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Abstract—Human activity recognition provides insights into
physical and mental well-being by monitoring patterns of move-
ment and behavior, facilitating personalized interventions and
proactive health management. Radio Frequency (RF)-based hu-
man activity recognition (HAR) is gaining attention due to its
less privacy exposure and non-contact characteristics. However,
it suffers from data scarcity problems and is sensitive to en-
vironment changes. Collecting and labeling such data is labor-
intensive and time consuming. The limited training data makes
generalizability challenging when the sensor is deployed in a
very different relative view in the real world. Synthetic data
generation from abundant videos presents a potential to address
data scarcity issues, yet the domain gaps between synthetic and
real data constrain its benefit. In this paper, we firstly share
our investigations and insights on the intrinsic limitations of
existing video-based data synthesis methods. Then we present
M4X, a method using metric learning to extract effective view-
independent features from the more abundant synthetic data
despite their domain gaps, thus enhancing cross-view general-
izability. We explore two main design issues in different mining
strategies for contrastive pairs/triplets construction, and different
forms of loss functions. We find that the best choices are offline
triplet mining with real data as anchors, balanced triplets,
and a triplet loss function without hard negative mining for
higher discriminative power. Comprehensive experiments show
that M4X consistently outperform baseline methods in cross-view
generalizability. In the most challenging case of the least amount
of real training data, M4X outperforms three baselines by 7.9-
16.5% on all views, and 18.9-25.6% on a view with only synthetic
but no real data during training. This proves its effectiveness in
extracting view-independent features from synthetic data despite
their domain gaps. We also observe that given limited sensor
deployments, a participant-facing viewpoint and another at a
large angle (e.g. 60◦) tend to produce much better performance.

I. INTRODUCTION

Human activity recognition is vital for health management,
enabling remote monitoring and personalized interventions
by providing insights into physical and mental well-being,
facilitating chronic disease management, and contributing to
overall health research [1]. The recognition of activities during
the routines of our daily life can provide valuable assistance in
managing diseases [2]. For instance, monitoring body move-
ments and gait speed can facilitate the assessment of severity,
progression, and medication response for Parkinson’s disease
in a home environment [3]. Human activity recognition using
RF technologies, e.g., ultra-wideband (UWB), millimeter wave
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Fig. 1: Doppler data variability across different views presents a cross-
view generalizability challenge. While RF data synthesis from videos looks
promising to data scarcity, it faces the issue of domain gaps between real and
synthetic data.

(mmWave), and Wi-Fi, has gained siginificant attention [4]–
[8]. They have much less privacy exposure and pose little phys-
ical or cognitive burden compared to cameras and wearables
[4], [5], [9]. However, RF-based sensing technologies suffer
from generalizability issues due to environmental variations
and data scarcity [6], [10], [11].

Typically, RF-based human activity recognition (RF HAR)
relies on characterizing RF signals through micro-Doppler
signatures, which represent the distribution of radial velocities
in space and time.1 Such signal characterization is sensitive
to environmental factors that introduce variations in the RF
propagation, including the room and furniture layout, and in
particular the relative view (i.e., orientation) of the sensor to
the human subject. Due to cost, installation and maintenance
constraints, the number of sensors deployed in a real home
is often limited, leading to few and very different viewpoints.
Due to the view-dependent nature of radial velocity patterns,
such disparate viewpoints produce significant variations in
RF signal characteristics (as illustrated in Figure 1(a)), thus
divergent micro-Doppler signatures [9] that make cross-view
generalizability very challenging.

Unfortunately, RF HAR generalizability is further compli-
cated by the scarcity of open-source RF datasets, both in
quantity and diversity. Collecting and labeling RF data is
labor-intensive and time-consuming [12], requiring expertise
for accurate annotation. This sharply contrasts the ease of

1For simplicity, we interchangeably use the terms “RF data” or “Doppler
data” with micro-Doppler signatures throughout this paper.



working with images or videos, where substantial benchmark
datasets exist, and labeling can be done by virtually anyone,
without special domain knowledge.

Despite recent work on few-shot learning and transfer learn-
ing with limited RF data [13], cross-view generalizability has
not been sufficiently addressed. Such work often still requires
large amounts of labeled data for model training or the gener-
ation of view-independent representations [5], [9]. Moreover,
they primarily focus on hand/arm gesture recognition, rather
than recognizing full human body activities, which poses more
challenges due to complex combinations of movements and
mutual occlusions of the torso, head, and limbs. Thus the
cross-view generalizability in RF HAR remains unresolved.

To address the data scarcity issue, researchers have explored
RF data synthesis using the abundantly available video data
to augment RF data in both quantity and diversity [10], [14],
[15]. This involves simulating the radar cross-section (RCS)
reflection of human bodies using radar (e.g., the physics of
Doppler effect) and computer vision (CV) techniques applied
to videos of human activities. However, such simulations
are inherently imperfect. We find that they heavily rely on
3D human pose/mesh estimation models, which suffer from
occlusions, and have inherent depth-ambiguity problems due
to unknown relative depth between body joints [16]. This
results in domain gaps between synthetic and real data (as
illustrated in Figure 1(b)), hindering the direct utilization of
synthetic data [10].

In this paper , we aim to enhance cross-view generalizability
in RF HAR under practical constraints, including: 1) a small
amount of real, labeled RF data from limited viewpoints;
and 2) substantial synthesized RF data of comprehensive
viewpoints through physics-guided simulation from abundant
labeled video data. We approach this problem through two
tasks: 1) extracting view-independent features for cross-view
generalizability of HAR; and 2) extracting source-independent
features capitalizing abundant labeled synthetic data, compen-
sating for the scarcity of real RF data. We consider two types
of domain gaps: “view” refers to variations in RF data from
different viewpoints, while “source” distinguishes the data
origin, real versus synthetically generated.

To this end, we introduce M4X (as illustrated in Figure 2), a
method that employs metric learning [17] to exploit synthetic
RF data for enhancing cross-view generalizability in RF HAR.
We examine two critical design issues for metric learning: the
strategies for mining contrastive pairs/triplets and the selec-
tion of loss functions. We evaluate and compare M4X with
representative baselines in addressing data scarcity through
“synthetic-to-real” approaches. The experimental results show
that under limited real data, M4X can effectively exploit
abundant synthetic data to extract domain-independent repre-
sentations to significantly enhance cross-view generalizability
in RF HAR.

We summarize our contributions as follows:
• We conduct an in-depth investigation on video-to-RF data

synthesis methods that hold promise to address the data
scarcity problem. We discover their inherent limitations
due to depth-ambiguity, occlusion, and inaccurate simu-
lation, and share insights on how they impact the fidelity

of synthesized data, and pose challenges for their direct
utilization.

• We present M4X, which employs metric learning to
extract source- and view-independent features from syn-
thetic data to enhance cross-view generalizability. We
systematically examine the design choices in M4X, and
identify offline triplet mining with real data as anchors,
and a triplet loss without “hard negatives” as optimal
strategies for contrastive pairs/triplets construction and
loss function selection, respectively.

• We conduct comprehensive experiments to compare M4X
to three baseline methods. The results show that M4X
consistently and significantly outperforms baselines by
7.9-16.5% on different views, and 18.9-25.6% on an view
with only synthetic but not real data in training, proving
its effectiveness in extracting view-independent features
from synthetic data despite their domain gaps. We also
identify the combination of viewpoints for the best perfor-
mance, providing guidelines for sensor placements under
practical constraints.

To the best of our knowledge, this is the first work that
explores how to effectively leverage synthetic data despite
their domain gaps to enhance cross-view generalizability in
RF HAR.

