®

Check for
updates

LogRobin++: Optimizing Proofs of
Disjunctive Statements in
VOLE-Based ZK

Carmit Hazay'®®, David Heath?®, Vladimir Kolesnikov3®,
Muthuramakrishnan Venkitasubramaniam*@®, and Yibin Yang®

! Bar-Tlan University, Ramat Gan, Israel
Carmit.Hazay@biu.ac.il
2 University of Illinois Urbana-Champaign, Urbana, USA
daheath@illinois.edu
3 Georgia Institute of Technology, Atlanta, USA
{kolesnikov,yyang811}@gatech.edu
4 Ligero Inc., Rochester, USA

muthu@ligero-inc.com

Abstract. In the Zero-Knowledge Proof (ZKP) of a disjunctive state-
ment, P and V agree on B fan-in 2 circuits Co,...,Cp_1 over a field F;
each circuit has ni, inputs, nx multiplications, and one output. P’s goal
is to demonstrate the knowledge of a witness (id € [B], w € F™"), s.t.
Ci¢(w) = 0 where neither w nor id is revealed. Disjunctive statements
are effective, for example, in implementing ZKP based on sequential exe-
cution of CPU steps.

This paper studies ZKP (of knowledge) protocols over disjunctive
statements based on Vector OLE. Denoting by A the statistical secu-
rity parameter and let p £ max{log |F|, A}, the previous state-of-the-art
protocol Robin (Yang et al. CCS’23) required (ni, +3nx) log |F|+ O(pB)
bits of communication with O(1) rounds, and Mac’n’Cheese (Baum et al.
CRYPTO’21) required (ni, +nx) log |F|+2nyx p+O(plog B) bits of com-
munication with O(log B) rounds, both in the VOLE-hybrid model. Our
novel protocol LogRobin++ achieves the same functionality at the cost of
(nin+nx) log |F|+0O(plog B) bits of communication with O(1) rounds in
the VOLE-hybrid model. Crucially, LogRobin++ takes advantage of two
new techniques — (1) an O(log B)-overhead approach to prove in ZK that
an IT-MAC commitment vector contains a zero; and (2) the realization
of VOLE-based ZK over a disjunctive statement, where P commits only
to w and multiplication outputs of C;s(w) (as opposed to prior work
where P commits to w and all three wires that are associated with each
multiplication gate).

We implemented LogRobin++ over Boolean (i.e., F2) and arithmetic
(i-e., Foe1_,) fields. In our experiments, including the cost of generating
VOLE correlations, LogRobin++ achieved up to 170X optimization over
Robin in communication, resulting in up to 7x (resp. 3x) wall-clock time
improvements in a WAN-like (resp. LAN-like) setting.

Keywords: Zero-Knowledge - Disjunctions - VOLE-Based ZK

© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASTACRYPT 2024, LNCS 15488, pp. 367-401, 2025.
https://doi.org/10.1007/978-981-96-0935-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0935-2_12&domain=pdf
http://orcid.org/0000-0002-8951-5099
http://orcid.org/0000-0001-9589-5182
http://orcid.org/0000-0002-0211-1244
http://orcid.org/0000-0001-9765-7911
http://orcid.org/0000-0001-6062-3531
https://doi.org/10.1007/978-981-96-0935-2_12

368 C. Hazay et al.

1 Introduction

Zero-Knowledge (ZK) Proofs (ZKPs) [26] allow a prover P to convince a verifier
V that some statement is true without disclosing further information. ZKPs
are essential in applications such as private blockchain [8], private program
analysis [22,38], private bug-bounty [31,55], privacy-preserving machine learn-
ing [35,49], and many more. In the past decade, ZKPs have received much atten-
tion, with schemes varying in performance, assumptions, and interactivity.

VOLE-Based ZK. One recent popular line of work builds ZKP protocols from
Vector Linear Oblivious Fvaluation (VOLE). This paradigm is known as VOLE-
based ZK; see e.g. [3,4,6,19-21,34,48,51]. This thrust is facilitated by cheaply
generated VOLE correlations (i.e., the random VOLE instances); see, e.g., [11-
13,29,45,52]. In VOLE-based ZK, once the cryptographic task of generating
VOLE correlations is complete, the remaining protocol can be (and typically is)
simple, information-theoretic', and extremely efficient.

For a ZK statement expressed as a fan-in 2 circuit C over some field. Let
IC| denote the number of gates in C. VOLE-based ZK only requires cost (i.e.,
communication and computation of each party) of a small constant factor over
IC] in terms of (extension) field elements and operations. Concretely, state-of-
the-art VOLE-based ZK (e.g., QuickSilver [51]) can handle millions of (multi-
plication) gates per second on modest hardware and network. For this reason,
VOLE-based ZK has proved useful in applications where the statement is large,
e.g., privacy-preserving ML [36,49], privacy-preserving static analysis [37-39],
privacy-preserving string matching [40], privacy-preserving databases [33], etc.

We focus on VOLE-based ZK because it offers by far the shortest end-to-
end proof time among all ZKP approaches (e.g., zkSNARKs, MPC-in-the-Head,
etc.), allowing for unprecedented scale and complexity of proven statements,
such as applications mentioned above. See more discussion in Sect. 1.2.

ZK Disjunctions. Traditionally, ZKP schemes (including those based on VOLE)
express statements as circuits (e.g., [1,21,51]) or constraint systems (e.g., [9,43]).
In theory, these formats support arbitrary statements (including those written in
a high-level language, e.g., C/C++) with polynomial overhead. On the other hand,
these models discard useful program structures — particularly conditional control
flow — which can be leveraged to improve efficiency. Namely, ZKP protocols
that can non-trivially handle disjunctive statements — where one of B possible
statements is proved — are highly desirable. For example, a real-world physical
CPU performs a disjunction over the instruction set in each step.

In a disjunctive statement, P and V agree on B circuits Cy, . ..,Cp_1. Each of
these circuits is referred to as a branch. P wishes to prove her ability to evaluate
one such branch to 0 without disclosing which branch is taken or active. The
naive strategy for handling such a disjunctive proof is to evaluate each branch
separately, then use a subsequent multiplezer circuit to select the output of the
active branch. This strategy results in a large circuit with more than Zie[B] ;]

! Exceptions are the works [14,50], exploiting the additively homomorphic encryption.

LogRobin++ 369

Table 1. The performance of our protocol LogRobin++, compared with the prior work,
in the VOLE-hybrid model (i.e., we do not account here for the cost of preprocess-
ing random VOLEs, see Sect. 2.5 and 2.4). We consider the disjunctive statement as
CoV ---VCp_1 where each CiE[B] has ni, inputs, nx multiplications and one output.
We remark that all protocols (including prior work) support any field. For better com-
parison, we list the performance over two classical fields — the Boolean field and a
sufficiently large arithmetic field F where |F| = A*M) | The computation is estimated
by the number of (extension) field operations. |C| denotes the number of gates in each
branch. The gray box indicates the term that only appears in P’s computation, not
V’s.

Protocol Field Communication (Bits) Rounds | Computation
., Boolean Nin + Nx + 2Anx + O(Alog B) O(log B) O(BIC|)
Mac’n’Cheese [6] Arithmetic|(ni, + 3nx) log |F| + O(log B log |F|)
Boolean Nin + 3nx + O(AB) O(1) o(Blc))
Robin [53] Arithmetic| (nin + 3nx)log [F| + O(Blog |F|)
Bool in Alog B 1
LogRobin++ .OO ean. nin + nx + O(Aog B) o O(B|C| +Blog B)
Arithmetic| (nin + nx)log |F| + O(log B log |F|)

gates. This is obviously wasteful, as only the gates in the single active branch
affect the output of the overall instruction.

The study of ZKP over disjunctive statements can be traced back to the work
of Cramer et al. [17]. This research problem has become very popular in recent
years due to the development of the Stacked Garbling technique [30] and its nat-
ural application to efficient ZKP of statements expressed as high-level programs;
see e.g. [6,23-25,30,53,54]. In this line of work, the researchers investigated cus-
tom protocols for handling general-purpose disjunctive statements, where the
cost scales only with the size of a single branch. Recent work [6,53] has brought
such techniques to the VOLE-based ZK setting. Combining VOLE-based ZK
and disjunctive statements is natural, as disjunctions are common and useful in
large and complex statements. This is the focus of our work.

1.1 Owur Results

In this work, we improve the handling of disjunctive statements in the VOLE-
based ZK paradigm. W.l.o.g., let the B branches (circuits over some field F)
be of equal size, with n;, input wires and n, multiplication gates. Let A be the
statistical security parameter and p = max{log |F|, \}. Then, the state-of-the-art
protocol Robin [53] requires (n;, + 3nyx)log |[F| + O(pB) bits of communication
and O(1) rounds in the VOLE-hybrid model.

We propose a novel protocol LogRobin++? that requires only (ni, +
nyx)log|F| + O(plog B) bits of communication and O(1) rounds in the VOLE-

2 We note that our main protocol LogRobin++ does not follow the Robin’s underlying
paradigm or technique. We follow the Robin naming line as Robin stands for refined
oblivious branching for interactive ZK [53].

370 C. Hazay et al.

hybrid model. See Table1 for a detailed comparison with prior state-of-the-art
protocols. LogRobin++ outperforms Robin in communication in two aspects: (1)
its communication cost incurs an additive O(plog B) term rather than O(pB);
and (2) it saves transmission of 2ny field elements, resulting in &~ 3x improve-
ment. To achieve these two improvements, we introduce two novel techniques:

— Inspired by [27], we propose a new technique for proving in ZK that a length-
B committed vector (of IT-MAC commitments used by VOLE-based ZK)
contains at least one zero element. Our technique requires transmission of
only O(log B) (extension) field elements. It can be directly plugged into the
Robin protocol [53] to improve its communication to (n;, + 3nx)log|F| +
O(plog B) while keeping O(1) rounds, in the VOLE-hybrid model. We call
this intermediate stepping-stone protocol LogRobin.

— We develop a new way of realizing VOLE-based ZKP of disjunctive state-
ments. Namely, we show that with P committing to only the inputs and
multiplication outputs on the active branch (using VOLE correlations), the
problem of proving a disjunction reduces to the following problem of proving
the existence of an affine correlation among a set of quadratic ones:

P holds B quadratic polynomials p;c(p)(X), (at least) one of which has lead-
ing coefficient 0 (i.e., it is an affine polynomial). V holds a private evaluation
point A and obtains a commitment to each polynomial as p;c(p)(4).

