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Abstract

Metacognition, or the awareness and regulation of one’s own cogni-

tive processes, allows individuals to take command of their learn-

ing and decision making in various contexts. In tasks that require

problem-solving and adaptive learning, individuals with height-

ened metacognitive awareness tend to outperform others, as they

are better equipped to regulate cognition, leading to more e�ec-

tive processes. On the other hand, visualization research facilitates

exploration and decision making with data. We posit that metacog-

nitive frameworks that examine how individuals think about their

own thinking processes can likewise enhance visualization pro-

cesses. In this paper, we review metacognition literature from the

cognitive and learning science to identify opportunities in visual-

ization to improve people’s ability to reason with data. We propose

the use of a metacognitive framework, serving as a starting point

to inspire future research to improve visualization practices and

outcomes.

CCS Concepts

• Human-centered computing→ HCI theory, concepts and

models; Visualization theory, concepts and paradigms.
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1 Introduction

Interactive visualizations do more than just display data; they fa-

cilitate a dynamic dialogue between the user and the information

presented. This interaction allows users to manipulate and probe

into the data, encouraging a deeper engagement and understanding.
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Furthermore, there is a signi�cant opportunity within this dialogue

to integrate metacognition, de�ned as the awareness and regula-

tion of one’s own cognitive processes [29]. By enabling users to

re�ect on their own thought processes and decision-making as they

interact with the data, we can promote a deeper level of cognitive

engagement, fostering more insightful and informed decisions. In

doing so, we can shift the passive data consumption into an active

and re�ective learning process.

Acknowledged as an essential component for e�ective learn-

ing, problem-solving, and cognitive development, metacognition

has been extensively explored within the �elds of education and

psychology [28, 30]. In educational settings, teaching students to

think metacognitively enhances their ability to learn and encode

information [76], encouraging a deeper understanding of the mate-

rial [19]. In fact, it has been shown in numerous settings that indi-

viduals with strong metacognitive skills can outperform individuals

with stronger aptitude in academic settings [77, 94]. To leverage

these bene�ts, educators incorporate metacognitive strategies into

their teaching methods to help students assess their own learn-

ing processes, thereby improving academic performance [15, 73].

Similarly, in psychology, metacognition is key to understanding self-

awareness and emotional regulation. It plays a signi�cant role in

cognitive therapy, aiding individuals in identifying and challenging

negative thought patterns to promote mental well-being [106].

Despite its profound bene�ts, work exploring metacognition

within visualization remains limited. We posit that metacognition

can serve as a re�ective layer for both visualization viewers and

designers, analogous to the students and educators described previ-

ously. For visualization viewers (e.g., students), this means re�ecting

on their understanding of data encodings, trends, and insights, and

altering their analytic strategies as needed to enhance their ability

to interpret complex data. For visualization designers (e.g., educa-

tors, practitioners), this means re�ecting on their understanding of

what they have designed to support and guide viewers’ interpretive

processes (theory of mind) [75]. We contend that visualization de-

signers should prioritize creating interfaces that facilitate metacog-

nitive practices for end-users, encouraging users to pause, re�ect,

and adapt their strategies during data exploration. Visualization

tools that are designed to support various metacognitive tasks such

as re�ection and regulation of data exploration, analysis, and in-

terpretation stand to bene�t signi�cantly from the integration of

these strategies.
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For instance, cognitive biases such as con�rmation bias [66],

which signi�cantly in�uence decision-making, are of recent inter-

est in visualization [27, 101]. While there are techniques aimed

at reducing these biases through guidance and prescriptive inter-

ventions [33, 100, 103], their e�ectiveness largely depends on the

accurate presentation of data, algorithms, and the user’s inten-

tions [17, 70, 79]. Metacognition, with its focus directly set on

recognizing and correcting errors in our thought processes, can

provide a self-driven approach to mitigating bias. This perspective

suggests metacognition not as a standalone solution but as a re�ec-

tive layer that enhances user awareness of their cognitive processes

when interacting with visualizations. By fostering internal re�ec-

tion alongside external aids, a metacognitive framework provides a

holistic method to address human biases. We position this work as

a starting point for ongoing theoretical development and practical

application in this emerging area, inviting further exploration and

re�nement by the research community.

In this paper, we propose a novel metacognitive lens through

which to view past and future work in visualization. Our contribu-

tions are multifaceted:

• We surveyed 293 visualization papers and synthesize �nd-

ings from 21 of them, selected based on our inclusion and

exclusion criteria, to provide a detailed exploration of how

metacognitive practices may already be embedded within

visualization research.

• We augmented the van Wijk model [99] to serve as a frame-

work that integrates metacognitive components in the visu-

alization process. We apply this model to analyze the design

choices in two extant visual analytic systems.

• We identify gaps and opportunities for the novel metacog-

nitive framework to inform visualization practices and re-

search.

2 Related Work

We contextualize our work among areas of prior research in

metacognition. In the following sections, we describe the essen-

tial components of metacognition and discuss investigations of

metacognition in various settings.

2.1 Metacognitive Components

Metacognition refers to the cognitive processes involved in recog-

nizing and controlling one’s own thinking and learning [57]. This

process can be separated into three distinct components: metacog-

nitive knowledge, metacognitive skills, and metacognitive experi-

ences [30, 31, 47].

Metacognitive knowledge includes declarative knowledge about

cognitive processes, tasks, and strategies [47]. Consider an exam

taker who uses their knowledge of test-taking to identify the scope

of the exam and assess their personal familiarity with the topics in-

volved. A strategic test-taker allocates their study time by focusing

more on the subjects they �nd most challenging. By acknowledging

their strengths and weaknesses, they can optimize their preparation

approach, leading to improved learning outcomes. In the context

of visualization, metacognitive knowledge helps users assess their

understanding of data visualizations. For instance, a data analyst

might evaluate the clarity of a chart and identify gaps based on

their familiarity with di�erent visualization techniques, allowing

them to choose and adjust the chart for clearer, more e�ective data

communication.

Metacognitive skills, also known as metacognitive monitoring or

regulation, involves the ongoing assessment of one’s understanding

and control over the learning process [115]. For example, an exam

taker engaged in e�ective monitoring might regularly test them-

selves on the material to gauge their mastery and identify areas

needing further review. They could adjust (i.e., control) their study

techniques based on these assessments – switching from passive

reading to active practice questions, or varying their study envi-

ronment to enhance concentration and retention. Metacognitive

skills can also be applied when users continuously evaluate their

understanding of visual data and their e�ectiveness in using it. For

instance, a data analyst might periodically review their interpreta-

tion of a complex data visualization to assess whether their insights

align with the data presented. They could adjust their analytical

approach by seeking additional data, re-evaluating their visualiza-

tions, or using di�erent visualization tools to improve clarity and

accuracy. This ongoing self-assessment helps re�ne their analytical

skills and enhances the quality of their data-driven decisions.

Finally, metacognitive experiences encompass the individual’s

conscious perception and emotional responses during cognitive ac-

tivities [30, 115]. To continue with the example provided above, an

exam taker might experience con�dence upon mastering a di�cult

concept, encouraging them to tackle similarly challenging topics.

Conversely, feelings of frustration or confusion might prompt them

to seek additional resources or alter their study methods, perhaps

by taking more breaks or discussing di�cult material with peers.

Similarly, in visualization, metacognitive experiences relate to users’

feelings and perceptions of their data interactions. For example, a

data analyst might feel satisfaction from successfully interpreting

a complex visualization, motivating further exploration, while con-

fusion or uncertainty may lead them to seek clari�cation, adjust

the visualization, or consult colleagues. These emotional responses

impact their approach and e�ectiveness in data analysis.

The relationship between metacognitive knowledge and expe-

riences is reciprocal [30]. Metacognitive experiences can enrich

metacognitive knowledge; for instance, the challenge felt during

problem-solving can transform into a recognized understanding

of one’s di�culties with such tasks [95]. Conversely, metacogni-

tive knowledge can come into play during metacognitive experi-

ences. For example, recalling one’s habitual struggles with problem-

solving can intensify the feeling of di�culty faced during such

tasks [95]. This interplay enhances our overall metacognitive aware-

ness, allowing for more informed and adaptive cognitive engage-

ments.

