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Abstract

Modeling the complex three-dimensional (3D)
dynamics of relational systems is an important
problem in the natural sciences, with applications
ranging from molecular simulations to particle
mechanics. Machine learning methods have
achieved good success by learning graph neural
networks to model spatial interactions. However,
these approaches do not faithfully capture
temporal correlations since they only model
next-step predictions. In this work, we propose
Equivariant Graph Neural Operator (EGNO),
a novel and principled method that directly
models dynamics as trajectories instead of just
next-step prediction. Different from existing
methods, EGNO explicitly learns the temporal
evolution of 3D dynamics where we formulate
the dynamics as a function over time and learn
neural operators to approximate it. To capture the
temporal correlations while keeping the intrinsic
SE(3)-equivariance, we develop equivariant
temporal convolutions parameterized in the
Fourier space and build EGNO by stacking the
Fourier layers over equivariant networks. EGNO
is the first operator learning framework that is
capable of modeling solution dynamics functions
over time while retaining 3D equivariance.
Comprehensive experiments in multiple domains,
including particle simulations, human motion
capture, and molecular dynamics, demonstrate
the significantly superior performance of EGNO
against existing methods, thanks to the equivari-
ant temporal modeling. Our code is available at
https://github.com/MinkaiXu/egno.
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1. Introduction
Modeling the dynamics of many body systems in Euclidean
space is an important problem in machine learning (ML) at
all scales (Tenenbaum et al., 2011; Battaglia et al., 2016),
ranging from interactions of atoms in a molecule or protein
to interactions of celestial bodies in the universe. Tradi-
tional methods tackle these physical dynamics by Newton’s
laws along with interactions calculated from physical rules,
e.g., Coulomb force for modeling systems with charged
particles (Kipf et al., 2018). Such calculations based on
physical rules typically are very computationally expen-
sive and slow, and recently researchers are studying alter-
native ML approaches by learning neural networks (NNs)
to automatically capture the physical rules and model the
interactions in a data-driven fashion. Along this research
direction, considerable progress has been achieved in re-
cent years by regarding objects as nodes and interactions
as edges and learning the spatial interactions via graphs
neural networks (GNNs) (Battaglia et al., 2016; Kipf et al.,
2018; Sanchez-Gonzalez et al., 2019; Martinkus et al., 2021;
Sanchez-Gonzalez et al., 2020; Pfaff et al., 2020).

Among the advancements, Equivariant GNN (EGNN) is a
state-of-the-art approach with impressive results in model-
ing physical dynamics in 3D Euclidean space (Thomas et al.,
2018; Satorras et al., 2021). EGNNs possess equivariance
to roto-translational transformations in the Euclidean space,
which has been demonstrated as a vital inductive bias to im-
prove generalization (Köhler et al., 2019; Fuchs et al., 2020;
Han et al., 2022b; Xu et al., 2022). However, these methods
typically model the dynamics by only learning to predict the
next state given the current state, failing to faithfully capture
the temporal correlation along the trajectory (Song et al.,
2023; Song & Dhariwal, 2024). As a result, performance
is still often unsatisfactory without fully understanding the
dynamics as systems evolve through time.

Our contributions: In this paper, we propose Equivariant
Graph Neural Operator (EGNO), a novel and principled
method to overcome the above challenge by directly mod-
eling the entire trajectory dynamics instead of just the next
time-step prediction. Different from existing approaches,
EGNO predicts dynamics as a temporal function that is not
limited to a fixed discretization. Our framework is inspired
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Figure 1. Illustration of EGNO. EGNO blocks (green) can be built with any EGNN layers (blue) and the proposed equivariant temporal
convolution layers (yellow). Consider discretizing the time window ∆T into P points {∆t1, . . . ,∆tP }. Given a current state G(t), we
will first repeat its features by P times, concatenate the repeated features with time embeddings, and feed them into L EGNO blocks.
Within each block, the temporal layers operate on temporal and channel dimensions while the EGNN layers operate on node and channel
dimensions. Finally, EGNO can predict future dynamics as a function fG(t) and decode a trajectory of states {G(t+∆tp)}Pp=1 in parallel.

by the neural operator (NO) (Li et al., 2020; Kovachki et al.,
2021b;a), specifically, Fourier neural operator (FNO) (Li
et al., 2021; Zheng et al., 2023), which has shown great
effectiveness in learning maps between function spaces with
desirable discretization convergence guarantees. Our core
idea is to formulate the physical dynamics as a function over
time and learn neural operators to approximate it. The main
challenge in developing EGNO is to capture the temporal
correlations while still keeping the SE(3)-equivariance in
the Euclidean space. To this end, we develop equivariant
temporal convolution layers in the Fourier space and real-
ize EGNO by stacking them with equivariant networks, as
shown in Figure 1. Our key innovation is that we notice
the equivariance property of Fourier and inverse Fourier
transforms and keep this equivariance in Fourier space with
special kernel integral operators. The resulting EGNO archi-
tecture is the first efficient operator learning framework that
is capable of mapping a current state directly to the solution
trajectories, while retaining 3D spatial equivariance.

EGNO enjoys several unique advantages compared to exist-
ing GNN-based methods, thanks to the proposed equivariant
operator learning framework. Firstly, our method explicitly
learns to model the trajectory while still keeping the intrin-
sic symmetries in Euclidean space. This, in practice, leads
to more expressive modeling of underlying dynamics and
achieves higher state prediction accuracy. Secondly, our
operator formulation enables efficient parallel decoding of
future states (within a time window) with just one model
inference, and the model is not limited to one fixed temporal
discretization. This allows users to run dynamics inference
at any timestep size without switching model parameters.
Finally, our proposed temporal convolutional layer is gen-

eral and can be easily combined with any specially designed
EGNN layers. This permits EGNO to be easily deployed in
a wide range of different physical dynamics scenarios.

We conduct comprehensive experiments on multiple bench-
marks to verify the effectiveness of the proposed method,
including particle simulations, motion captures, and molec-
ular dynamics for both small molecules and large proteins.
Experimental results show that EGNO can consistently
achieve superior performance over existing methods by a sig-
nificant margin on various datasets. For instance, EGNO in-
curs a relative improvement of 36% over EGNN for Aspirin
molecular dynamics, and 52% on average for human mo-
tion capture. All the empirical studies suggest that EGNO
enjoys a higher capacity to model the geometric dynamics,
thanks to the equivariant temporal modeling.