P must prove in ZK to V that one of p;’s is affine.

The affine-polynomial-correlation problem can be solved using VOLE corre-
lations.

Put together, this reduction leads to our second stepping-stone protocol
Robin++, which requires (n;, + nx)log|F| + O(pB) bits of communication
and O(1) rounds in the VOLE-hybrid model.

Our final protocol LogRobin++, as indicated by its name, combines the underlying
techniques of LogRobin and Robin++. At a high level, we show that the technical
insight underlying LogRobin’s optimized 0-membership proof can be adapted to
solve the affine-polynomial-correlation problem exploited by Robin++. Combining
our two technical ideas requires care; directly combining the two techniques
would either require O(B) communication or break the ZK property. See Sect. 3
for a concise technical overview of our protocols.

We remark that our paradigm of constructing LogRobin can be trivially gen-
eralized beyond VOLE-based ZK. In particular, it can be instantiated based on a
commit-and-prove ZK [16] where the commitment scheme is linear homomorphic
(e.g., the Pedersen commitment [44]).

We implemented LogRobin++ over Boolean (i.e., F3) and arithmetic (i.e.,
Fae1_1) fields. The experimental results closely reflect the analytic costs in
Table1, as LogRobin++’s (and Robin’s) costs contain small hidden constants
in O. Our costs include VOLE generation. Compared to prior state-of-the-
art Robin [53], LogRobin++ improves communication by up to 170x for dis-
junctions with many small branches. In terms of end-to-end execution time,
LogRobin++ outperforms Robin by up to 7x (resp. 3x) in a 10 Mbps WAN-

LogRobin++ 371

like network (resp. 1 Gbps LAN-like network) for a wide range of parameters.
See Sect. 5 for details.

We remark that LogRobin++ is secure against a static unbounded adversary
(i.e., it is information-theoretically secure) in the VOLE-hybrid model. Some-
what surprisingly, when considering information-theoretic ZKP protocols in the
VOLE-hybrid model, the price of evaluating one of many branches is now min-
imal in the following sense: LogRobin++ incurs only additive (poly)logarithmic
communication as compared to the state-of-the-art (information-theoretically
secure) VOLE-based ZK [21,51] over a single active branch. Thus, the addi-
tional cost of private branching is now similar to the log B bits that would be
required for P to non-privately identify the active branch index to V.

1.2 Related Work

VOLE-Based ZK. With the seminal work of [11] enabling cheap generation of
VOLE correlations, a productive line of work on VOLE-based ZKP protocols
soon emerged [3,4,6,14,19-21,29,34,48 51]. See also [5] for a survey. VOLE-
based ZK is simple, information-theoretic in the VOLE-hybrid model, and effi-
cient. Because of its efficient scaling, VOLE-based ZK is particularly useful for
applications where the statement is large.

Consider a standard fan-in 2 circuit C defined over some field F with n;,
inputs, nyx multiplications, and |C| gates in total. State-of-the-art (information-
theoretically secure) VOLE-based ZK [21,51] incurs only linear costs with small
constant factors — (1) P transmits n;, + nx field elements and O(1) extension
field elements, (2) V transmits O(1) extension field elements, and (3) P and V
perform O(|C|) extension field operations.

VOLE-based ZK communication cost can be further cut in half by leveraging
a Random Oracle [20], or it can be reduced to sublinear by leveraging additively
homomorphic encryption [50]. However, these optimizations do not substantially
improve concrete performance as compared to [21,51].

VOLE-based ZK proofs are not succinct, with the exception of [50] and [14];
[50] achieves O(|C|?/*) and [14] achieves O(|C|'/?) communication. Constructing
a VOLE-based ZK proof system incurring o(|C|*/?) communication remains an
open problem.

ZK Disjunctions. The study of ZKP protocols for disjunctive statements can be
traced back to 90s, starting with the work of Cramer et al. [17]. This problem
was later revisited and refined by [30], which targeted improvements to ZKPs
based on Garbled Circuits [32,56]. [30] described the possibility of reusing trans-
mitted cryptographic material of the active branch to evaluate (to garbage and
privately discard) inactive branches (they call this technique “stacking”). This
limits communication cost to that of the single largest branch, but it still requires
computation over all branches.

Following [30], a rich line of work [3,4,6,19-21,34,48, 51] studies “stacking”
ZKP protocols in the context of various ZK techniques. Among these, [6,53]
are the most relevant here, as they similarly focus on VOLE-based ZK. Our

372 C. Hazay et al.

protocol LogRobin++ outperforms these prior works theoretically (see Table1)
and concretely (see Sect. 5). Note, [53] also studied the batched disjunctions — a
same disjunction is repeated. We only focus on the non-batched setting.

Proving a Committed Vector Contains 0. Our work is partially inspired by the
elegant work of Groth and Kohlweiss [27]. [27] proposed a public coin special
honest verifier zero-knowledge proof (i.e., a X-protocol) that can be used to show
that a vector of cryptographic commitments (with special properties) contains
a zero. [27] applies this type of proof to ring signatures and zerocoin [41]. The
technique underlying our stepping-stone protocol LogRobin can be viewed as
adapting their technique to the setting of IT-MAC commitments (see Sect. 2.4).
We remark that we consider a malicious V and apply this 0-membership proof
over disjunctive statements. Our final protocol LogRobin++ does not use a
proof of 0 membership; instead, it leverages a sub-component of our LogRobin

technique.

Other Related Work. ZKP is an enormous and fast-growing field of research. We
make a few remarks about other works in the area.

Recent work [2] showed that by applying a so-called VOLE-in-the-Head cryp-
tographic compiler, all ZK protocols relying only on VOLE — including ours —
can be made non-interactive and publicly verifiable.

Outside VOLE-based ZK, succinct ZK proofs enjoy significant attention.
Although this remarkable line of work enables incredibly small proofs and fast
verification, it suffers from expensive computation on behalf of P. This high-
lights a strength of VOLE-based ZK: in VOLE-based ZK, P’s computation is
lightweight and efficient.

2 Preliminaries

2.1 Notation

—) is the statistical security parameter (e.g., 40 or 60).

K is the computation security parameter (e.g., 128 or 256).

— The prover is P. We refer to P by she, her, hers...

— The verifier is V. We refer to V by he, him, his...

— & £ y denotes that z is defined as y. x := y denotes that y is assigned to x.

— We denote that z is uniformly drawn from a set S by x &g

— We denote the set {0,...,n — 1} by [n].

— We denote a finite field of size p by F,, where p > 2 is a prime or a power of
a prime. We use F to represent a sufficiently large field, i.e., |F| = A,

— We denote row vectors by bold lower-case letters (e.g., @), where a; (or a[i))
denotes the i-th component of a (0-based).

— Let M be a matrix. M; ; is the element of i-th column and j-th row (0-based).

— We use ¢ to index branches (e.g., ¢ € [B]), id to index the active branch. Le.,
the ¢d-th branch is the one that P holds a valid witness.

LogRobin++ 373

2.2 Schwartz-Zippel-DeMillo-Lipton Lemma

The soundness of our protocols heavily relies on the Schwartz-Zippel-DeMillo-
Lipton (SZDL) lemma [18,46,57], stated in Lemma 1.

Lemma 1 (Schwartz-Zippel-DeMillo-Lipton). Let F be a field and p €
Flz1,...,2n] be a (multivariate) polynomial of degree d. Suppose |F| > d, then

d

$
Priplv)=0|v<F" < —
|F|

2.3 Security Model

We formalize our protocol using the universally composable (UC) framework [15].
We use UC to prove security in the presence of a malicious, static adversary.
For simplicity, we omit standard UC session (and sub-session) IDs.

2.4 IT-MACs

Information Theoretic Message Authentication Codes (IT-MACs) [10,42] are
two-party (here, between P and V) distributed correlated randomness that can
be used as commitments. In IT-MACs over F, V holds a uniformly sampled global

key A & F. For P to commit a value z € F, V samples a uniform local key k, SF
and P will learn a MAC for z as m, £ k, — 1A. We use [z] , £ ((z,m4), kz) to
denote the IT-MAC correlation of . A will be eliminated when it is clear from
the context. We recall the following useful properties of IT-MACs:

1. Hiding: k, and A, held by V, are independent of the committed value z.

2. Binding: P can open [z] by sending = and m,, where V would check if
ks = A+ my. To maliciously open [z] to 2’ # x (i.e., to forge x), P must
guess A — an attack would succeed with only \Tll probability.

3. Linear Homomorphism: IT-MACs support linear operations — addi-
tion/scalar multiplication/constant addition — without communication. That
is, for any public constants cg,cy,...,c, each in F, P and V can locally gen-
erate [co + c1o1 + -+ + cu1y] from [z1], ..., [,].2 In particular, we denote
[co+crmr+-+entn] =co+c1- 2]+ +cp - [2,]. Note, this implies that
an I'T-MAC of a public constant can be generated for free.

2.5 VOLE Correlation

Random IT-MAC instances (over F,,) can be generated by Vector Oblivious Lin-
ear Evaluation (VOLE) correlation functionality, formalized as .7-'\1}’01LE in Fig. 1.

This functionality has been widely studied, e.g., in [12,13,45,48,52]. In the

3 Le., if ky = tA+m, and ky, = yA+m,, we have (ky +ky) = (x+y) A+ (mg +my).
Moreover, for any constant ¢ € F, P can set m. = 0 and V can set k. = cA.

374 C. Hazay et al.

Functionality Figi ¢
FvoLe, parameterized by a base field F, and an extension field Fpqa, proceeds as
follows, running with a prover P, a verifier V and an adversary S:

Initialize. Upon receiving (init) from P and V, if V is honest, sample A & Fpa,
else receive A from S. Store A and send it to V. Ignore subsequent (init).

Extend. Upon receiving (extend, n) from P and V:

— If V is honest, sample k., & Fpa, else receive ko, € Fpq from S.

— If P is honest, sample u <$; F, and compute m,, := ko —u- A € Fpy, else receive
u € Fy and m,, € Fpq from S and compute ke, := ma +u - A € Fpa.
— Send (u, my) to P and ky to V.

Fig. 1. The (subfield) VOLE correlation functionality.