2.2 Metacognition and Learning

Advancements in metacognition research highlight the signi�cant

impact that self-awareness of cognitive processes has on enhancing

learning outcomes. Research highlights that metacognition involves

not just the execution of tasks but also the monitoring, evaluation,

and planning of cognitive strategies, which are essential for ef-

fective learning [30]. This area of study delves into how students

become aware of their own knowledge base and exert control over
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their learning experiences, thereby improving their ability to solve

problems and think critically [90].

Several studies have explored metacognition within diverse edu-

cational settings, illustrating its signi�cance in fostering essential

academic skills. For instance, a review study byWang et al. revealed

metacognition to be the most powerful predictor of learning [104].

Furthermore, Veenman et al. demonstrated that metacognitive skills

correlate strongly with academic performance, suggesting that

these skills can be taught and enhanced through targeted educa-

tional strategies. Similarly, Romainville et al. observed that higher

academic achievers not only exhibit enhanced metacognitive sen-

sitivity but also excel in organizing their learning strategies more

e�ectively [83]. To leverage these bene�ts, recent initiatives have

aimed to incorporate metacognitive principles into educational

systems. For instance, Azevedo et al. discussed the integration of

metacognitive tools within learning environments to foster self-

regulated learning through MetaTutor, which provides real-time

feedback and visual cues to aid learners in adjusting their learning

strategies [6]. Similarly, the nStudy software system supports the

tracking and enhancement of self-regulated learning processes on-

line, o�ering tools that enable learners to set goals, plan, monitor

progress, and re�ect on their learning process [108].

Although metacognitive concepts have been extensively studied

within educational and cognitive psychology, their direct applica-

tion to the design and interpretation of visualizations has not been

thoroughly explored. This gap highlights a signi�cant opportunity

for research and development in this �eld, promising to enhance

the functionality and impact of visual data representations.

3 Method

To understand the current research landscape of metacognition and

visualization, we conducted a systematic literature search focusing

on titles and abstracts to identify papers at the intersection of the

two �elds. We used the VitaLITy [63] paper corpus to collect papers

from 6 visualization venues and extended the open-source scrapers

to collect papers from 5 metacognition venues. Figure 1 depicts the

paper selection process, which we describe in greater detail next.

Figure 1: Summary of paper selection process.

Visualization Venues. We utilized the dataset from the VitaLITy

system [5, 63] to collect titles and abstracts of papers from the

past 10 years from six venues related to visualization research –

IEEE VIS, TVCG, EuroVis, Paci�cVis, CG & A, and CHI. This search

yielded a total of 4,823 publications from January 1, 2014, and

December 31, 2023, inclusive. Inclusion was determined based on

the publication year as listed in the dataset from the VitaLITy

system [5, 63]. The �rst �ve venues are visualization-speci�c, hence

we assumed all papers contained within this scope were relevant to

visualization research. However, CHI covers more general human-

computer interaction research, so we added an additional screening

criteria to remove papers that did not contain words stemming from

“visual.” Next, we removed all papers that did not contain words

stemming from “metacognition” or “cognition,” which yielded 112

papers from visualization-speci�c venues and 61 papers from CHI

for further screening.

Metacognition Venues.We extended the open-source scrapers

provided by VitaLITy [5, 63] to collect titles and abstracts of papers

from the past 10 years from �ve venues related to metacognition re-

search – Metacognition and Learning, Memory & Cognition, Applied

Research in Memory and Cognition, Experimental Psychology: Learn-

ing, Memory, and Cognition, and Cognition. This search resulted in a

total of 5,431 publications between 2014-2023, inclusive. For journal

papers, inclusion was based on their formal assignment to volumes

and issues published within this date range. Next, we conducted a

keyword search using the term “visual” followed by a su�x (e.g., vi-

sualizations, visually) to �lter out papers that merely mentioned the

term “visual,” such as those referring to “visual working memory,”

which do not pertain to our focus on data visualization research.

This approach yielded 120 papers for further screening.

Inclusion and Exclusion Criteria. Our �rst round of screening

was solely based on keyword search, resulting in a corpus of 293

papers. However, while papers at this stage may include words

stemming from “visual” and “cognition” in the titles and abstracts,

there are likely many papers within the corpus, e.g., that use visual

stimuli without a focus on visualization research or study cognition

without a focus on metacognitive factors. Thus, to determine if

the papers were truly relevant to metacognition and visualization

research, we conducted a comprehensive qualitative coding analysis.

Initially, three authors independently read the titles and abstracts

of 10 randomly selected papers from the corpus and determined

their relevance as a binary “yes” or “no,” then synthesized a set of

inclusion and exclusion criteria for the papers. After discussing and

agreeing on the relevance of these 10 papers, two authors repeated

this procedure with another 10 randomly selected papers. From this

process, we derived the following set of inclusion and exclusion

criteria (Table 1 & 2) to guide our coding of the papers. Table 1

presents the inclusion and exclusion criteria speci�c to visualization,

while Table 2 outlines the criteria speci�c to metacognition. Both

sets of criteria are applied to each paper during the review process

to assess relevance to both visualization and metacognition. Two

authors then independently coded the remaining 273 papers for

relevance. In case of disagreement, the two authors discussed and

resolved the issue or, if it could not be resolved, referred it to a third

author for a �nal decision.
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Table 1: Relevance to Visualization

Criterion Description

Inclusion
• The paper appears in a visualization related venue AND mentions “visual,” OR

• The paper involves:

– The creation, implementation, or evaluation of visual representations, such as graphs, charts,

maps, or other visual tools; OR

– The use or development of visualization techniques for the purpose of data analysis, interpretation,

or communication; OR

– The studies or experiments focused on visual perception, visual cognition, or the e�ectiveness of

di�erent visualization methods.

Exclusion
• Papers that primarily focus on non-visual forms of representation (e.g., auditory, textual) where

visualization is not a central component of the study or discussion, OR

• Papers that mention visualization only in passing or treat it as a secondary aspect of the study,

without examining the visualization techniques, processes, or outcomes, OR

• Papers that involve the use of visualization software or tools but do not speci�cally focus on the

visualization aspect (e.g., focusing on software usability or computational e�ciency), OR

• Papers that involve simple visual tasks (e.g., identifying colors, shapes, or basic patterns) with a

purpose other than visual perception (e.g., many studies on response times using simple shapes as

stimuli would fall under this exclusion criterion).

4 Findings

The authors mutually coded 21 papers as relevant to metacognition

and visualization according to the inclusion criteria, achieving an

inter-rater reliability among two independent raters using Cohen’s

Kappa of Ą = 0.51, suggesting moderate agreement [60]. The two

independent raters discussed any disagreements, having a third re-

searcher weigh in as needed, until a consensus rating was achieved

for all papers. Papers that were excluded at this stage included visu-

alization papers that discussed or studied cognitive processes, such

as perception (e.g., [26, 32, 42, 59]) andmemory (e.g., [23, 45, 68, 88]),

without any metacognitive re�ection or regulation of those cog-

nitive processes; or, metacognition papers that used simple visual

stimuli (e.g., shapes or colors) as a mechanism to study performance

metrics (e.g., completion time, accuracy) [43, 68, 88]. Among the 21

papers reviewed, 16 are from visualization-related venues, including

8 from IEEE VIS, 6 from CHI, and 2 from TVCG, as shown in Table 3.

The remaining 5 papers are from metacognition-related venues: 3

from Memory & Cognition, 2 from Metacognition and Learning, and

1 each from the Journal of Applied Research in Memory and Cogni-

tion and Cognition. Table 4 shows an overview of the 21 reviewed

papers, including visual stimuli used, types of metacognitive skills

(adopted from [95]), methods used to measure these skills, and a

brief description of the study context. We present a summary of

our �ndings next, labeled F1-F5 for future reference.

