Wireless Multicast Rate Control Adaptive
to Application Goodput and Loss Requirements

Mohammed Elbadry
Electrical and Computer Engineering
Stony Brook University
United States
mo.elbadry @ieee.org

Abstract—Modern IoT/edge applications require one-to-many
wireless communication (e.g., multi-drone coordination, data
sharing among vehicles, synchronized IoT light shows). Due to
the constantly varying wireless medium, thus reception quality,
the sender must adjust its transmitting rate on a per-frame basis
to meet the goodput and loss requirements of multiple receivers.
Deciding an optimal rate within tens of milliseconds from nearly
a hundred or more choices and continuing to chase that moving
target is extremely challenging. Existing wireless technologies
have little support for multicast rate control: most works are
designed for unicast, where one receiver sends explicit per frame
feedback, which is infeasible to scale to multiple receivers; a
few works for multicast have rigid structures and high overhead
unsuitable for IoT/edge; and most designs are based on a common
implicit assumption: higher rates incur more losses. In this paper,
we conduct systematic experiments and find that only a small
fraction of data rates are practically useful, and higher rates
can incur similar or even lower losses, thus cutting the data rate
table size by 3.8X, making it manageable to select the optimal
rate within a short duration. We further design an application-
adaptive multicast rate control feedback protocol (r-DACK) with
two policies enabling receivers to specify their desired loss rate,
or loss rate and goodput requirements. r-DACK enables most
receivers to meet their goodput/loss requirements while not being
“bogged down” by some stragglers with bad reception quality. We
build a prototype leveraging 802.11ac radio hardware and show
that r-DACK can meet various goodput (15-50Mbps) and loss rate
(10-50%) requirements successfully, both indoors and outdoors.

Index Terms—Wireless, multicast, rate control, WiFi, Edge
networks

I. INTRODUCTION

Wireless multicast is an enabling technology for many
IoT/edge applications, such as a group of collaborative drones
sharing images to plan subsequent trajectories for surveying
or smart infrastructure (vehicles, road-side boxes, and
pedestrians) sharing LiDAR/images for real-time 3D maps for
transportation safety. Another example of multicast is a control
console that sends commands to lightboxes distributed across
a field at an outdoor concert. We need a wireless multicast
rate control algorithm that selects a suitable transmitting rate
to ensure high reception quality, in particular goodput and
loss for receivers. Selecting a data rate requires configuring
up to five parameters that together determine the transmission
rate. Due to the fast-varying wireless medium, the reception
quality at a receiver can change from frame to frame. Thus the

Fan Ye
Electrical and Computer Engineering
Stony Brook University
United States
fan.ye @stonybrook.edu

Peter Milder
Electrical and Computer Engineering
Stony Brook University
United States
peter.milder @stonybrook.edu

sender must adjust its transmission rate constantly on a per-
frame basis to ensure “optimal” reception. In typical existing
wireless technologies like 802.11, a receiver sends explicit
feedback (e.g., CSI [1]) to the sender for rate adaptation.
However, with multiple receivers, where each has a different
reception quality and may require a very different transmitting
data rate, determining the “optimal” rate becomes a challenge.
Meeting all receivers’ needs might be infeasible: some “strag-
glers” with bad reception quality may need an extremely low
rate, thus “bogging down” everyone else. The difficulty in the
decision is compounded by multiple per-frame parameters that
determine the transmitting rate. In recent wireless communi-
cation standards such as 802.11n/ac/ax, the number of param-
eters has grown from two (modulation and coding) to five
(adding guard interval, bandwidth, and spatial stream), increas-
ing the available data rates from 20 to over 70 and even over
200 in newer standards. An incorrect selection will result in ei-
ther high loss or low goodput. The decision also must be made
extremely quickly, within tens of milliseconds, and be made
again and again to keep up with the varying wireless medium.
Previous studies [2] have shown that large duration
windows of exploration (e.g., seconds) can be misleading
because medium changes happen at a much shorter time scale
(e.g., tens of milliseconds). Thus the algorithm must select
from the hundreds of options within tens of milliseconds for
the optimal data rate across all receivers, and keep chasing that
moving target that constantly changes. An intelligent searching
methodology is needed to minimize the search duration. *
There are only a few rate control algorithms designed for
multicast [3], [4]. They tend to have a high setup overhead
where rigid structures among nodes (e.g., leader, cluster-
based) must be established and known prior. Such designs are
for stationary scenarios (e.g., light boxes); however, they do
not work for mobile scenarios where peers do not conform
to such structures (e.g., drone communications or vehicular
multicast) and where the environment is ever-changing with
nodes joining/leaving at any time.
Further, most existing works (especially those for unicast)
have an implicit assumption: a higher data rate leads to more
loss, and vice versa. Thus they decrease the data rate upon

*This work is supported by NSF grants 1652276 and 1730291.

higher loss, and increase upon lower loss. We conduct system-
atic experiments and find that this assumption does not actually
hold: higher data rates may incur similar or even lower losses
than some lower data rates, making them practically useless.
Thus only a small fraction of data rates are necessary in selec-
tion. This was observed anecdotally in some earlier works [5]
but no systematic study was performed. Other non-multicast
works have considered machine learning techniques such as
reinforcement learning to deal with the large data rate table
size [6]. However, our discovery that only a small fraction of
data rates is useful means such complexity is unnecessary.

In this paper, we design a multicast rate control algorithm
that allows the sender to quickly determine a suitable transmit-
ting rate for multiple receivers so as to meet their performance
requirements (i.e., loss rate and goodput). We start with a
systematic investigation on the five parameters that determine
the data rate, and find new insights that reduce the usable
data rate set in our real system implementation from 76 to 20
candidate rates (74% reduction), leading to a much simplified
yet more effective design. To the best of our knowledge, we
are the first to make the following contributions:

o We thoroughly investigate how the transmission rate
determined by the five parameters correlates to loss in
802.11ac, based on over 2M packet traces totaling over
24 hours with four receivers in 12 different environments.
We found that many parameter combinations transmitting
at similar rates incur different losses. Thus, only a small
fraction with the lowest losses is necessary, cutting the
rate table size by 3/4. This breaks an implicit assumption
made in many rate control works that consider all rates
and decrease the rate upon more losses (and vice versa).

o These insights lead to a radically simplified yet highly
efficient and practical design. We design a two-stage
coarse and fine-grained search process where the highest
impact parameters are selected first, and then we fine-
tune the less impactful ones. We also design a multicast
feedback protocol (r-DACK) that allows receivers to
specify their desired performance requirements (i.e., loss
rate and goodput, or loss rate only). Such requirements
enable the determination of which consumers are
“salvageable” and thus allowed to send feedback asking
for retransmission to make up for losses. This avoids
an “unsalvageable” consumer continuing to ask for
retransmissions and thus slowing down everyone.

e We develop Linux kernel modules to build a real
prototype running on 802.11ac dongles. Our results
show that it achieves 30Mbps goodput indoors with
multiple receivers and under 20% loss rate, and 5S0Mbps
goodput and under 30% loss rate, whereas 802.11ac
broadcast suffers above 80% loss rate, at a mere 6Mbps.
Our algorithm costs less than 5% overhead of goodput,
which is very little to provide retransmission feedback
and adjust the data rate accordingly. The limit in goodput
was due to the limited data rate table access in the dongle.
With new radio hardware supporting access to the full

data rate table (up to 2.3Gbps), we expect that -DACK
will achieve 1Gbps goodput at less than 20% loss.

II. BACKGROUND

In this section, we provide background on: i) Address and
Content-centric Filtering, describing the two paradigms of
communications and their implications on MAC; ii) 802.11
Parameters, denoting all parameters in 802.11 regarding rate
control and how they impact the medium; iii) a Multicast
DACK protocol designed for V-MAC [7], a data-centric MAC
layer where the consumer with the highest loss rate provides
feedback asking the producer for missing frames after each
round of transmission; iv) Related Work that has been done by
the research community in recent years regarding rate control.