II. BACKGROUND

A. Cross-view Generalization

In the context of RF HAR, variations in RF data patterns
arise when factors such as relative distance, sensor viewpoints,
and room layout change [9]. There are existing works manag-
ing variations across environments or individuals by enhancing
dataset diversity [4] or developing data possessing techniques,
such as normalization [5] and auto-encoder decoder [14],
among others. However, attaining cross-view generalizability
remains a significant challenge, one that cannot be resolved
solely through these methods. 2 When the viewpoint of a RF
sensor changes, such as due to a different sensor deployment or
the subject facing another direction, the observed radial veloc-
ities and resulting Doppler patterns are significantly affected
(Figure 1(a)), posing a challenge in cross-view generalization
of RF HAR.

Existing works on cross-view generalization can be pri-
marily categorized into two types: 1) Comprehensive-view
modeling. WiAG [9] generates gesture data at all locations and
orientations to train one model at each location and view. Then
they select the corresponding model to recognize data based on
the location and view of the data. DI-Gesture [4] proposes to
augment gesture data regarding different speeds, trajectories,
distances and angles so that the model is trained with diverse
enough data thus independent to those factors. They use angle
of arrival (AoA) information as an important feature from
multiple receiving antennas. 2) View-independent feature
extraction. Widar3 [5] presents a view-independent represen-
tation called BVP (Body-coordinated velocity profile) to train

2We define the ‘view’ as the viewpoint of the RF sensor facing the human
subject from a specific position and orientation.
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Fig. 2: Framework of our paradigm, M4X, using metric learning to exploit synthetic data for enhancing cross-view generalizability in RF HAR. “(r)” denotes
data in real domain, “(s)” data in synthetic domain. There are 2 steps in training: 1) train a metric learning model as a feature extractor across viewpoints
and sources to get view-independent features across real and synthetic data sources. The model takes a 3-way input including anchors from real domain and
positives and negatives from synthetic domain. 2) employ the trained model as a feature extractor to extract both cross-view and cross-source features from a
large synthetic data set, and train a classifier for activity recognition. Although trained in synthetic domain, the classifier is effective in real domain because
of the cross-source nature of the features. For testing, we employ the same feature extractor to extract features in real domain and predict the activity with
the classifier obtain in the step 2.

recognition models that are orientation agnostic. However, pre-
vious works in both categories are designed for gestures-likes
simple movements within a confined space, rather than whole
body activities with complex occlusions in a large space. Their
design and verification target only at gesture recognition, its
effectiveness for human activities requiring greater full-body
coverage and complex occlusions is unclear and needs in depth
investigation to prove either way. Furthermore, for training
they still need a large dataset, whereas one with sufficient
amount and diversity for real environments may not exist.

In summary, cross-view generalizable human activity recog-
nition under data scarcity remains unsolved.

B. RF data scarcity
Data scarcity is a serious challenge for RF-based sensing.

Because RF data is not immediately understandable by hu-
mans, labeling such data is labor-intensive, time consuming,
and requires respective expertise; the need for human sub-
ject protection also compounds the overhead and complexity.
Widar3 [5] publicizes a wireless gesture recognition dataset
collected using Wi-Fi devices incorporating Channel State
Information (CSI) in various domains, accounting for the
subject’s location, orientation, and the room layout. As the
dataset is designed for gesture recognition, activities involving
larger spaces of the full human body and complex kinematics,
such as ‘sitting down’ and ‘walking,’ are not included. Gurbuz
et al. [18] and Rahman et al. [19] publicize RF activity
recognition data sets collected with UWB, FMCW radars
and NI-USRP2922 model software-defined radios. Despite the
value of the datasets, their size and diversity are insufficient
for complex real-life deployments, particularly given the sig-
nificant variations in RF data distributions arising from differ-
ences in the data collection environment, sensor parameters,
deployment setup, etc. We believe, while additional datasets
with increased quantity and diversity are essential, leveraging
synthetic data [20], [21] is an orthogonal approach that can
greatly accelerate the development of final solutions.

C. Video-to-RF Data Synthesis

Recent efforts on video-to-RF data synthesis seek to com-
pensate for the scarcity of RF data in both quantity and
diversity [14], [15], [22]. Vid2Doppler [14] generates 3D
mesh model of human body from videos, compute the radial
velocity of each vertex on the mesh and synthesize the Doppler
signal based on the physics of Doppler Effect [23]. SynMotion
[10] employs a pictorial body model composed of primitive
ellipsoids and simulates the process of signal being reflected
on the body model and received. Midas [15] generates con-
vertible radar data in both single-human and multi-human
scenes, while significantly eliminating data redundancy to
ensure model stability. These studies demonstrate the potential
of synthesized data from videos to address the scarcity of RF
data. However, we do find they suffer limitations on depth
ambiguity, occlusion and simulation fidelity (Section III), thus
direct utilization is not effective or even harmful. In our
preliminary experiments, training an SVM classifier with a
direct combination of real and synthetic RF data results in
a decrease in accuracy from 72.6% to 68.5% (a degradation
by 4.1%) when compared to training with real data alone.
This implies that the inclusion of synthetic data does not yield
immediate performance benefits, highlighting the importance
of addressing the domain gap between real and synthetic data.

D. Metric Learning

Metric learning aims to learn proper distance metrics to
measure the similarity among samples, and the learned optimal
metric can be used for various other tasks. Siamese and Triplet
networks are the most commonly used network structures
[17]. Siamese network takes two-way inputs consisting of
“anchor”, “positive” or “negative” pairs and learns an embed-
ding which maps “anchor” and “positive” close to each other,
while “anchor” and “negative” far apart. On the other hand,
Triplet network takes three-way inputs (‘anchor,’ ‘positive,’



and ‘negative’ triplets) with a similar learning objective. 3

The discriminative power of the learned representation from
metric learning is determined by the degree of similarity or
dissimilarity among the constructed pairs/triplets [17]. There
are two major issues that determines the discriminative power:

1) Contrastive pair/triplet mining: how to determine
and select positive and negative samples. Among all posi-
tives/negatives, “hard” positives/negatives—those that are far
from/close to the “anchor” and thus hard for models to
distinguish—have significant implications for learning more
discriminative representations [24]. We explore two categories
of contrastive pair/triplet mining methods: 1.1) Online Mining
randomly selects mini-batches during training and dynamically
chooses “hard” positives and negatives within each batch,
based on their distances to the anchors in the current embed-
ding space [25], [26], [27]. 1.2) Offline Mining pre-selects
fixed pairs/triplets from the entire dataset before training,
without adapting to changes in the embedding space during
the training process [28].

2) Loss functions define the similarity metrics between
anchor, positive and negative samples and guide the model to
learn an embedding with appropriate distances among them.
Loss functions have been demonstrated to have a significant
impact on the model performance [29], [17]. Contrastive loss
and triplet loss are widely used in Siamese and Triplet net-
works respectively. Most of the work is in the field of computer
vision, and despite the rapid development, these factors are
rarely studied in RF HAR. Therefore, this work investigates
the critical design aspects of metric learning for cross-view
RF HAR, including contrastive pairs/triplets mining and the
form of loss functions.