2. Related Work
2.1. Graph Neural Networks

Graph neural networks (Gilmer et al., 2017; Kipf & Welling,
2017) are a family of neural network architectures for repre-
sentation learning on relational structures, which has been
widely adopted in modeling complex interactions and sim-
ulating physical dynamics. Early research in this field im-
proves performance by designing expressive modules to
capture the system interactions (Battaglia et al., 2016; Kipf
et al., 2018; Mrowca et al., 2018) or imposing physical
mechanics (Sanchez-Gonzalez et al., 2019). Beyond inter-
actions, another crucial consideration for simulating physi-
cal dynamics is the symmetry in Euclidean space, i.e., the
equivalence w.r.t rotations and translations. To this end,
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several works are first proposed to enforce translation equiv-
ariance (Ummenhofer et al., 2019; Sanchez-Gonzalez et al.,
2020; Pfaff et al., 2020; Wu et al., 2018), and then later
works further enforce the rotation equivariance by spherical
harmonics (Thomas et al., 2018; Fuchs et al., 2020) or equiv-
ariant message passings (Satorras et al., 2021; Huang et al.,
2022; Han et al., 2022a). In addition, some methods (Liu
et al., 2022; Du et al., 2022) also introduce architectural
enhancements with local frame construction to process ge-
ometric features while satisfying equivariance. However,
despite the considerable progress, all the models are lim-
ited to modeling only the spatial interactions and ignore the
critical temporal correlations, while in this paper, we view
dynamics as a function of geometric states over time and
explicitly learn the temporal correlations.

2.2. Neural Operators

Neural operators (Kovachki et al., 2021b) are machine
learning paradigms for learning mappings between Banach
spaces, i.e., continuous function spaces (Li et al., 2020; Ko-
vachki et al., 2021a), which have been widely adopted as
data-driven surrogates for solving partial differential equa-
tions (PDE) or ordinary differential equations (ODE) in
scientific problems. Among them, Fourier neural opera-
tor (Li et al., 2021) is one of the state-of-the-art methods for
solving PDEs across many scientific problems (Yang et al.,
2021; Wen et al., 2022). It holds several vital properties
including discretization invariance and approximation uni-
versality (Kovachki et al., 2021a;b), which is useful in our
scenario where we aim to model the dynamics as a function
of 3D states over time. However, previous studies mainly
concentrate on functions defined on spatial domains (Yang
et al., 2021; Wen et al., 2022) or temporal functions with
simple scalar outputs (Zheng et al., 2023). By contrast,
in this paper, we are interested in modeling geometric dy-
namics with temporal functions describing the evolution
of directional features where it is nontrivial to enforce the
symmetry of Euclidean space.

3. Preliminaries
3.1. Notions and Notations

In this paper, we consider modeling the dynamics of multi-
body systems, i.e., a sequence of geometric graphs G(t)

indexed by time t. It can also be viewed as a function
of 3D states over time fG : t → G(t). Suppose we have
N particles or nodes in the system, then the graph G at
each timestep can be represented as the feature map [h,Z],
where h = (h1, . . . , hN ) ∈ RN×k is the node feature ma-
trix of k dimension (e.g., atom types and charges), and
Z ∈ RN×m×3 is the generalized matrix composed of m di-
rectional tensors in 3D. For example, Z can be instantiated
as the concatenation of coordinate matrix x ∈ RN×3 and ve-

locity matrix v ∈ RN×3, leading to Z = [x,v] ∈ RN×2×3.
Specifically, in this paper, we consider the dynamics where
h will stay unaffected w.r.t. time while Z is updated, e.g.,
for molecular dynamics, atom types will remain unchanged
while positions are repeatedly updated.

3.2. Equivariance

Equivariance is important and ubiquitous in 3D sys-
tems (Thomas et al., 2018; Fuchs et al., 2020). Let g ∈ G
denote an abstract group, then a function f : X → Y
is defined as equivariant w.r.t g if there exists equivalent
transformations Tg and Sg for g such that f ◦ Tg(Z) =
Sg ◦ f(Z) (Serre et al., 1977). In this paper, we consider
the Special Euclidean group SE(3) for modeling the 3D
dynamics, the group of 3D rotations and translations. Then
transformations Tg and Sg can be represented by a transla-
tion µ ∈ R3 and an orthogonal rotation matrix R ∈ SO(3).

As a practical example, to model dynamics by learning a
function to predict G(t+1) from G(t), we hope that any rota-
tions and translations applied to the current state coordinate
x(t) should be accordingly applied on the predicted next one
x(t+1), while the velocities v should also rotate in the same
way but remain unaffected by translations1. Such inductive
bias has been shown critical in improving data efficiency
and generalization for geometric modeling (Cohen et al.,
2018; Xu et al., 2023).

3.3. Fourier Neural Operator

Fourier neural operator (FNO) (Li et al., 2021) is an ad-
vanced data-driven approach for learning mappings between
Banach spaces, which has been widely deployed in solving
PDEs and ODEs (Kovachki et al., 2021b;a; Zheng et al.,
2023) in scientific problems. Typically, a Fourier neural
operator F can be implemented as a stack of L kernel in-
tegration layers with each kernel function parameterized
by learnable weights θ. Let σ denote nonlinear activation
functions, we have

Fθ := Q ◦ σ(WL +KL) ◦ · · · ◦ σ(W1 +K1) ◦ P (1)

where P and Q are lifting and projection operators param-
eterized by neural networks, which lift inputs to higher
channel space and finally project them back to the target
domain, respectively. Wi are point-wise linear transforma-
tions, and Ki are kernel integral operators parameterized in
Fourier space. Formally, given fi as the input function to
the i-th layer, Ki is defined as:

(Kif)(t) = F−1(Mi · (Ff))(t), ∀t ∈ D, (2)

where F and F−1 denote the Fourier and inverse Fourier
transforms on temporal domain D, respectively, and Mi is

1Following this convention, in this paper we use RZ + µ as
the shorthand for [Rx+ µ,Rv]T.

3



Equivariant Graph Neural Operator for Modeling 3D Dynamics

the learnable parameters that parameterizes Ki in Fourier
space. Starting from input function a(t), we first lift it to
higher dimension by P , apply L layers of integral operators
and activation functions, and then project back to the target
domain with Q. The resulting FNO is shown to follow the
critical discretization invariance of the function domain D.

4. Equivariant Graph Neural Operator
4.1. Overview

Our goal is to learn a neural operator that given the current
structure G(t) (recurrently) predicts the future structures
G(t+∆t) with ∆t > 0. Previous methods (Thomas et al.,
2018; Gilmer et al., 2017; Wang & Chodera, 2023) mainly
tackled the problem by learning to predict G(t+1) from G(t),
while in this paper we instead learn to predict a future trajec-
tory {G(t+∆t) : ∆t ∼ D = [0,∆T ]} within a time window
∆T . Let U : D → RN×m×3 denote the space of the target
temporal functions that predict future states Z(t+∆t). As-
sume F † to be the solution operator, we can define EGNO
as Fθ and learn it with the following objective function:

min
θ

EG(t)∼pdata
L(Fθ(G(t))(t)− F †(G(t))(t)), (3)

where L : U → R+ is any loss function such as Lp-norm.
Further, the dynamics introduced in Section 3.1 can gener-
ally be described by Newtonian equations of motion

dZ =

[
dx
dv

]
=

[
v · dt

−r · dt− γv · dt

]
, (4)

where r represents the force of particle interactions, and γ
is the weight controlling the potential friction term. From
Equation (4), we know there exists an exact solution of
Z(t) corresponding to the solution operator F † in Equa-
tion (3), which represents the solver for solving the dy-
namics function, i.e., mapping a current structure G(t) to
the function fG(∆t) that describes future states G(t+∆t) for
∆t ∼ [0,∆T ]. According to neural operator theory, we have
that the FNO framework can universally approximate the
dynamics and predict future geometric structures G(t+∆t)

with one forward inference. We leave the formal statement
on universality in Appendix A.1.

