing.
Therefore, random variables F(X;) and ¢g(X;) are negatively correlated, yielding

E[F(Xi)g(X3)] < E[F(X3)|E[g(X:)].
Converting E[F(X;)] back into the terms of f and g, we find
E[F(X3)|E[g(X:)] = E[f(X)]E[g(X3)].

The overall inequality E[f(X[)g(X;)] < E[f(X1)]E[g(X;)] thus holds, which establishes that
Xi,..., X, are l-negatively associated, completing the proof. <

> Claim 6. If a collection of binary random variables Xji,...,X,, satisfies 1-negative
association, then it satisfies weak negative regression.

Proof. Recall that we wish to prove that for any non-decreasing function f depending on
some subset I C [n] and any ¢ ¢ I, we have that

E[f(X1)|X; = 0] > E[f(X1)]|X; = 1].

By the definition of 1-negative association, we obtain that for any monotone functions g
which depends on X;, the following inequality holds:

E[f(X1)g(Xi)] < E[f(X1)] - E[g(X,)]- (1)

Without loss of generality, we may assume that E[f(X)|X; = 1] = 0 by shifting f by a
constant. By choosing g to be the identity function, we can apply the law of total probability
to obtain

E[f(X1) - 9(X3)] = Pr[X; = 0] - E[f(X71)|Xi = 0] - g(0) + Pr[Xi = 1] - E[f (X1)|Xi = 1] - g(1) = 0.
Plugging this into Equation 1, we obtain
0 < E[f(X7)] - E[g(X:)] = E[f(X1)|X; = 0] Pr[X; = 0] - E[X;],
again by the law of total probability. Since E[X;] > 0 and Pr[X; = 0] > 0, this implies that
E[f(X7)|Xi =0] 20,
which concludes the proof since E[f(X[)|X; = 1] = 0. <
> Claim 7. There exists (non-binary) distributions over 2 random variables which satisfy 1-

negative association but not weak negative regression. In other words, 1-negative association
is strictly more general than weak negative regression for non-binary random variables.

Proof. Let’s first discuss the intuition for the construction of the counterexample. One can
show via algebra that E[f(X)g(X;)] — E[f(X1)]E[g(X;)] can be expanded as the following
expression:

Y ey PrIXi = 2] Pr[X; = ¢ - (B[f(X1)|Xi = 2] — E[f(X1)|Xi = y]) (9(=) — 9(v)),

where the summation is over the values that X; takes with non-zero probability.
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Now, suppose that for some values z < y we have that

violating the weak negative regression property. This would imply that some of the summands
are positive (since g(x) < g(y) by monotonicity). In the case of binary random variables,
the summation would only consist of a single summand so 1-negative association would be
violated. For general random variables, the summation consists of multiple terms so the
summation may still be negative even when a single summand is positive. Consequently, the
random variables may still satisfy 1-negative association.

We now give the example. Consider the random variables (X7, X3) which are uniformly
distributed on their support set {(0,3),(1,1),(2,2),(3,0)}. By considering an identity
function 1, : {0,1,2,3} — {0,1,2,3}, we can show that that the distribution of (X7, X5)
does not satisfy weak negative regression:

E[]lm(XZMXl = 1] = ]lx(l) =1<2= 1%(2) = E[]lx(XQMXl = 2}'

However, for any pair of non-decreasing functions f, g : {0,1,2,3} — R, we have

B (X0 Elg (0] B (X1)g ) = T H SR FE) o)+ 6(2)+9(8) 0ol +£Dg(2)

where we have again assumed without loss of generality that f(0) = ¢g(0) = 0.
We claim that the quantity on the right hand side is always non-negative. In order to see
this, observe that f(2)g(2) < f(i)g(j) for any 4,j > 2 by monotonicity. As a result, we have

f2)g9(2) _ (f(2) +3)(9(2) +9(3))
4 = 16 '

Further, we observe that f(1)g(1) < f(i)g(j) for any 4,5 > 1 by monotonicity. As a result,

we have
f(1)g(1) < FM)(9(2) +9B3)) +9(M)(f(2) + FB))

4 16

Combining these two inequalities immediately and observing that f(1)g(1) > 0 by monoton-
icity implies our desired result. Hence, the distribution is 1-negatively associated. <

Since 1-negative association and weak negative regression are equivalent for binary random
variables and weak negative regression has been shown to be strictly stronger than cylinder
negative dependence [23, Proposition 2.4], we also have that 1-negative association is strictly
stronger than cylinder negative dependence. Additionally, since weak negative regression is
strictly stronger than 1-negative association for general random variables and weak negative
regression has been shown to be strictly weaker than negative association and negative
regression [23, Proposition 2.4], we have that 1-negative association is strictly weaker than
negative association and negative regression. We summarize these in the following corollaries.