F1: Only two papers explicitly mentioned metacognition. A

detailed examination of the 21 papers reveals a notable absence of

the term “metacognition,” with only two papers from metacogni-

tion venues explicitly including derivatives of “metacognition” in

their titles or abstracts and none from visualization venues. One

study investigated the impact of instructional visuals on students’

metacomprehension accuracy and cue-use for di�erent types of

metacognitive judgments across four experiments [46]. Participants

were randomly assigned to either a text-only condition or a text-

and-image condition, where they made various judgments (test,

explain, and draw) for each text and completed comprehension

tests. They found that instructional visualizations (e.g., diagrams

of biological processes) harmed relative metacomprehension accu-

racy, as evidenced by self-reported performance, e.g., participants’

assessment of how well they felt they could draw the processes

described in the text [46]. Another paper demonstrated that com-

bining visualization with self-regulation metacognitive training –

where students are trained to self-observe and self-assess whether

they have accurately applied the visualizing strategy and to react

appropriately in order to improve the accuracy and clarity of their

drawings – e�ectively enhances learning from scienti�c texts [55].

The training involved three phases: self-observation, to recognize

strategic actions; self-assessment, to evaluate visualization e�ec-

tiveness; and reaction, to enhance visual clarity.

F2: Metacognition is not explicitly a focus in VIS. Our sys-

tematic analysis con�rmed our intuition that metacognition is not

explicitly a focus in the visualization community. Aside from the

two papers that explicitly mentioned metacognition described pre-

viously, the remaining papers we reviewed indirectly addressed

metacognitive concepts. For instance, Wall et al. introduced the

concept of interaction traces, intended to promote user aware-

ness of bias in their analysis processes [100, 102]. Baumeister et

al. examined how di�erent augmented reality display technologies

in�uenced task performance with a focus on self-assessment of

cognitive load [13]. Nowak and Bartram highlighted the need for

data interfaces that encourage re�ection and provoke alternative
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Table 2: Relevance to Metacognition

Criterion Description

Inclusion
• The paper appears in a metacognition related venue AND explicitly mentions “metacognition,” OR

• The paper involves:

– Individuals stating their conscious understanding of cognitive aspects like their strategies (e.g.,

the optimality of solutions/strategies), reasoning abilities, decision-making, beliefs, or memory,

OR

– Individuals re�ecting on their own performance or judgments (e.g., con�dence levels or uncer-

tainties in answers) by estimating probabilities for certain outcomes, OR

– External tools or techniques that are designed to facilitate metacognition by in�uencing self-

awareness (e.g., showing something such as interaction traces to the user about their own process

or performance), supporting self-re�ection and/or self-monitoring.

Exclusion
• Papers that elicit beliefs purely for gathering or measuring preferences or likelihoods (e.g., asking

participants about product preferences or likelihood of purchasing) without follow-up on why they

hold that belief or how con�dent they are, OR

• Papers that center on characterizing automatic cognitive processes (e.g., object recognition, recalling

positions, inhibitory control) without addressing how individuals are aware of, monitor, control, or

re�ect upon these processes, OR

• Papers that assess the in�uence of visual representations on perceptual and cognitive biases a�ecting

data interpretation or the impact of visualization techniques on performancemetrics (e.g., completion

time, accuracy) without addressing self-regulated learning or cognitive monitoring, OR

• Papers that emphasize external factors such as immersive experience to increase cognitive engage-

ment (e.g., memory, attention) without involving users re�ecting on or controlling their cognitive

processes, OR

• Papers that mention interviewing or gathering feedback from the participants without involving

self-re�ection or self-monitoring of their cognitive processes.

Table 3: Distribution of 21 reviewed papers by venue. Visual-

ization venues are highlighted with a gray background, while

Metacognition venues are shown with a white background.

Venue Count

IEEE VIS 8

CHI 6

Memory & Cognition 3

TVCG 2

Metacognition and Learning 2

Journal of Applied Research in Memory and Cognition 1

Cognition 1

Total 21

interpretations to support sensemaking in risk assessments [69].

Nevertheless, these studies do not explicitly adopt metacognitive

terminology, signaling a low level of engagement with well-known

work or established research in this �eld. Engagement with key

theories about concepts such as “self-regulation” and “metacogni-

tive strategies” could provide valuable frameworks for analyzing

and enhancing the cognitive processes involved in visualization.

We explore how adopting such a metacognitive lens could aid these

e�orts in Section 5.

F3: Presence of think aloud protocols. Among the 21 relevant

papers, two studies mentioned using a think aloud protocol in

their methodology, involving participants verbally expressing their

thoughts in real-time, thereby potentially providing insights into

metacognitive processes. The �rst study conducted a think aloud

session to observe how participants interpreted three unfamil-

iar visualizations [54]. This research aimed to develop a model

for novices’ sensemaking in information visualization, which in-

cluded �ve cognitive activities. Among these, two activities – con-

structing a frame and questioning that frame – speci�cally ex-

emplify metacognition by involving re�ection on and evaluation

of one’s own thought processes. Integrating seminal works on

metacognition, such as Flavell’s concept of “metacognitive knowl-

edge” [30] or Schraw and Dennison’s “Metacognitive Awareness

Inventory,” [90] could further enrich the analysis by providing struc-

tured frameworks to interpret the verbalizations in think aloud

protocols. Another study explored how individual di�erences, ex-

periences, and cognitive load impacted the e�ectiveness of the

proposed “Soliloquy” interface. In this study, participants were

asked to articulate their thought processes while interacting with

the interface, providing insights into their cognitive engagement

with the tool [80]. Papers such as Hacker, Dunlosky, and Graesser’s

work [38] on metacognition in educational psychology could pro-

vide additional theoretical underpinnings that explain how and why

certain metacognitive strategies enhance learning and performance
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Table 4: Overview of the 21 reviewed papers, focusing on the speci�ed types of metacognitive skills we adopted from [95], as

metacognitive experiences and knowledge are minimally involved. Papers marked with an asterisk (*) indicate those that did

not involve a user study; thus, measurement methods are not included in the table.

Visual Stimuli Skill Measurement Description

Bancilhon et al. [8] Icon arrays Self-awareness Self-rating Users rate their e�ort in completing a task.

Baumeister et al. [12] AR displays Self-awareness Self-rating Users rate their mental e�ort after a task.

Groß et al. [37] Representative icons Con�dence Index estimate Users estimate the sugar content of various food
items both before and after given visual feedback.

Hall et al. [39] Visual charts Con�dence, Task decom-
position

Self-rating Users rate their con�dence on the previous task
block. Users describe the strategies they used when
completing the task.

Hatzipanayioti et al. [40] Spatial scenes Task decomposition Post-study survey Users describe the strategies they used after com-
pleting the task.

Jaeger et al. [46] Instructional visualiza-
tions

Con�dence Judgment of performance Users judge how well they perform.

Jung et al. [49] Visual charts with alter-
native texts

Self-awareness Think-aloud Users verbalize their thought process during a task.

Karduni et al. [50] Uncertainty visualiza-
tions

Con�dence Self-rating Users rate their con�dence in the judgment both
before and after they view a data visualization.

Koonchanok et al. [52] Vis tools Task decomposition Prompts Users are prompted to incorporate their working
knowledge more frequently in queries when per-
forming exploratory analysis.

Lee et al. [54] Visual charts Task decomposition Think-aloud Users re�ect on the frame which they form to make
sense of a given visualization.

Leopold & Leutner. [55] Visualized scienti�c texts Task decomposition Self-regulated learning Users receive metacognitive self-regulation learn-
ing training to study scienti�c texts.

Loksa et al. [58] Progression visualization Task decomposition On-demand prompts Users re�ect on their strategies when seeking help
from instructors.

Nowak & Bartram [69] Vis tools Self-awareness Think-aloud Users verbalize their thought process and explana-
tion of actions taken in a task.

Robb et al. [81] Imagery feedback Task decomposition Interview Users describe their interpretation of the given feed-
back and how it inspires them to change their de-
signs.

Robey & Riggins. [82] Pictures Con�dence Self-rating Users rate their con�dence in their judgments.

Risha et al. [80] Vis tools Task decomposition, Self-
awareness

Pop-ups Enhancing users’ understanding of poetry by ex-
posing them to a visualized think-aloud of an expert
reading poetry.

*Sacha et al. [87] Vis tools Task decomposition, Self-
awareness

– Authors recommend developing systems that en-
able or encourage analysts to re�ect on their anal-
ysis afterwards.

Shi et al. [92] Vis tools Self-awareness, Con�-
dence

Self-rating, Post-study
survey

Users rate their con�dence in the �nal decision and
write down their reasons for the �nal decision.