4.2. Equivariant Temporal Convolution Layer in
Fourier Space

In this part, we formally introduce our temporal convolution
layers Tθ, which are built upon Fourier integration operators
Kθ to model the temporal correlations. Let f : D → G2 be
the input starting function that describes structures G(t) for
time t, i.e., f(t) = [fh, fZ(t)]

T. Then the convolution layer

2For simplicity, in Section 4.1 we omit the subscript and use f
to denote fG .

Tθ is implemented as:

(Tθf)(t) = f(t) + σ((Kθf)(t)), (5)

which is a modified version of the FNO layer in Equation (1).
In particular, we move the nonlinearity σ and trainable pa-
rameters to the integration layer K and leave the linear trans-
form W as an identical residual connection (He et al., 2016),
which has shown effectiveness in various applications in-
cluding operator learning (Li et al., 2021; Zheng et al., 2023).
The temporal integration layer Kθ is implemented directly
in the frequency domain, following Equation (2), where we
first conduct Fourier transform over f and then multiply it
with Mθ. In the following, we introduce how we design
Kθ to ensure efficient temporal modeling while keeping the
crucial SE(3)-equivariance.

Equivariance. Different from typical FNO operating on
non-directional function space, in this work we aim to
learn functions f(t) for predicting geometric structures G(t),
where the output is directional in 3D and requires the vi-
tal SE(3)-equivariance inductive bias. To be more specific,
the convolution layer Tθ integrates a sequence of geometric
structures as inputs and outputs a new sequence of updated
structures, and the equivariance requirement means that the
output ones should transform accordingly if a global roto-
translation transformation is applied on the input ones. Let
R and µ denote the rotation matrix and translation vector
respectively, then we have

(Tθ(Rf + µ))(t) = (R(Tθf) + µ)(t), (6)

where Rf + µ is the shorthand for [fh,RfZ + fµ]. This
means with roto-translational transformations, the direc-
tional features will be affected while non-directional node
features stay unaffected.

However, it is non-trivial to impose such equivariance into
FNOs. Our key innovation is to implement Kθ with a block
diagonal matrix Mθ in Equation (2). Formally, we have

(Kθf)(t) = F−1(

[
Mh

θ 0
0 MZ

θ

]
· (F

[
fh
fZ

]
))(t), (7)

where Mh
θ ∈ CI×k×k and MZ

θ ∈ CI×m×m are two
complex-valued matrices. The F and F−1 are realized
with fast Fourier transform with I being the hyperparameter
to control the maximal number of frequency modes. Then
for the frequency domain, we will truncate the modes higher
than I and thus have F(fh) ∈ CI×k and F(fZ) ∈ CI×m×3

respectively3. The product of Fourier transform results and

3Note that, k and m can be viewed as numbers of channels,
and the temporal convolutions only operate on the temporal and
feature channel dimensions. Therefore, here the node dimension
N is just treated as the same as the batch dimension and omitted
in the expressions.
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kernel functions are given by:

[Mh
θ · (Ffh)]i,j =

k∑
l=1

(Mh
θ )i,j,l(Ffh)i,l,

[MZ
θ · (FfZ)]i,s =

m∑
l=1

(MZ
θ )i,s,l(FfZ)i,l,

(8)

for all i ∈ {1, . . . , I}, j ∈ {1, . . . , k} and s ∈ {1, · · · ,m}.
The key difference between the two products is that the first
is simply scalar multiplications, while the second multiplies
scalar with 3D vectors. Furthermore, to ensure equivariance,
we implement the nonlinearity in Equation (5) by

σ(Kθf) = [σ(Kθfh), σ̂(KθfZ)]
T, (9)

where σ̂ denotes equivariant nonlinear activation layers for
Z part. It can be realized as σ̂(KθfZ) = σ(||KθfZ||)·KθfZ,
which is a scalar transform of the directional feature and
thus keep its original orientations (Thomas et al., 2018). We
in practice did not observe significant performance change
by introducing nonlinear onto the Z. With the above designs,
we enjoy the following crucial property:
Theorem 4.1. By parameterizing the kernel function Kθ

with Equations (7) and (9), we have that Tθ is an SO(3)-
equivariant operator, i.e., (Tθ(Rf))(t) = (R(Tθf))(t).

The key foundations behind the theorem are that F and F−1

are both equivariant operations, and we keep the equivari-
ance in the frequency domain by updating 3D directional
vectors with linear combinations. We provide the full proof
for the theorem in Appendix A.

Temporal discretization. In practice, we discretize the time
domain and conduct discrete Fourier transforms for better
computational efficiency. Assume the time window with
length ∆T is discretized into P points. Considering the
input and output function domains of temporal convolution
layer Tθ are both structures G ∈ RN×(k+m×3), then f(t)
can be represented as a sequence of P structure states, i.e., a
tensor in RP×N×(k+m×3). Thus, we can efficiently perform
F and F−1 on the trajectories as Equation (7) with fast
Fourier transform algorithm.

4.3. Generalized Architecture

As shown in Figure 1, the EGNO is very generalized and
can be implemented by stacking the proposed temporal con-
volutions with any existing EGNN layers (Thomas et al.,
2018; Fuchs et al., 2020; Huang et al., 2022). These equiv-
ariant layers (EL) can be abstracted as a general class of
networks that are equivariant to rotation and translation, i.e.,

hout,R · Zout + µ = ELθ(h
in,R · Zin + µ). (10)

In this paper, we choose the original EGNN (Satorras et al.,
2021), one of the most widely adopted equivariant graph

networks, as the backbone. Assuming we discretize the
time window ∆T into {∆t1, . . . ,∆tP } and take the cur-
rent state G(t) as input, our workflow is to first repeat its
feature map by P times, expand the features with time em-
beddings, and then forward the features into EGNO blocks
composed of temporal convolutions and EGNN layers. In
particular, EGNN layers would only operate on the node and
channel dimension within each graph and treat the temporal
dimension the same as the batch dimension. The overall
framework is described in Figure 1.

A minor remaining part of the temporal convolution layer
(Equation (7)) is that so far it is still only equivariant to
rotations but not translations. Yet, translation equivariance
is desirable for some geometric features like coordinates.
Indeed, this part can be trivially realized by canceling the
center of mass (CoM). In detail, for temporal convolution on
coordinates x, we will first move the structure to zero-CoM
by subtracting x̄ = 1

N

∑N
i=1 xi, pass it through the layer Tθ,

and then add original CoM x̄ back. Such workflow handles
the translation equivariance in a simple yet effective way.