» Corollary 8. I-negative association is a strictly weaker condition than negative association.
» Corollary 9. 1-negative association is a strictly weaker condition than negative regression.

» Corollary 10. 1-negative association is a strictly stronger condition than negative cylinder
dependence.
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3.2 Proof of Submodular Concentration

We will now prove our main result. As mentioned in the introduction, our proof is based on
the standard technique of bounding the exponential moments. The following lemma contains
our main technical contribution, stating that the exponential moments of f(Xi,...,X,)
under 1-negative association is dominated by that under independence. Our results will
follow easily afterwards.

» Lemma 11. Let X;,...,X,, be I-negatively associated random variables and let X7 ,..., X}
be independent random variables with the same marginal distributions. Also let f be a non-
negative monotone function.

If f is submodular and A < 0, we have

Elexp(Af(X1,...,Xn))] < Elexp(Af(X7,..., X))

If f is supermodular and X\ > 0, we have

Elexp(Af(X1,...,Xn))] < Elexp(Af(X7,..., X))

Proof. Fix A < 0 if f is submodular and A > 0 if f is supermodular. Observe that in order
to prove the lemma, it suffices to prove

Elexp\ - f(X1, .., Xi .o, X)) < Elexph - f(X1, ..., X2y oo, X)), (2)

since we can iteratively apply the above inequality to each X; (note that we can do this
because independent variables are also negatively associated). For simplicity of notation and
without loss of generality, we will prove the inequality for i = 1.

By considering the cases of X; = 0 and X; = 1 separately, we have

eXp(A . f(Xla s 7Xn)) =X1- exp()\ . f(17X27 s ’X’ﬂ))) + (1 - Xl) . exp()\ . f(07X27 s aX’ﬂ)))7

where the equality holds pointwise on the underlying probability space. Via simple algebraic
manipulations, we can rewrite the right hand side as

X - lexp(A- f(1,Xa,..., X)) —exp(A - f(0,Xa, ..., X)) +exp(X- f(0,Xs,...,Xp))
Taking expectations, we now have that E[exp(Af(X1,...,X,))] can be written as

E[X:1 - [exp(A- f(1,X2,..., X)) — exp(A- f(0, Xa,..., Xn))] | + E[exp(X- f(0, Xa,..., X))

Observe that X is clearly an increasing function of X;. We claim that if either (i) f
is submodular and A < 0 or (i7) f is supermodular and A > 0, we have that exp(\ -
f(1,Xa,..., X)) —exp(A- £(0, X3, ..., X)) is an increasing function in X, ..., X,,. Indeed,
we first rewrite the function as

exp()x : f(05X27'~~ 7Xn)) . [exp()\ . (f(17X27~~ . ,Xn) - f(07X27~~ . ’X’n))) - 1} = Al 'AQ

for simplicity of notation.

Let us first consider the case when A < 0 and f is submodular. We have that A; is
(7) positive because the exponential function is always positive and (i4) non-increasing in
Xa,..., X, because f is non-decreasing and A < 0. We also have that Ay is (i) negative
because the argument in exp(-) is negative, so the exponential is in (0,1) (i7) non-decreasing
since A < 0 and the difference of f evaluated at X; = 1 and X; = 0 is non-increasing by
definition of submodularity. Hence, our expression of interest is the product of a function A,
which decreases towards 0 and a function A, which increases towards 0. The product will be
negative and monotonically increasing towards 0.

47:9
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Now, let us consider the case when A > 0 and f is supermodular. We have that A, is (4)
positive because the exponential function is always positive and (i7) non-decreasing since
A > 0, f is monotone, and exp(-) is also monotone. We also have that A, is (i) positive
because the argument of exp(-) is positive since f is monotone so the exponential is greater
than 1 and (i¢) non-decreasing since A > 0 and the difference of f evaluated at X; = 1 and
X7 = 0 is non-decreasing by definition of supermodularity. As a result, the product will be
positive and non-decreasing, as desired.

