
Uncertainty Quantification for Forward and Inverse Problems of PDEs
via Latent Global Evolution

Tailin Wu1*, Willie Neiswanger2*, Hongtao Zheng1*,
Stefano Ermon3, Jure Leskovec3

1 School of Engineering, Westlake University
2 Department of Computer Science, University of Southern California

3 Computer Science Department, Stanford University
{wutailin, zhenghongtao}@westlake.edu.cn, neiswang@usc.edu, {ermon, jure}@cs.stanford.edu

Abstract

Deep learning-based surrogate models have demonstrated re-
markable advantages over classical solvers in terms of speed,
often achieving speedups of 10 to 1000 times over traditional
partial differential equation (PDE) solvers. However, a signif-
icant challenge hindering their widespread adoption in both
scientific and industrial domains is the lack of understanding
about their prediction uncertainties, particularly in scenarios
that involve critical decision making. To address this limita-
tion, we propose a method that integrates efficient and precise
uncertainty quantification into a deep learning-based surro-
gate model. Our method, termed Latent Evolution of PDEs
with Uncertainty Quantification (LE-PDE-UQ), endows deep
learning-based surrogate models with robust and efficient un-
certainty quantification capabilities for both forward and in-
verse problems. LE-PDE-UQ leverages latent vectors within
a latent space to evolve both the system’s state and its cor-
responding uncertainty estimation. The latent vectors are de-
coded to provide predictions for the system’s state as well
as estimates of its uncertainty. In extensive experiments, we
demonstrate the accurate uncertainty quantification perfor-
mance of our approach, surpassing that of strong baselines in-
cluding deep ensembles, Bayesian neural network layers, and
dropout. Our method excels at propagating uncertainty over
extended auto-regressive rollouts, making it suitable for sce-
narios involving long-term predictions. Our code is available
at: https://github.com/AI4Science-WestlakeU/le-pde-uq.

Introduction
Partial differential equations have wide-ranging applications
in both scientific and engineering domains. It is notewor-
thy that time-dependent partial differential equations char-
acterize the evolution of complex system states over time,
serving as crucial tools for forward prediction and reverse
optimization across various disciplines. These applications
span a wide spectrum, including weather forecasting (Lynch
2008; Bi et al. 2023), nuclear fusion (Carpanese 2021), jet
engine design (Sircombe, Arber, and Dendy 2006), astro-
nomical simulation (Courant, Friedrichs, and Lewy 1967),
molecular modeling (Lelievre and Stoltz 2016), and phys-
ical simulation modeling (Wu et al. 2022, 2023), to name
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just a few. When addressing real-world challenges in sci-
ence and engineering, the sheer volume of cells per time
step can readily escalate into the millions or beyond. This
complexity poses a substantial hurdle for conventional PDE
solvers to ensure rapid solutions. In addition, inverse opti-
mization such as inverse inference of system parameters also
face similar scale challenges, besides the modeling of for-
ward evolution (Biegler et al. 2003). Consequently, numer-
ous deep learning-based alternative models have emerged
that can accelerate the speed of partial differential equation
solving by orders of magnitude (typically 10 to 1000 times),
such as (Li et al. 2020).

However, recent neural network-based PDE solvers share
a common drawback – they typically fail to provide any
form of uncertainty estimation for their proposed solutions.
This can lead to an overconfidence or underconfidence in
the accuracy of the approximate solutions generated by PDE
solvers, potentially resulting in relying on inaccurate ap-
proximations without any indication of associated risks. The
concept of uncertainty quantification refers to the process
of assessing and measuring the uncertainty associated with
outcomes during prediction or optimization. In various sci-
entific and engineering applications, the predictive results
of models can be influenced by multiple factors, such as
data noise, model uncertainty, parameter estimation, and
more. Uncertainty quantification aims to provide informa-
tion about the credibility or confidence level of the predic-
tive outcomes, enhancing the understanding of the model’s
reliability. This information is valuable for considering un-
certainty during decision-making processes. By quantifying
uncertainty, we can better assess the stability, accuracy, and
reliability of the model’s predictions across different scenar-
ios, enabling more informed decision-making.