VOLE-based ZK, P and V generate n instances of IT-MACs, where each IT-
MAC commits an independent (pseudo-)random element wu;¢,. Later, it is stan-
dard [7] to consume one random instance [u;] to generate [x] where z is chosen by
P.lLe., P can send z—u; to allow parties to locally compute [u;]+(z—u;) = [z].
Note, each u; can only be used once.

Subfield VOLE. Figure 1 also defines subfield VOLE correlations. This is useful
when working over a small field IF,,. In particular, consider the Boolean field Fa.
Obviously, IT-MACs over Fy do not provide a strong enough binding property
since P can successfully guess A with probability % Naturally, we can embed
values in Fy into a large enough extension field (i.e., Fyx) to overcome this.
However, since committed values are restricted to sy, it is an overkill to use

VOLE correlations over Fox (i.e., F\Q,SLIE) to generate I'T-MACs. Instead, we

can exploit the subfield VOLE correlation .7-'\2,6\|_E (also known as the random
correlated OT) where each ¢}, € Fo — P sends a single bit u; © x to get [z].

FoSe from LPN. Recent works (e.g., [11-13,45,52]) show that FUg| ¢ can be
instantiated efficiently via the Learning Parity with Noise (LPN) assumption to
achieve sublinear costs — the extend instruction to generate (subfield) VOLE
correlations of length n requires only o(n) communications.

2.6 VOLE-Based ZK for a Single Circuit and LPZK Technique [21]

Prior work [3,4,6,20,21,48-51] has shown that (subfield) VOLE correlations can
be used as a hybrid functionality (see Fig. 1) to enable efficient ZK proofs.
Consider a circuit C defined over some field F,. P wishes to prove in ZK
that she knows the inputs that evaluate C to zero. Let ¢ be a large enough
positive integer such that p?¢ = A*(1). VOLE-based ZK works in the commit-
and-prove paradigm [16]. In particular, by exploiting functionality Fig g, P can
commit to its inputs (i.e., the witness) and each multiplication output (i.e., the

LogRobin++ 375

extended witness) using IT-MACs over F,q. Recall that IT-MACs are linear
homomorphic. Therefore, P and V can locally evaluate C over these IT-MACs.
That is, the parties can put these IT-MAC commitments on C’s input and each
multiplication output, then evaluates C gate by gate over IT-MACs. After the
local evaluation, P and V would obtain an IT-MAC on each wire of C, including
the output of C as [res]. Now, it suffices to show that each multiplication gate is
formed correctly. That is, each multiplication gate connects to three wires (left
input, right input and output) where each holds an IT-MAC; and P needs to
show that they form a multiplication triple (inside the commitments). Note, an
extra multiplication needed to be added to capture the proof to show that the
output of C is 0, i.e., res - res = 0 (where [0] can be generated locally).

LPZK Technique. The advanced approach to proving that the multiplication
relationship holds inside one IT-MAC triple is the Line-Point Zero-Knowledge
(LPZK) technique [21,51]. Consider [z], [y], [2] where P wants to prove in ZK
that z = xy. The crucial observation is:

known by V
,_/;
koky — kA = (A4 my)(yA + my) — (zA+m,)A (1)
= (vy—2) A%+ (zmy +ym, —m,) A+ mym, (2)
—— ~——
known by P known by P known by P

Hence, if zy — z = 0, P can send two coefficients M; and My and V can check
if My A+ M, z kyky — k. A, If xy — 2z # 0, the equality would only hold with 1%
probability since P does not know A. Indeed, sending xm, + ym, — m, breaks
ZK. To recover ZK, it suffices to consume another random IT-MAC [r]. Le.,
V can compute kzky, — k. A + k. and P can send zm, + ym, — m. + r and
mgmy +m,. The ZK holds since the coeflicient is (uniformly) one-time padded.

Batched LPZK. Note that to prove a batch of multiplication IT-MAC triples,
V can issue challenges to random linearly combine coefficients induced by each
triple as Equation (1). Namely, V can linearly aggregate over the values known by
him induced by each multiplication triple, with a V-sampled public weight vector.
Crucially, if each multiplication is formed correctly, V should obtain a value
(after the aggregation) that can be interpreted as a P-known affine polynomial
evaluated at A. On the other hand, if some multiplication does not hold, V
should w.h.p. obtain a value that can only be interpreted as a P-known quadratic
polynomial evaluated at A. Starting from here, the proof can be completed as
the non-batched setting. We denote this procedure as the batched LPZK (check).

To further save communication, it is standard to generate the challenges
(operating as the weight vector) by expanding a PRG over a k-bit seed assuming
the Random Oracle (RO) or powering an uniform field element.

By deploying the batched LPZK, the ZKP of C is achieved. To summarize*:

4 We note that VOLE-based ZK works over any field.

376 C. Hazay et al.

Functionality F5;”

.Fé’l’(B is parameterized by positive integers p and B, where F,, exists. Upon receiving
(prove,Co,...,Cp—1,w,id) from prover P, where each C;c(p) is defined over F:

— If C;q(w) = 0, then output (true,Co,...,Cp-1) to V and S;
— otherwise, output (false,Co,...,Cp—1) to V and S.

Fig. 2. The disjunctive ZK functionality.

Lemma 2 (Single-Circuit VOLE-based ZK, Informal). For a circuit C
defined over I, with n;, inputs, nx multiplications and one output. Let ¢ € N
such that p? = XM There exists a constant-round ZKP protocol over C with
(nin +nx)logp+3qlogp + O(1) bits of communication in Fg, g-hybrid model.
Remark 1. The computation complexity of VOLE-based ZK protocol of the cir-
cuit C for both parties is O(|C|) where |C| denotes the number of gates, in terms
of field operations over Fp« and in the VOLE-hybrid model.

2.7 Disjunctive Statements in VOLE-Based ZK: Robin [53]

Our work focuses on studying VOLE-based ZK over disjunctive statements. For-
mally, consider B circuits Co, ...,Cp_1 defined over some field F,. P’s objective
is to prove to V that she knows an input that evaluates (at least) 1 out of these
B circuits to zero, without revealing the identity of that branch. We use “active
branch” to denote the branch for which the prover knows a witness and let it be
the id-th one. Figure 2 formalizes the disjunctive ZK functionality.

A straightforward approach to handle a disjunctive statement is to combine
B circuits into one large circuit, where each circuit is included, evaluated, and
finally multiplexed to determine the output. This naive approach is undesirable
as the cost would be proportional to O(B]C|), where |C| denotes the maximum
circuit size among all branches. Robin [53] shows that the communication can be
optimized to be proportional to O(B+|C|). Roughly speaking, this is achieved by
reusing the “multiplication triples” of the active branch on the inactive branches.

We review Robin in slightly more detail. W.l.o.g., assume B circuits are of
the same size — each has the same numbers of inputs (denoted as n;,) and
multiplications (denoted as ny). In Robin, P uses IT-MACs to commit to the
Nip inputs (denoted as [w]) and 3ny wires (denoted as [£],[r],[o]) associated
with multiplications (left/right/output) on the active branch. To ensure that
each multiplication is formed correctly, P and V perform the batched LPZK
check (see Sect. 2.6). Le., the check ensures that £ element-wise times 7 is o.

Then, for each branch Cic(p), P and V can evaluate C; over the committed
inputs [w] and multiplication outputs [o], just like the regular VOLE-based ZK
over C; (see Sect.2.6). Note that here P and V reuse [w] and [o] on each branch.
After evaluation, each wire on C; has an IT-MAC.

LogRobin++ 377

For each such branch C,¢(p), denote (1) the IT-MAC vector consisting of

the left wires on each multiplication as [£]; (2) the IT-MAC vector consisting
of the right wires on each multiplication as [r(¥]; and (3) the IT-MAC on the
output of C; as [res("]. The crucial observation exploited by Robin is as follows:
the committed w, £, r, 0 are the correct extended witness for C; if and only if
the IT-MAC vector [£ — £D]||[r — r®]||[res®] commits 027+,

Therefore, to prove that P indeed commits to an extended witness that
satisfies one branch (conditioned on correct multiplications), it suffices to show
that 02"x*+! is committed by l-out-of-B induced IT-MAC vectors. This can
be proved efficiently: by V issuing a length-(2n, + 1) random challenge vector®,
parties can locally generate B IT-MACs by computing the inner product between
the random challenge and each vector. Finally, it suffices to show that one of B
inner products is 0 — Robin achieves this by showing that the product of these
B IT-MACs is 0, which requires transmission of O(B) elements in Fpa.

Note that Robin uses the LPZK technique to prove the multiplication triples
of IT-MACs in a black-boxr manner. Also note that when the circuits are defined
over a small field (e.g., the Boolean field [F3), the random challenge vector issued
by V must be defined over an extension field (e.g. Fyx) to ensure soundness. We
conclude this section with the following lemma and remark:

Lemma 3 (Robin, Informal). Let Cic[p) denote B circuits (defined over F,) of
the same size, where each has n;, inputs, ny multiplications and one output. Let
q € N such that p? = X1V . Then, there exists a constant-round ZKP protocol
for the disjunctive statement CoV---VCp_1 using (n;, +3nx)log p+O(Bqlog p)
bits of communication in Fyg| g-hybrid model.

Remark 2. Compared to the naive approach, the computation complexity for
Robin is still O(B|C|) in terms of number of field operations over Fpaq.

3 Technical Overview

In this section, we provide a technical overview of our constructions. We note
that understanding how Robin [53] works (see Sect.2.7 for a concise review)
would be very helpful to contextualize the components in this section.

While our protocols work over any field, for simplicity, throughout this
section, consider a sufficiently large field F (i.e., |[F| = A*()). In particular,
P and V agree on B circuits Cic(p) defined over F, each with n;, inputs and n
multiplications. Suppose P wishes to prove to V in ZK that she knows w € F™n
that can evaluate the id-th circuit to zero. Note that ¢d, unknown to V, must
be kept private. Moreover, let £,7,0 (|€| = |r| = |o| = nx) denote P’s extended
witness — P evaluates C;q(w) to obtain £ (resp. 7, o), which are the values on
the left (resp. right, output) wire of each multiplication, in the topology order.

Roadmap. Recall that the state-of-the-art protocol Robin requires P to commit to
w, £, 7,0 with additive O(B) communication of field elements. Our final proto-
col LogRobin++ achieves communication costs where P only needs to commit to

5 Again, this can be generated from a PRG or an uniform element to its powers.

378 C. Hazay et al.

w and o with additive O(log B) communication of field elements. Our overview
is presented with stepping stones and structured as follows:

1. In Sect. 3.1, we overview our first stepping stone — a technique to allow P to
prove to V in ZK that l-out-of-B IT-MAC commitments is 0 with O(log B)
communication costs. Directly plugging in this technique into Robin results in
a protocol — LogRobin — that requires P to commit to w, £, r, 0 with additive
O(log B) communication of field elements.