III. VIDEO-TO-RF DATA SYNTHESIS

Recent work studies [10], [14], [15] a novel paradigm of
generating synthetic RF data from extensive video datasets.
Such endeavors have shown promise for augmenting the
quantity and diversity of RF data through the translation of
visual information into the radio frequency domain. The key
idea is simulating the radar cross-section (RCS) reflections of
human bodies by estimating 3D human pose/mesh from videos
using computer vision (CV) models [30]. Such simulation for
activities/movements can produce micro-Doppler signatures4

following well established radar principles [18].
We examine such video-to-RF data synthesis for an in-

depth understanding of its capabilities and constraints. For
the purpose of illustration, we use Vid2Doppler [14] as a
representative pipeline to depict the workflow of video-to-
RF data synthesis, without loss of generality (as shown in
Figure 3):

1) Construct 3D human pose/mesh. In the example of
Vid2Doppler, VIBE [31] is employed to produce a 3D
mesh from the video based on SMPL [30], employing

3In this context, we recognize that metric learning and contrastive learning
share similar underlying principles. Given that metric learning encompasses
a wider range of methods, such as triplet loss, quadruplet loss, among others,
beyond just contrastive loss, we adopt metric learning as the foundational
concept for our study.

4For simplicity, we use “Doppler” to denote micro-Doppler signatures.
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Fig. 3: Workflow of video-to-RF data synthesis.

6890 vertices to model the human body. The 3D coor-
dinates of each vertex are obtained for every frame.

2) Specify the viewpoint of a virtual sensor. Notably, the
sensor’s viewpoint determines the radial velocity based
on the velocity of the vertex. Additionally, it determines
which vertices are within the view of the virtual sensor
and which ones are occluded by other body parts.

3) Calculate the radial velocity of each vertex based on
its translation between two consecutive frames and the
frame rate.

4) Obtain the principle synthetic Doppler (Figure 4(d))
based on the radial velocity distribution of all vertices
across the velocity range (e.g., -3m/s to 3m/s in our case)
in a histogram format.

Up to this point, we have covered the process of obtaining
the principle synthetic Doppler (as illustrated in the dashed box
in Figure 3). Usually additional operations will further refine
the synthetic Doppler. As an example, Vid2Doppler employs a
Gaussian filter and an encoder-decoder mechanism to convert
the initial synthetic Doppler to real Doppler, considering noise
and non-linearity in the signal characteristics.

For better interpretability and explanability, we focus our
discussion on the principle synthetic Doppler, the domain part
impacting the fidelity of the final synthetic Doppler. It is di-
rectly derived from the 3D mesh of the human body and radial
velocities based on the physics principles of RF sensing, e.g.,
signal propagation and reflection. Specifically, we discuss the
limitations on three key aspects: depth-ambiguity, occlusion,
and inaccurate simulation of signal reflection.

Depth-ambiguity. Depth-ambiguity problem exists inher-
ently in vision-based 3D human pose estimation due to the
unknown relative depth between body joints [16]. The depth
estimation significantly influences the estimation of radial
velocity - thus synthetic Doppler, leading to domain gaps
between real and synthetic data. To illustrate, we show the
Doppler data of periodical activity of “push and pull” in
real and synthetic domains at three views in Figure 5. The
orientations of view 4, view 6 and view 1 are shown in Figure
6. View 4 faces directly toward the person, while view 6 is
60-degree off to the right. View 1 is perpendicular to the
person’s facing direction, to the left of the person. The Doppler
shift amplitude (i.e., the y-axis of Doppler data) depends on
radial velocity, and the shade at each pixel of the Doppler data
represents the signal energy reflected by the moving object at
the corresponding velocity.

As shown in Figure 5, there is a clear difference in the
data pattern between the real and synthetic domains in View 4
(radial view) and View 1 (tangential view). In the real domain
(Figure 5(b), 5(e), 5(h)), the Doppler shift amplitudes decrease



(a) Video (b) 3D mesh
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Fig. 4: Video image and 3D mesh, and corresponding real Doppler and
principle synthetic Doppler of the same activity: push and pull. The 3D mesh
has errors because of occlusion, resulting in more velocity components and
larger signal energy in synthetic Doppler than the real Doppler.

from view 4 to view 1, with the Doppler signal at view 1
buried in noise. This is because when the participant faces
the sensor in view 4, the radial velocity is maximum. At
view 6, the radial velocity is the actual velocity’s projection
at about 60◦, much smaller than the actual velocity. At view
1, the radial velocity is nearly zero because the movement is
in the tangential direction. However, in the synthetic domain
(Figure 5(c), 5(f), 5(i)), the Doppler shift amplitude at view 6
is larger than that at view 4; at view 1, clear patterns of “ups
and downs” persist, contradicting the ground truth. Both are
due to depth ambiguity: in view 4, the depth of radial motion
was estimated at much less than the actual, while much more
in view 1, leading to incorrectly generated magnitudes. This
demonstrates one inherent limitation from depth ambiguity,
resulting in domain gaps between real and synthetic data.

Occlusion. Occlusion of body parts can significantly mis-
lead the 3D pose estimation model [32], causing errors in 3D
mesh, thus the synthetic Doppler data. As shown in Figure
4(a), the participant is pushing the left arm. However, in the
generated 3D mesh in Figure 4(b), the figure appears to be
pushing both arms simultaneously. The error happens because
the right arm is occluded by the torso in video. This leads
to the Doppler signal being generated from both arms, thus
greater Doppler signal energy and more velocity components
in synthetic data, as shown in Figure 4. Despite efforts on
occlusion-aware pose estimation, it remains very challenging
[33], [32]. Errors in 3D pose estimation inevitably leads to
inaccurate calculations and synthetic Doppler data. The 3D
pose models can not be perfect, their errors from occlusion
will add to domain gaps.

Inaccurate Simulation of Signal Reflection. When the

(a) view 4
(radial)

(b) view 4 (c) view 4

(d) view 6
(diagonal)

(e) view 6 (f) view 6

(g) view 1
(tangential)

(h) view 1 (i) view 1

Fig. 5: Doppler data corresponding to the “push and pull” activity at view 4,
view 6 and view 1 in both real and synthetic domains. These views represent
the tangential, radial, and diagonal views, respectively, with respect to the
participant’s facing direction. The orientations of view 4, view 6 and view 1
are shown in Figure 6. From Figure 5(e), 5(f) there are noticeable similarities
in Doppler patterns between real and synthetic domains at the diagonal view
(view 6). From Figure 5(b) and 5(c), Figure 5(h), 5(i), there are discrepancies
in the Doppler patterns in two domains at the tangential and radial views
(view 1, 4).

3D pose model is reasonably accurate, the synthesized data
appears similar to real data (Figure 5(e), 5(f)), but domain gaps
still exist. This is because the simulation of signal propagation
and reflection on the human body cannot be perfect, even when
the 3D mesh model is accurate. This results from multiple
factors:

• RF signals experience reflection, scattering, and absorp-
tion on the human body [34]. Existing works often
assume that the signal is solely reflected without consid-
ering scattering or absorption effects, which diffuse and
attenuate the signal energy. Also accurately simulating
signal scattering and absorption on the human body is
very difficult; the complex contours further compounds
the challenge.

• RF signal reflection factors vary with different materials
[35]. Conductors are more reflective, while insulators
allow more RF signals to pass through and a smaller
proportion are reflected. In addition, the reflection is
also affected by the roughness of the surfaces, angle
of incidence, etc. Those factors are not considered in
existing data synthesis works.

• RF signal noise and environment influence (e.g. moisture,
temperature, reflection on furniture) can not be perfectly
simulated either.



Collectively, these issues contribute to the inherent gaps be-
tween synthetic and real RF data, even when a perfect 3D
human pose/mesh model is available.

Despite the domain gaps, we observe (in Figure 5(d)) there
are noticeable similarities in patterns, such as periodic “ups”
and “downs” between the real and synthetic domains. While
the data distributions in the two domains are not identical,
the observed similarities holds promise for synthetic data
to compensate for RF data scarcity. To maximize the value
of synthetic RF data, next we explore metric learning to
effectively bridge the domain gaps.