Since we have shown that the A A5 is also monotone, we now have that the first term in
Equation 3 can be written as the product of monotone functions of disjoint subsets, one of
which is the singleton set. By 1-negative association, we have that the first term is upper
bounded by

E[X4] - Elexp(A- f(1, Xa,..., X)) —exp(A- f(0, Xa, ..., X))
Consequently, the entire expression in (3) is upper bounded by
E[X;]-Elexp(A- f(1, X2, ..., X)) —exp(A- f(0, Xa, ..., X)) ]+ E[exp(A- (0, X2, ..., Xpn))].
Since X7 and X7 have the same marginal distributions, the above is exactly equal to
E[X7]-Elexp(A- f(1, Xo, ..., X)) —exp(A- f(0, Xa, ..., X)) ]+ E[exp(A- f(0, Xo, ..., Xp))]
And since X7 is independent with X, ..., X,, by assumption, the above is equal to
E[X] -exp(A- f(1,X2,...,Xn)) —exp(A- f(0, X2, ..., X)) +Elexp(A- £(0, Xa,...,Xpn))].

In particular, observe that this is in the exact same form as Equation 3, except with X,
replaced with X;. Note that when we transformed the left-hand side of Equation 2 to
Equation 3, we never used any properties of the random variables X7, ..., X, other than the
fact that they take values in {0,1}. As a result, we can reverse the direction of all of the
equalities to show that the above expression is equal to

]E[exp()\ : f(Xika X27 e 7Xn))]7
which completes the proof of the lemma. |

Now, we will complete the proof of our main result. Combining the theorem below with
Claims 8 and 9 immediately gives a proof of Theorem 2. Here, our proof will rely heavily on
the proof of the Chernoff bound for submodular functions under independence given in [6].

» Theorem 12. Let X1,..., X, be binary random variables with mean x1, ..., x, satisfying
1-negative association. Let f be a non-negative monotone submodular function with marginal
values in [0,1] and let F be the multilinear extension of f. If we let, o = F(x1,...,2,),

then we have the following:

Prf(X1,...,X,) < (1 =6) - o] < exp(—pd?/2).

Proof. Let X{,..., X, be independent random variables with the same respective mar-
ginals as Xi,...,X, and let A\ < 0 be a parameter to be set later. Let us decompose
F(X5, ., X5 =37 V>, where

Y= f(XF,...,X50,...,0) — f(X5,..., X} ,,0,...,0).
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Let us denote E[Y;*] = w; and po = > w; = E[f(X{, ..., X})]. By the convexity of the
exponential and the fact that Y;* € [0,1], we have that

Elexp(A - Y;")] < w; -exp(\) + (1 —w;) = 1+ [exp(N) — 1] - w; < exp[(exp(A) — 1) - wy].
Combining the above with Lemma C.1 from [6], we have that

Elexp(\- f(XF,..., X)) = Elexp(A - 320, 7)) < [T, Elexp(A - ;)]
< exp[(exp(A) — 1) - o). (4)

Now, we can follow the proof of the standard Chernoff bound:

Prif(X1,...,Xn) < (1 —0) - po] =Prlexp(A- f(X1,..., X)) < >exp(A(1 —9) - po)]
< Elexp(A - f(X1,...,X4))]
exp(A(1 —9) - o)
_ Elexp(r- f(X{.-., X;))
exp(A(1 —9) - po)
_ expl(exp() = 1) - )
exp(A(1—9) - po)

The first equality follows since exp(A - ) is a monotone function, the first inequality follows
by Markov’s inequality, the second inequality follows by Lemma 8, and the final inequality
follows Equation 4.

Finally, we can choose A such that exp(\) = 1 — 4, which gives

P (Xi,e X) 2 (1 o] < B < expl—pa - 82/2),

where we used (1 —6)' 7% < exp(—d + 62/2) for 6 € (0,1] in the final inequality. <

3.3 Concentration of read-k families

In this subsection, we illustrate an application of our proof technique to give concentration for
a read-k family of supermodular functions. Read-k families arise naturally in problems such as
subgraph counting in random graphs, and can be seen as a complementary weak dependence
notion to that of low-degree polynomials [17]. Our work gives the first concentration results
for these problems under negative dependence.