4.4. Training and Decoding

Training. The whole EGNO framework can be efficiently
trained by minimizing the integral of errors over the decoded
dynamics, i.e., minθ EG(t)∼pdata

∫
[0,∆T ]

||Fθ(G(t))(∆t) −
F †(G(t))(∆t)||d∆t. In practice, we optimize the tempo-
rally discretized version:

min
θ

EG(t)∼pdata

1

P

P∑
p=1

||Fθ(G(t))(∆tp)− F †(G(t))(∆tp)||,

(11)
where {∆t1, . . . ,∆tp} are discrete timesteps in the time
window [0,∆T ]. Specifically, in this paper, we concentrate
on modeling the structural dynamics, where only directional
features Z are updated and node features h stay unchanged.
Therefore, the norm in the objective function will only be
calculated over Z part of the predicted structures G(t+∆t).

Decoding. One advantage of EGNO is that all modules in-
cluding temporal convolutions and equivariant networks can
process data at different times in parallel. Therefore, from a
current state G(t), EGNO can efficiently decoding all future
structures G(t+∆tp) at timesteps ∆tp ∈ {∆t1, . . . ,∆tp}
with a single model call. Then a specific one can be chosen
according to user preference for time scales, which in prac-
tice is a highly favorable property for studying dynamics at
different scales (Schreiner et al., 2023).

5. Experiment
In this section, we evaluate EGNO in various scenarios,
including N-body simulation (§ 5.1), motion capture (§ 5.2),
and molecular dynamics (§ 5.3) on small molecules (§ 5.3.1)
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Table 1. MSE in the N-body simulation.
F-MSE

Linear (Satorras et al., 2021) 0.0819
SE(3)-Tr. (Fuchs et al., 2020) 0.0244
TFN (Thomas et al., 2018) 0.0155
MPNN (Gilmer et al., 2017) 0.0107
RF (Köhler et al., 2019) 0.0104
ClofNet (Du et al., 2022) 0.0065
EGNN (Satorras et al., 2021) 0.0071
EGNN-R 0.0720
EGNN-S 0.0070

EGNO 0.0054

A-MSE

EGNN-R 0.0215
EGNN-S 0.0045

EGNO 0.0022

Table 2. F-MSE in N-body simulation w.r.t. dif-
ferent sizes of the training set.
|Train| 1000 3000 10000

EGNN 0.0094 0.0071 0.0051
EGNO-U (P = 5) 0.0082 0.0056 0.0036
EGNO-L (P = 5) 0.0071 0.0055 0.0038

Table 3. F-MSE in N-body simulation w.r.t. dif-
ferent numbers of time steps P .

|Train|=3000 EGNO-U EGNO-L

P = 2 0.0062 0.0067
P = 5 0.0056 0.0055
P = 10 0.0057 0.0054

Table 4. MSE (×10−2) on the motion cap-
ture dataset. The upper part is F-MSE for
S2S and the lower part is A-MSE for S2T.

Subject #35 Subject #9
Walk Run

MPNN 36.1 ±1.5 66.4 ±2.2
RF 188.0 ±1.9 521.3±2.3
TFN 32.0 ±1.8 56.6 ±1.7
SE(3)-Tr. 31.5 ±2.1 61.2 ±2.3
EGNN 28.7 ±1.6 50.9 ±0.9
EGNN-R 90.7 ±2.4 816.7 ±2.7
EGNN-S 26.4 ±1.5 54.2 ±1.9

EGNO 8.1 ±1.6 33.9 ±1.7

EGNN-R 32.0 ±1.6 277.3 ±1.8
EGNN-S 14.3 ±1.2 28.5 ±1.3

EGNO 3.5 ±0.5 14.9 ±0.9

and proteins (§ 5.3.2). In § 5.4, we perform ablation studies
to investigate the necessity of our core designs in EGNO.
We provide extensive visualizations in Appendix C.3.

5.1. N-body System Simulations

Dataset and implementation. We adopt the 3D N-body
simulation dataset (Satorras et al., 2021) which comprises
multiple trajectories depicting the dynamical system formed
by N charged particles, with movements driven by Coulomb
force. We follow the experimental setup of (Satorras
et al., 2021), with N = 5, time window ∆T = 10, and
3000/2000/2000 trajectories for training/validation/testing.
We use uniform discretization with P = 5, with more details
deferred to Appendix B.1.

Evaluation metrics. We perform comparisons on two
tasks, namely state-to-state (S2S) and state-to-trajectory
(S2T). The two tasks measure the prediction accuracy
of either the final state or the whole decoded dynamics
trajectories, respectively. Formally, for S2S, we calcu-
late Final Mean Squared Error (F-MSE), the MSE be-
tween the predicted final state and the ground truth, i.e.,
F-MSE = ∥x(tP )− x†(tP )∥2 where x† is the ground truth
position. For S2T, we use Average MSE (A-MSE), which
instead computes the MSE averaged across all discretized
time steps along the decoded trajectory, i.e., A-MSE =
1
P

∑P
p=1 ∥x(tp) − x†(tp)∥2. These metrics are employed

throughout all experiments unless otherwise specified.

Baselines. For S2S, we include Linear Dynam-
ics (Linear) (Satorras et al., 2021), SE(3)-Transformer
(SE(3)-Tr.) (Fuchs et al., 2020), Tensor Field Networks
(TFN) (Thomas et al., 2018), Message Passing Neural
Network (MPNN) (Gilmer et al., 2017), Radial Field
(RF) (Köhler et al., 2019), ClofNet (Du et al., 2022), and
EGNN (Satorras et al., 2021). They ignore the temporal

dependency and directly predict the last snapshot. For S2T,
we extend the most competitive baseline EGNN to two vari-
ants: EGNN-Roll is an EGNN trained on the shortest time
span and tested by iteratively rolling out (Sanchez-Gonzalez
et al., 2020). EGNN-Sequential sequentially reads out each
frame of the trajectory from each EGNN layer.

Results. The results are listed in Table 1, where the numbers
of the baselines are taken from Satorras et al. (2021). We
have the following findings: 1. Our EGNO achieves the
lowest error of 0.0054 in S2S setting, yielding an 18%
relative enhancement over the most competitive baseline
EGNN. EGNO also surpasses other trajectory modeling
variants in S2T setting by a considerable margin. 2. EGNN-
R performs poorly compared with other trajectory modeling
approaches, since the error is dramatically accumulated in
each roll-out step during testing. EGNN-S is also inferior
to EGNO, due to insufficient excavation of the temporal
dependency along the entire dynamics trajectory.

Data efficiency. We compare EGNO with EGNN under
different data regimes where the size of the training set
sweeps over 1000, 3000, and 10000. As depicted in Table 2,
EGNOs can achieve significantly lower simulation error
than EGNN in all scenarios, and are observed to be nearly
3× more data-efficient.