2. In Sect. 3.2, we overview our second stepping stone — a different way to con-
struct VOLE-based ZK for a disjunctive statement. Essentially, we show that,
by P committing to only w and o, the proof can be reduced to show the exis-
tence of an affine correlation, where P holds B all-but-one-affine quadratic
polynomials and V holds B values that are generated by evaluating these B
polynomials at A. We construct a sub-optimal (i.e., with O(B) communica-
tion costs) ZK protocol to prove the existence of such an affine correlation,
ultimately resulting in a protocol — Robin++ — that requires P to commit to
w, o with additive O(B) communication of field elements.

3. In Sect. 3.3, we overview our final protocol LogRobin++, non-trivially com-
bining techniques underlying LogRobin and Robin++. At a very high level,
we show that the technique behind proving 0 among 1l-out-of-B IT-MACs
(used in LogRobin) can be adapted to solve the affine-polynomial-correlation
problem inside Robin++ with O(log B) communication costs.

3.1 LogRobin: Optimizing the Proof of IT-MACs Containing 0

In this section, we overview the first stepping-stone protocol LogRobin. Recall
that the O(B) communication overhead in Robin comes from P proving V that
there is a 0 among B IT-MAGCs [to], ..., [tp—1] (see Sect.2.7). In Robin, this is
done by simply multiplying the B values and opening the result to V, which costs
O(B). (If at least one multiplicand is 0, the product is 0.) The crucial technique
behind LogRobin is to improve the cost of this sub-procedure to O(log B).

Intuitively, this is possible as P knows where the 0 is, while Robin only exploits
the fact that the 0 exists. Informally, O(log B) can be interpreted as the minimal
amount of information required for P to “point out” which element is 0 (i.e.,
which branch is active) correctly and obliviously.

A straightforward way to allow P to obliviously encode which branch is active
(i.e., the id-th) with O(log B) overhead is to require P to commit to id bit by
bit (via IT-MACs). That is, w.l.o.g., let B = 2° for some b € N. Then, P can
decompose id € [B] into b bits idy, ..., idp—1 such that id = Zé’;& 2. id;. Next,
P commits to each id; as [id;] and proves in ZK that each [id;c)] commits a
bit (namely, P proves that Vi € [B], id; - (id; — 1) = 0 via the batched LPZK).

Path Matriz. Committing these bits alone is insufficient. However, it turns out
that they can be exploited to further generate a powerful so-called path matriz,
inspired by [27] (a useful technique that allows P to obliviously point the active

LogRobin++ 379

branch). To construct the path matrix, besides [¢d], P prepares b random IT-
MACs [do], ..., [0p—1] where each ;[S Next, V issues a uniform challenge
A& F. Consider the following 2 x b matrix [M] of IT-MACs:

[A-(1—ido)+00) [A-(1—idi)+01] -+ [A-(1—idy_1)+6p_1]
[M]:([A.idoz(so]o [A-idy — 61] [A.idbfbl_(sbflb])

The committed matrix M is called the path matrix with the following properties:

— The two elements in each column differ by A. E.g., the two elements in the
first column (within the IT-MACs) sum to A- (1 —ido) + o+ A-ido — o = A.

— Each element inside M can be revealed to V as d;c[p) is uniform.

— For each column ¢ € [b], if id; = 0, the column vector M; would be (A4 +
0i, —0;); if id; = 1, the column vector M; would be (4;, A — §;). Essentially,
A term must exist and only exists on the id;-th row.

Thus, P can open M to V without disclosing id. Note that since A is public,
each element of [M] can be locally generated from [id] and [6]. With the path
matrix M, the parties can bit decompose each a € [B] into ag,...,ap—1, then
compute G, = H?;é M, a;.

A crucial observation about each €, ¢(p) is that €, is a product of b elements
involving A only when a = id. Le., €;4 can be interpreted as a degree-b polyno-
mial evaluated at point A. On the other hand, for each a # id, %, is a polynomial
of degree at most b — 1 evaluating at A. The procedure to generate ¥ can be
viewed as P’s ability to obliviously put the degree-b polynomial at ;4.
Proving 0 exists among IT-MACSs [to], ..., [ts—1]. We now present how the path
matrix M (in particular, the associated %,¢c(p)) can be used to design a ZKP
showing that ¢;; = 0 among [tie[B]] without disclosing ¢d. Note that P and V
can locally compute the following IT-MAC:

[S]2 % -[to] + €1 - [t1] +-- +Cp_1-[tB_1]

Crucially, €iq-[tia] = [0] since t;4 = 0. Thus, S can be interpreted as a polynomial
s(X) of degree at most b— 1, evaluated at A. Le., s(X) £ Zi.:é s; - X* such that
S = s(A). More importantly, the coefficients so, ..., sp—1 of s(X) are known to
P and independent of A. Thus, P can commit to Sg,...,Sp—1 as [So],. .., [Sp—1]

before A is sampled. Once A is public, P proves that
[S] = [so] = A+ [s1] =+ = A7 [sp—1] =[S — s(4)]

commits a 0 to finish the proof. Note that the entire procedure is taken within
the IT-MACs, so the ZK holds. Moreover, it only requires O(b = log B) com-
mitments, meeting our communication budget.

We briefly argue why the soundness holds. Indeed, generating the path matrix
M forces P to select an id to claim t,q = 0. If ¢g,...,tp_1 are all non-zero,
Gid - [tia] must commit a degree-b polynomial evaluated at A. This infers that [S]
commits a degree-b polynomial evaluating at A as well. Note that A is uniformly
chosen by V and s(X) is a degree-(< b) polynomial chosen by P before knowing
A. Therefore, s(A) # S w.h.p. by the SZDL lemma (see Lemma 1).

380 C. Hazay et al.

Remark 3. To prepare s;cp), P needs to perform O(Blog B) field operations.
To prepare €c(p), P and V each only needs to perform O(B) field operations.

Remark 4. LogRobin is constant-round in the VOLE-hybrid model. While this
is not our focus, this asymptotically improves over Mac'n’Cheese protocol [6].

3.2 Robin++: Committing to Lesser Values Within the Active
Branch

In this section, we overview the second stepping-stone protocol Robin++. Robin++
improves over Robin by roughly 3x where P only needs to commit to w and o,
whereas in Robin, P commits to w, £, r, o.

It may seem that committing to £ and = in the disjunctive setting is inherent
since it allows multiplication triples on the active branch to be reused on the
inactive branch (which is the secret sauce of Robin). However, this is not the case
since Robin++ only allows P to commit to w and o. To see how Robin++ works,
it is instructive to see what happens if P commits to w and o, then P and V
try to execute the single-circuit VOLE-based ZK [21,51] (see Sect.2.6) on each
branch reusing the committed extended witness and V ’s challenges. Ensured by
the soundness of the single-circuit VOLE-based ZK, the proof on the inactive
branch would fail. In particular, the proofs introduce two cases for each Cic(p):

— Valid (Affine): If w and o are the valid extended witness of C;, based
on the correctness of the single-circuit VOLE-based ZK for C;, P will learn
MD M € F and V will learn K@ € F where

KD =MPA+ M

Recall that to finish the proof, P sends two (randomized) coefficients.

— Invalid (Quadratic): If w and o are not the valid extended witness of C;,
based on the soundness of the single-circuit VOLE-based ZK for C;, P will
learn MQ(i), Ml(i), Méi) € F and V will learn K € F where

KD = MY A? + MV A+ MY
and crucially, Mg(i) # 0 w.h.p. The proof fails by sending two coefficients.

Now, consider the disjunctive statement. Clearly, to show that there is an active
branch, it is sufficient for P to show that there is an “affine equality/correlation”.
That is, instead of finishing all B proofs, P and V stop at the point where V
holds B values K€[B) ¢ F where each value can be interpreted as a P-known
quadratic polynomial evaluating at A (i.e., P holds pU€lBD(X) £ Mz(Z)X2 +
Ml(Z)X + Mél) whereas V holds K€IB) & p()(A) and a private A). Starting
from here, it suffices for P to show in ZK that one of B evaluation points learned
by V is introduced by an affine polynomial. I.e., the disjunctive VOLE-based ZK
proof is reduced to the above affine-polynomial-correlation problem.

LogRobin++ 381

A Sub-optimal Approach to Solve the Affine-Polynomial-Correlation Problem.
We show a sub-optimal way to solve this problem with O(B) costs, resulting in
Robin++. In Robin++, P commits to all Mg(ie[BD via IT-MACs as {Mg(ie[B])} and
proves in ZK to V that there is a 0 among them. This step can be done using
the technique used by LogRobin or just simply showing that their product is 0 as
Robin. We remark that the technique used by LogRobin will not improve overall
communication costs here since the step to commit to all Mz(ie[B]) costs O(B).

Clearly, this is insufficient — we need to further ensure that P indeed commits
to the correct MQ(ZE[B]) w.r.t. each K held by V. In the non-private case without
ZK, this can be done trivially by P opening M2(i)
Mli) and Méi) where V checks that K < MQ(Z‘)A2 + Ml(i)A-i-MOi). (Recall that
A, sampled by V, is private.) The ZK does not hold because (1) if MQ(i) =0,

(;)2 are

for each i € [B] and sending

V would know this is the active branch, and more importantly (2) M;

correlated with P’s witness. It is classic to use fresh random IT-MACs to achieve
privacy by deploying them as masks. In detail, consider two random IT-MAC

instances {rgi)} , {TS)} and the following equality:

known by V
—_—— . ;
kréi)A —+ kry) = (Téz)A + mrgi)> A+ T%Z)A + mrii)

~—~
known by P

Téi) A? + (T'gi) + mr;”) A+ mTY)
—_—— ——

known by P known by P

Hence, V can compute K® 4 kiTmA + kr(“ where P would open [MQ(l) + réi)}
2 1
and sends Ml(’) + ng) +m @ and Méz) +m . ZK holds now as coefficients
2 1

MQ(i) and M 1(i) each is one-time-pad encrypted. In particular,)V would not know
which branch is active since all correlations look quadratic from V’s perspective.
Note, QuickSilver [51] also showed a similar approach to generate and exploit
this “padding” correlation, but they consume 3 random IT-MACs instead of 2.