Wall et al. [102] Vis tools Self-awareness Interaction traces Users are aware of their analysis process by view-
ing interaction history in real-time while exploring
data.

Wall et al. [100] Vis tools Self-awareness, Metacog-
nitive �exibility

Interaction traces Users gain an awareness of their analytic process
and biases by viewing the visualized interaction
sequences.

Zhao et al. [113] Visual feedback Self-awareness Interview Users describe their preferences with explicit rea-
sons after completing the task.

in such settings. By referencing these metacognitive frameworks,

researchers can speci�cally analyze how participants monitor and

adjust their thinking during think-aloud sessions, leading to a more

detailed understanding of cognitive processes. This application

could reveal subtle cognitive strategies or errors, allowing for more

precise data interpretation and the development of targeted inter-

ventions to enhance cognitive performance.

While only these two papers were identi�ed from our inclusion

and exclusion criteria, a broader search for think aloud among the

entire corpus of 10,254 papers, disregarding other inclusion criteria,

yields 56 papers in total that mention use of this protocol in the

title or abstract. While these papers may contain further insight on

metacognitive processes and visualizations, we opted not to include

them all in our detailed review because many of the papers did not

primarily focus on metacognitive processes but rather mentioned
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the protocol in di�ering contexts that may not directly align with

the core scope of our survey. For instance, some papers identi�ed

in the broader search discussed the use of the think-aloud protocol

in assessing user interaction with a new tool [48, 56, 78, 85]. While

they provide valuable insights into user behavior and cognitive

processes while interacting with the tools, their focus was primarily

on usability testing rather than exploring metacognitive processes

in visualization. Hence, the insights from those papers, although

relevant in a broader cognitive context, do not align closely with

the core objective of the present survey centered on metacognition

in visualization.

F4: Related papersmention con�dence and strategy.Although

most of the related papers are not explicitly grounded in metacog-

nition, they frequently mention speci�c keywords that hint at

metacognitive elements through secondary measures. A partic-

ularly signi�cant keyword found across 5 out of 21 studies is ‘con-

�dence.’ In these studies [39, 46, 50, 87, 92], participants are asked

to self-report their con�dence levels regarding their judgments or

analyses, e.g., by using a slider on a 0–100 scale during a post-survey.

This recurring emphasis on con�dence may imply an underlying

appreciation for self-awareness in evaluating analytical processes

and outcomes, which is a core aspect of metacognitive monitoring.

Incorporating Narens’ model of metacognition, which details the

formation of metacognitive con�dence judgments, can clarify the

speci�c mechanisms by which these judgments in�uence cogni-

tive monitoring and control [64]. By understanding the criteria

and processes that underlie con�dence assessments, researchers

may discern how con�dence levels serve as indicators of the ef-

fectiveness and reliability of one’s cognitive monitoring, thereby

providing a more robust theoretical basis for interpreting these

self-assessments.

Additionally, although not numerous, four papers mention ‘strat-

egy.’ For instance, some studies such as [39, 40, 81] required partici-

pants to report their strategy or reasoning behind their choices after

completing tasks, intended to provide insights into the decision-

making behaviors of the participants. Another study develops an

intervention that involves displaying a �ow chart of six problem-

solving stages, designed to prompt learners to re�ect on their strate-

gies when seeking help from instructors in the context of program-

ming education [58]. To more e�ectively bridge these discussions

with metacognitive frameworks, referencing papers such as Zim-

merman’s work on self-regulated learning [114] would be bene�cial.

Zimmerman’s model, which emphasizes planning, monitoring, and

evaluating as essential skills of self-regulation, could provide a valu-

able lens for analyzing how strategies reported in these studies

relate to metacognitive control processes. This theoretical frame-

work can explain why incorporating metacognitive prompts in

study methodologies could enhance learning outcomes by fostering

more e�ective self-regulation among learners.

F5: Studies seldom complete the feedback loop.Although some

relevant studies have analyzed participants’ self-reported strategies,

e.g., investigating the e�ects of personal di�erences on interpreting

various visual charts [39] or examining the in�uence of sensorimo-

tor encoding on participants’ reasoning about spatial scenes [40],

they typically conclude without “closing the loop” by providing

the opportunity for users to view, interact with, and adjust their

strategies accordingly. A notable exception includes the work by

Wall et al., which displayed real-time interaction traces by col-

oring points in a scatterplot that users had interacted with. This

approach prompted re�ection after decisions were made by com-

paring the distribution of user interactions with the underlying

data distribution, thereby enabling participants to revise their deci-

sions accordingly [102]. Similarly, Robb et al. provided 12 designers

with feedback in response to their visualization designs and con-

ducted interviews to explore how visual feedback, as opposed to

text feedback, inspired changes in their designs [81]. The bene�t of

closing the feedback loop is well-documented in educational and

metacognitive research. For example, Butler and Winne’s paper on

feedback and self-regulated learning emphasizes the importance

of timely and speci�c feedback in enhancing metacognitive aware-

ness and improving learning outcomes [20]. This process helps

learners adjust their cognitive and metacognitive strategies in re-

sponse to new information, which is critical for e�ective learning.

We explore the promising potential of integrating similar feedback

mechanisms into visualization studies in Section 7, highlighting

how such practices could signi�cantly enhance user engagement

and learning.

5 Metacognitive Model of Visualization

In the �eld of visualization, understanding how users interact with

and make decisions based on visual data is crucial [61, 105]. Estab-

lished cognitive frameworks, such as the decision-making models

proposed by Padilla et al.[71], and their recent applications by Ban-

cilhon et al.[7], have modeled these interactions e�ectively. Van

Wijk’s model [99] underscores the iterative nature of visualiza-

tion, where understanding evolves as the user interacts with the

data. Furthermore, the sensemaking process described by Pirolli

and Card [74] models how individuals transform raw data into

actionable insights. However, these frameworks primarily focus on

cognitive aspects without considering the critical layer of metacog-

nition, which involves self-awareness and self-regulation of these

cognitive activities. Integrating metacognition into visualization

processes can facilitate a deeper understanding of user interactions

with visual data, emphasizing how users monitor and regulate their

cognitive processes. It provides insights into the users’ awareness

of their own thought processes and their ability to adjust strategies

in real time, enhancing the design and utility of visualization tools.

In this section, we explicate how metacognitive components can

be integrated into the van Wijk operational model of the visualiza-

tion process. We chose to expand the van Wijk operational model

for its comprehensive approach to capturing the dynamic relation-

ship between perception, knowledge, and interaction [99]. Unlike

other models that may focus more narrowly on speci�c aspects

of visualization, such as data representation or user interaction in

isolation [14], van Wijk’s model encompasses the entire cycle of

visualization interaction, from data processing to knowledge forma-

tion and back to data interaction. This cyclical and iterative nature

aligns closely with the principles of metacognition, which empha-

size continuous monitoring, evaluation, and adaptation of cognitive

processes. Additionally, we outline several metacognitive strate-

gies designed to improve users’ interpretation and decision-making

with visual data, as shown in Figure 2. By embedding metacognitive

strategies into this model, we aim to provide a framework that not

only describes how users interact with visual data but also how they

re�ect on and regulate their own thinking during these interactions.
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This discussion is intended to join metacognitive concepts with an

existing operational model, marking a progressive step in under-

standing holistic human cognitive processes. Our goal is to show

how a metacognitive lens can inform and improve visualization

design, which we discuss further in Section 7.

5.1 Expanded van Wijk Model

Van Wijk conceptualizes the ‘user’ in terms of Perception and Cog-

nition (P), Knowledge (K), and Interactive Exploration (E). The user

perceives the image (I) and engages with the visualization through

various available manipulation techniques, referred to as the speci-

�cations (S) in Figure 2. Green et al. [36] have expanded this model

by adding two directional arrows, depicted in green in Figure 2.

The arrow from P to E underscores the critical role of perception

and perceptual logic in facilitating active exploration, while the

arrow from E to K highlights how an iterative interaction cycle

enriches knowledge and reasoning. As users explore and learn, this

new knowledge shapes and directs further exploration, integrating

Perception, Knowledge, and Exploration as interdependent cogni-

tive processes. We further augment this model with metacognitive

components, depicted in blue.