IV. M4X: METRIC LEARNING FOR CROSS-VIEW
GENERALIZATION

We present M4X (as illustrated in Figure 2) that extractx
view-independent features from synthetic Doppler data to
improve viewpoint generalizability under data scarcity. Firstly,
we extract shared features across viewpoints and data sources
to obtain view-independent features by metric learning. A
small amount of real data and a large amount of synthetic
data from different viewpoints are used to train a metric
learning model, which will be used as a feature extractor for
subsequent classification tasks. Secondly, we use the trained
feature extractor to produce source- and view-independent
representations as the input for training a classifier of HAR,
capitalizing on substantial synthetic data. Lastly, we test the
feature extractor and classifier from the two previous training
steps to infer human activities on real RF data, including from
views where no real data were “seen” during training.

While the overall pipeline may seem straightforward, care-
ful consideration of design choices in metric learning is crucial
for its effectiveness, especially in the context of data scarcity
and mixed training sets from both domains. We conduct an
in-depth investigation in two key design aspects: Contrastive
Pair/Triplet Mining and Loss Functions.

A. Contrastive Pair/Triplet Mining

Metric learning models learn an embedding that maps
anchors and positives closer, while anchors and negatives
distant in the latent space. The effectiveness of learned features
depend heavily on the construction of contrastive pairs or
triples. Given the objective of cross-view robustness, the model
needs to extract features that are sensitive to class labels while
insensitive to changed viewpoints. Thus we determine positive
and negative samples by whether the sample shares the same
class label as the anchor, irrespective of data viewpoints. In
addition, to extract shared features across real and synthetic
data sources, we employ real data as the anchor, with synthetic
data from the same class as positives and those from different
classes as negatives. Given that real RF data with labels is
limited, while synthetic data with labels from video can be
plentiful, this allows us to create more pairs/triplets to best
utilize and mine information from precious real data, and
effectively utilize a large amount of synthetic data.

Next, we investigate two methods for selecting positive
and negative samples: online pair/triplet mining and offline
pair/triplet mining. Online mining focuses on selecting “hard”
positives and negatives during training, utilizing the current

embedding space, which conserves resources by avoiding
“easy” positives/negatives and speeds up the training. Con-
versely, offline mining pre-selects fixed pairs/triplets before
training, ensuring gradient stability and reducing the risk of
overfitting or underfitting.

Online Mining Inspired by [29], we employ a K-P batch
construction which has balanced mini-batches, each with K
classes and P samples per class. We tailor the design in our
hybrid training set scenario: Randomly select K classes from
the entire set and randomly select P samples for each class in
each domain, resulting in a mini-batch consisting of K × P
samples in real domain and another K×P samples in synthetic
domain. As the determination of positives and negatives relies
on class labels, achieving class balance in a mini-batch ensures
a balanced representation of positives and negatives for each
class in each batch. This balance contributes to the stability
of gradient computation during metric training.

In addition, we explore two design options with online
mining: 1) Select “hard” positive/negative samples within the
mini-batch based on their distance to the anchor in the embed-
ding space. This improves the efficacy of metric learning by
choosing discriminative samples, but at the cost of introducing
high gradient variance. 2) Use all positive/negative samples
within the mini-batch to construct learning pairs/triplets. Since
the mini-batch size is usually small (e.g. K = 4, P = 4), it is
practical to use all positive/negative samples without excessive
computing overhead.

Offline mining We construct contrastive pairs/triplets of-
fline using the whole dataset before training. We employ each
instance in real dataset as an anchor, and select positives from
those synthetic instances of the same class, and negatives
from those synthetic ones of different classes. Specifically,
we use all synthetic samples of same class in the whole
dataset as positives. The number of positive samples depends
on the number of samples per class in the dataset. Since there
are many more other classes, the pool of potential negative
samples is much bigger.

To utilize the positive and negative samples in the limited
dataset efficiently, we investigate two design options for of-
fline pair/triplet mining: 1) All Triplets: exhaust all possible
positive-negative combinations to construct pairs/triplets. In
this way, we can train a metric learning model using all
possible triplets in the limited data set. Unlike online mining
using mini-batches, when building triplets using the entire
dataset, there can easily be millions of triplets even with
hundreds of data samples. 2) Balanced Triplets: utilize all
positive samples and an equal number of negative samples:
basically we randomly select one negative sample for each
(anchor, positive) pair to maintain a balanced ratio between
positive and negative samples. We do this because using all
negative samples can bury the most valuable information in
small numbers of “hard” negatives under large amounts of
“easy” negatives.

B. Loss Functions

Different loss functions are explored in recent metric learn-
ing studies [24], [29], [36], [37]. Due to the inclusion of both
synthetic and real data in our training dataset, existing loss



functions developed for single-domain training data may not
be suitable. Thus we firstly investigate two primary metric
learning loss functions commonly used for Siamese Network
and Triplet Network, and then tailor them for our scenario
with 1) two domains of training data, and 2) labels in both
domains.

The InfoNCE loss function [38] for unsupervised Siamese
network training (with two-way input). In this setting, the
positive sample is a transformed version of the anchor (for
instance, a cropped image derived from the anchor image), and
all other samples in the batch, excluding the anchor, are treated
as negatives. However, since this approach operates without
labels, it cannot discern whether these “negatives” belong to
the same class as the anchor. Utilizing these negatives in
training could potentially mislead the network.

In our context with labels, we employ a supervised trans-
formation (abbreviated as “SUP”) of contrastive loss which
can handle multiple positives in the batch and eliminate false-
negative problems. The loss function is shown to have the
intrinsic ability to perform hard positive/negative mining for
visual data [37], expressed as in Equation 1:

LSUP =
1

|I|
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp/τ)∑

a∈Ai exp(zi · za/τ)
(1)

I denotes a batch, P (i) denotes all positive samples of the i-th
anchor. zi, zp denote the embedding of anchor and positives
respectively. za denotes the embedding of all samples except
anchor in the batch. · denotes inner product. τ is a constant
for normalization. A(i) = I − {i}. By minimizing the loss,
the model learns an embedding that maximizes the ratio of
the similarity between the anchor and positive samples to the
similarity between the anchor and all samples.

In our scenario, with a hybrid training dataset, we have
adapted the loss function, as expressed in Equation 2.

LSUP−hyb =
1

|Ir|
∑
i∈Ir

−1

|P (i)s|
∑

p∈P (i)s

log
exp(zri · zsp/τ)∑

a∈Is exp(z
r
i · zsa/τ)

(2)
Particularly, we assign the anchor from the real data source
(denoted as zri ) and positives from the synthetic data source
(denoted by zsp). We replace za with zsa, representing embed-
ding of all samples in the batch from synthetic domain. By
using anchors from real data sources as well as positive and
negative values from synthetic data sources, we learn features
that are shared across data sources.

Batch-Hard triplet loss function [29] for Triplet Network
training (with three-way input). It takes exactly one “hardest”
positive sample and one “hardest” negative sample from the
mini-batch for each anchor. The “hardest” positive sample is
the one that has the largest distance from the anchor among
all positive samples, while the “hardest” negative sample is
the one that has the smallest distance from the anchor among
all negative samples. It is expressed in Equation 3:

LBH =
1

|I|
∑
a∈I

[m+maxD(za, zp)−minD(za, zn)]+ (3)

D(·) is the distance metric of embedding, such as Euclidean
distance. za, zp, zn denote the embedding of anchor, positive
and negative sample respectively. m is a marginal parameter
that determines how much we want to differentiate between

positive and negative instances. By minimizing the loss, the
model learns an embedding where the distance between the
anchor and the “hardest” positive samples is smaller than the
distance between the anchor and the “hardest” negative sample
by at least a margin m. It selects the most discriminative
triplets, aiming at improving the correct classification of the
“hardest” cases.