The approach of temporal discretization. We study two
temporal discretization methods, namely EGNO-U, which
uniformly samples {tp}Pp=1 with tp = t + p

P ∆T , and
EGNO-L, which selects the last P snapshots at the tail of
the trajectory with interval δ, i.e., tp = t+∆T − δ(P − p).
As shown in Table 2 and 3, we find that EGNO ob-
tains promising performance regardless of the discretization
method. EGNO-L performs slightly better than EGNO-U
in terms of F-MSE when data is scarce since it gives a more
detailed description of the part near the end of the trajectory.
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Table 5. MSE (×10−2) on MD17 dataset. Upper part: F-MSE for S2S. Lower part: A-MSE for S2T.

Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

RF (Köhler et al., 2019) 10.94±0.01 103.72±1.29 4.64±0.01 13.93±0.03 0.50±0.01 1.23±0.01 10.93±0.04 0.64±0.01

TFN (Thomas et al., 2018) 12.37±0.18 58.48±1.98 4.81±0.04 13.62±0.08 0.49±0.01 1.03±0.02 10.89±0.01 0.84±0.02

SE(3)-Tr. (Fuchs et al., 2020) 11.12±0.06 68.11±0.67 4.74±0.13 13.89±0.02 0.52±0.01 1.13±0.02 10.88±0.06 0.79±0.02

EGNN (Satorras et al., 2021) 14.41±0.15 62.40±0.53 4.64±0.01 13.64±0.01 0.47±0.02 1.02±0.02 11.78±0.07 0.64±0.01

EGNN-R (Satorras et al., 2021) 14.51±0.19 62.61±0.75 4.94±0.21 17.25±0.05 0.82±0.02 1.35±0.02 11.59±0.04 1.11±0.02

EGNN-S (Satorras et al., 2021) 9.50±0.10 66.45±0.89 4.63±0.01 12.88±0.01 0.45±0.01 1.00±0.02 10.78±0.05 0.60±0.01

EGNO 9.18±0.06 48.85±0.55 4.62±0.01 12.80±0.02 0.37±0.01 0.86±0.02 10.21±0.05 0.52±0.02

EGNN-R (Satorras et al., 2021) 12.07±0.11 23.73±0.30 3.44±0.17 13.38±0.03 0.63±0.01 1.15±0.02 5.04±0.02 0.89±0.01

EGNN-S (Satorras et al., 2021) 9.49±0.12 29.99±0.65 3.29±0.01 11.21±0.01 0.43±0.01 1.36±0.02 4.85±0.04 0.68±0.01

EGNO 7.37±0.07 22.41±0.31 3.28±0.02 10.67±0.01 0.32±0.01 0.77±0.01 4.58±0.03 0.47±0.01

However, EGNO-U becomes better when P = 2, because
uniform discretization is more informative in depicting the
entire dynamics. We provide more results and analyses on
other datasets in Appendix C.2.

The number of discretized time steps. To investigate how
the granularity of the temporal discretization influences the
performance, we switch the number of time steps P in train-
ing within {2, 5, 10}. Interestingly, in Table 3, EGNO with
P = 2 outperforms EGNN, while the performance is further
boosted when P is increased to 5, which aligns with our
proposal of leveraging trajectory modeling over snapshots.
The MSEs of P = 10 remain close to P = 5 with no clear
enhancement, possibly because the trajectory with P = 5
has already been sufficiently informative for its geometric
pattern to be abundantly captured by the equivariant Fourier
temporal convolution modules.

5.2. Motion Capture

Dataset and implementation. We further benchmark our
model on CMU Motion Capture dataset (CMU, 2003),
which involves 3D trajectories captured from various human
motion movements. We focus on two motions: Subject #35
(Walk) and Subject #9 (Run), following the setups and data
splits in Huang et al. (2022); Han et al. (2022b). Similar
to N-body simulation, the input includes initial positions
and velocities, and ∆T = 30. We use P = 5 and uniform
discretization by default. More details are in Appendix B.

Results. As exhibited in Table 4, our EGNO surpasses the
baselines by a large margin on both Walk and Run and in
both S2S and S2T cases, e.g., up to around 52% on average
in S2S. The error propagation of EGNN-R becomes more
severe since the motion capture involves more complex
and varying dynamics than N-body. EGNN-S performs
comparably to other S2S methods, while still being inferior
to EGNO which models the entire trajectory compactly.

5.3. Molecular Dynamics

5.3.1. SMALL MOLECULES

Dataset. We adopt MD17 (Chmiela et al., 2017) dataset to
evaluate the capability of our EGNO on modeling molec-
ular dynamics. The dataset consists of the molecular dy-
namics trajectories of eight small molecules, including as-
pirin, benzene, etc. We follow the setup and split by Huang
et al. (2022) which randomly partitions each trajectory into
500/2000/2000 subsets for training/validation/testing while
∆T is chosen to be 3000. We use P = 8 and uniform
discretization by default.

Results. The results are illustrated in Table 5. EGNO
obtains the best performance on all eight molecules, veri-
fying the applicability of EGNO towards modeling molec-
ular dynamics. The performance gain is most notable
on Aspirin, one of the most complicated structures on
MD17, where EGNO, with an MSE of 9.18 × 10−2, out-
performs its backbone EGNN by 36%. Compared with
EGNN-R/S, EGNO consistently gives better predictions for
both S2S and S2T evaluations, showing the importance of
the equivariant temporal convolution in geometric space.

5.3.2. PROTEINS

Dataset and implementation. We use the Adk equilibrium
trajectory dataset (Seyler & Beckstein, 2017) integrated in
the MDAnalysis (Richard J. Gowers et al., 2016) toolkit,
which depicts the molecular dynamics trajectory of apo
adenylate kinase. We follow the setting and split of Han
et al. (2022b). We use P = 4 by default. We additionally
consider EGHN (Han et al., 2022b), the state-of-the-art
model on this benchmark, as a baseline. To investigate the
compatibility of our approach with different backbones, we
incorporate equivariant temporal convolution into EGHN
by inserting it to the end of each block in EGHN (details in
Appendix B.4) and name it EGHNO.
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Figure 2. Ablation studies on the
number of modes I on N-body sim-
ulation and Mocap-Run datasets.
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Figure 3. Qualitative results of zero-shot generalization towards discretization steps. Sub-figures
indexed by P or 2P have P or 2P timesteps while sharing exactly the same initial conditions.
Left: Motion Capture Run. Right: N-body simulation. Best viewed in color.

Table 6. F-MSE on AdK equilibrium trajectory dataset.

Linear RF MPNN EGNN EGHN EGNO EGHNO

2.890 2.846 2.322 2.735 2.034 2.231 1.801

Table 7. Ablation studies on N-body simulation and Mocap-Run
datasets. Numbers refer to the F-MSE (×10−2 for Run). Columns
with h,x,v indicate whether such geometric information is pro-
cessed in equation 7.

h x v N-body Mocap-Run

EGNO
I ✓ ✓ ✓ 0.0055 33.9
II ✓ ✓ - 0.0057 35.6
III ✓ - - 0.0061 39.1
IV - - - 0.0072 48.2

EGNN 0.0071 50.9

Results. The results are presented in Table 6. Equipped with
our equivariant temporal convolution, EGHNO achieves
state-of-the-art on this challenging benchmark. Furthermore,
both EGNO and EGHNO offer significant increment to the
performance to their original backbones, i.e., EGNN and
EGHN, showing that our equivariant temporal convolution
is highly compatible with various backbones, indicating its
broad applicability to a diverse range of models and tasks.