Let’s consider this notion of weak dependence defined in [13]. Let Y3,...,Y; be random
variables and assume that they can be factored as functions of random variables X7, ..., X,,.
We say that Y7,...,Y, are a read-k family of X1,..., X,, if for each variable X;, there are
at most k variables among Y7,...,Y, that are influenced by X;. Formally, we have the
following.

» Definition 13. Let X,..., X, be random variables. For each j € [n], let P; C [m| and
let f; : {0,1}7 — [0,1] be functions of Xp,. We say that Y; = f;(Xp,) are a read-k family
if {7 :i€ P;j}| <k for each i € [m] (i.e., each variable X; influences at most k functions).

When Xy,...,X,, are independent, [13] showed that we have

Pr(320 1 fi(Xp,) = (p+ €)n] < exp(=D(p + €l|p) - n/k) (5)
Pr[370 1 fi(Xp,) < (p— €)n] < exp(=D(p — ellp) - n/k), (6)
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where p = (1/n) >-7_, E[Y;] and D(:||-) is the Kullback-Leibler divergence. Notably, while
Gavinsky et al. do not require random variables X1, ..., X,, to be binary, as we do in our
approach, their model requires Y7, ..., Y, to be binary. We will show that Inequality 5 on the
upper tail still holds for supermodular functions fi,..., f,. Similarily, Inequality 6, which

addresses the lower tail bound, continues to apply to submodular functions fi,..., fn.

» Theorem 14. [Let Xi,...,X,, be l-negatively associated random wvariables and let
Xi,..., X} be independent random wvariables with the same respective marginal distri-
butions as X1,...,Xm,. Suppose that f;(Xp;) for j € [n] are a read-k family, where
fi + {0,1}7 — [0,1] are supermodular functions. If we let po = (1/n) Z?:1 E[fj(X;’;j)}
denote the averaged expectation when the underlying random variables are independent, we
have

Pr[3770, fi(Xp;) = (po + €)n] < exp(=D(po + €l|po) - n/k).

Proof. Let f(X1,...,Xm) = >_7_, fi(Xp;) be the quantity of interest, and note that f is
the sum of supermodular functions so it is supermodular as well.
We will follow the standard proof via exponential moments. Let A > 0; we have

Prlf(Xi1,...,Xm) > (po + €)n] = Prlexp(A- f(X1,...,Xm)) > exp(A- (po +€)n)]  (7)
< Efexp(A - f(X1,..., Xm))]/ exp(X - (po + €)n), (®)

where the inequality follows by Markov’s. Since f is supermodular, we have by Lemma 11
that

Elexp(X - f(X1,..., Xm))] < Elexp(X - f(XT, ..., X7))] = Elexp(A - 327, fi(Xp))]- (9)
In the new proof of concentration of read-k families, given in the Appendix, we show that

Elexp(A - 325y £3(Xp))) < (T Blexp(r - f;(X5,))"]) " (10)

Combining equations 7-10, we have

Pr[f(X1, ., Xin) = (po + €)n] < (T Elexp(kA - f;(X,))/ exp(kA(po + 6)n])1/ .

Let M = k; since A > 0 is a parameter we set, we can view X' > 0 as a parameter as well.
We will abuse notation and replace ' with A, so we have

Prf (X, X) > (po -+ ] < (TT, Elexp(r- £5(X5, )/ exph(po + o)) .

for any A > 0. Now, observe that the right hand side of the inequality is the exact same as
in the proof of the standard Chernoff bound under independence, except with an additional
exponent 1/k. As a result, we can follow the original proof of the Chernoff bound to show
that

Pr[3°0_ fi(Xp;) = (po + €)n] < exp(—=D(po + €llpo) - n/k),
which was our desired result. |

» Corollary 15. Let X1,...,X,, be 1-negatively associated random variables. Suppose that
[i(Xp,) for j € [n] are a read-k family, where f; : {0,1}77 — [0,1] are submodular functions.
If we let po = (1/n) 37, E[f; (XF,)] denote the averaged expectation when the underlying
random variables are independent, we have

Pr[3°0, fi(Xp;) < (po — €)n] < exp(=D(po — €llpo) - n/k).



S. Duppala, G. Z. Li, J. Luque, A. Srinivasan, and R. Valieva

Proof. Define g; := 1 — f;, where g; : {0,1}"7 — [0, 1] are supermodular. Then 1 — py =
(1/n) 375, Elg;(Xp,)]- Applying Theorem 14, we have:

Pr[327 1 9i(Xp,) = (1= (po — €))n] < (1= po + €)n] < exp(—=D(1 = po + ||l = po) - n/k).