Currently, most of the work related to uncertainty quan-
tification in the process of PDE solving largely excludes
consideration of temporal states (Winovich, Ramani, and
Lin 2019; Zhu et al. 2019). This is mainly because, for time-
domain partial differential equations, surrogate models need
to perform autoregressive rollouts, which result in the ac-
cumulation of uncertainty over time. In the Julia program-
ming language, there are libraries for uncertainty quantifica-
tion (UQ), but none is designed specifically for neural surro-
gate models dealing with time-varying PDEs. An important
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Figure 1: Schematic representation of the LE-PDE-UQ framework. In the forward mode(green), LE-PDE-UQ evolves the
dynamics in the global latent space. In the inverse optimization mode (red), it optimizes the parameter p(e.g., the boundary)
by unrolling the latent vectors. The compressed latent vectors and dynamics can significantly speed up both modes. The latent
evolution model g deterministically predicts a global latent vector z encoding the state and a global latent vector Zσ encoding
the uncertainty. On demand, they are decoded into the predicted state and the predicted uncertainty, respectively.

consideration in temporal PDE uncertainty quantification
is that the prediction process concurrent with PDE solving
may adversely affect the speed and accuracy of the solution.
Addressing this issue, we draw inspiration from LE-PDE
((Wu, Maruyama, and Leskovec 2022)), which leverages la-
tent representations to efficiently transfer valid information
and capture the global features of the input state, reducing
information redundancy and noise. The use of latent repre-
sentations also significantly reduces the data dimensionality,
thereby accelerating model inference and backpropagation.

To bridge the technical gap in uncertainty quantification
for time-domain PDEs and address the aforementioned chal-
lenges, we introduce a novel framework named Latent Evo-
lution of PDEs with Uncertainty Quantification (LE-PDE-
UQ). This approach is simple, fast, and scalable, accurately
quantifying the uncertainty arising in both the forward evo-
lution and inverse optimization of PDEs. The comprehen-
sive network structure of LE-PDE-UQ is showcased in Fig.
1. The method evolves the state of the system and the uncer-
tainty estimation of the state by corresponding latent vectors
in the latent space, and decodes them as state prediction and
uncertainty estimation, respectively. The specific framework
of LE-PDE-UQ will be described in Section 3 of this paper.

We have also shown in subsequent experiments that our
method achieves state-of-the-art results in uncertainty es-
timation for forward evolution and inverse optimization of
PDEs, is able to propagate uncertainty in long-term autore-
gressive prediction, outperforming strong baseline methods
(e.g., deep ensembles, Bayes layers, Dropout, etc.). This
shows that our approach is able to efficiently model the evo-
lution of temporal PDEs and achieve accurate uncertainty
estimation, improving the performance and trustworthiness
in complex scientific and engineering problems.

Related Work
In recent years, significant efforts have been devoted to
addressing the aforementioned challenges. Much of the
prior work has revolved around the Bayesian formalism

(Bernardo and Smith 2009), wherein a prior distribution
is assigned to the parameters of neural networks. Subse-
quently, given the training data, posterior distributions over
the parameters are computed to quantify predictive uncer-
tainty. However, precise Bayesian inference poses com-
putational challenges for neural networks, leading to the
development of various approximation methods, includ-
ing Laplace approximation (Mackay 1992), Markov chain
Monte Carlo (MCMC) methods (Neal 2012), as well as
variational Bayesian methods (Blundell et al. 2015; Graves
2011; Louizos and Welling 2016), among others. The qual-
ity of predictive uncertainty obtained from Bayesian neural
networks primarily depends on (1) the level of approxima-
tion due to computational constraints, and (2) the correct-
ness of the chosen prior distribution, as convenient priors can
result in unreasonable predictive uncertainties (Rasmussen
and Quinonero-Candela 2005). In practice, Bayesian neu-
ral networks are often more challenging to implement and
slower to train compared to non-Bayesian counterparts, ne-
cessitating a general-purpose solution that can offer high-
quality uncertainty estimates with only minor modifications
to the standard training pipeline.

Hence, (Gal and Ghahramani 2016) proposed the use
of Monte Carlo dropout (MC-dropout) during testing, uti-
lizing dropout (Srivastava et al. 2014) to estimate predic-
tive uncertainty. Substantial research has also been con-
ducted on approximate Bayesian interpretations of dropout
(Gal and Ghahramani 2016; Kingma, Salimans, and Welling
2015). MC-dropout’s implementation is relatively straight-
forward and yields favorable results, making it widely pop-
ular in practice. Dropout can also be interpreted as ensem-
ble model combination (Srivastava et al. 2014), where pre-
dictions are averaged over an ensemble of neural networks
(with shared parameters). The ensemble interpretation ap-
pears more reasonable, especially when dropout rates are not
adjusted based on training data, as any sensible approxima-
tion to the true Bayesian posterior distribution must depend
on the training data. This interpretation has spurred investi-
gations into ensembles as an alternative solution for estimat-
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ing predictive uncertainty.
Over time, the enhanced predictive performance result-