5.4. Ablation Studies

We conduct ablation studies on the N-body system simula-
tion task and motion capture dataset to inspect the role of
the designed parts, with the results summarized in Table 7.

Incorporating geometric information in temporal convo-
lution. In § 4.2, we propose to involve temporal convolution
on geometric features [h,Z] in frequency domain. To in-
vestigate its importance, we implement three variants of
EGNO: variant IV discards the entire temporal convolution
and reduces to an EGNN with time embeddings; variant
III only processes the invariant feature h in the temporal
convolution; variant II considers h,x but neglects v. In-
terestingly, compared with the complete version of EGNO
(labeled by I) which incorporates h,x,v, variant II discards

the velocity v in temporal convolution, which brings per-
formance detriment on both datasets. By further removing
all directional information, variant III, with invariant h only,
incurs much worse performance. Without temporal convo-
lution (IV), the model cannot sufficiently capture temporal
patterns and suffers from the worst performance. Yet and
still, all variants outperform EGNN remarkably thanks to
geometric temporal convolution.

Number of modes. We study the influence of the number
of modes I reserved in equivariant Fourier convolution with
results in Figure 2. The simulation errors are decreased
notably when I is increased from 0 to 2 for each feature
channel, with more temporal patterns with geometric infor-
mation captured and encoded in the convolution. When I is
further increased to 3, the performance improves marginally
on Mocap-Run or even becomes worse on N-body, poten-
tially because redundant frequencies, which encode noisy
patterns, are encapsulated and thus lead to overfitting.

5.5. Zero-shot Generalization to Discretization Steps

We investigate how EGNO generalizes to different choices
of discretization steps P in a zero-shot manner. Specifically,
we directly use the model pretrained with the default dis-
cretization steps P to conduct inference for the increased
number of time steps 2P . In practice, given the time embed-
dings of input, {∆t1, · · · ,∆tP }, we uniformly interpolate
in between for the additional timesteps {∆t1/2,∆t1, (∆t1+
∆t2)/2,∆t2, · · · , (∆tP−1 +∆tP )/2,∆tP }, 2P points in
total. This process increases the temporal resolution without
any additional training. We provide qualitative results in
Figure 3. Interestingly, EGNO generalizes to the increased
2P temporal resolution with accurate and smooth trajecto-
ries on top of the low-resolution P timesteps counterparts.
This capability is remarkably meaningful in the sense that
we could potentially train our EGNOs on low temporal
resolution but conduct offline inference per the user’s re-
quirement on varying temporal resolution. EGNO enjoys
the strong generalization capacity since it directly models
the temporal correlations in the frequency domain instead
of leveraging temporal operations like rolling out. This ob-
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servation aligns with the discretization invariance of Fourier
Neural Operators (FNOs) manifested in Li et al. (2021).

6. Conclusion
In this paper, we present equivariant graph neural oper-
ator (EGNO), a principled method that models physical
dynamics by explicitly considering the temporal correla-
tions. Our key innovation is to formulate the dynamics as
an equivariant function describing state evolution over time
and learn neural operators to approximate it. To this end,
we develop a novel equivariant temporal convolution layer
parameterized in the Fourier space. Comprehensive exper-
iments demonstrate its superior performance in modeling
geometric dynamics. With EGNO as a general framework,
future work includes extending it to other physical dynamics
domains such as astronomical objects, or scaling up to more
challenging dynamics, e.g., fluids or deformable materials.
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A. Formal Statements and Proofs
A.1. Statement of Universality

We include the formal statement from (Kovachki et al., 2021a;b) for the modeling capacity of EGNO here to make the
paper self-contained.

Proposition A.1. The neural operators defined in Equation (1) approximates the solution operator of the physical dynamics
ODE Equation (4), i.e., the mapping from a current structure G(t) to future trajectory {G(t+∆t) : ∆t ∼ [0,∆T ]}, arbitrarily
well.

A.2. Proof of Theorem 4.1

In this section, we prove Theorem 4.1, which justifies that our proposed architecture is SO(3)-equivariant. We recall that our
action is defined on functions f = [fh, fZ]

T : D → RN×(k+m×3) (where fh is the D → RN×k node feature component
and fZ : D → RN×m×3 is the spatial feature component) by

(Rf)(t) = [fh(t),RfZ(t)]
T. (12)

We first analyze the action of the Fourier transform, showing that it is equivariant:

Lemma A.2 (Fourier Action Equivariance). The actions of the Fourier and Inverse Fourier Transform are SO(3)-equivariant.

Proof. F is a dimension-wise Fourier transform that maps from (RD → RG) → CI×G , where I is the truncation on the
number of the Fourier coefficients. For our purposes, this maps our input function f : D → RN×(k+m×3) to CI×(k+m×3)

space4. The action of R is the standard matrix-tensor action on the FfZ ∈ CI×m×3 component

R · Ff = R · [Ffh,FfZ]
T = [Ffh,R · FfZ]

T (13)

Conversely, we have that
F(R · f) = F [fh,R · fZ]T = [Ffh,F(R · fZ)]T (14)

We need to show that R · FfZ = F(R · fZ). This can be done by recalling that the Fourier transform F is a linear operator
(even when it is discrete as given here). As such, we can write out the equivariance directly here on a dimension-wise basis:

(R · FfZ)ij· = R

(FfZ)ij1
(FfZ)ij2
(FfZ)ij3

 (15)

=

R11(FfZ)ij1 +R12(FfZ)ij2 +R13(FfZ)ij3
R21(FfZ)ij1 +R22(FfZ)ij2 +R23(FfZ)ij3
R31(FfZ)ij1 +R32(FfZ)ij2 +R33(FfZ)ij3

 (16)

=

F((R11fZ)ij1 + (R12fZ)ij2 + (R13fZ)ij3)
F((R21fZ)ij1 + (R22fZ)ij2 + (R23fZ)ij3)
F((R31fZ)ij1 + (R32fZ)ij2 + (R33fZ)ij3)

 (17)

= (F · (RfZ))ij· (18)

which is the desired F equivariance.

To show that the inverse Fourier transform F−1 acts equivariantly, we could easily apply the same linearity condition on
F−1 and go through the details. However, we can do this more directly through a categorical argument:

F(R · F−1fZ) = R · FF−1fZ = R · fZ =⇒ R · F−1fZ = F−1(R · fZ)

Note that F−1 is only right inverse of F and is only a full inverse when the function domain is restricted to all functions
with trivial Fourier coefficients for degrees > I . However, it can be applied on the left side here since R · F−1fZ is in this
function class since this class is closed under scalar multiplication and addition (so it is closed under the action of R).