Finally, note that the above check for each i € [B] is identical. Hence,
all B checks can be performed in a batched manner. That is, V issues ran-

dom challenges xo,...,x5_1 and computes Zf:ol iK' whereas P computes

Zf:ol xiMéi) and Zi? XiMli). Furthermore, P and V can locally compute

Zf;_ol XiMQ(i) . Random masks over the coefficients are still required to ensure
the ZK property, but now only two random IT-MACs are needed in total.
To conclude, our stepping-stone protocol Robin++ exploits the reduction and
the sub-optimal protocol to solve the affine-polynomial-correlation problem.

Remark 5. Tt is worth noting that when B = 1, Robin++ is (almost) identical
to QuickSilver [51] — the state-of-the-art VOLE-based ZK for a single circuit. In
particular, the asymptotic and concrete costs are identical.

382 C. Hazay et al.

3.3 LogRobin++: Non-trivially Combining LogRobin and Robin++

In this section, we overview our final protocol LogRobin++. As its name indicates,
LogRobin++ combines the techniques exploited by Robin++ and LogRobin. With
both techniques, (1) P only needs to commit to w and o as Robin++; and (2)
LogRobin++ incurs additive O(log B) communication overhead as LogRobin. We
remark that the combination is non-trivial as, looking ahead, a naive attempt
would either require O(B) costs or break the ZK property.

Recall that, by P committing to only w and o (cf. Robin++), the disjunctive
proof can be reduced to the affine-polynomial-correlation problem. I.e., P and
V jointly hold the following correlated values:

known by V known by P known by P known by P
K9 = M A+ MY A+ My (3)

for each i € [B] (where A is privately sampled by V), such that P wishes to prove
to V in ZK that Jid € [B], M2(Zd) = 0. Robin++ achieves this by requiring P to
commit Méze[BD as [MQ(O)} e [MQ(BA)], prove the committed B containing

0, and open a random linear combination of them (with extra uniform pads to
ensure ZK). Note that committing Mz(le[B]) requires O(B) costs!
In LogRobin++, we propose a O(log B)-communication protocol to solve the

affine-polynomial-correlation problem, ultimately achieving our objective.

Intuition. To get a sense of why this is possible, note that the correlation
in Eq. (3) can be viewed as a “conceptual commitment” over MQ(i) (from P
to V). In particular, P can open the commitment via sending Méi),Ml(i) and
Mz(i) whereas V can check if Eq. (3) holds. Indeed, as the IT-MAC, if P wants

to forge Mél) to a different value Mél)7 she needs to guess A. Viewed this way,
the affine-polynomial-correlation problem can be interpreted as P proving to V
in ZK that one of these B “conceptual commitments” is 0. Our technical insight
behind LogRobin++ is to adapt our technique in LogRobin, which is used to prove
1 out of B IT-MAC commitments is 0, to these “conceptual commitments”. How-
ever, we remark that it is not ZK to open each “conceptual commitment” — the
main challenge. This is because, as discussed in Sect. 3.2, Mél), Ml(l) and MQ(I)
correlate with P’s extended witness.

Adapting LogRobin’s technique over “conceptual commitments”. Recall that P
in LogRobin would commit to id bit by bit, and then the parties generate a
so-called path matrix M. This path matrix M induces B field elements ¢ (p)-.
By viewing each KU€BD conceptually as a commitment, V can compute

SL26KY + 4KV . +¢5 KB (4)
which can be viewed as a multivariate polynomial s(-,-) evaluated at (A, A) as

b 2
S=5(4,4)=>"> s A (5)

§=0 k=0

LogRobin++ 383

where w.lo.g., let B = 2% for some b € N. Note that the 3(b + 1)

coefficients {s;x}jep+1],ke[3) are known to P as they are determined by

{Mz(i), Ml(i), Méi)}‘ - and the P-chosen id, d (see Sect. 3.1). Recall that there
1€

is only one value within € — the €;; where id is the index of the active branch —

that can be interpreted as a degree-b polynomial evaluated at A. Therefore, the

coefficient s; 2 of A®A? can only be induced by € K4 and, if P is honest, must

be 0 as Mz(ld) = 0. In other words, for i # id, since é; can only be interpreted
as a degree-< b polynomial evaluated at A, it is impossible to induce the term
AP A2,

Just as LogRobin, based on the SZDL lemma, it suffices for P to show her
ability to compute S from a degree-(b+ 1) multivariate polynomial evaluated at
(A, A) by specifying 3b + 2 coefficients — all sjep41],ke[3] except sp2, before A
is issued. Le., P provides an oracle to V to compute a degree-(b + 1) multivari-
ate polynomial s(X,Y) at (A, A) whereas V needs to ensure that S (computed
by Eq. (4)) is equal to s(A, A). Note that revealing these coefficients to V directly
would break privacy since they are correlated with the P’s witness.

As a failed attempt, we can try to mimic LogRobin to ask P to commit to all
coefficients as IT-MACs and later linearly evaluate the polynomial within the
IT-MACs. This fails because A must be kept private to P to preserve the binding
property of the IT-MAC. That is, even after A is chosen, P is still not able to
operate on these committed coefficients to obtain [s(A, A)] without knowing A.
In fact, S itself should not be learned by P, since it is correlated with A.

Randomization over S. Instead, similar to Robin++, LogRobin++ exploits random
IT-MAC: correlations (generated from VOLE) to mask the coefficients. Le., with
masking, most of them can be directly revealed.

To see how it works, first consider the coefficients of j = b. I.e., the coefficients
spo and sp1 (where s, 0 = 0 if P is honest). These two coeflicients are related
to the following additive term in Equation (5):

SbJAbA + Sb’o/lb

Consider one fresh VOLE correlation [rp], where V holds k., and P holds ry, m,,
such that ky,, = r,A+m,,. If V adds k,, A* = 1,A° A+m,, A® into S (i.e., Eq. (4)),
the (above) additive term induced by A*A and A® would become:

(sp.1 4+ 70) AP A + (50,0 + My) A (6)

Crucially, ry, looks (pseudo-)random to V. Thus, P can directly send sp1 + 7
to V. However, as we will discuss at the end of this section, sy o + m,, cannot
be disclosed to V since this would break privacy — a malicious V* can learn
the active index 4d by manipulating it. Instead, P will commit to sy + m,, as
[$p,0 + my,]. It will become clear soon how this IT-MAC is used.

384 C. Hazay et al.

Let us proceed to consider coefficients of 7 = 0,...,b— 1. Le., the coefficients
$j.0,85,1, 85,2 for each j € [b]. These three coefficients are related to the following
additive term in Eq. (5):

3j72/1jA2 + Sj71AjA + Sj,g/lj

Consider two fresh VOLE correlations [r;]| and [r;1] for each j € [b], where V
holds k., ,, k., , and P holds 7 2,7; 1, m;, ,,m;; , such that k., = rj2A +my,,
and k., , = rj1 A+ m, . Similarly, V can add the term k,, ,AVA + k. A/ =
752 A0 A2+ (my, , +751) A Ad-m,, A into S (i.e., Eq. (4)), the (above) additive
term induced by A7A2, A7 A and A7 would become:

(sj2 +12) MVA% + (551 +my,, +1j1) A A+ (sj0+ me,) A

Again, P can directly send s 47,2 and s;1 + My, , +7;1 as they are one-time
padded by uniform r;2 and r; ;. Similarly, V should not learn s;o + m;;, so
P commits to sj o + my,, as [5190 + m,«jyl]. (We will explain at the end of this
section why this cannot be directly disclosed to V.)

Informally, via sending these values (i.e., 2b 4+ 1 randomized coefficients and
b+ 1 IT-MACs), P commits to a multivariate polynomial of degree less than
b+2, before knowing A. In particular, they will be used as the polynomial oracle.

We are now ready to show how these coefficients inside IT-MACs are used.
Naturally, they are used to let V evaluate the committed polynomial at (A, A).
Note that V is missing b + 1 coefficients so,0 + 7 15+ -5 8p-1,0 + My, 15 Sp0 +
my, to evaluate the committed polynomial. However, the additive term in the
committed polynomial related to these coefficients is independent of A (i.e.,
AY = 1). Therefore, once A is public, parties can locally compute then open:

A% (50,0 + Mg, | 4+ -+ A [spm1 0+ Mmooy + A (S50 +mn] (7)

which, together with 20+ 1 randomized coefficients, helps V evaluate the commit-
ted polynomial at (A, A). Finally, if the evaluation output equals the randomized
S (cf. Eq. (4)), V accepts the proof. Indeed, the above protocol overcomes the
difficulty in the failed attempt as it does not require P to know A.

We remark that the polynomial must be committed before P knowing A,
which is crucial for the soundness analysis. In particular, if P is cheating with all
M2
evaluated at point (A, A), even after the randomization. Hence, it is with a
negligible probability that the committed polynomial (with a degree less than
b+ 2) can evaluate to the same value at (A4, A), based on the SZDL lemma.

To conclude, the above technique solves the polynomial-affine-correlation
problem with O(log B) communication, ultimately resulting in LogRobin++.

Why Can’t the Coefficients Inside the IT-MACs be Disclosed? Perhaps surpris-
ingly, unlike other 2b + 1 (randomized) coefficients, the b + 1 coefficients inside
IT-MACs should not be directly disclosed to V. Here, we justify this design choice
by showing how a malicious V (corrupted by .A) could learn the active branch

being non-zeros, S should be interpreted as a degree-(b + 2) polynomial

LogRobin++ 385

Sub-procedure Eval-IT-MAC(C, [in], [0])

Eval-IT-MAC is a local sub-procedure executed by P and V. It takes (1) a circuit C
with n;, inputs, nx multiplications and 1 output; (2) an I'T-MAC vector [¢n] such
that |in| = ni,; and (3) an IT-MAC vector [o] such that |o| = ny;, then produces
a vector of IT-MAC triples t where |t| = nx + 1. Eval-IT-MAC proceeds as follows:

P (or V) sets t = L, then evaluates C gate-by-gate in the topology order:

1. If it is an input gate, for the j-th input, put [in;] on the wire.

2. If it is an addition gate, for the j-th addition, take the IT-MAC [z;] on the left
wire and the IT-MAC [y;] on the right wire, put [z;] + [y;] on the output wire.