We tailor it into our hybrid training scenario, expressed in
Equation 4. Basically, we assign anchor from real data source
(denoted as zra), and select the “hardest” positive and negative
samples from synthetic data source (denoted as zsp, z

s
n). Thus

the model learns features across data sources.

LBH−hyb =
1

|Ir|
∑
a∈Ir

[m+maxD(zra, z
s
p)−minD(zra, z

s
n)]+ (4)

We further design a third loss function (expressed in Equa-
tion 5) to use All triplets constructed within a mini-Batch
(abbr. “BA”) when calculating the loss value. It provides
stability in scenarios where the “hardest” triplets may be out-
liers or contain noise. We compare using the “hardest” triples
versus using all triples in the mini-batch to find out which
can better extract view-independent features in hybrid data
scenarios. Because it does not require hard positive/negative
mining, it is also appropriate for offline mining where triplets
are determined, selected and fixed before training.

LBA−hyb =
1

|IT |
∑

(a,p,n)∈IT

[m+D(zra, z
s
p)−D(zra, z

s
n)]+ (5)

IT is the set of all the constructed triplets. We explore
and compare three loss functions with different pair/triplet
mining strategies in our scenario to find the best design option
(detailed in Section V).

V. EVALUATION

A. Implementation

We employ the XeThru UWB x4m03 [39] as the RF front-
end for wireless sensing of human activities. Additionally, we
utilize the Kinect [40] camera to record videos of human
activities for Doppler data synthesis. The UWB-based RF
front-end operates at a center frequency of 8.75 GHz, and we
configure its frame rate to 180 frames per second, covering
a velocity range of ±3m/s. The Kinect camera operates at a
frame rate of 30 frames per second. Figure 6 illustrates the
arrangement of the six sensors, including the UWB sensor
and Kinect camera, along with the corresponding six views.
The deployment of sensors at multiple views allows for
an exploration and comparison of the performance across
different view combinations and validation of the cross-view
generalization of activity recognition. The participant is posi-
tioned centrally (2 meters away from each sensor) and facing
v4 while engaging in various activities.

Due to the lack of publicly available RF datasets from
multiple viewpoints for HAR, we collect a dataset for five ac-
tivities at six distinct viewpoints to facilitate validation efforts,
including gestures, torso and limb movements widely studied
in activity and gesture recognition: sitting down, standing up,
stepping, pushing and pulling, and drawing a circle, [5], [14].
Each activity is sampled 50 times across six different views,
resulting in a total of 5 × 50 × 6 = 1500 activity samples
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Fig. 6: The experimental setup comprises sensors deployed at six distinct
views. At each view, a UWB radar and a Kinect camera are positioned at
the same location, facing towards where the person stands. The arrangement
ensures that adjacent views are 30 degrees apart. The participant is positioned
centrally, situated 2 meters away from each sensor, and facing v4 while
engaging in activities.

for both RF and video data. In addition to the real RF data,
we generate synthetic data for each view from the video
data, following the implementation of Vid2Doppler [14] up
to the step involving the pretrained encoder-decoder model.
Consequently, we have 1500 activity samples in the synthetic
domain.

We build the metric learning model comprising two Con-
volutional Neural Network (CNN) layers, succeeded by Max-
pooling layers and fully connected layers. Relu activation is
applied to each layer, while the training employs the Adam
optimizer. The learning rate follows an exponential decay with
an initial rate of 5 × 10−4 and a decay rate of 0.9. We use
two representative types of classifiers, Support Vector Machine
(SVM) and Multi-Layer Perceptron (MLP), for comparison in
the second step. For the MLP model, we use one hidden layer
with 200 hidden neurons.

B. Micro-benchmarking of Different Design Choices

We conduct experiments to compare the design choices for
metric learning systematically to find which options are most
effective in cross-view generalizability with limited real data
and a large amount of synthetic data in training. Doppler at
view 4, 5, 6 is used to perform leave-one-view out test: in real
domain, only two views’ data is used for training, and three
views’ data is used for testing. We define a “seen” view as
one in which real data is present in the view under training,
and an “unseen” view as one in which there is no real data but
only synthetic data in the view under training. The dataset is
split for training and testing at 80:20 ratio, where 20% in real
domain is preserved for testing. The corresponding 20% for the
same activities in synthetic domain is excluded from training
to prevent information leakage of the test set. This precaution
is taken due to the shared information between synthetic and
real data. For training, we use the remaining 80% in synthetic
domain and 80% in real domain unless specified; and the
same 80% in synthetic domain to train the classifier. We use
different view combinations in experiments for comprehensive
verification of cross-view generalizability.

Overall, experiments show that the most effective options
are: to use real instead of synthetic data as anchor, offline
triplet mining with balanced triplets instead of all triplets or
online mining strategies, and loss function LBA−hyb without
hard negative mining. While using real data at view 4 and 6
for training and real data at view 4, 5, and 6 for testing, we
achieve 86.0% in accuracy with the best design combination,
outperform all other design choices with 17.0% improvement.
For cross-view generalizability, we achieve 85.5% in accuracy
at unseen views, outperform all other design choices with
25.8% improvement. In addition, we can improve accuracy
at both seen and unseen views by utilizing synthetic data at
unseen views. In the following, we present comparison results
of different design choices and the insights from each.

1) Contrastive Pair/Triplet Mining: We compare con-
trastive pair/triplet mining strategies in four aspects to find
which option can best utilize limited real data and a large
amount of synthetic data in training.

Real versus synthetic data as anchors. Experiments show
that using real data as anchors achieves an accuracy of 80.3%,
with 11.3% improvement (especially 24.5% improvement at
unseen views) compared to using synthetic data as anchors,
showing that real data containing “authentic” Doppler infor-
mation are more effective anchors. 5

Online mining: K-P batch versus Random Batch. We
compare K-P batch construction with Random Batch construc-
tion to find which leads to better convergence. For Random
Batch, we randomly select K × P samples in each domain
resulting a mini-batch with 2 ·K · P samples. Table I shows
the comparison of results with different loss functions and
classifiers based on accuracy (in %). Parameters τ and m
are set to 100 and 0.2, respectively. From the results, K-
P batch construction outperforms random batch construction,
with an average improvement of 3.5%. The most notable
improvement is 15.5% when employing the LBA−hyb loss
function with the SVM classifier. The superiority is attributed
to the class balance within each mini-batch while using K-P
batch construction.

TABLE I: Comparison of different online mining strategies and loss functions
Loss/Batch K-P batch Random Batch

step 2 classifier: SVM
LSUP−hyb 53.3 50.4
LBH−hyb 59.7 58.9
LBA−hyb 65.9 50.4

step 2 classifier: MLP
LSUP−hyb 60.5 49.6
LBH−hyb 58.9 59.7
LBA−hyb 64.3 48.9

Offline mining: Balanced Triplets versus All Triplets. We
compare these two design options using different percentages
of real data in training to explore how they perform when there
is more data - and therefore more triplets in training. Results
show that, compared to using all triplets, using balanced
triplets leads to a significant increase in accuracy—from 10.9%
to 82.1% and 16.3% to 79.8%—when 32% and 16% of real
data are used in training, respectively.

5Due to space limit, we summarize the comparison without showing the
detailed numbers.