ing from the utilization of model ensembles has been in-
creasingly acknowledged by researchers. Ensembles per-
form model combination, where multiple models are inte-
grated to achieve a more robust model. Ensembles are ex-
pected to perform better when the true model lies outside
the hypothesis class (Lakshminarayanan, Pritzel, and Blun-
dell 2017; Wenzel et al. 2020).

Preliminaries
LE-PDE-UQ builds upon the prior work of LE-PDE (Wu,
Maruyama, and Leskovec 2022). LE-PDE-UQ shares LE-
PDE’s advantage of fast, accurate and scalable forward pre-
diction and inverse optimization of PDEs, but also with no-
table innovations for uncertainty quantification. Below, we
will provide a brief introduction to LE-PDE. The LE-PDE
model architecture comprises four key components:

q: dynamic encoder:zk = q(Uk)
r: static encoder: zp = r(p)
g: latent evolution model: zk+1 = g(zk, zp)

h: decoder: Ûk+1 = h(zk+1)
LE-PDE utilize the temporal bundling technique (Brand-

stetter, Worrall, and Welling 2022) to enhance the represen-
tation of sequential data. This approach involves grouping
input states Uk across a fixed interval S of consecutive time
steps. Consequently, each latent vector zk encodes this bun-
dle of states, and latent evolution predicts the next z for the
subsequent S steps. The parameter S, a hyperparameter, is
adaptable to the specific problem, and setting S = 1 re-
sults in no bundling. It’s crucial to note that the dynamic
encoder q should feature a flattening operation and a Multi-
Layer Perception (MLP) head that transforms feature maps
into a single fixed-length vector z ∈ Rdz . By doing so, the
latent space’s dimensionality doesn’t increase linearly with
input dimension, allowing substantial data compression and
rendering long-term predictions more efficient.

In addition to enhancing forward simulations, LE-PDE
can accelerate inverse optimization. This involves using
backpropagation through time (BPTT) to adjust system pa-
rameters p within the latent space, minimizing a prede-
fined objective function Ld[p]. This is crucial in engineer-
ing, where optimizing boundary conditions or equation pa-
rameters is essential. LE-PDE encodes initial state U0 and
system parameters p into latent vectors z0 and zp using ac-
quired latent space knowledge and the evolutionary model.
Latent evolution takes place, and if needed, it returns to the
input space to calculate Ld[p]. By computing the gradient of
Ld[p] with respect to p and using methods like Adam opti-
mization, an approximate optimal p can be found. With the
significantly smaller latent space dimension, this method re-
duces the complexity of inverse optimization. For more de-
tails on LE-PDE, refer to Appendix A.

Our Approach LE-PDE-UQ
In this section, we provide a detailed explanation of our LE-
PDE-UQ method. We begin by presenting the complete ar-
chitecture of the algorithm framework, as illustrated in Fig.

1. Subsequently, we introduce the learning objectives for ef-
fectively capturing long-term evolution. Finally, we describe
the efficient inverse optimization approach within the latent
space enabled by our method.

Algorithm Framework
The model architecture of LE-PDE-UQ consists of five com-
ponents: (1) a dynamic encoder q : U → Rdz that maps
the input state U t = {ut

i}Ni=1 ∈ U to a tuple of (latent-
vector, latent-uncertainty-vector): (zt, ztσ) = q(U t) ∈ Rdz ;
(2) an (optional) static encoder r : P → Rdzp that maps
the (optional) system parameter p ∈ P to a static latent
embedding zp=r(p); (3) a decoder hµ : Rdz → U that
maps the latent vector zt ∈ Rdz back to the input state U t;
(4) a latent evolution model g : Rdz × Rdzp → Rdz that
maps zt, ztσ ∈ Rdz at time t and static latent embedding
zp ∈ Rdzp to zt+1, zt+1

σ ∈ Rdz at time t+1; (5) uncertainty
decoder hσ : Rdz → U that maps the latent uncertainty vec-
tor ztσ ∈ Rdz back to the predicted uncertainty U t