A. Filtering Paradigms

Filtering paradigms impact the knowledge that nodes have
prior to the communication begins, which rate control can
use to make a decision. Content-centric filtering (i.e., filtering
based on content) enables multicast by nature where data
can be sent to multiple consumers concurrently, and they
can accept the data by checking their table (Pending Interest
Table - PIT) for the content of Interest. A consumer requests
data by sending an Interest with such dataname. This requires
pre-defined prior knowledge of the dataname of content and
mutual agreement between the consumer and producer. The
Content-centric paradigm relies on a Pending Encoding Table
(PET) which routes frames based on encoding (mapped to
dataname in network layer).

Most MAC designs use an address-centric paradigm (i.e.,
filter based on destination ID) that relies on destination
addresses in frames to filter unwanted ones and retain those
needed by upper-layer applications. Address-centric does not
enable multicast by nature. It requires some setup overhead
when a group is formed, and a multicast ID is created
where all interested receivers forward frames to upper layers
carrying such ID as their destination.

A content-centric MAC uses content identifiers (e.g., data
names) to filter and retain desired frames. Thus, the sender
publishes on a “topic” without the need to designate any des-
tination MAC addresses. Multiple frames on the same “topic”
can be sent back to back to form a stream, during which the
rate control algorithm can search and identify the suitable
parameter combination for transmission. V-MAC [7] is so far
the only content-centric MAC design. It has a feedback proto-
col (DACK) where the worst performing consumer reports its
missing frames soonest to solicit retransmissions, which also
recovers for others with fewer losses. V-MAC works well
with applications that only care about loss rate. However, it
does not work well with ones that care about goodput and
may require a certain speed; the worst consumer may request
excessive retransmissions, dragging everyone down.

B. 802.11 Parameters

In the 802.11g standard [8], the per-frame data rate can be
adapted by changing the following parameters: i) modulation

and ii) coding rate with maximum 54Mbps. With the 802.11n
standard [9], two more parameters were introduced: i) Guard
Interval (GI) enabling using different spacing between the
symbols (800 and 400ns); ii) Spatial Stream (SS) enabling
transmitting the frame over multiple streams concurrently
within the band; iii) Bandwidth enabling increasing bandwidth
(40MHz), making the maximum nominal data rate possible
up to 300Mbps. In 802.11ac, no new parameters were
introduced; however, the ranges of parameters further
increased significantly (160MHz bandwidth, three spatial
streams), resulting in the ability of radio to go up to 2.3Gbps.
Thus, the number of parameter combinations determining
data rate increased from 32 in 802.11n to 232 in 802.11ac.
Such a huge space brings a great challenge: the algorithm
must decide which subset of combinations to identify the
best one without excessive latency.

With high data rates, we run into the problem of preamble
overhead. The preamble is a bit pattern sent before any data
frame to synchronize the sender/receiver antenna. A short
preamble is always deployed with newer standards (96us).
However, standard 802.11 data frames usually have 1.4KB of
payload, which takes a minimal duration when transmitting
at a high rate (e.g., 28us at 400Mbps, 29% of the preamble
duration). Thus, most air time is used on the preamble, not
the payload. This leads to the introduction of A-MPDU and
A-MSDU [10] (first introduced in 802.11n) to bundle much
larger data payload after one preamble to improve the air
time utilization(up to 4.6MB in 802.11ac [11]).

C. Related Work

We cover both unicast and multicast rate control algorithms.
The difference between unicast and multicast is how feedback
is obtained from multiple receivers. However, the goal and
rate selection can be the same.

Unicast algorithms rely on a one-to-one communication
where a frame is sent, and an ACK is received before moving
on to the subsequent frame transmission. There is a retry
chain where a frame can be retried if no ACK is received
multiple times. Current WiFi adapters adopt many existing
algorithms that leverage such mechanisms. One of the most
common algorithms is minstrel [12], which relies on a
lookaround rate and average rate. Usually, most of the frames
(90%) are transmitted using the average rate and much less
(10%) using the lookaround rate, which opportunistically
tries a higher rate to see whether it can improve.

Yin et al. [13] perform a thorough survey on rate control
algorithms. We share the most common features and what
is necessary for our work below. Besides all existing rate
control algorithms being designed for unicast, there are
common features to be noted among all algorithms: i) rate
control algorithms rely on the status of frame transmission
or reception of the last frame or adaptation window; ii)
different metrics are deployed to estimate error or correlate
to loss of frames for better performance (e.g., Bit Error Rate
(BER), Channel State Information (CSI), Signal to Noise
Ratio (SNR), etc.); iii) most designs follow a “ladder” up

or down to adapt rates, assuming a higher rate has a higher
loss. Our studies disprove such an assumption where we find
that higher data rates do not necessarily increase the loss rate
(section IV-A), calling into question such designs.

Many mechanisms have been designed over the years
for different standards. Throughput-based algorithms (e.g.,
MIRA [14], STRALE [15]) aim to maximize the throughput
through analysis of current throughput and predict how other
rates will perform in terms of throughput. Another approach
is Consecutive Transmission Result (CTR) algorithms (e.g.,
CARA [16]), which require RTS/CTS and use a busy counter.
However, these mechanisms look into the data rates, organize
them based on throughput, and do a ladder (either one or mul-
tiple rates up/down). Some works have attempted using ma-
chine learning (reinforcement learning [17]), and this approach
shows promise, justifying the need for ML due to the large set
of options to choose from. These works are for unicast (includ-
ing the ML one) and rely on one frame-ack feedback style.

Multicast Work. Most of the works rely on collecting
aggregate feedback from receivers. Some works integrate
Automatic Repeat Request (ARQ) mechanisms [18] and
others utilize RA methods [19]. There are two essential
feedback mechanisms:

i) Leader-Based, where a leader is selected to either
acknowledge the frame [18] or negative acknowledgment [19]
where the frames that are not received are reported; ii) Cluster
based [20], where receivers are partitioned into clusters, and
the receiver with the weakest link is selected to report. Both
(i) and (ii) require having a designated receiver(s) that gets
selected in some fashion, which we cannot afford given the
loose formation of our application. Neither case guarantees
reliable reception across all receivers nor allows the receiver
to try to request missing data.

All multicast works we have surveyed require an overhead
where either the transmitter, the receivers, or both must know
all those involved before and during the transmission to
designate roles; such approaches form rigidness that provides
performance benefits but hinder sloose network operation for
our application needs.

III. DESIGN OVERVIEW

We divide this section into the following: i) Goals and
Assumptions listing our design requirements that need to be
met for a successful system; and ii) Challenges describing
the three challenges, which we solve with three components
to achieve multicast rate control.

A. Goals and Assumptions.

We summarize our goals as the following: i) support
applications’ flexible needs (e.g., file transfer and real-time
video) on edge; ii) allow multiple consumers to participate in
multicast rate control without prior coordination to support
nodes joining and leaving dynamically; iii) converge to the
optimal rate as fast as possible. The optimal rate is the
maximum goodput across all consumers while meeting loss
rate requirements. We also make the following assumptions:

i) some consumers can hear each other and take actions
(e.g., canceling a feedback transmission); ii) consumers
and producer agree on the desired policy’s performance
thresholds before the beginning of communication. With these
assumptions, we can design a system where consumers can
hear each other’s communication with the producer and make
decisions (e.g., do not send feedback asking for a missing
frame if another consumer already reported it), with consumers
and producers agreeing on the exact requirements, a producer
can make intelligent decisions during transmissions to provide
best application performance (e.g., do not retry transmitting x
lost frame(s) as they are not necessary due to application layer
coding); iii) no setup overhead allowed nor prior knowledge
between consumers and producers about each other is
available (to allow for loose network communications where
consumers can join and leave throughout transmissions).

B. Challenges

In 802.11ac, there are five parameters to configure, resulting
in a data rate. The search space is large, and there is no known
method to determine how to order them (if they can be). After
understanding the parameter space and navigating within, we
need to find how to select the rates within the space (which
parameter to change, when, and why?). Lastly, given the
nature of multicast rate control, we need a loosely coordinated
method where consumers can provide feedback on their loss
and different rates of performance where feedback frames do
not overwhelm the producer with information and saturate the
medium. The three main problems are addressed individually
in Section IV-A Parameter Space Exploration, Section IV-B
Rate Selection, and Section IV-C r-DACK.