Using “all triples” (instead of “balanced triplets”) yields
significantly low accuracy (below 16.3%), primarily due to
the inclusion of a substantial number of “easy triplets” within
the entire set of “all triplets”. These “easy triplets” have
negatives considerably distant from the anchor (e.g., repre-
senting activities with highly distinct patterns compared to
the anchor activity), with D(zra, z

s
n) ≫ D(zra, z

s
p) . Thus

the loss term |m + D(zra, z
s
p) − D(zra, z

s
n)|+ easily becomes

zero, contributing minimally to model training. Hard triplets
have negatives closely resemble to the anchor activity as
the positives, demanding the model to differentiate more
carefully. The loss value is amortized to zero because of large
amount of “easy triplets”, burying the valuable information
in “hard triplets”. Thus, the significance of “hard triplets”
is overshadowed by large amounts of “easy triplets”, which
number around 4.2 million in the experiment. As the training
dataset size increases, this effect becomes more pronounced,
undermining the model’s ability to effectively learn from
challenging instances.

Offline mining versus online mining. We compare online
K-P batch mining and offline balanced-triplet mining to find
which can better extract cross-view features from the hybrid
training dataset. We compare two triplet mining strategies
by training Triplet networks using loss function LBA−hyb,
which is appropriate to both online and offline mining. With
offline mining, we achieve an accuracy of 87.0% (91.0% at
seen views, 85.0% at unseen views) using SVM classifier and
86.0% (86.0% at seen views, 86.0% at unseen views ) using
MLP classifier. With online mining, we achieve an accuracy
of 65.9% (84.9% at seen views, 27.9 at unseen views) using
SVM classifier and 64.3% (82.6% at seen views, 27.9% at
unseen views) using MLP classifier.

On average, with loss function LBA−hyb, offline mining out-
performs online mining on accuracy by 21.4%, showing better
capability of utilizing limited real data in training. Specifically,
we achieve an average accuracy of 85.5% between the two
classifier at unseen views with offline mining, proving great
cross-view generalizability, compared to online mining, of
which the accuracy at unseen views is a mere 27.9%. This is
because data at different views is not balanced in mini-batch
during online batch construction, preventing the model from
learning cross-view features. While with offline construction,
data at different views is balanced in the whole constructed
training dataset.

2) Loss functions: We compare different loss functions
to find which can better extract view-independent features.
Notably, the evaluation of loss functions is orthogonal to
the choice of online/offline mining. Although the aforemen-
tioned findings demonstrate the superior performance of offline
mining over online mining, the implementation of LBH−hyb

mandates online triple mining to select the “hardest” triplet
when calculating the loss value. Therefore, to ensure fair
comparison, we use online mining in the evaluation of all three
loss functions.

Table I shows the comparison results. From the results,
LBA−hyb outperforms the other two loss functions with an
improvement of 3.8% in accuracy. The two triplet loss func-
tions (i.e. LBH−hyb and LBA−hyb) show better capability

than the two-way contrastive loss function (LSUP−hyb) on
average, because triplet networks provide higher discriminative
power while using intra-class and inter-class relations [17].
In addition, LBA−hyb which uses all triplets outperforms
LBH−hyb which uses the “hardest” triplets only. This happens
when the “hardest” triplets is noisy or outliers. Using only the
“hardest” triplets introduces instability in the loss calculation
and thus misleads training. This proves that using all triplets
in the mini-batch is better with limited real data and a large
amount of synthetic data.

C. Overall Comparison to Common Baselines

We compare the optimal design identified (e.g., real data
as anchors, offline triplet mining, Lour loss function, and in-
corporating synthetic data at unseen views in training) against
three common baselines. We use the same data setup as in
Section V-B. We perform leave-one-view out experiments with
different view combinations in training and show the average
results over different view combinations for comprehensive
verification.

We compare our method with three baselines:
• End-to-end SVM (abbr. e2e-SVM) classifier: We flatten

the 2D raw Doppler data (28×52) into a 1D vector (1456
features) as input to train the end-to-end SVM classifier.

• end-to-end MLP classifier (abbr. e2e-MLP): We train the
end-to-end MLP classifier using the same features used
for SVM training. To keep the comparison fair, the MLP
structure used in the baseline is the same as the MLP
classifier used in the second step of our method.

• Fine-tune: Fine-tuning a neural network trained using
synthetic data with some real labeled data is an effective
solution under the “synthetic-to-real” topic [10]. We train
a CNN classifier using synthetic data of M+1 views and
fine-tune the last layer of the model using real data of M
views. The CNN classifier has the same structure as the
feature extractor in our metric learning model.

TABLE II: Accuracy comparison (in %) of our method versus baselines under
different ratios of real to synthetic data size.

Ratio of real to synthetic 1.0 0.8 0.4
e2e-SVM 68.5 67.9 61.2
e2e-MLP 72.4 71.8 69.3
Fine-tune 71.8 65.1 60.7

M4X 80.9 77.3 77.2

We compare our methods with baselines under different
ratios of real data to synthetic data size to explore how they
perform with minimal real data in training. We use 80%, 64%,
and 32% of the real data for training, achieving ratios of real
to synthetic data sizes of 1.0, 0.8, and 0.4. From the results
in Table II, our method consistently outperforms all baselines,
irrespective of the ratios of real data. We achieve accuracy of
80.9%, 77.3%, and 77.2% with real data ratio of 1.0, 0.8,
and 0.4, respectively. This translates into improvements of
7.5%-12.4%, 5.5%-12.2%, and 7.9%-16.5% compared to three
baselines, with different real data ratios respectively. These
results demonstrate that our method has higher cross-view
capabilities compared to baselines even when using minimal
real data in the training phase.



TABLE III: Accuracy (in %) at unseen views of our method versus baselines
under different ratios of real to synthetic data size.

Ratio of real to synthetic 1.0 0.8 0.4
e2e-SVM 37.2 38.0 34.1
e2e-MLP 50.4 47.3 41.8
Fine-tune 62.8 46.5 39.5

M4X 65.1 58.1 59.7

We take a close look at the cross-view generalizability by
comparing the accuracy at the unseen views. From Table III,
when real to synthetic data ratio is 0.4, M4X outperforms
three baselines by 17.9%-25.6%. Especially, when compared
with e2e-MLP, we achieve 17.9% improvement. Since we
use the same MLP classifier with e2e-MLP, the improvement
attributes to the metric learning feature extractor, proving its
capability of extracting cross-view features. In addition, we
achieve 2.3%, 10.8% and 17.9% improvement at the unseen
views compared to the best results in baselines with the ratio of
real to synthetic data size of 1.0, 0.8, 0.4, respectively. These
findings highlight that: 1) our method has significantly higher
capability to generalize to unseen views. Because our metric
learning model extracts view-independent features across real
and synthetic data sources; 2) the resilience of our method to
maintain cross-view performance even with minimal real data
in training. Because our metric learning model can extract
view-independent features efficiently when there is minimal
real data and large amount of synthetic data in training.

D. Exploration of View Combinations
Given limited numbers of deployed sensors in real life,

We also investigate which view combinations are optimal.
While deploying sensors across multiple views can enhance
performance, it also introduces significant costs and efforts
for deployment and labeling. In practice, resource constraints,
sensor expenses, and maintenance limitations may allow only
very few deployed sensors. Therefore, finding the optimal view
combinations can help achieve better performance despite
limited deployment.

We employ data at view 2, 3, 4, 5, 6 for test. We exclude
data at view 1 because useful information is mostly buried in
noise at view 1 and it can harm the recognition, as illustrated in
Figure 5(h). We consider the case where only a limited number
of sensors (i.e. 1, 2, or 3 sensors) are available to deploy to
get training data, and we use real data at these 5 views in test.
We denote the view set by V = {v1, v2, v3, v4, v5}. We denote
the number of sensors with M , the subset of views to deploy
sensors at is V C = {vi1, vi2, ..., viM |vij ∈ V }. For testing,
20% of data at 5 views’ in real domain is used. For training,
1) 80% of synthetic data at 5 views’ in synthetic domain is
used. Because getting synthetic data does not require extra
data collection and annotation effort, we can have synthetic
data at all views; 2) 80% of real data at V C.