σ . Here the
latent evolution model g is decomposed as:

zt+1 = gµ(z
t, zp)

zt+1
σ = gσ([z

t, ztσ], zp)
(1)

Note that the latent vector zt+1 only depends on zt, zp,
while the latent uncertainty vector depends on zt, zp, and
the latent uncertainty vector at ztσ previous time step, mod-
eling the propagation of uncertainty in latent space. We em-
ploy the temporal bundling trick (Brandstetter, Worrall, and
Welling 2022) where each input state U t can include states
over a fixed length S of consecutive time steps. At inference
time, LE-PDE-UQ performs autoregressive rollout in latent
space Rdz :

(Û t+m, Û t+m
σ ) = (h, hσ) ◦ g (·, r(p))(m) ◦ q(Û t)

≡ (h, hσ)

(
g(·, r(p)) ◦ ... ◦ g(·, r(p))︸ ︷︷ ︸

composing m times

(
q(Û t)

))
(2)

Compared to autoregressive rollout in input space, LE-
PDE-UQ can significantly improve efficiency with a much
smaller dimension of zt ∈ Rdz compared to U t ∈ U. More-
over, it efficiently models the propagation of uncertainty in
latent space, using the latent uncertainty vector ztσ . Here we
do not limit the architecture for encoder, decoder and latent
evolution models. Depending on the input U t, the encoder
q and decoder hµ can be a CNN or GNN with a (required)
MLP head. We model the latent evolution model g as an
MLP with residual connection from input to output. During
forward prediction, we also augment the above architecture
with Deep Ensemble (Lakshminarayanan, Pritzel, and Blun-
dell 2017) for improved uncertainty quantification.

Learning Objective
Given discretized inputs {U t}, t = 1, ...K + M , our LE-
PDE-UQ model is trained with the following objective that
combines negative log-likelihood in the input space, recon-
struction, and long-term consistency in the latent space:

L =
1

T

T∑
t=1

(Lt
multi-step + Lt

recons + Lt
consistency) (3)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

322



Here ℓ is the loss function for individual predictions,
which can typically be MSE or L2 loss. Û t+m is given in
Eq. (2). Lt

recons aims to reduce reconstruction loss. Lt
multi-step

performs latent multi-step evolution given in Eq. (2) and
compare with the target U t+m in input space, up to time
horizon M . αm are weights for each time step, which we
find that (α1, α2, ...αM ) = (1, 0.1, 0.1, ...0.1) works well.
Besides encouraging better prediction in input space via
Lt

multi-step, we also want a stable long-term rollout in latent
space. This is because in inference time, we want to mainly
perform autoregressive rollout in latent space, and decode to
input space only when needed. Thus, we introduce a novel
latent consistency loss Lt

consistency, which compares the m-

step latent rollout g (·, r(p))(m) ◦ q(U t) with the latent tar-
get q(U t+m) in latent space. The denominator ||q(U t+m)||22
serves as normalization to prevent the trivial solution that the
latent space collapses to a single point. Taken together, the
three terms encourage a more accurate and consistent long-
term evolution both in latent and input space.

Inverse Optimization

In addition to improved efficiency for forward simula-
tion, LE-PDE-UQ also allows more efficient solving of in-
verse problems, via backpropagation through time (BPTT)
in latent space. Given a specified objective Ld[p, U

0] =∑ke

k=ks
ℓ(U t) which is a discretized version of Ld[a, ∂X],

we define the objective:

Ld[p, U
0] =

ke∑
m=ks

ℓd(Û
m(p, U0)) (4)

For inverse problems that infer unknown parameters or
initial state (so that all future state can be known), the ob-
jective Ld can be an MSE between predicted future states
Ûm and the observed future states Um. For inverse design
tasks, Ld can be specific design objectives such as lift-drag
ratio for plane shape design. Ûm = Ûm(p, U0) is given by
Eq. (4) setting k = 0 using our learned LE-PDE-UQ, which
starts at initial state of U0, encode it and p into latent space,
evolves the dynamics in latent space and decode to Ûm as
needed. The static latent embedding zp = r(p) influences
the latent evolution at each time step via g(·, r(p)). The ini-
tial state U0 influences the future state via the latent vectors
(z0, z0σ) = q(U0). To perform inverse optimization w.r.t. the
high-dimensional initial state U0, we optimize w.r.t. (z0, z0σ)
first and then use the decoder h to decode z0 to an estimated
Û0. This is different from LE-PDE where we optimize di-
rectly w.r.t the input variable. This is because Û0 has a much
higher dimension than (z0, z0σ), and optimizing w.r.t. Û0 can
lead to adversarial modes, as is also seen in (Zhao, Lindell,
and Wetzstein 2022). Instead, optimizing w.r.t. (z0, z0σ) then
decode leads to more physical estimation of U0. To obtain
uncertainty for the inverse optimization, we employ Deep
Ensemble (Lakshminarayanan, Pritzel, and Blundell 2017)
to obtain estimated uncertainty.