3. If it is a multiplication gate, for the j-th multiplication, put [0;] on the output
wire. Take the IT-MAC [z;] on the left wire and the IT-MAC [y;] on the right
wire, append the IT-MAC triple ([z;],[y;], [0;]) to ¢t.

After the evaluation, take the IT-MAC [res] on the output of C, append the IT-MAC
triple ([res], [res],[0]) to t. P (or V) returns ¢.

Fig. 3. Eval-IT-MAC: The sub-procedure for parties to evaluate C over IT-MACs. This
sub-procedure is local since parties only perform additions over IT-MACs.

index if they were disclosed. Note that A is allowed to choose global key A and
local keys k in the VOLE correlation functionality (see Fig. 1). Therefore, by A
setting A = 0, each local key k equals the corresponding MAC m held by P. This
implies that A knows each MéZE[BD in Eq. (3). Similarly, .4 knows m,, where
[rp] is used to randomize S (see Eq. (6)). Furthermore, according to Eq. (4), sp.0

(i.e., the coefficient of A°) is equal to Méid). Thus, if the coefficient s 9 + m,,
is disclosed (see Eq. (6)), A learns s 9. By comparing s, o with each MSE[B], A
can infer which id € [B] gives Méld) = Sp,0-

4 Formalization

We UC formalize our final protocol LogRobin++. For completeness, we also for-
malize our stepping-stone protocols LogRobin/Robin++ in our full version [28].

4.1 Sub-procedures

In this section, we define two sub-procedures that will be used by LogRobin++
(also used by LogRobin/Robin++) as subroutines. These sub-procedures are local.

Eval-IT-MAC: FEvaluating IT-MACs over a Circuit C. The first sub-procedure
allows P and V to evaluate a circuit C on IT-MAC commitments. The sub-
procedure (called Eval-IT-MAC) is formalized in Fig. 3. Clearly, the computation
complexity of this sub-procedure is O(|C]).

386 C. Hazay et al.

Sub-procedure Acc”(t,~)

Acc” is a local sub-procedure executed by P. It takes (1) a vector of IT-MAC
triples ¢ where |t| = n and each triple is of form ([-], [],[]); and (2) a vector of field
elements v where |y| = n, then produces three field elements M® MO A0,
Here, the field is the one associated with the IT-MACs. Acc” proceeds as follows:

P sets M@, MM MO be 0s. Then, for each j € [n], let t; = ([z,],[y;], [2]), P
updates the M® MO MO a5 follows:

M = M® 4 ;259 — 25)
MY =M 4 V5 (@ my; + yjma; —mz;)
M@ =M + VM My ;

After the iteration, P returns M@ MM Ar©)

Sub-procedure Acc”(t,7)

Acc” is a local sub-procedure executed by V. It takes the same input format as
Acc”, but produces a single field element K. Acc” proceeds as follows: V sets K be
0s. Then, for each j € [n], let t; = ([z;], [y;], [2;]), V updates the K as follows:

K= K 4 (ka; ky; — k25 A)

After the iteration, V returns K.

Fig. 4. Acc” /Acc”: The sub-procedures for P and V to accumulate correlations gener-
ated by I'T-MAC triples. Note, if each triple in ¢ forms a multiplication, M @ is always
equal to 0 regardless of ~.

Acc” / AccY: Linearly Accumulating IT-MAC Triples. The second sub-procedure
allows P and V to accumulate linearly a sequence of IT-MAC triples into a
single affine or quadratic distributed correlation in A. This (asymmetric) sub-
procedure (called Acc” /Acc?) is formalized in Fig.4. This sub-procedure takes
a vector of IT-MAC triples t = (([z,],[y,], [Zj]))je[n] where n = |t| and n coef-

ficients 7o, ..., ¥n_1 as inputs. Then, P accumulates M(?) := Z;:g vi(zy5 —
2), MO = S0 Cyj(aymy, + yyme, —mz), MO = Y07 ymy, my,, and Y
accumulates K := Z?;Ol vj(kz;ky, — k-, A). Recall that the IT-MAC correlations
ensure that M@ A2 + MWA + M = K and, in particular, if all triples are
multiplications, M (?) must be 0 regardless of 4. Since P and V perform different
algorithms, we split Acc into Acc” and Acc, but either Acc” or Acc is local
with O(n) computation complexity. Our protocols will only set «y as public coins.

LogRobin++ 387

12
Protocol II7gopine

Inputs. The prover P and the verifier V hold B circuits Co,...,Cp—1 over field Fy,
where each circuit has n;, inputs, nx multiplications and 1 output. P also holds
a witness w € Fp” and an integer id € [B] such that Cia(w) = 0. Generate

extended witness on Ci4.
0. P evaluates Ciq(w) and generates o € F,* where o denotes the values on the
output wires of each multiplication gate, in topological order.

Initialize /Preprocess.
1. P and V send (init) to Fiyi ¢, which returns a uniform A & Fpa to V.
2. P and V generate IT-MACs (over Fpq) of random values over F,, as {[u;]}
{lpil}jepn, and {[¢]}iep) by sending (extend, nin + nx +b) to Fygie.
3. P and V generate IT-MACs (over Fpa) of random values over Fpa as {[0:]};c(,),
[ro], {[rj.2] s [rial}tepy and {[75]}cp41) by sending (extend, (24 4b)q) to Fysie
then locally combining (see [51]) them.

JE€Min]

Commit to extended witness on C,q4.
4. For j € [ni], P sends d; := w; — p; € Fp, then both compute [w;] := [u;] + d;.
5. For j € [nx], P sends d; := 05 — p; € Fp, then both compute [o;] := [p;] + d;.

Evaluate committed IT-MACs on each branch and accumulate the cor-
relations generated by each induced IT-MAC triples for this branch.

6. V samples a random vector & IFZCIXH and sends it to P.

7. For each branch ¢ € [B], P and V call sub-procedure Eval-IT-MAC(C;, [w], [0]
(see Fig.3), which returns a vector of IT-MAC triples) such that [tV
nx + 1; then, P calls sub-procedure Acc” (t(’)7’y) (see Fig.4), which returns
M M M) € Fpa, and V calls sub-procedure Acc” (£, y)(see Fig.4),
which returns K& ¢ Fpa. Recall that the following equality holds:

Vi€ (B, MO A% + MO A+ M = KD, M{?P =0

Fig. 5. LogRobin++: ZKP protocol for disjunctive circuits over any field F;, in the F{g] -
hybrid (see Fig. 1) model. Proceed with Fig. 6.

4.2 LogRobin++

We formalize our protocol LogRobin++ as Hf(’)gRobmH in Figs.5 and 6. We defer
the reader to Sect. 3.3 for a concise technical overview of this protocol. The main
security theorem associated with 1_[|_ogRobm++ is as follows:

Theorem 1 (LogRobin++). IV
in the FO5 e-hybrid model (Fig. 1) with soundness error

(Figs. 5 and 6) UC-realizes F. (Fzg 2)
B+b+7
pq

LogRob|n++

(where, w.lo.g.,

let B = 2" for some b € N) and perfect zero-knowledge, in the presence of a
static unbounded adversary.

388 C. Hazay et al.

Protocol Hf&gRobinH (Cont.)

Commit to id bit-by-bit, P constructs the randomized final multivariate poly-
nomial and declares (or commits to) its 3b + 2 coefficients.

8. P bit decomposes id as Zf;& id; - 2¢. P sends id — ¢ to construct [id] from [(].

9. P and V execute (batched) LPZK to prove id; - (id; — 1) = 0 for each i € [b].
10. P constructs the following 2 X b matrix, consisting of affine polynomials in X

_ X-(1—ido)+d0 -+ X -(1—idp_1)+dp_1
M(X) - (X -ido — do s X -idp—1 — Sp—1

11. P constructs the multivariate polynomial in X, Y

B-—1 b—1
sX,y)=3Y" ((Mé”YZ + MY + M) - T] M, (X))
a=0 i=0

where a;¢[p) is the bit-decomposed a, ie., a = Zf;é a; - 2%, Since MQ(M) =0, s(X) is
a degree-(< b + 2) multivariate polynomial.

12. P randomizes s(X,Y): for [rp], P holds 74, ms, and computes s(X,Y) :=
s(X,Y) + (Y + my,)XP. Then, for each j € [b], for [r;2] and [rj1], P holds
T5,2,75,1, Mr; 5, My; ; and computes

s(X,Y) :=s(X,Y) + (Tj72Y2 + (rj1+ mrjyz)Y + m?"j,l) x4

After the randomization, let s(X,Y) = ;’-:0 Ei:o 55,k X7Y" where each s; 1 € Fpa.
In particular, if P is honset, s3 2 = 0.

13. P sends sp 1 and for each j € [b], P sends s;,2 and sj,1.

14. For each j € [b+ 1], P sends d; := sj,0 — 7; € Fpa then parties construct [s; o].

Evaluate the randomized multivariate polynomial at random point (4, A).

15. V samples a random element A & Fpe and sends it to P.
16. P and V can locally generate IT-MAC matrix [M(A)] from [id] and [6]. Then, P opens
each IT-MAC in the second row of [M(A)], resulting P and V hold

_(A-(1—=ido)+d0 -+ A-(1—iddy_1)+dp_1 2xb
M(A)_(Avidg—00 - Avidyy—06y,) EFpa

17. V computes

B-1 b—1
§:=>" (KW] M, (A)>
a=0 =0
where a;¢c[p] is the bit-decomposed a, i.e., a = Z?:o a; - 2%,

18. V adds the randomization to S: for [rp], V holds ky, and computes S := S + k,«b/lb.
Then, for each j € [b], for [rj2] and [r;1], V holds kr; ,,kr; , and computes S :=
S+ (7"]"2A + T’j,l)/lj.

19. P and V locally construct then open the IT-MAC [§'] = Z?‘:o A - [s5.0].

20. V computes S’ := S’ + s,1APA. Then, for each j € [b], V computes S’ = S’ +
Sj’QAjA2 + Sj71/1jA.

21. If S = S’, V outputs (true,Co,...,Cp_1). If not (or some prior proof/open fails), V
outputs (false,Cop,...,Cp_1).

Fig. 6. LogRobin++ (Continued): ZKP protocol for disjunctive circuits over any field
F, in the Fig c-hybrid (see Fig. 1) model.

LogRobin++ 389

Proof. The proof is performed by constructing the simulator S. We need to
show completeness (trivial, omitted); soundness (constructing S for P*); and
Zero-Knowledge (constructing S for V*).