The property of Kullback—Leibler divergence D(1 — p||1 — q) = D(p||q) implies

Pr3°0 fi(Xp;) < (po — €)n] = Pr[307, 9;(Xp,) = (1= (po — €))7

< exp(—=D(po — €llpo) - n/k),

which concludes the proof. <
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A Concentration of Read-k Families

We will give a new simpler proof of the results of Gavinsky et al. [13] using exponential

moments for f; for independent random variables X1, ..., X,,. Our proof will use the following
lemma
» Lemma 16. For an arbitrary read-k family Fy, ..., F,, we have

. 1/k
B[ 5 < (G E(F]) (1)
Using this lemma, if we define
Fj = exp()\ : fj(le cee ,Xm)),

it is easy to see that F1,..., F, are a read-k family since f1,..., f, are read-k. We will show
later that after applying inequality (11) on Fy,..., F,,, we can adapt the standard Chernoff
bound proof to our case.

Proof. We will prove inequality (11) via induction on the number of independent variables
m. For the base case m = 1, observe that there are at most k non-constant functions F} by
definition. If there are fewer than k functions F)j, we can also add identity functions without
changing the product. As a result, we can without loss of generality assume that there are
exactly %k functions F;. The inequality then follows directly by the Generalized Hélder’s
Inequality.

Now assume we have proven the statement for m independent variables; we will try to
prove it for m + 1. Again, let § = S; denote the set of functions F; which are influenced by
X1. We have

E [H;'Lzl FJ} =E [Hjes Ej- ngs Fj:|
53 Moy T o]
E

[E [Hjes Fj|Xa, ... ,Xmﬂ} s FJ} (12)

Here, the first equality is obvious, the second equality follows by the law of total expectation,
and the third equality follows since F}; for j & S only depends on Xo,...,X,, 41 and is
independent of X;.

After taking the conditional expectation, observe that E[[[;cq Fj|X2,..., Xm41] s a
random variable which only depends on Xs, ..., X,,+1. In particular, these form a read-k
family over m random variables, so we can apply the inductive hypothesis to claim that

1/k
E([Tjes 51Xz X1 | < (Tjes B [FAIXa, o, Xonsa])
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After combining this with equation (12), we have

n 1/k
E [Ty F| < B|[Les B [FAXe o Xmia] " TLigs F| = 4
For j € S, let G; = Fj and for j € S, define

Gy =E[FFXa, ..., Xppia] "

so that A =FE {H?Zl Gj] Observe that G; are again a read-k family on X, ..., X411, so

we can again apply the induction hypothesis to claim that
n n 1/k n 1/k
A=E [Hj:l Gj:| < Hj:l E [Gﬂ = Hj:l E [ng] )
where the final equality follows directly by definition of G;. This completes the proof. <«

Using the lemma, we can follow the standard Chernoff bound techniques to complete the
proof. Let X = Z?:1 fi(X1,...,X,,); we can apply Markov’s inequality for any A < 0 to
obtain

Pr[X < gn] = Prlexp(AX) > exp(Agn)] < exp(—Agn) - E [exp(AX)]

As mentioned before, we can take F; = exp(A- f;(X1,..., X)) and apply inequality (11) to
obtain that

exp(AX) = E {1‘[};1 FJ} < I\, E[F})/%.

Combining this inequality with the previous inequality, we now have that

Pr[X < qn] < exp(—Aqn) - [[}_; E[FF]/*F = (H}Ll E [[F; /exp(Aq)]’“])l/k

Writing out the definition of F;, we have
[F;/ exp(Ag)]* = exp(\k - [i( X1, ., X))/ exp(Akq).

Define A = A\k; since A was arbitrary, we will abuse notation and let A = A’. Combining the
two previous inequalities, we have that

1/k
PrX < qn] < (T} Elexp(A - f)/ exp(Aa)]) -

Here, the right-hand side is in exactly the same form as in the proof of the Chernoff-Hoeffding
theorem under independence, except with an additional exponent 1/k. As a result, we can
follow the Chernoff-Hoeffding proof and take ¢ = p — € to obtain

Pr[X < (p —e)n] < exp(—=D(p — ¢||p) - n/k),

which was our desired result.
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