Experiments
In the experiments, our goal is to answer the following ques-
tions: (1) Can LE-PDE-UQ accurately quantify the uncer-
tainty arising from the long-term evolution of complex sys-
tems and compete with state-of-the-art methods? (2) Which
components of LE-PDE-UQ effectively enhance its uncer-
tainty quantification capability in forward problem infer-
ence? (3) How does LE-PDE-UQ perform in quantifying un-
certainty during the model’s inverse optimization process?
The experimental section on Forward Problems is primar-
ily aimed at addressing questions (1) and (2), while the sec-
tion on Inverse optimization is mainly focused on addressing
question (3). We evaluate the models with two aspects: qual-
ity in uncertainty quantification measured by miscalibration
area (MA), mean absolute calibration error (MACE), and
root mean squared calibration error (RMSCE); and quality
in point prediction, measured by relative L2 loss and mean
absolute error (MAE) (see Appendix B for more details).
The evaluation is generated using the Uncertainty Toolbox
package (Chung et al. 2021).

Dataset
We have tested the LE-PDE-UQ within a 2D benchmark
based on the Navier-Stokes equation. The Navier-Stokes
equation has wide applications in science and engineering,
including fields like weather forecasting and jet engine de-
sign. Simulation becomes more challenging when entering
the turbulent phase, which exhibits multiscale dynamics and
chaotic behavior. Specifically, we test our model in a vis-
cous, incompressible fluid in vorticity form in a unit torus:

∂tw(t, x) + u(t, x) · ∇w(t, x) = ν∆w(t, x) + f(x)

∇ · u(t, x) = 0

w(0, x) = w0(x)

x ∈ (0, 1)2, t ∈ [0, T ]

(5)

where w(t, x) = ∇× u(t, x) is the vorticity, ν ∈ R+ is the
viscosity coefficient. The domain is discretized into 64× 64
grid and Re = 104 (turbulent). The dataset comprises a total
of 1200 trajectories (among them, 1000 trajectories are used
as the training set, and an additional 200 trajectories are used
as the test set), with a total of 20 time points sampled along
each trajectory.

Forward Problems
In this section, we address questions (1) and (2). We com-
pare the most widely used uncertainty quantification algo-
rithms, including Bayes layer (Tran et al. 2019), Dropout
(Srivastava et al. 2014) and Deep Ensembles (Lakshmi-
narayanan, Pritzel, and Blundell 2017). We also explore the
effects of important components of our model, including la-
tent evolution (with ablation model of NoLatent that evolves
the state in input space), evolving latent uncertainty vector
ztσ , and ensembling. To ensure a fair comparison, all models
utilize the past 10 steps to predict the next step, and autore-
gressively predict future 10 steps.

The experiment results are shown in Table 1. We see that:
(1) Our full LE-PDE-UQ method attains the best perfor-
mance in UQ and prediction error. (2) As demonstrated by
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MA MACE RMSCE L2 MAE
Bayes layer with Latent 0.0445 0.0440 0.0500 0.2345 0.2051
Bayes layer without Latent 0.2381 0.2357 0.2665 0.2105 0.1830
Dropout, L2=0 0.1778 0.1760 0.1979 0.2079 0.1938
Dropout, L2=10−5 0.1924 0.1905 0.2143 0.2092 0.1958
Dropout, L2=10−4 0.2317 0.2294 0.2588 0.2458 0.2320
Dropout, L2=10−3 0.3281 0.3248 0.3704 0.3534 0.3428
NoLatent (single, with σ) 0.1045 0.1035 0.1175 0.2053 0.1817
NoLatent (ensemble, without σ) 0.2118 0.2096 0.2355 0.1939 0.1657
NoLatent (ensemble, with σ) 0.0602 0.0596 0.0662 0.1939 0.1657
Latent (single, without σ) - - - 0.1890 0.1613
Latent (single, with σ) 0.0576 0.0570 0.0649 0.2108 0.1811
Latent (ensemble, without σ) 0.1823 0.1805 0.2024 0.1895 0.1608
Latent (ours, ensemble, with σ) 0.0142 0.0141 0.0160 0.1895 0.1608