Through long-term diverse data collection, we observe that
higher data rates do not necessarily correspond to higher loss
rates, and that only a small fraction of rates (and their param-
eter combinations) are needed. Through such findings, we re-
duced the search space by finding that some data rates through-
out all environments and duration of experiments incurred
higher loss rates than others with higher goodput. Besides
eliminating data rates and reducing the search space, we com-
prehensively analyzed all rate control parameters (i.e., Mod-
ulation, Coding Rate, Bandwidth, Guard Interval, and Spatial
Stream (SS)). We find that modulation and spatial stream must
be correct first for proper performance, followed by coding rate
and guard interval. We dive into our analysis in Section IV-A.

We must select the correct modulation and spatial streams
followed by coding rate and guard interval based on our
parameter exploration findings. We design a coarse-then-fine-
grained search strategy that can quickly identify the optimal
rate without any degradation in wireless performance. We
designed a performance policy structure that allows applica-
tions to provide input on rate selection. This structure enables
applications to determine their desired multicast loss rate and
goodput thresholds, which are then used by the MAC to deter-
mine which receivers can be “salvaged,” i.e., retransmissions
can meet its goodput and loss thresholds. A receiver can be sal-
vaged when it is possible to reduce its loss rate below the pol-

Loss Rate Per different Parameters Loss Rate Per different Parameters

100%] o Homnz y * X wovel © 20Mhz v X
SGI 7 SGI
$ 75%1 v 40MHz ® 0% v 40MHz
£ Z 6509 - %
2 X SGI+40MHz vy e XSGl + 40MHz
S 50% ° 2
b o v % 40% °
I ® g
3 25%{ ¢ X 2 20% ° v %
o 2. v¥ Xy X
X XXV =y R
0% | S V¥ ¥)) 0% u&v‘% R
0 100 200 300 400 0 100 200 300 400
Data Rate (Mbps) Data Rate (Mbps)
(a) Corporate (b) Home

Fig. 1: The loss rate of all data rates in two different
environments. Data rates that connect with the dashed line
are Pareto optimal.

icy’s requirement and fulfill the goodput requirement. Besides
defining which receivers are worth saving, the performance
policy affects which data rates to select. Our design supports
two policy types: a joint loss rate and goodput policy, and
loss rate-only policy. Section IV-B details all the structures de-
signed for multicast rate control and how rate selection is done.

We have also developed a rate control DACK (r-DACK)
feedback algorithm that takes into account performance thresh-
olds. This algorithm selects the receiver that requires the most
retransmissions while ensuring that the performance of other
receivers is not impacted. The algorithm then determines the
proximity to the “saving” threshold. The closer a receiver is to
the threshold, the sooner it transmits its feedback. Any receiver
below the “saving” threshold does not participate in the back-
off because saving them will incur excessive retransmissions
that violate the performance thresholds of “salvageable” ones.
Other receivers above the threshold that hear r-DACK frames
cancel their own per round. This approach ensures that the
receiver with the most need is prioritized, improving network
efficiency and reducing latency. Section IV-C details the
design of -DACK and its backoff equations.

I1V. DESIGN

We divide this section into the following: i) Parameter
Space Exploration, describing the analysis of each rate control
parameter (bandwidth, guard interval, spatial stream, coding
rate, and modulation) from the traces collected that drive our
design; ii) Rate Selection, describing the process of how our
rate algorithm operates; and iii) -DACK, an implicit coordi-
nation multicast feedback protocol that allows applications to
provide their requirements (loss rate and goodput tolerance)
so that consumers can request retransmissions without a
worse-performing one dragging down everyone else.

A. Parameter Space Exploration

In this section, we thoroughly analyze how different
parameter changes affect loss rates in various environments.
We find that only a small fraction of parameter combinations
are needed, and there is no need to explore all possible com-
binations for rate control. The findings below were consistent
across data analysis in multiple variations: i) loss rate per
data rate over various time granularity (a few minutes, per
hour, 24 hours); ii) grouping data based on location condition
(busy/empty, or LOS/NLOS) or based on distance. We provide

Spatial Stream 1 2
Bandwidth 20MHz 40MHz 20MHz 40MHz
Guard Interval | 800ns | 400ns | 800ns | 400ns | 800ns | 400ns | 800ns | 400ns
MCS | Modulation | Coding rate Data Rate (Mbps)
0 BPSK 1/2 6.5 7.2 13 14.4
1 QPSK 1/2 13.0 14.4 26 28.9 54
2 QPSK 3/4 19.5 21.7 39 43.3 81 90 |
3 16-QAM 172 26.0 28.9 60.0 52 57.8
4 16-QAM 3/4 39.0 433 81.0 90.0 78 86.7
5 64-QAM 2/3 52.0 57.8 108.0 | 120.0 | 104 115.6
6 64-QAM 3/4 58.5 65.0 121.5 | 1350 | 117 130.3
7 64-QAM 5/6 65.0 72.2 150.0 | 130 144.4
8 256-QAM 3/4 78.0 86.7 162.0 | 180.0 | 156 173.3
9 256-QAM 5/6 N/A N/A 180.0 | 200.0 | N/A N/A 360

TABLE I: All Data rates used in the data collection. The shaded boxes are the candidate rates set.

insights into each parameter individually (modulation, spatial
stream, guard interval, and bandwidth) while keeping in
mind that the loss rate is impacted by the combination of
parameters and not individual parameter change.

Data Collection Setup. We setup a radio dongle in V-MAC
mode (ALFA AWUSO36ACH 802.11ac) and start transmitting
five back-to-back frames for each data rate. The experiment
spanned 76 data rates with the parameter configurations shown
in Table I. We setup four receivers per environment where each
receiver is gradually further from the transmitter (typically one
receiver in the same room LOS, a second outside the room
across the transmitter, a third on another floor, and a fourth on
another floor if possible and at the edge of the property) to see
the impact of multipath and distance. We collected over two
million packet traces in 12 environments (homes, offices, labs,
and corporate), with each trace spanning 24 hours. We have
deployed a medium analyzer [21] across the environments and
found that there were sufficient variations in medium utiliza-
tion (20%-80%) and traffic patterns. This ensures our observa-
tions are general across different environments. Data collection
across more variations and with mobility can be conducted to
validate the generalizability of our observations further.

1) No Monotonic Correlation between Data Rate and Loss:
Higher data rates do not necessarily correlate with higher loss
rates. This is because data rates in modern 802.11 standards
change by five different parameters concurrently. Figure 1
shows two samples of 24 hours in two different environments
(corporate, Figure la and home, Figure 1b). We can observe
that only about 10-15 data rates along the dashed line are worth
exploring, while the rest above the line have higher losses for
the data rates they provide. This shows that some parameters
increase the data rate without impacting the loss rate.

Based on the results displayed, there are multiple insights
to note: i) data rate does not correlate monotonically with
loss rate; as an example 180Mbps has a 10% loss rate while
78Mbps has a 50% loss rate (Figure 1a); ii) there is a small set
of rates (i.e., those along the dashed lines) that have the lowest
loss when providing a given rate, as we can see in our two sam-
ples. There are about nine such data rates in each environment.

2) Modulation: We find that modulation heavily affects
the loss rate (which can result in 0-100%).

3) Spatial Stream: Spatial streams compound the loss rate
when the modulation is incorrect. We find that in most
environments between Modulation Coding Scheme (MCS) 6-9
loss rate can double and even go up to 90% while the single
spatial stream’s loss rate (in MCS 6-9) remains relatively low
(<30%). However, we find that below MCS 6, two spatial
streams have a lower loss rate than a single spatial stream. We
believe this behavior occurs in lower MCS as 1SS has more
noise (i.e., more transmissions), resulting in a higher loss rate.