We show the results of different view combinations when
M = 2, 3 in Table IV, V. The best results with comparable
performance are highlighted in the table. When M = 2,
in Table IV, the best two view combinations are {v2, v4}
and {v4, v6}. They achieve best performances not only at
average accuracy, but also the accuracy at unseen views.
This shows they have the most complementary information

TABLE IV: Accuracy of different view combinations in real domain (M = 2)
View
Combination

Accuracy (%)
overall at seen views at unseen views

v2 + v3 63.9 90.3 51.2
v2 + v4 77.0 87.2 68.6
v2 + v5 65.4 86.0 48.6
v2 + v6 61.3 87.2 40.0
v3 + v4 47.1 95.2 24.0
v3 + v5 56.0 88.7 40.3
v3 + v6 59.2 88.7 45.0
v4 + v5 69.1 91.9 50.5
v4 + v6 72.3 88.4 59.0
v5 + v6 59.7 84.9 39.0

TABLE V: Accuracy of different view combinations in real domain (M = 3)
View
Combination

Accuracy (%)
overall at seen views at unseen views

v4 + v5 + v6 81.7 88.4 67.8
v3 + v5 + v6 70.2 88.6 47.7
v3 + v4 + v6 77.5 89.5 62.8
v3 + v4 + v5 70.7 91.4 45.3
v2 + v5 + v6 70.2 86.0 37.1
v2 + v4 + v6 82.2 88.4 69.4
v2 + v4 + v5 80.6 90.7 59.7
v2 + v3 + v6 69.6 87.6 47.7
v2 + v3 + v5 72.3 88.6 52.3
v2 + v3 + v4 81.7 94.3 66.3

for cross-view generalizability. View 4 is the orientation the
participant faces. View 2 and view 6 are two views more
far apart from view 4 than view 3, 5; and they happen
to be symmetrical about the participant’s facing direction.
They have the best performance because: 1) sensor at view
4 captures most velocity when the participant is facing v4; 2)
sensor at view 2 or view 6 can mostly capture the velocity
perpendicular to v4 without introducing too much noise as
view 1. In Table V when M = 3, the best view combination
is {v2, v4, v6}, which is the union of the best two combinations
({v2, v4}, {v4, v6}) when M = 2. In addition, {v4, v5, v6} and
{v2, v3, v4} achieve close accuracy (only 0.5% decrease) to the
best one. These two combinations are also symmetrical about
the participant’s facing direction. From the observations, we
draw a simple and practical guideline on view combinations
of sensor deployment: 1) deploy a sensor at the participant’s
facing view for the maximum radial velocities; 2) deploy
another sensor at some large angle (e.g., around 60 degrees to
the left or right of the facing view for velocities tangential to
the first one.

To better understand the reason, Figure 7 shows the Doppler
space and feature space data representations (extracted from
view combination v2, v3, v4) at view 5. We find in Doppler
space there exist clusters in real data without overlapping
synthetic data, but in feature space the overlap is much more
obvious except one long tail portion. This shows that our
feature extractor can reduce domain gaps even the view is
not seen in training.

We also quantitatively compare the domain gaps in different
feature spaces trained with different view combinations. We
quantify the domain gaps with mean Euclidean distance (ME)
between real and synthetic features. Results show that the
domain gaps in feature space at view 5 are smaller when
V C = {v2, v3, v4} (ME = 0.096) compared to that when



real
synthetic

(a) Doppler space

real
synthetic

(b) Feature space

Fig. 7: Doppler space and feature spaces at view 5. The feature space is trained
using real data at view 2, 3, and 4. View 5 is excluded from the training views.
In feature space, real and synthetic domain tend to have more similarity in
distribution compared to Doppler space, indicating that our feature extractor
can reduce domain gaps even the view is not seen in training.

V C = {v2, v3, v6} (ME = 0.126). It indicates that training
view combination {v2, v3, v4} reduces domain gaps in fea-
ture space more than training view combination {v2, v3, v6}.
This explains why view combination {v2, v3, v4} outperforms
{v2, v3, v6}. The results are consistent across various view
combinations — those combinations yielding higher cross-
view performance typically exhibit reduced ME values in the
feature space between real and synthetic sources.

VI. DISCUSSION

Sensor Type. In this study, we use UWB sensors as the RF
font-end in our system for sensing micro-Doppler signatures
thus human activity recognition. It is worth noting that the
concept of micro-Doppler signature is orthogonal to RF front-
end. Moving forward, our research endeavors will extend to
exploring alternative RF techniques, such as mmWave and
FMCW, with the goal of optimizing trade-offs, including cost,
power consumption, robustness, and sensing range.

Limited View Combinations. We utilize sensors at limited
number of views, each separated by an angle of 30◦. These
sensors are strategically deployed to avoid the participant’s
rear view for less occlusion. Future expansions, contingent
on resource availability, may include deploying additional
sensors at more various viewpoints to enable more detailed
observations and conclusive findings for sensor deployment.

Limited Activity Set. In this study, we exclusively focus on
evaluating our design with five fundamental physical activities
relevant to daily living. In future work, we plan to expand
our evaluation to a wider range of activities and increase the
number of data samples, particularly in real-world settings like
people’s homes. We will include more complex tasks such as
food preparation, in order to better understand the potential
and limitations of our method.

Metric Learning Design Choices. The current body of
research in metric learning predominantly explores design
choices specific to the computer vision domain [25]–[29].
However, there is a notable gap in the literature, and further
investigation is required to identify the optimal approach
specifically for scenarios involving RF data from diverse
viewpoints and sources.

RF Data Synthesis. In this work, we follow the implemen-
tation of Vid2Doppler for generating RF data from videos. We

have excluded the encoder-decoder model from Vid2Doppler
in our study for two key reasons: 1) its performance is sub-
optimal when applied to our dataset, which includes different
sensors, environments, activities and so on from Vid2Doppler;
2) re-training the model demands a substantial volume of
real data, which is unavailable under RF data scarcity. Future
research could explore the use of diverse RF data synthesis
methods within this paradigm to potentially enhance outcomes.
We also plan to explore the impact of synthetic data size on
the end-to-end performance.

Future Directions. In this work, we mainly work on
algorithmic design to enhance cross-view generalizability for
RF HAR under data scarcity. Despite achieving enhanced
cross-view generalizability, the end-to-end accuracy in unseen
views remains modest (60%–70%). To drive further improve-
ment, it is important to engage the broader community in
collaborative initiatives aimed at expanding data collection
efforts to address the challenges associated with data scarcity.
Recent advancements in home-based data collection infras-
tructure [12] [41] offer new possibilities to facilitate such
collaborative initiatives, thereby augmenting the quantity and
diversity of RF data and subsequently improving the training
of RF HAR models for better generalizability. Recognizing the
cost-intensive nature of data annotation, our future research
will focus on investigating unsupervised learning methods
to optimize the utilization of potentially extensive unlabeled
datasets collected on a large scale.