When the user perceives the image (I), early cognitive and per-

ceptual (P) processes such as selective attention and categorization

are activated [36], potentially triggering metacognitive experiences

(Figure 2, (a)). These experiences can include subjective feelings like

a sense of familiarity or the realization that one has misunderstood

a visualization. Additionally, they may involve implicit cues that in-

form us about our cognitive processes, such as ‘processing �uency’

cues that indicate how swiftly a memory is recalled [1, 67, 95]. A

self-loop labeled with dM/dt to metacognitive experiences repre-

sents changes in metacognitive experiences over time, indicating

how users’ re�ections and reactions to the visual data evolve as

they interact more deeply with the content.

The perception process enriches the user’s knowledge base (K),

which encompasses both the initial knowledge and insights gleaned

from the image [99], along with new knowledge generated through

reasoning and problem-solving [36]. This involves metacognitive

knowledge (Figure 2, (b)) – an understanding of their cognitive

strategies and processes. This knowledge includes recognizing the

types of cognitive tasks at hand and understanding which cognitive

strategies might be most e�ective in navigating them. For example,

a viewer might identify that analyzing complex data requires a

strategy of breaking information into smaller, manageable parts. As

viewers acquire metacognitive knowledge from initially perceiving

and interpreting visualizations, this foundational understanding

paves the way for deeper engagement. Just as with metacognitive

experiences, there is a self-loop for metacognitive knowledge labeled

with dM/dt that indicates continual adjustments and re�nements

in the viewer’s metacognitive knowledge over time, emphasizing

its dynamic development through interaction with visual data.

As users accumulate knowledge, they might decide to adjust

the visualization’s speci�cations to explore the data further, en-

gaging both P and K in a dynamic cognitive process [36]. During

this phase, viewers may likewise utilize sophisticatedmetacognitive

skills (Figure 2, (c)) such as monitoring and controlling their own

thought processes as they interact with the visualization. Moni-

toring and control are pivotal metacognitive abilities that enable

individuals to evaluate and steer their own cognitive processes [95].

Monitoring involves assessing one’s own thinking, encompassing

skills like self-awareness and adjusting con�dence levels. In con-

trast, controlling cognitive processes involves actively regulating

and directing one’s thoughts, decisions, and behaviors to achieve

speci�c goals. This often includes managing attention, inhibiting

distractions, and applying strategies to optimize problem-solving

or task performance.

For instance, cognitive monitoring in visualization might entail

recognizing one’s mental state and how it in�uences their cogni-

tive processes, crucial for setting clear goals and intentions such

as, “What insights do I hope to gain from analyzing this dataset?”

This awareness is critical as viewers interact with visualizations to

understand data deeply and control the output of that thinking to

achieve speci�c goals. Con�dence relates to assessing one’s capabil-

ity in handling tasks [109], such as determining, “How con�dent am

I that my interpretation is correct?” Properly calibrated con�dence

helps objectively evaluate performance and align it accurately with

one’s abilities. For example, they may evaluate howwell they under-

stand the information presented and whether they are able to draw

accurate conclusions based on the visual data. A self-loop labeled

with dM/dt indicates the ongoing development of metacognitive

skills in this framework.

5.2 Metacognitive Strategies

We brie�y discuss a few metacognitive strategies, depicted in

orange in Figure 2 within the expanded van Wijk model. While this

is not an exhaustive list, these strategies, when e�ortfully engaged

by visualization viewers, can be used to enhance the way they

interpret and make decisions with visual data.

Self-explanation. Learning involves the integration of new in-

formation into existing knowledge. Generating explanations to

oneself, known as self-explaining, facilitates this integration pro-

cess. Self-explanation has been extensively studied in the �elds of

learning and cognitive sciences, and considerable research under-

scores its e�ectiveness in enhancing understanding and problem-

solving skills [2, 21, 22, 107]. For instance, a study by Chi et al. [22]

demonstrated that students who explained concepts to themselves

understood better than those who did not. This bene�t could be

equally signi�cant for viewers of visualizations. In a practical sce-

nario, an analyst reviewing a line graph showing changes in con-

sumer behavior over time could use self-explanation to enhance

their understanding. As they identify trends or outliers, they could

self-explain such as “I think this pattern exists because there is an

underlying relationship between spending on marketing in general

and web tra�c,” or “I think this peak represents a signi�cant impact

from a recent promotional campaign” based on their knowledge of

recent market changes or promotional campaigns. This practice

could encourage deeper engagement with the data and help solidify

learning. It can also foster critical thinking by requiring the viewer

to justify their interpretations, which can lead to more accurate

and insightful data analysis.

Self-questioning. Di�erent from self-explanation, which focuses

on articulatingwhat one already knows or believes, self-questioning

is oriented towards exploring unknowns, challenging existing

knowledge, and seeking new information [35]. This approach is
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Figure 2: An adaptation of the visualization process de�ned by van Wijk [99], augmented with metacognitive factors.

well-supported in the educational context, where questioning strate-

gies have been proven to promote deeper understanding and en-

hanced learning outcomes [51]. In the realm of data visualization,

self-questioning could play a crucial role by encouraging viewers to

actively formulate questions that guide their exploration of visual

data. As viewers interact with a visualization, they might pose ques-

tions such as “What anomalies are present in the data?” or “What

might be causing this trend or anomaly in the data?” Such inquiries

not only have the potential to provoke deeper engagement with

the data but also drive the discovery of insights that might not

be immediately apparent. By continuously posing and addressing

these questions, viewers can ensure a comprehensive examination

of the data, thereby enhancing the quality of their analyses and the

validity of their conclusions. This dynamic process of questioning

and reevaluating may help to foster a critical mindset, crucial for

e�ective data-driven decision-making.

Self-assessment. Self-assessment, or self-evaluation, has been

demonstrated to contribute signi�cantly to academic success, espe-

cially when compared to students who do not practice it, supported

by �ndings in educational psychology [18, 34, 84]. Unlike strate-

gies such as self-explanation and self-questioning, which focus on

articulating and querying one’s understanding, self-assessment em-

phasizes evaluating the reliability of one’s own conclusions. In the

�eld of data visualization, self-assessment can enables analysts to

critically assess their interpretations and the underlying data. As

viewers navigate through data visualizations, they can regularly as-

sess how certain they feel about the accuracy and reliability of their

interpretations. For instance, after identifying a trend or anomaly in

the data, a viewer might rate their con�dence in their explanation or

prediction related to that observation, asking themselves questions

like, “How con�dent am I in the conclusions I am drawing from this

trend?” or “What is the likelihood that my interpretation of this

data is accurate?” If they �nd their con�dence level is low in certain

areas, they might decide to revisit the data, consider alternative

interpretations, or consult additional sources. This practice may

help to validate data analysis accuracy and enhance understanding

of personal biases and limitations. E�ective self-assessment can

strengthen analytical skills, improve decision-making reliability,

and support professional growth by fostering continuous critical

re�ection and adaptation to complex information [84, 93].

6 Examples

In this section, we demonstrate how the expanded van Wijk

model from Section 5 can be used to provide a novel lens with

which to assess extant visual analytic systems. We analyze the

ways in which two systems, Lumos [62] and Soliloquy [80] inte-

grate metacognitive concepts using the expanded van Wijk model.

Metacognitive strategies are highlighted in orange, and the spe-

ci�c metacognitive components associated with these strategies

are indicated in blue, in line with Figure 2. We chose to analyze

Lumos [62] (the system used in experiments by Wall et al. [102])

and Soliloquy [80] from our set of coded papers as they both pro-

vide visual analytic interfaces that can demonstrate a breadth of

metacognitive techniques.

6.1 Lumos

While it does not use the language of metacognition, the Lu-

mos [62] system is designed to enhance metacognition through the

lens of bias awareness by fostering active self-monitoring and self-

re�ection of a user’s interaction traces. This system leverages both



CHI ’25, April 26–May 01, 2025, Yokohama, Japan Mengyu Chen, Andrew Yang, Seungchan Min, Kristy A Hamilton, and Emily Wall

in-situ and ex-situ visualization techniques to foster continuous

metacognitive engagement and re�ection.

In its in-situ con�guration, Lumos tracks how users interact with

visual data representations such as bars, lines, points, and strips.