4) Coding Rate: We find that with certain receivers when
modulation and spatial streams are set correctly, the coding
rate can impact the loss rate span by up to 70%. However,
when the modulation and spatial stream are not correctly set,
changing the coding rate does not impact the loss rate at all
because, with an incorrect modulation and spatial stream,
coding rate changes cannot save the frame.

5) Guard Interval: Guard interval affects the loss rate
slightly. We observe a maximum of 15% loss rate difference
between short and long guard intervals across all loss rates.

6) Bandwidth: We find in most environments 40MHz
performs better than 20MHz across all early MCS (0-5).
We believe this is because such a higher bandwidth has
less noise than 20MHz due to less traffic. However, when
the modulation and spatial stream are too high for the
environment, the loss rate can double when the bandwidth
changes from 20 to 40MHz. However, another rate in 40MHz
with a lower loss rate and higher data rate can be found; it
is not worth considering any 20MHz rate.

7) Candidate Rate Set: We form a candidate rate set that
can be used in all environments (i.e., those along dashed lines
at the bottom, offering the lowest loss given a rate from all
environments). It retains a monotonic increase with a loss rate.
The process of selecting a candidate rate was the following: i)
analyze the loss rate over variable time intervals (10 minutes,
30 minutes, hourly, 24 hours) for each rate across each
environment; i) find the data rates that have the least loss rate;
iii) include other rates collected from other environments; iv)
eliminate data rates that have minimal improvement (<0.5%

Set Loss Rate

Loss Rate Per Modulation & MCS [«

100%| g gpsk+2s 100% '@ qamaseszs ee
QPSK+25 ¥ oamierss
. 16+
8 75%| v oaM-16+2s 3 X QAM-64
5 X QAM-64+2S X e QPSK+25
n 50% QAM-256+25 @ 50%| % oanls
4 o QPSK
8 250 x - ® BPSK
vv
y X
0% @ vV 0% onmrk VY
0 3 7 3] 0 700

200
MCSs Data Rate (Mbps)

(a) Modulation (b) Candidate set loss rate

Fig. 2: (a) shows loss rate difference among different
modulations at two spatial streams and 40MHz. (b) shows
monotonic loss rate increase of candidate set performance in
a sample environment.

loss rate improvement) and major degradation in over 50% of
traces (>15% loss rate degradation). We only eliminated 3 data
rates, and their impact was on 90% of the traces. The candidate
rates can be found in Table I in the shaded cells: 20 out of
76 combinations, a much smaller space to search. Figure 2b
shows the candidate set loss rate in a sample environment. We
observe a consistent correlation between data rate and loss in-
creases among the candidate set. More analysis and evaluation
about the candidate rate set can be found in Section V-A.

B. Rate Selection

Our rate selection process consists of i) Exploration that
determines which rates to use and how to select them; and ii)
Performance Tuning, detailing what kind of performance the
application desires so that our system can provide it. The main
issues the Exploration faces are the following: i) there are still
twenty data rates to choose from, and that can require many
frames to explore; ii) identifying when it’s possible to increase
the data rate without risking violating performance thresholds.
Performance Tuning is needed to answer one question: how
can the MAC optimize the tradeoff between loss rate and
goodput while knowing the application’s preferences?

1) Exploration: Our process operates on a round of frames
that are within a stream. A round is a set of frames that are sent
back-to-back before a feedback frame(s) from the receiver(s)
comes providing information. There are two components:
Coarse and Fine-Grained Search, defining how to search
within the twenty candidate data rates, and Stable Rate and
Opportunistic Rate, representing rates used within a round
(and how many frames are sent at a rate). Each component
addresses one of the two challenges described above.

Coarse and Fine Grained Search. We know that within
the parameters, the modulation and spatial stream have the
most significant impact on the loss rate; coding rate and guard
interval affect the loss rate less. Therefore, finding the correct
spatial stream and modulation combination before coding
rate and guard interval can speed up the search. We divide
our data rate search into coarse and fine as Figure 3 shows.
We select rates based on modulation and spatial stream as
our coarse tuning (in the first few initial rounds). Once the
optimal modulation and spatial stream are found, the correct
coding and guard interval are investigated through the next
rounds. In the evaluation (Section V-C1), we show the benefits

Coarse grained - 9 data rates

BPSK/L | BPSK2 | [16-QAM/2][64-QAM/2[256-QAM/2

Legend [Modulation/spatial stream]
[Data Rate (Mbps)]
Fine grained - 20 data rates

[' BPSK/L | BPSK/2 [BPSK/2 | QPSK/1 | QPSK/ | [256-QAM/2]
| 15 27] 30 | 405 | 45 | | 400 |

Fig. 3: Coarse and Fine search rates. The algorithm divides
data rates into a coarse-grained set where changes to loss rate
are high and less with fine-grained.

of such an approach, and in the discussion (Section VI), we
elaborate on the need for the design in larger tables.

Stable and Opportunistic Rates. We divide the rates of any
round between i) the Stable rate, the rate used for the majority
of transmissions, and ii) the Opportunistic rate to experiment
with a higher rate. The stable rate and opportunistic rates
are re-evaluated after every round of feedback. The Stable
Rate ensures meeting the stream’s performance policy while
the Opportunistic Rate attempts to explore higher data rates
to improve the stream’s performance without violating the
performance policy. In Section V-C1, we show the benefits
of our design and its impact on an application’s performance.
We set the initial ratio between stable and opportunistic rates
to be equal (50% each rate, meaning half of the frames
use the stable rate and others the opportunistic) as at initial
transmission, we assume no knowledge of the optimal rate.
After initial rounds, we set the stable rate to 90% and the
opportunistic rate to 10% of the transmissions.

2) Performance Tuning: We designed a performance policy
that enables applications to determine their requirements.
To support edge applications where goodput and loss rate
are required for successful transmission (e.g., live video
transmission) and cases where loss rate is all that matters
(e.g., latency tolerant file transfer), we form two policies: i)
loss rate and ii) loss rate and goodput policies. Each of these
policies allows upper layers (i.e., either transport, network, or
application) to define their minimum loss rate and/or goodput
needs. We have considered other forms of policies and could
not find an application that needs it directly. We discuss this
more in Section VI

Initial Rates. We set the initial rates based on the
application’s needs. The application must have reasonable
constraints for the system to work (elaboration on how to
define reasonable constraints is in Section VI), we set the
initial rates above the constraints by at least 10 Mbps to
ensure meeting the goodput requirements. If the stream
has only loss rate constraints, we set the initial rates on a
conservative start (starting at the lowest candidate rates).

In/Decreasing Data Rate. The decision to move up or
down the data rate ladder is tied to the current performance
and the application’s performance policy. The difference
between the two policy types is the data rates available: the
policy with goodput constraints prevents the algorithm from
dropping below the goodput stated (e.g., if 20Mbps goodput

is required, only nominal rates with goodput above 20Mbps
can be selected). If the observed loss rate is above a certain
threshold (e.g., > 15% policies), the data rate is dropped in
the coarse-grained level, otherwise in the fine-grained level.
Increasing the data rate only occurs when the opportunistic
rate demonstrates that it can meet the policy requirements. We
choose a conservative increase in opportunistic data rate as
the improvements are not necessary (since the algorithm starts
with minimum requirements). This gives us the ability to gain
goodput cautiously (without suffering sudden loss hikes).

With the algorithm and performance policy designed, we
can now adjust the data rates to provide optimal performance
based on a feedback representation from consumers.

C. -DACK

In this section, we design rate control DACK (r-DACK),
which accounts for the goodput and loss rate policy. We
extend prior work of the DACK feedback protocol [7]
(described in Section II-A), where the receiver with the most
loss reports first, without consideration of goodput constraints.
We leverage the DACK protocol as is for the loss rate policy
(since it allows the receiver with the most loss to report).
We need to modify DACK so that each receiver estimates
how much retransmission they need and estimates goodput
cost to decide if they can be saved or not. -DACK enables
“salvageable” receivers with the most loss to report first.

r-DACK’s main challenges are i) the need to implicitly
coordinate among all consumers with no knowledge of their
performances; ii) each consumer has to determine, based on
limited observations, whether itself can be “salvaged” while
meeting the performance policy (goodput) before participating.