Zero-Knowledge, S for V*: The S for V* is straightforward. This is because
V* receives either some elements that each is one-time padded by a uniform
element (i.e., the VOLE correlation) or some elements that are determined by
his transcripts (including his shares of IT-MACs and the global key A). That is,
S will interact with V* and emulate the hybrid VOLE functionality FiJ ¢ for
him. Essentially, S proceeds as follows:

1. For Step 1, S samples the A for V*. Note that V* can specify his own A by
revealing its A to S (i.e., to the hybrid functionality FJ ¢).

2. For Step 2 and 3, S samples the local keys (i.e., the V*’s IT-MAC shares of

VOLE correlations) for him. Note that V* can specify his own local keys by

revealing its local keys to S (i.e., to the hybrid functionality Fug g)-

For Step 4 and 5, S samples and sends uniform elements in F,,.

For Step 6, S receives the challenges « from V*.

5. For Step 7, S can also execute sub-procedures Eval-IT-MAC and Acc” (as V)
since it has all associated values held by V* — S has K for each i € [B].

6. For Step 8, S samples and sends uniform elements in F,,.

7. For Step 9, S can trivially forge the ZKP by knowing A and all local keys.
Le., since § knows all local keys and A, it knows what V* expects as a valid

Ll

proof. Suppose this value is II € Fpa. To forge the proof, S sends C; & Fpa
and Cp :=1II — C1 A. (See also ZK S in LPZK [21,51].)

8. For Step 13, & samples and sends uniform elements in F,,«. Note that, in the
real-world execution, each element sent by P in this step is still one-time
padded by a uniform element in the corresponding VOLE correlation.

9. For Step 14, S samples and sends uniform elements in Fpq.

10. For Step 15, S receives the challenges A from V*.

11. For Step 16, S opens each IT-MAC (in the second row of [M(A)]) to a
uniform sample in F,q. This is possible since S knows A and can open an
IT-MAC to any value successfully. Now, S obtains a “path matrix” M.

12 For Step 16 and 17, S performs the identical computation taken by V. This
is possible since it has all associated values held by V*. Then, § obtains S.

13 For Step 18, S computes S =9 - Sp, 1 APA — Zb_(l) (sj 9 A7 A2 + 55 1AJA)
Here, all s values are those sampled and sent by S for Step 13. Now, S opens
[S’] to S’. This possible because S knows A. Note that what computed by
S is essentially the correct proof that V needs to see in this step. Le., V*
would accept the proof since the equality in Step 21 must hold.

Indeed, the distributions seen by V* in the ideal world and the real world are
identical. This is because S replaces all one-time padded values with uniform
samples (including each element in the second row of the path matrix and those
coefficients sent by P in Step 13) and simply determines other correlated values.
The simulation is perfect.

390 C. Hazay et al.

Soundness, S for P*: Note that V in TIT ;% i,
Thus, S, emulating Fd ¢ for P*, can interact with P* as an honest V. Since S
emulates Fy5 g, it can trivially extract the (extended) witness w, o used by P*
in Step 2 and 3. In particular, this can be done by removing the one-time pads,
which are generated by FU¢ ¢ and known by S. Now, if the emulated honest V

only sends uniform elements.

(inside S) outputs false, S simply sends abort to }"%DK , so the ideal V would
also output false. Instead, if the emulated honest V (inside §) outputs true,
S tries and finds id € [B] such that C;q(w) = 0 (if there is no such id, just set
id as 0); then, S sends (prove,Co,...,Cp_1,w,id) to]-"5,’(3. Finally, S sends the
UC environment £ whatever outputted by P*.

We now argue why this is a valid simulator. Note that the distributions seen
by P* in the ideal world and the real world are identical (i.e., just some uniform
challenges), so the distribution outputted by P* in the real-world execution is
the same as the distribution outputted by S in the ideal world. As a result, we
only need to quantify the probability of the event where the ideal V’s output
is different from the real-world V’s output. Furthermore, when the emulated
honest V (inside §) outputs false, the ideal world ¥V must output false. Thus,
we only need to quantify the probability of the event where the emulated honest
V outputs true but the ideal-world V outputs false. Note that this happens
when P uses a wrong (extended) witness (in the sense that w does not make
any Cic[p) output 0) but still passes all checks. Le., this is the soundness error.

This bad event would (only) happen in the following (chained) events:

— In Step 7, even though there exists (at least) one non-multiplication triple in

each t) some accumulated M, (€18 hecomes 0. Namely, among B length-
(nx +1) vectors where none of them is all 0’s, there exists (at least) 1 of them,
after inner producting with the (uniformly sampled) + in Step 6, results in
0. This would only happen with up to pﬁq probability [53, Lemma 5.1].

— In Step 9, even though P* commits to some id; that is not a bit, the batched
LPZK does not catch it. This would only happen with up to p% probability,
i.e., the soundness error of the batched LPZK technique (where the batched
check is achieved via a fresh random linear combination, cf. [51]).

— In Step 16, P* forges the opening of some element(s) in M(A). This would
only happen with up to -7 - based on the binding property of the IT-MAC.

— In Step 19, 73* forges the openmg of the IT-MAC [S’]. This would only happen
with up to -5 = based on the binding property of the IT-MAC.

— In Step 21, S = S5’ (accidentally) for some sampled A and A, conditioned
over all previous bad events not happening. Note that if so, (A, A) must be
the root of a P*-specified (multivariate) degree-(b + 2) polynomial. This is
because the coefficient before A?A? must be non-zero. Thus, this would only

happen with up to b+2 based on the SZDL lemma (see Lemma 1).
Hence, the union soundness error bound (i.e., the summed errors) is B*piw.

Remark 6. Step 9 is not needed if p = 2 (i.e., consider Boolean circuits). This is
because P can only commit to bits in Step 8.

LogRobin++ 391

Cost Analysis. We tally the computation and communication cost of LogRobin++,
in the FUg| g-hybrid model (Fig.1). The (unidirectional) communication from P
to V consists of the following components:

1. In Step 3 and 4, P sends n;, +ny elements in F,, to commit to her extended
witness.

In Step 8, P sends b elements in), to commit to bit-decomposed id.

In Step 9, P sends 2 elements in F,q for the batched LPZK check.

In Step 13, P sends 2b + 1 elements in F,q as coeflicients.

In Step 14, P sends b+ 1 elements in F,« to commit to coefficients.

In Step 16, P sends 2b elements in F,q to open the IT-MAC commitments in
the second row of the path matrix.

7. In Step 19, P sends 2 elements in Fjq« to open the IT-MAC commitment.

SO N

To conclude, the overall communication from P to V consists of ng, +nyx + b
elements in IF, and 5b+6 elements in Fp,«. In the other direction, the communica-
tion from V to P only consists of random challenges in Fpq. Indeed, if V samples
each challenge independently, this will result in sending Q(ny + b) elements in
Fpqa. To further save the communication from V to P, there are the following
alternative approaches to generate these challenges:

— RO variant: It is standard to generate each sequence of uniform challenges
via expanding the PRG from a uniformly chosen x-bit seed. This optimizes the
communication from V to P down to O(k). However, this variant of Robin++
requires the Random Oracle assumption. Furthermore, the soundness error

would now be bounded by £ +b+7 + 2(% , where Q denotes the number of random
oracle queries made by the adversary

— IT variant: We can also generate each sequence of uniform challenges via

powering a single uniform element. L.e., V can sample and send o & Fpa,
then parties set the challenge vector as (1,a,a?,...). Clearly, This opti-
mizes the communication from V to P down to O(qlogp), which can be set
as O(A). While this modification preserves the information-theoretic security,
the soundness error would increase because of a larger probability of creat-
ing undesirable “zeros”. E.g., in Step 7, even though a malicious P* uses an
invalid extended witness that does not evaluate any branch circuit to 0, the
probability that one M(ZE[B]) “x (This is because
a malicious P* wins the game if « happens to be a root of one out of B

degree-n, polynomials.) After adjusting these bounds, the overall soundness
Bry +2b+4
q

error would now be bounded by

For computation, clearly, P’s cost is dominated by O(B|C|) field operations over
Fpe in Step 7 and O(Blog B) field operations over Fpqe in Step 11 to compute
the coefficients of s(X,Y); and V’s cost is dominated by O(B|C|) field operations
over s in Step 7 only. Note that Step 17 only requires O(B) field operations.

Remark 7. The cost listed in Table 1 is based on the IT variant of LogRobin++.

392 C. Hazay et al.

5 Implementation and Benchmark

5.1 Setup

Implementation. We implemented LogRobin++ based on the open-source Robin
repository [53], whose VOLE correlation functionality is implemented via the
EMP Toolkit [47]. We instantiated our protocols over (1) the Boolean field Fy
with A > 100 and (2) the arithmetic field Fge1_; with A > 40, using the corre-
sponding (subfield) VOLE functionality. For completeness, we also implemented
our stepping-stone protocols LogRobin/Robin++. These simpler protocols can be
useful for certain parameters.

Baseline. We use Robin [53] as our baseline. We did not compare our implemen-
tations with Mac’n’Cheese [6], as their implementation is not publicly available.
However, Robin concretely outperforms Mac’n’Cheese [6]; see [53, Figure 7).

Code availability. Our implementation is publicly available at https://github.
com/gconeice/logrobinplus.

Hardware and Network Settings. Our experiments were executed over two AWS
EC2 m5.xlarge machines® that respectively instantiated P and V. Each party
ran single-threaded. (Our protocols can support multi-threading naturally by
handling each branch in parallel; we leave research and implementation of par-
allelism as valuable future work.) We configured different network bandwidth
settings, varying from a WAN-like 10 Mbps connection to a LAN-like 1 Gbps
connection, via the Linux tc command.

Benchmark. We tested our implementations on statements where each branch
(represented as a circuit) is chosen randomly. To reduce the physical memory
needed to load all branches when B is large, we consider B identical randomly
generated circuits. We performed experiments to show that the performance
difference between executing B different circuits and B identical circuits is neg-
ligible; see Sect.5.4. This choice of benchmark is just a proof of concept. One
can always save different circuits in files and load them as needed, or program-
matically generate large circuits from constant-sized descriptions as e.g. EMP
Toolkit. All considered protocols only need to process each circuit once, so there
is no need to load each circuit into main memory twice.