It leverages the unused visual channel of color on a gradient from

white to blue to visually represent the frequency of interactions

with data, with a darker blue indicating more frequent interactions,

andwhite indicating none. This immediate visual feedback is crucial

for promoting the metacognitive skill (Figure 2, (c)) of real-time self-

monitoring For instance, a mouseover on a visualization element in

the visualization canvas (Figure 3, (E)) highlights this point with a

corresponding shade of blue, depending on the interaction intensity.

This feature enhances the metacognitive skill (Figure 2, (b)) of self-

awareness, by making users conscious of their focus areas, as well

as encouraging a balanced approach to data analysis by visually

cueing areas of potential neglect or overemphasis. Similarly, the

Attribute Panel uses the same white-to-blue color scale to indicate

the level of interaction with di�erent data attributes (Figure 3, (B)).

This consistent visual coding across di�erent components of the

interface supports users in developing an intuitive understanding

of their analytic behaviors over time, supporting another critical

metacognitive skill (Figure 2, (c)) known as self-assessment. This en-

ables users to evaluate their engagement and adjust their analytical

focus dynamically, ensuring more e�ective data exploration and

decision-making processes.

In addition to these in-situ mechanisms, Lumos incorporates

ex-situ visualizations to further enhance metacognitive processes.

The Distribution Panel (Figure 3, (G)) allows users to compare their

interaction patterns against a set of prede�ned target distributions,

such as Proportional, Equal, or Custom baselines. For example, in a

dataset of job applicants with diverse gender identities (e.g., 50%

identifying as male, 40% as female, and 10% as nonbinary), a pro-

portional target might re�ect the actual demographic distribution,

encouraging users to align their interactions accordingly. Lumos

visually contrasts the observed user behavior with these target dis-

tributions, using a color-coded system (red to green) on the attribute

cards to signify how closely user actions match the expected distri-

bution. Redder hues indicate signi�cant deviations, prompting users

to engage themetacognitive skill of self-re�ection on potential biases

or oversights. This acts as a trigger for self-assessment, encouraging

users to critically evaluate their performance. Conversely, greener

hues suggest alignment with the target distribution, reinforcing

e�ective analytic practices. This setup not only aids in the devel-

opment of metacognitive skills (Figure 2, (c)) like critical thinking

and adaptive learning but also enhances metacognitive knowledge

(Figure 2, (b)) by providing users with feedback that informs them

about their analytical e�cacy and areas for improvement.

By providing multiple layers of feedback, Lumos e�ectively inte-

grates metacognitive components into the data exploration process.

This design not only aids users in becoming conscious of their

interaction patterns but also empowers them to self-regulate and

adapt their analytical strategies in response to real-time insights

about their behavior. This approach is fundamental in helping users

develop deeper metacognitive skills, such as self-awareness and

Figure 3: An example of Lumos adapted from [62], shows

a user’s interaction traces using both in-situ ((B) Attributes

Panel, (E) Visualization Canvas and (F) Details View) and

ex-situ ((G) Distribution Panel) visualization techniques.

Figure 4: An example of Soliloquy adapted from [80], features

(A) shading to denote current attention of the expert reader,

(B) ordering of lines to illustrate recursive reading patterns,

(C) highlighting of speci�c words or phrases that trigger

thoughts, and (D) verbalized thought displayed as popups

with optional audio playback.

self-regulation, which are essential for e�ective and unbiased data

analysis.

6.2 Soliloquy

Risha et al. present Soliloquy, an interface designed to visualize

the thought processes of an expert as they read and interpret a

poem to novice readers, aimed at enhancing their understanding

of expert cognitive strategies to improve their comprehension of

poetry [80]. Soliloquy is inspired by the think-aloud instructional

strategy commonly used in educational settings, where an instruc-

tor or student vocalizes while performing a task, such as reading

a poem, to model the process and provide a worked example for

others.

It begins simulating the think-aloud process by bolding each

word to indicate the expert reader’s current focus, guiding novices

on how to pace their reading and what to emphasize (Figure 4,

(A)). Furthermore, Soliloquy incorporates text shading animations
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(Figure 4, (B)) to simulate recursive reading patterns, which are

typical of experienced literature and poetry readers who often re-

read sections, posing questions, and forming connections [80]. This

recursive approach helps novices understand that deeper reading in-

volves revisiting and re�ecting, not just linear progression through

the text.

Critical moments of insight, such as forming an idea, posing

a question, or making a connection, are captured in popups (Fig-

ure 4, (D)) which convey the expert reader’s thought. The word

or phrase that triggers the thought is highlighted, linking the text

to the thought process visually (Figure 4, (C)). This feature pro-

motes self-re�ection as novices compare their thoughts with the

expert’s, enhancing themetacognitive skill (Figure 2, (c)) ofmetacog-

nitive awareness. By observing the expert’s insights, novices are

encouraged to engage in self-assessment, evaluating their own un-

derstanding and identifying areas where their interpretations may

di�er, thus recognizing gaps in their comprehension.

The integration of metacognitive components is a key aspect of

Soliloquy’s design. This interface actively involves novices in devel-

oping metacognitive skills by enhancing their awareness of their

own reading processes. As novices observe the expert’s focused

and recursive reading, they are introduced to e�ective reading tech-

niques, learning to monitor their own comprehension and adapt

their strategies accordingly. By allowing novices to witness the

real-time cognitive processes of an expert, the popups serve as trig-

gers for metacognitive engagement, prompting novices to re�ect

on their understanding of the poem and how their thoughts align or

di�er from the expert’s. This re�ection is essential for developing

the metacognitive skill (Figure 2, (c)) of self-awareness. Soliloquy

thus improves poetry comprehension and serves as a powerful tool

for teaching and reinforcing metacognitive strategies within an

educational context, helping learners to become more re�ective

and e�ective readers.

Overall, by explicitly highlighting metacognitive features in sys-

tems like Lumos and Soliloquy, we demonstrate how visual analyt-

ics tools can go beyond facilitating task performance to actively

fostering self-awareness, re�ection, and adaptive learning in users.

These examples illustrate the transformative potential of incorpo-

rating metacognitive components, enabling users to become more

thoughtful and e�ective in their analytical or interpretive processes.

This focus underscores the importance of designing systems that

not only support task-speci�c outcomes but also cultivate broader

cognitive and metacognitive skills.

7 Next steps: how is a metacognitive framework
helpful for future visualization research?

In this paper we posit that the exploration of metacognition in

visualization can profoundly enhance our understanding of how

users interact with visual data. This insight is particularly bene�-

cial for designers who create these visualizations, and researchers

who evaluate e�ects of visualization techniques. In section 5.2, we

outlined metacognitive strategies. Here, we expand on actionable

methods for researchers and designers to enhance users’ metacog-

nitive abilities. Designers may rely on intuition when making deci-

sions; however, our model can elucidate why certain design choices

are e�ective and help designers make informed decisions that are

grounded in a deeper understanding of user interactions and cogni-

tive processes. By integrating these guidelines, designers can better

predict how users will interact with and bene�t from visual data,

ensuring that visualizations are both functional and insightful. For

researchers, these guidelines o�er a framework for investigating the

impact of metacognitive strategies on visualization e�cacy. By ex-

ploring how these strategies in�uence user behavior and cognition,

researchers can contribute to a more nuanced understanding of

the relationship between user and visualization, ultimately driving

advancements in visualization technology and methodology.

7.1 Metacognition for Visualization Designers

In this section, we discuss some strategies that visualization design-

ers might use when designing systems that promote metacognitive

engagement. Building on Section 5.2 and Figure 2, a designer’s goal

should be to slow down the analysis and decision making processes,

promoting self-re�ection. How might systems support strategies

like self-explanation, self-questioning, and self-assessment? In this

section, we demonstrate example metacognitive interventions that

visualization designers might consider.

Figure 5: An ex-

ample of prompts

in Bannert and

Menglkamp’s

work [10].