1) Backoff Equation: A backoff equation is a calculation
performed for the nodes to wait before sending a frame.
There are two different backoff equations for the two policies.
We leverage the original DACK backoff algorithm for the
Loss Rate Policy explained in Section II-A. We account for
retransmission failure by calculating the current loss rate
based on the feedback and retransmitting enough frames.
Even with the current loss rate, all receivers obtain enough
frames to be below the constraint. Below, we describe our
new backoff equation for the Goodput and Loss Rate Policy.

The goal of the feedback is to have the consumer that has
the most number of frames missing yet is still “salvageable”
after accounting for retransmissions (i.e., meeting required
goodput) go first. We first explain the logic and workflow of
what each consumer must do, then formulate it with equations.

In Figure 4 two consumers have received a round of data
frames. They want to determine if they can get any missing
frames retransmitted while still adhering to the policy’s con-
straints in the next round. The process involves five steps that
each consumer follows: i) observes its current loss rate and
goodput, and it notes the stable and opportunistic rates the
producer transmitted (which can be extracted from received
frames); ii) calculates the number of frames needed in order
to decrease the loss rate below the threshold. They also
take into account the likelihood of retransmission failures

Producer sends 1 round of frames
Policy: 20% Loss Rate (LR) and 25Mbps Goodput (GP)

Each consumer

LR: 30%
GP: 37.8Mbps

1 LR: 60%
GP: 21.6Mbps

observes their LR and GP

8 retransmission 4 retransmission

Calculates # frames

2 frames frames
- o) o) e needed_to meet LR -
LI OOOO requirements 'S le)
100ms taken Calculate duration of 50ms taken
3 retransmissions within
1 next round time window
24Mbps Calculate GP of new 38Mbps

frames that can fit within
window after retx

Backoff the ft_thher above Prepare r-DACK
GP requirement.
If below, do not transmit

5 | cancel -DACK i
and wait 4 slots

Fig. 4: r-DACK workflow, enabling the consumer with the
most losses to save (without impacting goodput beyond
constraints) to go first.

based on observed behavior; iii) estimates how much time the
retransmissions will take within the time window of the next
round; iv) based on the remaining time within next round’s
time window, considering the duration of the retransmissions,
the consumer predicts the number of new data frames that the
producer will be able to transmit and calculates the normalized
goodput (i.e. after accounting for the impact of necessary
retransmissions); v) if the normalized goodput is above the
policy goodput, the consumer participates in backoff and feed-
back. The closer the normalized goodput is to the minimum
goodput threshold, the less the consumer waits before sending
their feedback. Below, we will explain each step in more detail
and provide the necessary equations for the process.

At step 1, there are no calculations, but each consumer
observes its loss rate (based on sequence numbers), goodput,
and data rates (metadata from PHY) used during the last
round. In step 2, the number of frames needed to meet policy
requirements is calculated through the following equation:

n= (lrround - lrpolicy) ‘Nyround (])

Where n denotes the number of frames needed to be below
the loss rate threshold; [7,,,nq denotes the loss rate of the
round, and I7po1cy denotes policy’s loss rate requirements,
multiplied by a constant number of frames in a round denoted
as Nround (set empirically in Section IV-A). In step 3, we
estimate the duration of the retransmission needed to get the
consumer below the policy’s loss rate threshold. We account
for the potential loss of retransmission frames as well. We do
so using the following equation:

T=—.)

7 denotes the number of frames needed to transmit while
accounting for the new frames’ retransmission failure. n is the
number of frames needed to be received as calculated in (1),
and ¢ denotes the predicted loss of future transmissions (i.e.,
how many frames retransmitted may be lost). We set £ to be the
policy’s loss rate goal (i.e., if the policy’s loss rate threshold is
10%, we assume only a 10% loss rate of retransmissions). We
choose to be optimistic with ¢ and aim for the lowest loss rate
value of the policy, assuming that retransmission will bring
the loss above the threshold. It is better to assume a lower
number of frames needed and be incorrect. Overestimating
the number of missing frames may lead to salvageable
consumers giving up. Further discussion on how to improve
£ is in Section VI. Afterwards, we use the following equation
to calculate the total duration of retransmissions:

Tretw =T (

S1Z€ frame
rateratm

—l—preamble) 3)

raterer, (measured in bits per us (bpus)) denotes the data
rate selected for retransmission (known through the stable rate
and the algorithm). sizef,qme denotes the payload size of a
single frame in bits. 7 denotes the number of frames needed
to retransmit for the consumer to meet the policy threshold
calculated in (2). We also add the preamble duration (96us) of
however many frames need to be transmitted. After obtaining
the duration cost of retransmission, we subtract it from the
total window duration, which is used to calculate the goodput.

The total window duration (microseconds) is calculated by:
SIZ€ frame

9Ppolicy
9Ppolicy denotes policy’s goodput (bpus), while other
variables have been explained in (3). This equation enables
us to know the minimum required duration of transmission
for a round of frames to retain the policy’s goodput.

In step 4, we calculate the adjusted speed based on the
knowledge of how many frames can be transmitted within
Tct, obtained from the previous equations. We assume the
frame size is similar to previous frames on the same stream
and know that the new data rate is either the stable rate or
one rate lower/higher. We can calculate the duration of one
new frame transmission as follows:

Twindow =Nround" (+p7‘eamble) 4)

S1Z€ frame

T =
nf rateg,

®)

rates, denotes the new frame’s transmission rate (obtained by
feeding the algorithm current transmission rates and r-DACK
feedback). Then, we can estimate how many new frames will
fit in the time left in the window using the following equation:

T’window *Tretm
nnew = T— (6)
nf
Afterwards, we can calculate the new goodput of new frames:
S1Z€frame

9Padj = Nnew" T (N
window

Npew denotes the number of new frames that can be
transmitted at the next round time window. We are now only

missing determining how close the goodput is to the minimum
bound. It is calculated through the following equation:

9Padj — 9Pmi
gpnorm = Jrady JPrmwn (8)

gPnorm indicates the normalized goodput. If the goodput is
negative, that means to meet the consumer needs of loss rate,
the goodput will drop below threshold requirements, and
the consumer does not provide feedback; gp,.q. denotes the
maximum goodput possible. It is obtained based on calculating
the stable rate goodput from the previous round (we account
for the frame size, its preamble, and the contention window
duration) and assumes a 100% reception rate. gp,,;, denotes
the minimum goodput required, defined in the performance
policy. gpaq; denotes the estimated goodput in the next round,
after taking off the cost of retransmissions that the consumer
needs (calculated in step 4 and equation 7). This allows us
to identify the consumer with the most missing frames where
the adjusted speed is closest to the minimum. For example, to
drop the consumer’s loss rate from 45% to 25%, the goodput
of the next round will be 20 Mbps instead of 40Mbps, and
the minimum bound is 19%. Thus, the ratio is 0.05.
Finally, the backoff equation can be represented as:

T=0a gpnorm'0)

« denotes the slot duration between two data frames of
the same stream (excluding frame time), indicating medium
contention and how often radio can transmit; o is a constant
that distributes the goodput result over the slots evenly,
bounding the wait time of r-DACKs by the number of slots
(e.g.,if o is 15 then there are 15 different slots to choose from).
Through the equations above, a consumer is able to estimate
if they can be saved without violating the goodput constraints
or not, and if saved, how long to wait based on need.

2) Design Decisions: We choose to have a producer start
by retransmitting the oldest frames first (based on sequence
number), then keep moving forward until we reach the limit
of retransmissions for a round. We choose the oldest frames
first because the latter frames have more opportunities to be
retransmitted through future rounds of r-DACK.

We set the round size to 20 frames for the following reasons:
i) -DACK is time-consuming due to multiple calculations; ii)
it is best to get feedback on large sets of frames to eliminate
significant, abrupt changes in losses in a small window.

We set o to 15 for the following reasons: i) it is a wide distri-
bution to prevent consumers transmitting at the same slot and
enough space among each transmission to hear each other and
decide before sending their own and hear each other to cancel;
ii) it is short enough so that the r-DACK arrives at the producer
before the end of the next round. We allow consumers to can-
cel their -DACKSs after hearing two others of the same round.