4Note that, the Fourier transform only operates on the temporal dimension and the node dimension N can be trivially regarded as the
same as the batch dimension, so we omit that dimension in our proof.
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This leads directly to the full proof of the theorem.

Proof of Theorem 4.1. Recall that our neural operator is given in full form by

Tθf = f + σ ◦ (F−1(

[
Mh

θ 0
0 MZ

θ

]
· (F

[
fh
fZ

]
)) (19)

The equivariance is shown directly

R · Tθf = R ·
(
f + σ ◦ (F−1(

[
Mh

θ 0
0 MZ

θ

]
· (F

[
fh
fZ

]
))

)
(20)

= R · f +R · σ ◦ (F−1(

[
Mh

θ 0
0 MZ

θ

]
· (F

[
fh
fZ

]
)) (21)

= R · f + σ ◦R · (F−1(

[
Mh

θ 0
0 MZ

θ

]
· (F

[
fh
fZ

]
)) (22)

= R · f + σ ◦ (F−1(R ·
[
Mh

θ 0
0 MZ

θ

]
· (F

[
fh
fZ

]
)) (23)

= R · f + σ ◦ (F−1(

[
Mh

θ 0
0 MZ

θ

]
·R · (F

[
fh
fZ

]
)) (24)

= R · f + σ ◦ (F−1(

[
Mh

θ 0
0 MZ

θ

]
· (FR ·

[
fh
fZ

]
)) (25)

= Tθ(R · f) (26)

Line 22 follows since σ is an identity operator on Z component. Lines 23 and 25 are the inverse and regular Fourier
transforms and follows from Lemma A.2. The only new line is 24, which follows since MZ

θ is a scalar multiplication for
each component (which commutes with the matrix multiplication from R). Therefore, we have that our neural operator is
equivariant, as desired.

B. Experiment Details
B.1. Dataset Details

N-body Simulation. Originally introduced in Kipf et al. (2018) and further extended to the 3D version by Satorras et al.
(2021), the N-body simulation comprises multiple trajectories, each of which depicts a dynamical system formed by N
charged particles with their movements driven by the interacting Coulomb force. For each trajectory, the inputs are the
charges, initial positions, and velocities of the particles. We follow the experimental setup of (Satorras et al., 2021), with
N = 5, time window ∆T = 10, and 3000 trajectories for training, 2000 for validation, and 2000 for testing. We take P = 5
by default. In accordance with Satorras et al. (2021), the input node feature is instantiated as the magnitude of the velocity
∥v∥2, the edge feature is specified as cicj where ci, cj are the charges, and the graph is constructed in a fully-connected
manner without self-loops.

MD17. MD17 (Chmiela et al., 2017) data consists of the molecular dynamics trajectories of eight small molecules. We
randomly split each one into train/validation/test sets with 500/2000/2000 pairs of state and later trajectories, respectively.
We choose ∆T = 5000 as the time window between the input state and the last snapshot of the prediction trajectories, and
calculate the difference between each as the input velocity. We also compute the norm of velocities and concatenate them
with the atom type as the node feature. We follow the conventions in this field to remove the hydrogen atoms and focus
on the dynamics of heavy atoms. For the graph structure, we follow previous studies (Shi et al., 2021; Xu et al., 2022) to
expand the original molecular graph by connecting 2-hop neighbors. Then we take the concatenation of the hop type, the
atomic types of connected nodes, and the chemical bond type as the edge feature.

CMU Motion Capture. CMU Motion Capture dataset (CMU, 2003) involves 3D trajectories captured from various human
motion movements. We focus on two motions: Subject #35 (Walk) and Subject #9 (Run), following the setups and data
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Table 8. Summary of hyperparameters for EGNO on all datasets.

batch lr wd layer hidden timestep time emb num mode

N-body 100 1e-4 1e-8 4 64 5 32 2
Walk/Run 12 5e-4 1e-10 6 128 5 32 2
MD17 100 1e-4 1e-15 5 64 8 32 2
Protein 8 5e-5 1e-4 4 128 4 32 2

splits in Huang et al. (2022); Han et al. (2022b). Subject #35 contains 200/600/600 trajectories for training/validation/testing,
while Subject #9 contains 200/240/240. We view the joints as edges and their intersections (31 in total) as nodes. Similar to
N-body simulation, the input includes initial positions and velocities of the intersections, and ∆T = 30. We use P = 5 and
uniform discretization by default.

Protein. We use the preprocessed version (Han et al., 2022b) of the Adk equilibrium trajectory dataset (Seyler & Beckstein,
2017) integrated in the MDAnalysis (Richard J. Gowers et al., 2016) toolkit. In detail, the AdK equilibrium dataset depicts
the molecular dynamics trajectory of apo adenylate kinase with CHARMM27 force field (MacKerell Jr et al., 2000),
simulated with explicit water and ions in NPT at 300 K and 1 bar. The meta-data is saved every 240 ps for a total of 1.004
µs. We adopt the split by Han et al. (2022b) which divides the entire trajectory into a training set with 2481 sub-trajectories,
a validation set with 827, and a testing set with 878 trajectories, respectively. The backbone of the protein is extracted, and
the graph is constructed using cutoff with radius 10Å.

B.2. More Implementation Details

Time embedding. In EGNO, we need to make the model aware of the time position for the structures in the trajectory. To
this end, we add “time embeddings” to the input features. We implement the time embedding with sine and cosine functions
of different frequencies, following the sinusoidal positional encoding in Transformer (Vaswani et al., 2017). For timestep
∆ti, the time embedding is implemented by:

emb2j = sin(i/100002j/demb),

emb2j+1 = cos(i/100002j/demb),
(27)

where demb denotes the dimension defined for time embeddings, as shown in Table 8.

Fast Fourier Transform. In this paper, the FFT algorithm is realized by PyTorch implementation. While FFT algorithms
are often more efficient when applied to sequences whose lengths are powers of 2, many FFT implementations, including
PyTorch implementation, have optimizations that allow them to efficiently process time series of arbitrary lengths.

The requirement for power-of-2 lengths is related to certain specific FFT algorithms rather than a fundamental limitation of
the FFT itself. In many cases like PyTorch, the FFT implementation is designed with the Cooley-Tukey FFT Algorithm for
General Factorizations, which can handle sequences of arbitrary length, including those that are not powers of 2.

Complex numbers. In our paper, the Fourier kernel in Equations (7) and (8) are defined as complex tensors. We
implement the complex tensor with two tensors to represent the real and imaginary components of complex numbers, and
use torch. view as complex to convert the two tensors into the complex one. The computation is roughly as efficient as
typical real tensors.