Table 1: Accuracy of different methods for uncertainty quantification in forward problems. The Bayes layer with Latent method
refers to its combination of the concepts of Bayesian layer and latent space. Dropout, L2 = 10−5 indicates that this approach
simultaneously utilizes both Dropout technique and L2 regularization. Under NoLatent and Latent models, ‘single’ refers to
using a single model for prediction or analysis, while “ensemble” refers to using an ensemble of 10 models for prediction or
analysis. σ refers to that a single model can also predict uncertainty. Bold font represents the best results among the methods,
while underline indicates second-best.

our model (Latent) and NoLatent counterparts, latent evolu-
tion significantly improves UQ: it can propagate uncertainty
via long-term rollout, (3) Comparing with and without sin-
gle model uncertainty prediction (i.e., with or without σ),
we see that without σ, even with ensembling, the UQ is sig-
nificantly worse. Note that “NoLatent (ensemble, with σ)”
denotes the Deep Ensembles method. (4) Bayes layer per-
forms well in UQ, but significantly worse in prediction error.
Dropout performs poorly in both UQ and prediction error.

Fig. 2 shows the visualization of the prediction and un-
certainty quantification by our algorithm. We see that our
model’s prediction (first row) matches excellently with the
ground-truth (second row), including both global and fine-
grained spatial features. More importantly, our model’s pre-
dicted uncertainty (third row) shows excellent similarity
with the actual absolute error (fourth row), demonstrating
accurate uncertainty quantification achieved by LE-PDE-
UQ. Fig. 3 shows the ordered prediction intervals and aver-
age calibration plot of the LE-PDE-UQ algorithm. From the
left plot, it can be observed that the actual observed points
(in yellow) align closely with the blue predicted region (with
blue dots representing the center points of the prediction in-
tervals). Simultaneously, in the right plot, the predicted con-
fidence levels align precisely with the frequency of actual
observations (evident from the close fit of the blue predic-
tion line to the diagonal line), demonstrating our model’s
well-calibrated uncertainty quantification. We observe that
the fit of the blue curve to the diagonal in the right panel of
Fig. 4 is much worse than in Fig. 3. From this we can con-
clude that Latent is critical to the ability to quantify model
uncertainty.

Effect of latent uncertainty propagation using ztσ . To
further investigate how much of the performance difference
is attributed to the ability to model uncertainty propagation
rather than model architecture differences, we conducted
comparative experiments involving two distinct strategies

Figure 2: Visualization of forward prediction results of LE-
PDE-UQ on 2D Navier-Stokes turbulent flow dataset. The
figure predicts the fluid state from 11-20 steps using the ac-
tual fluid state data from 1-10 steps. In this context, (a) rep-
resents the actual fluid state from 11-20 steps, while (b) indi-
cates the fluid state predicted by LE-PDE-UQ. (c) represents
the absolute error between (a) and (b), and (d) represents the
uncertainty quantification results obtained by LE-PDE-UQ.

49

Figure 3: The ordered prediction intervals and average cali-
bration of LE-PDE-UQ.

(Autoregressive rollout and Teacher-Forcing) used by the
model during inference. While Autoregressive rollout uses
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Augoregressive rollout MA MACE RMSCE L2 MAE
NoLatent (ensemble, with σ) 0.0602 0.0596 0.0662 0.1939 0.1657
Latent (ours, ensemble, with σ) 0.0142 0.0141 0.0160 0.1895 0.1608

Table 2: Results of Auto-regressive Rollout Experiment

Teacher-forcing MA MACE RMSCE L2 MAE
NoLatent (ensemble, with σ) 0.0260 0.0258 0.0289 0.1670 0.1420
Latent (ours, ensemble, with σ) 0.0101 0.0100 0.0124 0.1562 0.1296

Table 3: Results of Teacher-Forcing Experiment

50Figure 4: The ordered prediction intervals and average cali-
bration of NoLatent (ensemble, with σ).

model’s prediction as input to the next-step’s prediction
(used in Table 1), Teacher-forcing provides the ground-truth
as input for each step, eliminating the propagation of uncer-
tainty.