We find that our system is able to receive r-DACKs and
adjust one round in advance as desired. We also find that con-
sumers that are the most in need can be saved without violating
goodput policy. Detailed results can be found in Section V-Cl1.

V. EVALUATION

We implement our system on an 802.11ac NIC through
a commodity USB WiFi Interface (ALFA AWUS036ACH).
We run the system on Raspberry Pi 4 Kernel 5. We modify
the kernel driver and reverse engineer monitor mode to
support transmitting V-MAC frames accordingly. We start
from monitor mode since it does not transmit beacon frames
and allows overhearing all the frames. We add the ability
to transmit different data rates on a per-frame basis through
hooks from the firmware to the userspace. The main challenge
is the ability to alternate all different parameters of data rate
per frame transmission. The other challenge we faced was
increasing the size of the frame to larger than the standard
frame size (1500 bytes) without using AMPDU. AMPDU
expects a BACK (Block Acknowledgment) and a station in
the firmware, which is infeasible in multicast.

Through a series of modifications to the memory structures
passed to the kernel, we are able to access up to 40MHz
bandwidth, two spatial streams, all the modulations, guard
intervals, and coding rates. We were unable to reverse
engineer 80MHz reliably as we did with 40MHz to perform
experiments. However, we believe our design can scale
without change to the whole space of parameters, should
more accessible hardware become available. We believe the
set of candidate data rates will need re-evaluation to find
which new rates will remain in the large rates table.

Different NIC. We have repeated most of our experiments
on a different 802.11n NIC (AR9271) to ensure the
correctness and validity of the results. We did not find any
of our observations changing besides performance and rates
since it is another standard.

A. Impact of Candidate Rate Set

Setup. We setup a testbed of 5 receivers in Line Of Sight
(LOS) to each other and a transmitter. We determine the
optimal data rate through trial and error (where goodput
is maximized). We perform these experiments in a place
with no other radios or anyone and validate via Wireshark
on background traffic. We setup the experiment by having
consumers request one stream of 900 data frames by sending
an Interest every 100 data frames. We have the producer
artificially waiting 10 seconds for the very first Interest for
us to start the application across all consumers manually. We
then let our algorithm operate with and without the candidate
rate set to observe the difference.

2.5% convergence improvement. We find that our algorithm
reaches the optimal data rate in a maximum of 2-3 rounds of
feedback, while without the candidate data rate set, it takes
6-9 rounds. We have also noticed that without a candidate
data rate set, the algorithm can get stuck at a local maxima
because the next data rate has a higher loss rate while the one
after has much less than the current rate. (e.g., 65Mbps has
70% loss rate while 135Mbps has 30%). Further, regardless
of the selection process or data rate change, if the data rates
are not organized based on proper loss rate with “unusable”

data rates taken off, a case where the algorithm gets stuck in
a local maxima or a sub-optimal data rate is inevitable.

Similar results have been shown that higher data rates can
result in lower loss rates in legacy standards [5], [22]. Our
work is the first of its kind where multiple environments
are tested, and a dataset is defined using 802.11ac. We have
also found clear justifications as to why some data rates are
performing better across modulation, coding rates, spatial
streams, and bandwidths. These results confirm the benefits
of having candidate data rates set and show that organizing
data rates according to loss rate while bearing in mind data
rate is critical for proper rate control performance.

B. Coarse and Fine-Grained Search

We retain the setup mentioned in our previous experiment
to test the impact of coarse and fine-grained search
(Section V-A). We observe that it takes two rounds of feedback
on average to converge to the ideal data rate. Without a coarse-
grained search, we find that it can take between 4-7 rounds of
feedback, and this is due to the larger map to search in. These
4-7 rounds cost 80-140 data frames (which can consume up to
0.2 seconds assuming transmission at 6Mbps with 1500 bytes
frames). This demonstrates that the coarse and fine-grained
search converges on the optimal data rate 2-3X faster than
using the entire table. We further discuss the benefits of such
an approach on larger space tables in Section VI.

C. -DACK

With the impact of candidate rates set and coarse-then-
fine-grained search evaluated, we evaluate r-DACK in
various environments under different constraints below while
leveraging both design components.

We start by performing outdoor experiments. We ensure
there is no background traffic by using Wireshark and
monitoring the channels we intend to use. We then proceed
to indoor environments (home and corporate) and compare
against: no feedback mechanism (i.e., just broadcast), -DACK
loss rate only policy, and two r-DACK policies with different
goodput and loss rate thresholds.

We setup the experiment (similar to previous experiments)
by having consumers request one stream of 900 data frames
by sending an Interest every 100 data frames. We have the
producer artificially waiting 10 seconds for the very first
Interest for us to start the application across all consumers
manually. Afterward, the producer transmits right after
receiving any interest, with all consumers subscribed. We
also experimented with an interest every 20 frames instead of
100 but saw little impact on performance besides increased
latency due to extra interest traffic. Such changes to latency
are orthogonal to multicast protocol performance.

1) Outdoors: Our experiments without interference show
how our protocol operates in detail, and experiments with
interference show the system’s robustness. For interference, we
place 2 Raspberry Pis outdoors and have each send random-
sized frames from 300 bytes to 2000 bytes every 5-10 ms.

Outdoors no Feedback (240Mbps) Outdoors no Feedback (240Mbps)

_80% | Teol = T

&) =

3 s 01

+—~ 0, "’60

5 60% o

o ﬁ T 2 T

& aow e g4

- o o e
= = © 20 .
R1 R2 R3 R4 R5 R6 Rl R2 R3 R4 R5 R6

Receiver # Receiver #

(a) Loss Rate (240Mbps)

Outdoors DACK

(b) Goodput (240Mbps)

Outdoors DACK

15.0% 10.0 ° °
RN
2 10.0% ° HAJ S 95 L& @ 1
g 5 i
o, == o °
§ 5.0% ’—‘ ’J_‘ % “' 1§ 9.0 U
-
O
0.0% u ° L‘H ° % 8.5

Rl R2 R3 R4 R5 R6
Receiver #

Rl R2 R3 R4 R5 R6
Receiver #

(c) r-DACK (10%) Loss Rate (d) -DACK (10%) Goodput

Fig. 5: (a) and (b) show broadcast performance. (c) and (d)
show r-DACK with a 15% loss rate policy. Receivers are
ordered from closest to furthest.

Without Interference. Figures 5a and 5b show results of
broadcast at 240Mbps data rate to establish a baseline. We
observe loss rate fluctuations across receivers (Figure S5a)
ranging from 25% to 80%, leading to goodput ranges
(Figure 5b) of 20-75Mbps. We can observe high fluctuations
in both goodput and loss rate, which makes it very difficult to
run applications such as video streaming. Further, if a higher
data rate is selected, the loss rate goes up to almost 100%,
and if the lower rate is selected, the loss rate still fluctuates
up to 80% with a reduction in goodput.

When we apply r-DACK with a loss rate policy of 15%,
we can observe loss rate reduction (Figure 5c) and goodput
ranges (Figure 5d) of 8.5-10Mbps. This demonstrates the
ability of the r-DACK loss rate policy to reduce the loss
rate to desired levels. However, this comes with the cost of
retransmissions to satisfy all consumers, including R6, which
had nearly 80% loss rate; reducing R6 to 15% loss rate led
to 4-10X reduction in goodput for all receivers.

Next, we apply two different r-DACK policies, one with
20% loss rate and 15Mbps goodput and another with 30% loss
rate and 50Mbps goodput. Figures 6a and 6b show loss rate
and goodput for the (20%, 15Mbps) policy. We observe that
the algorithm correctly gave up on R6 (since R6 cannot meet
these targets) and met the policy requirements across other
receivers. Similarly, with Figures 6¢c and 6d, we can again
see R6 is ignored, but the rest of the receivers have met both
the loss rate (30%) and goodput (50Mbps) requirements. This
shows that r-DACK can balance between goodput and loss,
giving up only the worst receiver while still saving the rest.