B.3. Hyperparameters

We provide detailed hyperparameters of our EGNO in Table 8. Specifically, batch is for batch size, lr for learning rate,
wd for weight decay, layer for the number of layers, hidden for hidden dimension, timestep for the number of time
steps, time emb for the dimension of time embedding, num mode for the number of modes (frequencies). We adopt
Adam optimizer (Kingma & Ba, 2014) and all models are trained towards convergence with an earlystopping of 50 epochs
on the validation loss. In particular, for EGHNO, we require additional hyperparemeters: the number of pooling layers is 4,
the number of decoding layers is 2, and the number of message passing layer is 4, the same as Han et al. (2022b). For the
baselines, we strictly follow the setup in previous works and report the numbers from them in the S2S setting. For S2T, we
keep the backbone EGNN the same number of layers and hidden dimension as ours for EGNN-R and EGNN-S, ensuring
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Figure 4. Illustration of EGHNO. Here, we omit the input state repetition and time embedding conditioning process in Figure 1 and
concentrate on the model details.

fairness.

B.4. Model Details of EGHNO

Here we provide an illustration of EGHNO in Figure 4 to show the details of its architecture. In addition to the equivariant
GNN layers, we have the equivariant pooling and unpooling layers introduced in the equivariant graph hierarchical network
(EGHN) (Han et al., 2022b). To realize EGHNO, we also stack the temporal convolution layers before each EGNN layer
similar to EGNO (Figure 1). In particular, we follow EGHN and add jump connections between the equivariant unpooling
layer and the corresponding low-level pooling layer, which helps to capture the low-level details of large geometric systems.

C. More Experiment Results
C.1. More ablation studies

We provide more ablation studies in this section to justify the capacity of EGNO.

Trajectory-to-trajectory. Instead of inputting repetitions of G(t), we can also input a sequence of previous structures to the
model, which leads to a trajectory-to-trajectory (T2T) model. We test this model on N-body simulation and report the result
as follows, named EGNO-T2T. The A-MSE on the predicted trajectory is reported in Table 9.

Table 9. Average MSE in the N-body simulation. Results of EGNN-R, EGNN-S, and EGNO are directly taken from Table 1 and the
experiments share the same setup.

EGNN-R EGNN-S EGNO EGNO-T2T EGNO-TB

A-MSE 0.0215 0.0045 0.0022 0.0020 0.0039

As shown in the result, our EGNO can handle the T2T task and even achieve better results. However, we emphasize that,
although this implementation achieved better results than the original EGNO, we do not want to highlight this because
EGNO and all baseline models only operate on a single input point and EGNO-T2T makes use of more input information.
Therefore, we take this just as an ablation study and leave detailed investigations of the T2T framework as a promising
future direction.

Temporal Bundling. Brandstetter et al. (2022) introduces the temporal bundling (TB) method, which tackles the state-
to-trajectory task in an orthogonal direction, by factorizing future trajectory. We view TB as a mixture of our designed
EGNN-R baseline and EGNO-IV variant in ablation study (Table 7): EGNN-R learns to predict trajectory by rolling out
and EGNO-IV learns to predict trajectory in parallel with a single model call, while TB proposed to factorize trajectory as
multiple blocks and learns to predict blocks one by one. We tested such EGNN-TB on the N-body simulation benchmark by
factorizing trajectory into blocks of size K=2. The A-MSE result is reported in Table 9, which is the accumulated error for
unrolling trajectory.

As shown in the result, EGNN-TB is indeed more expressive than EGNN-R and EGNN-S. However, our method still
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Table 10. MSE (×10−2) on MD17 dataset.
Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

EGNO-U 9.18 48.85 4.62 12.80 0.37 0.86 10.21 0.52
EGNO-L 9.32 57.39 4.62 12.80 0.35 0.84 10.25 0.57

achieved much better results, which demonstrates the effectiveness of the proposed Fourier method to directly model the
temporal correlation over the whole sequence.

However, we want to highlight two points here: 1) Brandstetter et al. (2022) is related to EGNO on the temporal modeling
side. Another key contribution of EGNO is imposing geometric symmetry into the model, making EGNO fundamentally
different from Brandstetter et al. (2022). 2) Even for temporal modeling, the TB method actually is orthogonal to the
Fourier-based method, where we can still factorize predictions as blocks while using Fourier operators to predict each block.
Therefore, these two methods are not in conflict and we leave the novel combination as future works.

C.2. Discretization Methods

We present more results and discussions on the selection of discretization methods. On Motion Capture, EGNO-U achieves
F-MSE of 8.1 on Walk and 33.9 on Run, while EGNO-L obtains 11.2 on Walk and 31.6 on Run. The results on MD17 are
depicted in Table 10. On protein data, EGNO-U has an F-MSE of 2.231, EGNO-L has an F-MSE of 2.231, EGHNO-U has
an F-MSE of 1.801, and EGHNO-L has an F-MSE of 1.938. On Motion Capture, EGNO-U performs better than EGNO-L
on Walk, while it becomes slightly worse than EGNO-L for the other, i.e., Run. We speculate that since running incurs
more significant vibrations of the positions in the movements, EGNO-L, by focusing more on the last short period of the
trajectory, permits better generalization than EGNO-U, which instead operates on a uniform sampling along the entire
trajectory, whereas on the more stable dataset, walking, the prevalence of EGNO-U is observed. EGNO-U and EGNO-L
yield similar simulation error on MD17 and protein data, since the molecular trajectories are relatively stable with small
vibrations around the metastable state, making the temporal sampling less sensitive.

C.3. Qualitative Visualizations

N-body and Motion Capture. We provide visualizations of the dynamics predicted by EGNO in this section. The results
of particle simulations, Mocap-Walk, and Mocap-Run are shown in Figures 5 to 7 respectively. As shown in these figures,
our EGNO can produce not only accurate final snapshot predictions but also reasonable temporal interpolations by explicitly
modeling temporal correlation.

Protein. We provide visualizations of the protein molecular dynamics predicted by EGNO in Figure 8. As shown in the
figure, our EGNO can produce accurate final snapshot predictions and also tracks the folding dynamics of the protein.
Interesting observations can be found at the bottom regions, e.g., the alpha helix structures, where EGNO gives not only
close-fitting predictions but also reasonable temporal interpolations.
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Figure 5. Visualization of the trajectory generated by EGNO with uniform discretization on the N-body simulation dataset. The input is
in cyan, the ground truth final snapshot is in red, and the predicted trajectory is in blue. The opacity changes as time elapses.

Figure 6. Visualization of the trajectory generated by EGNO with uniform discretization on Motion Capture Walk. The input is in cyan,
the ground truth final snapshot is in red, and the predicted trajectory is in blue. The opacity changes as time elapses.

17



Equivariant Graph Neural Operator for Modeling 3D Dynamics

Figure 7. Visualization of the trajectory generated by EGNO with uniform discretization on Motion Capture Run. The input is in cyan,
the ground truth final snapshot is in red, and the predicted trajectory is in blue. The opacity changes as time elapses.

Figure 8. Visualization of the trajectory generated by EGNO with uniform discretization on Protein. The input is in blue, the ground truth
final snapshot is in red, and the predicted trajectory is in green. The darkness of green changes as time elapses.
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