The final experimental results are presented in Table 2
and Table 3. In Table 2, we see that our model (Latent)’s
miscalibration area (MA) of 0.0142 is significantly smaller
than Nolatent (MA=0.0602) which does not have uncer-
tainty propagation. There are two possible causes of this gap:
uncertainty propagation enabled by our model and the slight
difference between the two model architectures. If we per-
form Teacher-forcing (Table 3) which eliminates the effect
of uncertainty propagation, the NoLatent MA reduces sig-
nificantly to 0.0260. This means that the gap in Table 2 be-
tween Nolatent (MA=0.0602) and our model (MA=0.0142)
is mostly due to the uncertainty propagation enabled by our
model. With the latent evolution model g evolving both the
latent vector and latent uncertainty vector ztσ , our model is
able to accurately account for the propagation of uncertainty.

Key Factors Influence. In this experiment, we primar-
ily investigate the key factors: Deterministic, L1, and ztσ ,
and their respective impacts on the uncertainty quantifica-
tion performance of the latent evolution framework (Latent
full) used in this paper. The specific experimental results are
shown in Fig. 5, Fig. 6 and Fig. 7. We compared these three
graphs with Fig. 3, but due to the subtle changes in the left
graph, we primarily focused on observing the right graph.
We see that the effects of Deterministic and ztσ on the al-
gorithm in this study are more significant than L1. We have
also presented the fluid simulation images corresponding to

51Figure 5: The ordered Prediction Intervals and Average Cal-
ibration Plot Analysis for Latent full + Deterministic case.

52Figure 6: The ordered Prediction Intervals and Average Cal-
ibration Plot Analysis for Latent full + L1 case.

53Figure 7: The ordered Prediction Intervals and Average Cal-
ibration Plot Analysis for Latent full + No ztσ case.

these three experiments in Appendix C.
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MA MACE RMSCE L2 MAE
NoLatent (ensemble, without σ) 0.0929 0.0920 0.1055 1.5255 1.2580
Latent (ours, ensemble,with σ) 0.0224 0.0222 0.0264 0.1863 0.1505

Table 4: Results of Inverse Optimization

Figure 8: Visualization of LE-PDE-UQ predicting the dy-
namics of turbulent 2D Navier-Stokes in inverse optimiza-
tion.

Figure 9: Visualization of NoLatent (ensemble, with σ) pre-
dicting the dynamics of turbulent 2D Navier-Stokes in in-
verse optimization.

Inverse Optimization

In this section, our main goal is to investigate question (3)
through a comparison between Latent and NoLatent ap-
proaches, and the final results are shown in Table 4. The
result shows that Nolatent has significantly larger error, and
larger miscalibration error. Meanwhile, Fig. 8 and Fig. 10 re-
spectively illustrate the inverse optimization capabilities of
the Latent approach (our proposed algorithm), while Fig. 9
and Fig. 11 depict the inverse optimization abilities of the
NoLatent approach. Comparing Fig. 8 vs. Fig. 9 and 10 with
Fig. 11, we can intuitively observe that our proposed algo-
rithm’s inverse optimization predictions significantly outper-
form NoLatent. This is because optimizing w.r.t. the high-
dimensional input space can easily find non-physical, ad-
versarial models. In contrast, our model optimizes w.r.t. the
much smaller latent dimension and then decodes back to the
reasonable input space, thus achieving a much better error
and uncertainty quantification.
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Figure 10: The ordered Prediction Intervals and Average
Calibration Plot Analysis for the LE-PDE-UQ in inverse op-
timization.
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Figure 11: The ordered Prediction Intervals and Average
Calibration Plot Analysis for the NoLatent (ensemble, with
σ) case in inverse optimization.

Conclusion

In this work, we have introduced the LE-PDE-UQ frame-
work to address the challenge of uncertainty quantification
in time-dependent partial differential equations within deep
learning-based surrogate models. Our method is driven by
latent vectors within a dedicated latent space, enhancing the
solving capabilities of both forward evolution and inverse
optimization through accurate predictions and robust uncer-
tainty estimates. Notably, LE-PDE-UQ can propagate uncer-
tainty over extended auto-regressive rollouts without requir-
ing additional sampling, providing a unique advantage in
long-term predictions. Through rigorous experiments, our
approach outperformed prominent baselines in uncertainty
quantification. It demonstrated exceptional execution pre-
cision and stability in both forward and inverse scenarios,
while bridging the gap between deep learning-based surro-
gate models and trustworthy uncertainty quantification.
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