Prompting Users to Check Their

Work. Prompting is a form of in-

structional sca�olding designed to sup-

port self-regulated learning in educa-

tional settings [72]. This is typically

achieved by asking learners relevant

questions or providing explicit instruc-

tions [9]. Enhancing re�ection in visual-

ization should similarly involve strate-

gically prompting users to examine

their own thought processes, decisions,

and strategies when appropriate. This

could range from simple features that

prompts users by asking “Are you sure?”

to prompt re�ection before �nalizing a

data-driven decision, to more complex

interventions. For instance, in Bannert

and Menglkamp’s work [10], prompts

were provided after each navigation

step students made in a hypermedia learning environment about

operant conditioning. The learning environment included both rel-

evant and irrelevant pages for the learning goal. Students were

prompted to select one or more reasons for their page changes in

a pop-up window, which included options like orientation, goal-

setting, planning, and control of comprehension, as depicted in

Figure 5 from [10].

While these interventions can foster deeper cognitive engage-

ment, it is equally important to balance them with the natural

exploratory �ow of the users. Overly frequent or poorly timed

prompts could disrupt user focus, causing frustration or breaking

the continuity of thought. One solution is self-directed prompts, as

developed by Bannert et al. [11]. When con�guring self-directed

prompts, learners can decide when to receive the prompts dur-

ing the learning process and decide the sequence of reasons for

their learning activities when being prompted (e.g., planning, goal

speci�cation, and orientation) [72], which supports feelings of au-

tonomy [25, 86]. When implemented thoughtfully, these features
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can encourage more deliberate analysis and prevent oversight, ulti-

mately fostering cognitive growth over time. By embracing both re-

�ective practices and user autonomy, visualization tools can evolve

beyond mere data interpretation aids to become platforms for sus-

tained cognitive development.

Figure 6: An ex-

ample of degraded

fonts in Hullman’s

work [44].

InducingVisualDi�culties. Interact-

ing with an information visualization is

akin to engaging in a learning process,

where drawing inferences from the vi-

sualized data is part of a broader ac-

tivity of assimilating new information

and integrating it with existing knowl-

edge. Typically, the evaluation of visu-

alization e�ectiveness is guided by the

cognitive e�ciency model, which mea-

sures how well a graph enhances the speed and accuracy of pattern

recognition, as noted by Larkin and Simon [53]. However, a sub-

stantial body of psychological research on learning from graphs

and diagrams suggests that introducing desirable visual di�cul-

ties – tactics designed to stimulate more intense cognitive activity

through speci�c alterations in the visual representation – can sig-

ni�cantly enhance learning [16]. This approach is supported by

Hullman et al., who argue that such challenges promote crucial ele-

ments of learning, speci�cally the active processing of information

and engagement with the content [44].

Active processing involves additional cognitive operations aimed

at deepening understanding, as depicted in the complementary

metacognitive container on the right in Fig. 2. Hullman et al. high-

lighted two primary forms of active processing: self-explanation

and the manipulation of internal visualizations. Some prior work

supports the integration of visual di�culties that prompt self-

explanationwithin visualization. For example, Natter and Berry [65]

conducted two experiments on the active processing of risk infor-

mation graphs. In these studies, participants engaged in re�ective

tasks such as representing risk sizes on a bar chart and answering

re�ective questions, which not only increased their satisfaction

with the information but also led to more accurate judgments and

estimates. To implement self-explanation facilitation, textual or task

prompts have proven e�ective in reliably inducing self-explanation

when interacting with visualizations [24]. On the topic of manipu-

lating internal visualizations, cognitive psychologists emphasize the

importance of this technique in aiding comprehension. Trafton et

al. [97] observed that experts who formed and compared schematic

internal representations with external visualizations were better

able to identify gaps in their knowledge. Engaging viewers with

internal visualizations can be e�ectively facilitated by asking them

to predict the workings of a visualized process before they examine

the actual visualization [44]. This metacognitive strategy, similar

to using re�ective thinking prompts for self-explanation, promotes

a more profound understanding by encouraging viewers to re�ect

and question actively the visual data presented. This method fosters

a metacognitive environment where viewers are not just passive

recipients of information but are actively involved in the cogni-

tive unraveling of the data, thereby enhancing their learning and

retention of complex information.

Another approach to implementing visual di�culties is grounded

in dis�uent learning experiences, which stem from the metacogni-

tive judgment of �uency. This judgment falls under metacognitive

knowledge in the Fig. 2, speci�cally within the category of knowl-

edge about one’s cognitive conditions. Fluency is de�ned by psy-

chologists as a metacognitive judgment that assesses how smoothly

information processing seems to occur [3]. For example, a previous

study found that while degraded fonts (e.g., as described in Figure 6

from [44]) are perceived as more e�ortful to read, they can actually

enhance comprehension and memory, by prompting viewers to

avoid mental shortcuts and heuristics [4]. Additionally, introduc-

ing perceptual dis�uency, such as using complex graph legends,

can bene�t graph viewers by heightening their awareness of the

e�ort they are exerting [91]. This is because perceived dis�uency

encourages viewers to engage in systematic, analytical reasoning

instead of relying on automatic or heuristic processes [4]. This

concept is similar to how introducing “di�culties" into graph com-

prehension tasks can make viewers aware of gaps in their mental

models, motivating them to invest more e�ort into understanding

the information [44].

Figure 7: An example of us-

ing color encoding to indi-

cate interaction intensity in

Lumos [62], promoting aware-

ness of potential biases.

Closing Feedback Loops

in Vis. From the per-

spective of metacognition,

an incomplete feedback

loop (F5) represents a

missed opportunity for

deeper metacognitive en-

gagement, which is criti-

cal for nurturing an en-

vironment of continuous

learning and improvement.

Speci�cally, the failure to

provide feedback prevents

participants from re�ect-

ing on and re�ning their

strategies based on their

self-assessments. O�ering

such feedback in visual-

ization tools could sig-

ni�cantly enhance partic-

ipants’ understanding of their cognitive processes, elevate self-

re�ection, and sharpen critical analysis skills. For instance, Wall

et al. enabled participants in a controlled study to revise decisions

after viewing interaction traces that showed how they allocated

time and attention across the data, which can promote conscious

re�ection of one’s analysis process [102]. Similarly, Loksa et al. ob-

served increases in productivity and programming self-e�cacy by

enabling learners to adjust their strategies based on explicit and

on-demand prompts for self-re�ection when seeking help from

instructors [58]. Systems can be designed with these features in

mind, such as Lumos [62], which provides real-time feedback by

capturing and displaying users’ interaction history with data by

using the color channel in the visualization to promote awareness

of potential biases in the data exploration process as depicted in

Figure 7. This practice can not only improve task performance but

also evolve individuals’ learning processes over time, contribut-

ing to more e�ective and insightful visual data exploration and

interpretation.
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However, it is important to recognize that the necessity and

impact of such feedback loops can vary depending on the nature

of the research or the objectives of the visualization tool. In some

contexts, such as studies exploring the e�ects of personal di�er-

ences on interpreting various visual charts [39] or examining the

in�uence of sensorimotor encoding on spatial reasoning [40], the

immediate closure of feedback loops may not be essential. Here,

the primary goal may be to observe and measure natural cogni-

tive and behavioral responses without the in�uence of feedback,

to understand baseline performances and intrinsic processes. For

more discussion on howmetacognition might in�uence researchers’

goals, see Section 7.2.

7.2 Metacognition for Visualization Researchers

The novel lens of metacognition in visualization opens up a number

of promising avenues for future research. We envision some poten-

tially fruitful outcomes could include improved decision-making

accuracy and e�ciency by better understanding and leveraging how

users become aware of and manage their cognitive processes during

data analysis. Furthermore, as with metacognitive skill training in

the learning sciences [110], the development of metacognitive skills

in visualization may lead to transferable skillsets. Here we outline

key future research opportunities that explore these aspects.

Adaptations to Existing Evaluation Methods. Integrating

metacognitive measures into existing evaluation methods in vi-

sualization has potential to enhance the e�ectiveness and relevance

of these assessments. By incorporating metacognitive elements, re-

searchers can gain deeper insights into the cognitive strategies that

users employ, the decision-making processes they follow, and the

biases that may in�uence their interpretations. One possible adap-

tation is the incorporation of metacognitive prompts within the

evaluation framework. These prompts can be strategically placed

during tasks to encourage users to re�ect on their thought processes

as they interact with visual data. For example, after presenting a

complex graph or chart, evaluators might ask participants to de-

scribe what strategies they used to interpret the data and what

information they found most or least reliable. This approach not

only helps in understanding how users process visual information

but also in identifying areas where their understanding may falter.