Rate oscillation. It is common with rate control designs to
see the producer’s rate going up and down every few frames,
exhibiting uncertainty of which rate is optimal. We do not
observe rate oscillation behavior with our system. The reason
our system is not as susceptible to rate oscillation is that our

Outdoors r-DACK (20%, 15Mbps) Outdoors r-DACK (20%, 15Mbps)
o)

30{ = =
§75% = _§ = =
50% 220
2 2
") o, ©°
§¥% - = g10
e = o = T [G] e
0%{= = ° °
R1 R2 R3 R4 R5 R6 R1 R2 R3 R4 R5 R6
Receiver # Receiver #
(a) r-DACK Loss Rate (b) -DACK Goodput
Outdoors r-DACK (30%, 50Mbps) Outdoors r-DACK (30%, 50Mbps)
<75% =| 4qe0{ = P
k> § = = =
] <
£50% < 40
< 2
2 25% - = < 3
i :_ % 8 20 =
0% — o
R1 R2 R3 R4 R5 R6 R1 R2 R3 R4 R5 R6
Receiver # Receiver #

(c) r-DACK Loss Rate (d) -DACK Goodput

Fig. 6: (a) and (b) show results of r-DACK with performance
policy (20%, 15Mbps); (c) and (d) show results of r-DACK
with performance policy (30%, S0Mbps).

system takes a round of frames (20 frames) before making any
decision, leading to more robustness against rate oscillation.

Impact of distance and multipath. We test our system’s
performance by placing the receivers at different distances
and behind vehicles from the transmitter. We observe that
our system lowers the optimal rate while meeting the policy
thresholds and saving all salvageable receivers. We have tested
30% loss rate with 40Mbps, which was met by 5 receivers
out of 6, and 20% loss rate with 20Mbps, which was met by
all six receivers. This demonstrates that our system ability to
handle different policy constraints under NLOS scenarios.

2) Indoors: We tested our system in multiple homes and
confirmed the ability of r-DACK to meet different policy
requirements. We rotate among four different modes to
demonstrate the different performances and do ten runs. The
four modes are one without any feedback to get a baseline of
environment and system performance in the environment, sec-
ond with DACK where the worst consumer can drag goodput
performance, and two other modes with different r-DACK
policies demonstrating the flexibility in tuning performance.

Figure 7 shows the results of the four modes None (i.e.,
no feedback at 240Mbps), DACK (10% loss rate policy),
r-DACKI1 (30% loss rate and 40Mbps), r-DACK2 (20% loss
rate and 20Mbps). Our results show that r-DACK was able
to retain the required loss rate results (Figure 7a) in the three
different policies specified. In r-DACK1 and r-DACK2, it
was also able to retain the goodput requirements: 40Mbps
and 20Mbps, as shown in Figure 7b. These results show the
robustness and resilience of our system in a noisy environment.

Increasing loss rate policy by 3% increments and
goodput. We test our system’s flexibility in an indoor
environment with five consumers and one producer where we
start from 10% loss rate to 40% loss rate in 3% increments,
with required goodput of 45Mbps. We observe the system’s

Home Environment performance Home Environment performance

75%| == °
3 ° @601 -
& &
850% =
©] 40 o
< 2
2 25% B =
5427 8§20 ==
=
0% = = —_
b

DACK r-DACK1 r-DACK2
Mode

DACK r-DACK1 r-DACK2
Mode

(b) Goodput

None None

(a) Loss Rate

Fig. 7: We can observe that -DACK was able to retain its
performance policy across the three modes and not impact
goodput relative to None (i.e., broadcast).

ability to maintain the goodput and abandon the consumers
that could not retain certain loss rates. This demonstrates
the system’s flexibility and ability to fine-tune loss rate
performance requirements successfully.

Corporate office and lab. Our results in two corporate
offices and two research labs yielded similar results to
home environments (four modes, ten runs per mode), which
demonstrate the system’s robustness across environments.
Performing our experiments in three different types of
environments (corporate, lab, home) and multiple places
per environment demonstrates: i) the system’s resilience
and ability to adapt; ii) the system’s robustness in meeting
performance requirements and ‘salvaging’ those receivers
that can be saved; iii) we can, within reason, generalize the
results to other untested environments.

D. Scalability

We have tried experiments with up to 12 receivers and
observed a cap to the overhead increase as the number
of receivers goes beyond 7-8. The cap occurs when extra
receivers do not transmit r-DACK and cancel their own,
satisfied with others’ requests. This does not ensure that
the cap will remain constant for the following reasons: i)
consumers may not be able to hear each other, and thus, the
cancellation policy may not trigger; i) multiple consumers
end up in the same slot and try sending at the same time,
leading to the inability to cancel the timer. However, this does
not result in frames colliding due to CSMA operating. This
shows that our system operates appropriately and can prevent
redundant overhead by eliminating numerous r-DACKGs.

Projection analysis. Given our hardware implementation
limitation, we are capped by 100 Mbps goodput due to its
inability to use A-MPDU in multicast. We analyze how much
overhead we have with our data rate and frame size, then
scale accordingly to see how high our multicast rate goodput
can go up. Given how our algorithms performed at 100 Mbps
with limited hardware, we can scale up with adjusted frame
size when we have access to A-MPDU and the entire table
to reach up to 1 Gbps goodput while retaining the policy’s
threshold (e.g., 20% loss rate and 950 Mbps), assuming that
the environment will allow for such data rate to work.

Design limitations. Our design currently makes a few
assumptions that will need to be revisited based on real-world

application needs: i) We choose to retransmit the oldest frame
first to provide every frame with the highest chance to be
received. However, this may not be the best policy for some
applications that may prefer the latest (e.g., multi-vehicle
trajectory planner with missing data compensation); ii) the
design assumes large amounts of data (100+ data packets in
a stream) to be able to perform well. There can be multiple
small sets of data where each has its stream but shares the
same set of receivers beneath. A protocol that enables sharing
optimal rates across streams is necessary for the system to
perform well in such a scenario. Both scenarios’ limitations
can be worked around with extended research and engineering
work given the current design’s architectural flexibility and
approach; we leave such extensions for future work.

VI. DISCUSSION

Data rate constraints based on frame size. Our analysis
and studies show that each frame rate should have a frame
size lower bound and an upper bound. The lower bound is due
to the fixed preamble duration (96us), which can consume
most of the air time for small frame sizes transmitted at
high speeds (e.g., a 1400 byte payload frame transmitted
at 400Mbps consumes 28us which is about 3.5X less than
the preamble). Besides preamble duration, accounting for
contention window duration and other overhead is critical to
obtain true goodput measurements. The upper bound stems
from the limited duration of channel coherence time (e.g.,
5ms) in which frames have to be completely transmitted.
We have observed that transmitting a large frame beyond
the coherence time led to failure. Therefore, for each data
rate, a lower bound (to prevent transmission overhead from
consuming most of the transmission) and an upper bound
(to be within channel coherence) based on frame size is
important. This matters to -DACK as rate control needs
to account for frame sizes while choosing the data rate for
transmission. These constraints are to be placed on top of the
design so that each frame being transmitted has a small set
of data rates to select from within the candidate rates set. We
leave such work and exploration for future work.

Coarse and fine-grained search on larger spaces. Our
evaluation of our search technique is currently limited due
to the current hardware capabilities. We believe our coarse
and fine-grained search algorithm will show higher impact
results in larger data rate tables (e.g., in full 802.11ac with
all bands available, the table grows from 76 data rates to 232
data rates, which can result in a reduction to 58 rates).

Choosing the right performance requirements. Our
system relies heavily on applications choosing the right
goodput and loss rate requirements for themselves. If
incorrect or too aggressive constraints are selected, the
consumers may give up as they will not be able to meet
the requirements. Impossible policy requirements depend
on multiple aspects: i) communication condition between
the consumer(s) and producer; ii) the optimal data rate for
transmission; iii) the size of the frames transmitted. Thus, we
encourage applications to choose the minimum requirements

for the application to operate and let the algorithm improve
goodput slowly while retaining the required loss rate.