VII. CONCLUSION

In this paper, we explore the cross-view generalizability
in RF HAR under data-scarce scenario, in particular small
amounts of real data yet possibly large amounts of syn-
thesized data from videos. We firstly share our insights of
the limitations of existing video-based RF data synthesis,
which heavily relies on 3D pose estimation models with
inherent constraints due to depth-ambiguity and occlusion
problems. Together with imperfect simulation, they lead to
domain gaps between real and synthetic data, limiting the
benefits of utilizing synthetic data. Then we explore a method
using metric learning to extract effective view-independent
features from the more abundant synthetic data despite their
domain gaps, thus enhancing cross-view generalizability. We
systematically examine the design choices for metric learning,
and identify offline triplet mining with real data as anchors,
and a triplet loss without “hard negatives” as optimal strategies
for contrastive pairs/triplets construction and loss function
selection, respectively. Comprehensive experiments show that
we consistently outperform baseline methods in cross-view
generalizability. In the most challenging case of the least
amount of real training data, our method outperforms three
baselines by 7.9-16.5% on all views, and 18.9-25.6% on a
view with only synthetic but no real data during training.
This proves its effectiveness in extracting view-independent
features from synthetic data despite their domain gaps. We also
observe that given limited sensor deployments, a participant-
facing viewpoint and another at a large angle (e.g. 60◦)
tend to produce much better performance. The cross-view
enhancement technology developed and insights gained for



sensor deployment can be effectively utilized for recognizing
activities during the routines of our daily life in home settings,
offering significant benefits for health monitoring applications.

REFERENCES

[1] M. Straczkiewicz, P. James, and J.-P. Onnela, “A systematic review
of smartphone-based human activity recognition methods for health
research,” NPJ Digital Medicine, vol. 4, no. 1, p. 148, 2021.

[2] D. X. Wang, J. Yao, Y. Zirek, E. M. Reijnierse, and A. B. Maier, “Muscle
mass, strength, and physical performance predicting activities of daily
living: a meta-analysis,” Journal of cachexia, sarcopenia and muscle,
vol. 11, no. 1, pp. 3–25, 2020.

[3] Y. Liu, G. Zhang, C. G. Tarolli, R. Hristov, S. Jensen-Roberts, E. M.
Waddell, T. L. Myers, M. E. Pawlik, J. M. Soto, R. M. Wilson et al.,
“Monitoring gait at home with radio waves in parkinson’s disease:
A marker of severity, progression, and medication response,” Science
Translational Medicine, vol. 14, no. 663, p. eadc9669, 2022.

[4] Y. Li, D. Zhang, J. Chen, J. Wan, D. Zhang, Y. Hu, Q. Sun, and Y. Chen,
“Towards domain-independent and real-time gesture recognition using
mmwave signal,” IEEE Transactions on Mobile Computing, 2022.

[5] Y. Zhang, Y. Zheng, K. Qian, G. Zhang, Y. Liu, C. Wu, and Z. Yang,
“Widar3. 0: Zero-effort cross-domain gesture recognition with wi-
fi,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 44, no. 11, pp. 8671–8688, 2021.

[6] R. Song, D. Zhang, Z. Wu, C. Yu, C. Xie, S. Yang, Y. Hu, and
Y. Chen, “Rf-url: unsupervised representation learning for rf sensing,”
in Proceedings of the 28th Annual International Conference on Mobile
Computing And Networking, 2022, pp. 282–295.

[7] W. Jiang, C. Miao, F. Ma, S. Yao, Y. Wang, Y. Yuan, H. Xue, C. Song,
X. Ma, D. Koutsonikolas et al., “Towards environment independent
device free human activity recognition,” in Proceedings of the 24th
annual international conference on mobile computing and networking,
2018, pp. 289–304.

[8] H. Xue, W. Jiang, C. Miao, F. Ma, S. Wang, Y. Yuan, S. Yao, A. Zhang,
and L. Su, “Deepmv: Multi-view deep learning for device-free human
activity recognition,” Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, vol. 4, no. 1, pp. 1–26, 2020.

[9] A. Virmani and M. Shahzad, “Position and orientation agnostic gesture
recognition using wifi,” in Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services, 2017, pp.
252–264.

[10] X. Zhang, Z. Li, and J. Zhang, “Synthesized millimeter-waves for
human motion sensing,” in Proceedings of the 20th ACM Conference
on Embedded Networked Sensor Systems, 2022, pp. 377–390.

[11] L. Zhang, D. Zheng, Z. Wu, M. Liu, M. Yuan, F. Han, and X.-Y.
Li, “Poster: Cross labelling and learning unknown activities among
multimodal sensing data,” in The 25th Annual International Conference
on Mobile Computing and Networking, 2019, pp. 1–3.

[12] M. Liu, M. Elbadry, Y. Hua, Z. Xie, and F. Ye, “Proteus: Towards a
manageability-focused home-based health monitoring infrastructure,” in
Proceedings of the 14th ACM International Conference on Bioinformat-
ics, Computational Biology, and Health Informatics, 2023, pp. 1–6.

[13] S. Ding, Z. Chen, T. Zheng, and J. Luo, “Rf-net: A unified meta-
learning framework for rf-enabled one-shot human activity recognition,”
in Proceedings of the 18th Conference on Embedded Networked Sensor
Systems, 2020, pp. 517–530.

[14] K. Ahuja, Y. Jiang, M. Goel, and C. Harrison, “Vid2doppler: Synthe-
sizing doppler radar data from videos for training privacy-preserving
activity recognition,” in Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems, 2021, pp. 1–10.

[15] K. Deng, D. Zhao, Q. Han, Z. Zhang, S. Wang, A. Zhou, and H. Ma,
“Midas: Generating mmwave radar data from videos for training per-
vasive and privacy-preserving human sensing tasks,” Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
vol. 7, no. 1, pp. 1–26, 2023.

[16] S. Zhang, C. Wang, W. Dong, and B. Fan, “A survey on depth ambiguity
of 3d human pose estimation,” Applied Sciences, vol. 12, no. 20, p.
10591, 2022.

[17] M. Kaya and H. Ş. Bilge, “Deep metric learning: A survey,” Symmetry,
vol. 11, no. 9, p. 1066, 2019.

[18] S. Z. Gurbuz, M. M. Rahman, E. Kurtoglu, T. Macks, and F. Fioranelli,
“Cross-frequency training with adversarial learning for radar micro-
doppler signature classification (rising researcher),” in Radar Sensor
Technology XXIV, vol. 11408. SPIE, 2020, pp. 58–68.

[19] M. M. Rahman, S. Z. Gurbuz, and M. G. Amin, “Physics-aware gener-
ative adversarial networks for radar-based human activity recognition,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 59, no. 3,
pp. 2994–3008, 2023.

[20] B. Erol, S. Z. Gurbuz, and M. G. Amin, “Motion classification using
kinematically sifted acgan-synthesized radar micro-doppler signatures,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 56, no. 4,
pp. 3197–3213, 2020.

[21] S. Waqar and M. Pätzold, “A simulation-based framework for the
design of human activity recognition systems using radar sensors,” IEEE
Internet of Things Journal, 2023.

[22] S. Bhalla, M. Goel, and R. Khurana, “Imu2doppler: Cross-modal domain
adaptation for doppler-based activity recognition using imu data,” Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, vol. 5, no. 4, pp. 1–20, 2021.

[23] MediaWiKi, “Doppler effect - wikipedia,” 2023. [Online]. Available:
https://en.wikipedia.org/wiki/Doppler effect

[24] Y. Kalantidis, M. B. Sariyildiz, N. Pion, P. Weinzaepfel, and D. Larlus,
“Hard negative mixing for contrastive learning,” Advances in Neural
Information Processing Systems, vol. 33, pp. 21 798–21 809, 2020.

[25] M. Bucher, S. Herbin, and F. Jurie, “Hard negative mining for metric
learning based zero-shot classification,” in Computer Vision–ECCV 2016
Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16,
2016, Proceedings, Part III 14. Springer, 2016, pp. 524–531.
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