Similarly, researchers might consider the use of think-aloud pro-

tocols (F3), where participants verbalize their thought processes

while engaging with visualization tools. By analyzing these verbal-

izations, evaluators can identify patterns in how di�erent types of

users approach problem-solving and decision-making in real-time,

adjusting their strategies based on the feedback they receive from

the visualization. Additionally, the integration of metacognitive

assessment could be tailored through pre- and post-task question-

naires that measure changes in understanding and approach. These

questionnaires should also gauge users’ con�dence (F4) in han-

dling the visual tasks, assessing how users’ perceptions of their

own knowledge and abilities evolve as they interact with visual

data. These questionnaires can assess how users’ perceptions of

their own knowledge and abilities evolve as they interact with vi-

sual data. This data could be invaluable for designing visualizations

that are not only informative but also tailored to improve user

competence and con�dence.

Development of Adaptive Visualization Systems. Future re-

search could examine the role of metacognitive �exibility [95] in

visualization – the ability to change one’s cognitive strategies based

on new information or feedback. In educational and cognitive sci-

ences, tools such as the Metacognitive Awareness Inventory (MAI)

have been used to measure aspects of metacognitive awareness

and control that could inform adaptive system design. For example,

Schraw and Dennison’s MAI could be adapted to assess how users

re�ect on and regulate their cognitive activities while interacting

with visualizations [90]. This insight could directly in�uence de-

velopment of adaptive visualization systems capable of modifying

visualizations in real-time, tailored to a user’s metacognitive state.

Previous work has already laid the groundwork for adaptive sys-

tems in visualization. For instance, Zhang et al. introduced AdaVis,

an adaptive visualization recommendation system that utilizes ma-

chine learning techniques to suggest one or multiple appropriate

visualizations based on data context [111]. Additionally, Toker et

al. have advocated for adaptive information visualization systems

that personalize displays according to individual user needs such

as perceptual speed and personal preferences [96]. Building on this

foundation, integrating metacognitive concepts into the design of

adaptive visualization systems could monitor how a user interacts

with a set of visualizations and detect patterns such as prolonged

engagement without progress or frequent switching between data

points without drawing conclusions. If such patterns are recog-

nized, the system could intelligently suggest a shift in visualization

– for instance, changing from a complex scatter plot to a simpler

bar chart or from a static graph to an interactive one that allows

for manipulations like zooming or re-scaling. By integrating the

concept of metacognitive �exibility, this adaptive approach ensures

that visualization tools are not only more responsive but also more

intuitive, enhancing user engagement and insight generation from

the data. This approach ensures that visualization tools cater di-

rectly to the evolving needs of their users, promoting e�cient data

exploration and more informed decision-making.

Integrating Metacognition for Cognitive Bias Mitigation. Fu-

ture research could study the usage of metacognition to combat

cognitive biases, such as con�rmation bias or anchoring, which

can signi�cantly a�ect the outcomes of data analysis by leading

analysts to make decisions based on skewed perceptions rather

than objective data [98]. By increasing metacognitive awareness,

users can become more conscious of their own thoughts and biases,

prompting users to self-correct their initial assumptions. Promot-

ing metacognition can possibly be a simple yet e�ective method

to reduce users’ biases. Wall et al. observed increased awareness

of potential unconscious biases, by enabling view interaction his-

tory in real-time while exploring data and in a summative format

after a decision has been made in an interactive scatterplot-based

visualization tool [102]. This approach not only highlights biased

patterns in data interaction but also prompts users to reconsider

their analytical strategies. In a related study, the author proposed

metrics to quantify behavioral indicators of bias, such as data point

coverage metric which measures the user’s attention to the data

points, that could be integrated into visualization systems to help

users recognize and adjust for cognitive biases during their analy-

ses [100].
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This integrated approach, where metacognitive practice is cou-

pled with e�ectively designed visualization tools, enhances the

re�ective capabilities of users, making them more adept at recog-

nizing and correcting biases. Thus, while metacognition alone may

not solve all issues related to bias in data analysis, it serves as a vital

component in a multi-layered strategy that includes good design

practices and appropriate tool support. These elements collectively

contribute to a more informed and unbiased analytical process, un-

derscoring the value of metacognition as part of a comprehensive

solution.

Collaborative Metacognitive Strategies in Vis. Collaboration in

visualization is fundamentally a social process that involves e�orts

in parallelization, discussion, and consensus building [41]. Incorpo-

rating collaborative metacognitive strategies in visualization can

signi�cantly improve this process by enhancing the e�ectiveness

of distributed teams working on complex data analysis tasks. For

example, the work by Sarvghad et al. [89] highlighted a common

challenge in collaborative data analysis: understanding the scope

of investigation already covered by team members and identifying

what still needs to be explored. Traditional visualization histories,

often presented as sequential lists, do not su�ciently convey the

depth and breadth of analysis, especially in complex datasets with

multiple dimensions. This limitation can hinder e�ective collabo-

ration and strategic planning in distributed teams. To address this,

they introduced a “dimension view” to visualize the history of data

exploration from a dimension coverage perspective. This strategy

allows analysts to see not just what has been done, but how it

relates to the entire dataset’s dimensional structure. By providing a

visual representation of which dimensions have been explored and

to what extent, this view supports a more strategic and informed ap-

proach to further analysis. Such integration in visualization fosters

a more synchronized and re�ective approach to distributed data

analysis, which not only enhances the e�ciency and e�ectiveness

of collaborative e�orts but also deepens the analytical acumen of

the team as a whole.

8 Limitations

We scoped our review to work done in the last ten years from a total

of 11 metacognition- and visualization-related venues. This search

is limited in at least three ways: (1) the scope of time and venues, (2)

searches were limited to titles and abstracts only, and (3) the initial

keyword-based search strategy can miss relevant work. While we

believe our review covers a broad and deep enough space to provide

useful insights in this paper, we emphasize that this framework is

intended as a starting point for further exploration rather than a

de�nitive model. A more thorough future review could include full

text search of all 38 visualization venues covered by the VitaLITy

corpus [5, 63] and explore a similar scope of metacognition venues.

Older and upcoming research was excluded from scope but may

nevertheless help �ll in the gap of research at the intersection of vi-

sualization and metacognition. For instance, certain pivotal studies,

like the 2011 paper on visual di�culties to engage users in cogni-

tively demanding activities such as self-explanation to facilitate

their ability to monitor and evaluate their understanding [44], were

excluded from our current corpus due to the constraints on the year

range.

Similarly, our keyword-based search covered cognitive and

metacognitive keywords, however, relying solely on titles and ab-

stracts introduces two potential limitations. Firstly, papers might

seem relevant by mentioning terms such as “con�dence assessment”

in their abstracts without engaging with discussion of self-rating

in the full text (e.g., [50]), and secondly, some papers may have

relevant content in the full text of the paper, but not in the title or

abstract �elds, or may have used other types of keywords which

were scoped out of our review. For example, the KTGraph system

by Zhao et al [112] describes an interface that aids analysts in ex-

ternalizing their investigations. It features capabilities like tagging

any element of the graph to embed meta-information about their

thoughts, such as highlighting promising areas for further inves-

tigation or noting tasks to complete, thereby enhancing analysts’

awareness of their analysis coverage.

9 Conclusion

In this paper, we introduced a novel metacognitive lens through

which to consider visualization research and practice. From a large

corpus of papers from both metacognition-related and visualization-

related venues, we identi�ed 21 relevant papers that lie at the inter-

section of the two �elds. We observe that among these papers, (i)

they rarely explicitly mention “metacognition” (F1 and F2), (ii) in-

stead integrating some metacognitive measures into study designs,

e.g., by having users re�ect on con�dence and strategies (F4) or

using think aloud protocols (F3), and (iii) seldom “close the loop”

by providing insights back to users in a way that can in�uence

their analysis process (F5). We �nally synthesize a framework of

visualization that explicitly integrates metacognition and use it

to stimulate future research directions. We o�er this augmented

framework as a next step in advancing the dialogue on metacogni-

tive integration within the visualization community. We hope that

this paper can inspire a research agenda that begins to explicitly

grapple with metacognitive theories and frameworks. We believe

this has potential to transform visualization into a �eld that focuses

on deep iterative learning and re�ection.
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