Mobility Impact. We have not tested our system in mobile
or partially mobile (i.e., either transmitter or receiver moving)
environments. Based on previous works [15], [23], channel
coherence is significantly impacted by mobility (e.g., 648us at
5GHz with 100 km/hr), affecting transmission duration. It also
changes the channel standard properties that are assumed dur-
ing stationary or low mobility (1-3mph) environments. Thus,
the process of rate selection and tolerances to change rate
(up/down) will need to adapt. Existing works [15] have made
both approaches and shown promising results. We believe the
same can be added to our design in the future if needed for
mobility. We leave full design for mobility as future work.

Chipset Variation and Performance. Other NICs can lead
to different results due to the following reasons: i) cross-stack
communication speed can differ, causing different delays;
ii) medium sensing and antenna sensitivity vary per NIC,
thus causing missing slots or sending when the medium is
busy. We have tested two NICs (AR9271 and RTL8812AU)
and observed the same behavior we detail in Section III-A,
confirming the phenomenon is not NIC-related. However, there
were different performance results, which were caused by
different frequency ranges, rate tables, and antenna numbers.
Further experiments to verify across NICs are needed.

Experimental Work Comparison. As mentioned in
Section II-C, prior approaches designate a leader [18] or form
a group [20] and then provide feedback. Such designs have
setup overhead prior to communication, and the overhead
increases linearly with each new multicast group. Meanwhile,
our system is group-less and does not require a prior
agreed-upon elected receiver to provide feedback nor any
setup overhead, offering true peer-based communication and
better support for medium-changing wireless environments.
An analysis of the performance of both designs with scenario
tradeoffs can be made in the future.

VII. CONCLUSION

In this paper, we introduced an application of adaptive mul-
ticast rate control with thorough parameter analysis, the first
of its kind. We perform extensive data collection, analyzing
each data rate’s efficiency across multiple receivers across
three environments (corporate, lab, and home). Through our
analysis, we were able to reduce data rate choices by 3.8x.
We also introduce r-DACK, a rate-adaptive multicast feed-
back design that enables applications to provide their desired
performance constraints (loss rate, goodput, and loss rate).
Our prototype implementation on 802.11ac radios shows five
consumers obtaining S0Mbps goodput with a 30% loss rate.

REFERENCES

[1] Lingyang Song, Zhu Han, Zhongshan Zhang, and Bingli Jiao. Non-
cooperative feedback-rate control game for channel state information in
wireless networks. IEEE Journal on Selected Areas in Communications,
30(1):188-197, 2011.

[2] Ioannis Pefkianakis, Starsky HY Wong, Hao Yang, Suk-Bok Lee, and
Songwu Lu. Toward history-aware robust 802.11 rate adaptation. /EEE
Transactions on mobile computing, 12(3):502-515, 2012.

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

[23]

Varun Gupta, Craig Gutterman, Yigal Bejerano, and Gil Zussman.
Experimental evaluation of large scale WiFi multicast rate control. [EEE
Transactions on Wireless Communications, 17(4):2319-2332, 2018.
Fan Wu, Wang Yang, Ju Ren, Feng Lyu, Peng Yang, Yaoxue Zhang,
and Xuemin Shen. NDN-MMRA: Multi-stage multicast rate adaptation
in named data networking wlan. IEEE Transactions on Multimedia,
23:3250-3263, 2020.

David Murray, Terry Koziniec, Michael Dixon, and Kevin Lee.
Measuring the reliability of 802.11 WiFi networks. In 2015 Internet
Technologies and Applications (ITA), pages 233-238. IEEE, 2015.
Chi-Yu Li, Syuan-Cheng Chen, Chien-Ting Kuo, and Chui-Hao Chiu.
Practical machine learning-based rate adaptation solution for Wi-Fi
NICs: IEEE 802.11 ac as a case study. IEEE Transactions on Vehicular
Technology, 69(9):10264-10277, 2020.

Mohammed Elbadry, Fan Ye, Peter Milder, and Yuanyuan Yang.
Pub/Sub in the Air: A Novel Data-centric Radio Supporting Robust
Multicast in Edge Environments. In 2020 IEEE/ACM Symposium on
Edge Computing (SEC), pages 257-270. 1IEEE, 2020.

Dimitris Vassis, George Kormentzas, Angelos Rouskas, and Ilias
Maglogiannis. The IEEE 802.11g standard for high data rate WLANSs.
IEEE Network, 19(3):21-26, 2005.

Eldad Perahia. IEEE 802.11n development: history, process, and
technology. IEEE Communications Magazine, 46(7):48-55, 2008.
Boris Ginzburg and Alex Kesselman. Performance analysis of A-MPDU
and A-MSDU aggregation in IEEE 802.11n. In 2007 IEEE Sarnoff
Symposium, pages 1-5. IEEE, 2007.

Matthew S Gast. 802.11ac: a survival guide: Wi-Fi at gigabit and
beyond. O’Reilly Media, Inc., 2013.

Wei Yin, Peizhao Hu, Jadwiga Indulska, and Konstanty Bialkowski.
Performance of mac80211 rate control mechanisms. In Proceedings
of the 14th ACM international conference on Modeling, analysis and
simulation of wireless and mobile systems, pages 427-436, 2011.

Wei Yin, Peizhao Hu, Jadwiga Indulska, Marius Portmann, and Ying
Mao. MAC-layer rate control for 802.11 networks: A survey. Wireless
Networks, 26:3793-3830, 2020.

Toannis Pefkianakis, Suk-Bok Lee, and Songwu Lu. Towards MIMO-
aware 802.11n rate adaptation. IEEE/ACM Transactions on Networking,
21(3):692-705, 2012.

Seongho Byeon, Kangjin Yoon, Changmok Yang, and Sunghyun Choi.
STRALE: Mobility-aware PHY rate and frame aggregation length
adaptation in WLANSs. In IEEE INFOCOM 2017-IEEE Conference on
Computer Communications, pages 1-9. IEEE, 2017.

Jong-Seok Kim, Seong-Kwan Kim, and Sung-Hyun Choi. CARA:
Collision-aware rate adaptation for IEEE 802.11 WLANSs. The Journal
of Korean Institute of Communications and Information Sciences,
31(2A):154-167, 2006.

Syuan-Cheng Chen, Chi-Yu Li, and Chui-Hao Chiu. An experience
driven design for IEEE 802.11ac rate adaptation based on reinforcement
learning. In IEEE INFOCOM 2021-IEEE Conference on Computer
Communications, pages 1-10. IEEE, 2021.

Nakjung Choi, Yongho Seok, Taekyoung Kwon, and Yanghee Choi.
Leader-based multicast service in IEEE 802.11v networks. In 2010 7th
IEEE Consumer Communications and Networking Conference, pages
1-5. IEEE, 2010.

Wan-Seon Lim, Dong-Wook Kim, and Young-Joo Suh. Design of
efficient multicast protocol for IEEE 802.11n WLANSs and cross-layer
optimization for scalable video streaming. IEEE Transactions on
Mobile Computing, 11(5):780-792, 2011.

Xinbing Wang, Luoyi Fu, and Chenhui Hu. Multicast performance
with hierarchical cooperation. IEEE/ACM Transactions on Networking,
20(3):917-930, 2011.

Mohammed Elbadry, Fan Ye, and Peter Milder. Aletheia: A lightweight
tool for WiFi medium analysis on the edge. In ICC 202I-IEEE
International Conference on Communications, pages 1-7. IEEE, 2021.
Giuseppe Bianchi, Fabrizio Formisano, and Domenico Giustiniano.
802.11b/g link level measurements for an outdoor wireless campus net-
work. In 2006 International Symposium on a World of Wireless, Mobile
and Multimedia Networks (WoWMoM’06), pages 6—pp. IEEE, 2006.
Yaxiong Xie, Zhenjiang Li, and Mo Li. Precise power delay profiling
with commodity WiFi. In Proceedings of the 21st Annual international
conference on Mobile Computing and Networking, pages 53—-64, 2015.