RO wv.s. IT. Recall that our ¥V must flip public coins. We implemented two
variants of each protocol, depending on how coin flips are handled (see discussion
in Sect.4). Coins are flipped either by (1) expanding PRGs over several k-bit
seeds chosen by V, requiring a Random Oracle (RO), or (2) having V uniformly
sample O(1) elements, which is information-theoretic (IT). Our results show that
the performance difference between these two variants is negligible; see Sect. 5.5.
In the remainder of this section, we flip coins via RO.

5 Intel Xeon Platinum 8175 CPU @ 3.10 GHz, 4 vCPUs, 16 GiB Memory.

https://github.com/gconeice/logrobinplus
https://github.com/gconeice/logrobinplus

LogRobin++ 393

Table 2. Experiment Results with B = 222,nm = 10,nx = 100. The time reflects the
wall-clock (or end-to-end) execution time from P starting the proof until V accepting
it. The improvements are computed as the ratio of the corresponding data between our
protocols and the baseline Robin — the larger, the better.

. Comm. LAN (1 Gbps)|WAN (10 Mbps)
Field | Protocol
P—-VV—P Total Impr. Time(s) Impr. Time(s) Impr.
Robin 64 MB 28 MB 92 MB 51.2 114.1

LogRobin 9 KB540 KB 549 KB 172x| 15.1 3.4x | 14.8 7.7%
Robin++ [128 MB 56 MB184 MB 0.5x | 94.6 0.5x | 212.2 0.5x
LogRobin++ 10 KB540 KB 550 KB 172x| 16.4 3.1x | 16.1 7.1%

Fo

Robin 32MB 2MB 34 MB 25.8 54.3
LogRobin [0.8 MB 1.7 MB 2.5 MB13.6x| 27.0 1.0x | 28.6 1.9x
Robin++ | 64 MB 2 MB 66 MB 0.5x | 13.8 19x | 68.7 0.8x

LogRobin++/ 0.8 MB 1.7MB 2.5 MB13.6x| 153 1.7x | 17.3 3.1x

Fae1_4

5.2 Overall Performance

We evaluated our approach with respect to the following parameters:

— Benchmark “Many”: B = 222, n,, = 10,nyx = 100: Namely, there are a

large number of branches, and each branch is relatively small. In this case,
LogRobin++ and LogRobin should outperform Robin++ and Robin.

— Benchmark “Large”: B = 2,n;, = 10,n, = 107: Namely, there are a small

number of branches, and each branch is large. In this case, LogRobin++ and
Robin++ should outperform LogRobin and Robin.

Ezperimental Results with Many Branches. Table2 tabulates experimental
results for Benchmark “Many”. We note the following:

1.

2.

LogRobin++ (and LogRobin) achieves a significant improvement in communi-
cation cost. This improvement leads to reduced wall-clock execution time.
Almost all communication from V to P is used to generate VOLE correlations.
Recall, we use the VOLE implementation from the EMP-Toolkit [47]. In their
implementation, each extension generates a fixed-size (= 107 instances) pool
of VOLE correlations [52], and in some cases, we did not exhaust the entire
pool (e.g., LogRobin++ and LogRobin++ in Fs test cases). Communication
from V to P could be fine-tuned by configuring parameters in the VOLE
implementation to generate a precise number of correlations.

Robin++ incurs 2x overhead as compared to Robin, when operating over both
Fy and Fae1_1. This is because ny is small. In Robin++, P must commit to
an additional =~ B elements, and, in this benchmark, this cost supercedes
Robin++’s multiplication gate improvement.

In our LAN setting and when considering circuits over Fos1_1, LogRobin did
not outperform Robin in end-to-end execution time. This LAN network is
fast, so communication is not the bottleneck.

394 C. Hazay et al.

Table 3. Experimental results with B = 2, n, = 10,nx = 107. The time reflects the
wall-clock execution time from the moment P starts the proof until the moment V
accepts it. Improvements are computed as the ratio of the corresponding data between
our protocols and the baseline Robin — larger is better.

. Comm. LAN (1 Gbps){WAN (10 Mbps)
Field | Protocol
P—-VV—P Totallmpr. Time(s) Impr. Time(s) Impr.
Robin 3.6 MB1.0 MB 4.6 MB 8.1 10.1
F LogRobin |3.6 MB1.0 MB 4.6 MB 1.0x 8.1 1.0 10.0 1.0x
2 Robin++ | 1.2 MB0.5 MB 1.7 MB 2.7x 5.3 1.5% 5.9 1.7x
LogRobin++ 1.2 MB0.5 MB 1.7 MB 2.7x 5.4 1.5%x 6.1 1.7x
Robin 230 MB 3 MB233 MB 11.7 205.8
F LogRobin (230 MB 3 MB233 MB 1.0x | 11.7 1.0x | 206.1 1.0x
271 Robin++ | 77TMB 1MB 78 MB 3.0x| 6.5 18x T7L7T 29x
LogRobin++| 77 MB 1 MB 78 MB 3.0x 6.4 1.8 71.7 2.9%
1200000 600000
Robin Robin
LogRobin++ LogRobin++
1000000 500000

800000 / 400000 /

o o
2 600000 2. 300000
& / 3 /,
400000 200000
200000 4 100000 4
0 0
4 6 8 10 12 14 16 4 6 8 10 12 14 16
log B log B
(a) Boolean Field Fo (b) Arithmetic Field Fye1_;

Fig. 7. Communication of LogRobin++ vs. Robin in the VOLE-hybrid Model. We fixed
nin = 10,nx = 100 and increased b = log B from 4 to 16.

Ezxperimental Results with Large Branches. Table 3 tabulates the experimental
results for Benchmark “Large”. We note the following:

1. LogRobin++ (resp. Robin++) improved communication by 3x, reflecting our

analysis.
2. In our s test cases, communication was relatively small. Hence, the WAN

setting was not significantly slower than the LAN setting.

Conclusion. LogRobin++ indeed combines the improvements made by LogRobin
and Robin++. Clearly, it outperforms the baseline Robin and is the best choice.
5.3 Growth Trend of Communication in the VOLE-Hybrid Model

We performed experiments to show how communication grows w.r.t. (1) increas-
ing B, and (2) increasing |C|. To better reflect our analysis in Sect. 4, we tested

LogRobin++ 395

4000 . 250 .
obin obin
3500 || _LogRobin++ | LogRobin++ /
5000 / 200
. z /
2500 / 2 150
£ 2000 / H /
2 1500 5 100
2 £
1000 = - / —
50 ///
500 s //
oL 0 L—=—1
0 2 4 6 8 10 0 2 4 6 8 10
ny (x10°) ny (x10°)
(a) Boolean Field Fo (b) Arithmetic Field Fye1_,

Fig. 8. Communication of LogRobin++ vs. Robin in the VOLE-hybrid Model. We fixed
B = 2,n4, = 10 and increased ny from 1 x 10% to 10 x 10°.

Table 4. B Different Circuits v.s. B Identical Circuits in Wall-Clock Time. We set
B = 210,nm =10,nx = 10° and considered both LAN and WAN settings.

Time (s)
Protocol | LAN (1 Gbps) | WAN (10 Mbps)
Different Identical Different Identical
Robin 14.1 14.6 17.0 18.3
LogRobin 13.8 13.1 17.6 17.5
Robin++ 6.7 6.6 8.8 8.3
LogRobin++ 6.7 7.0 8.7 8.7

and reported the communication of LogRobin++ and Robin without counting
communication used to generate random VOLE correlations.

Communication as a Function of B. We fixed n;, = 10 and ny = 100 and then
tested LogRobin++ and Robin with b = log B ranging 5-16, in both the Boolean
and arithmetic settings. Figure 7 plots the results. Our plots confirm that Robin’s
communication grows exponentially in b while LogRobin++’s grows linearly in b.

Communication as a Function of |C|. We fixed B = 2 and n;, = 10 and then
tested LogRobin++ and Robin with n, ranging 1-10 x10%, in both the Boolean
and arithmetic settings. Figure8 plots the results. Our plots confirm that (1)
both Robin’s and LogRobin++’s communication grows linearly in |C| and (2)
Robin’s communication is =~ 3x that of LogRobin++’s.

5.4 B Identical Branches v.s. B Different Branches

We tested Robin/LogRobin/Robin++/LogRobin++ where B (randomly generated)
circuits are identical or different on the arithmetic setting. The results are tab-
ulated in Table4. Obviously, the difference is negligible. Note that it is trivially
true that the communication of these two branch configurations is the same.

396 C. Hazay et al.

Table 5. RO Variant v.s. IT Variant in Wall-Clock Time.

Time (s)
Parameters Field | Protocol |[LAN (1 Gbps)|WAN (10 Mbps)

RO IT RO IT
Robin |51.2 49.5 |114.1 115.6

F, LogRobin [15.1 15.8 14.8 14.7
Robin++ 94.6 93.7 [212.2 2114

B =922 n, = 10,1, = 100 LogRot?in++ 16.4 15.7 16.1 15.5
Robin 25.8 25.2 54.3 53.3

Foor_, LogRobin [27.0 26.9 28.6 29.1

Robin++ [13.8 13.1 |68.7 69.5

LogRobin++15.3 15.4 17.3 17.6

Robin 8.1 8.2 10.1 10.2

F, LogRobin | 8.1 8.2 10.0 10.1

Robin++ | 5.3 5.3 5.9 6.0

B =2 ny = 10,0, = 107 LogRob.in++ 5.4 5.4 6.1 6.2
Robin |11.7 11.7 |205.8 205.7
Fyor_, LogRobin |11.7 11.6 |206.1 205.8

Robin++ | 6.5 6.4 1.7 71.7

LogRobin++| 6.4 6.4 71.7 71.8

5.5 RO Variant v.s. IT Variant

We tested Robin/LogRobin/Robin++/LogRobin++ each on both the RO and the IT
variants. The results are tabulated in Table 5. Obviously, the difference between
these two variants on each protocol is negligible. Note that it is trivially true
that the communication of these two variants is the same.

Acknowledgments. This work is supported in part by Visa research award, Cisco
research award, and NSF awards CNS-2246353, CNS-2246354, and CCF-2217070.

References

1. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sub-
linear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 2087-2104. ACM Press, Dallas,
TX, USA (Oct 31 — Nov 2, 2017). https://doi.org/10.1145/3133956.3134104

2. Baum, C., Braun, L., Delpech de Saint Guilhem, C., Kloof, M., Orsini, E., Roy, L.,
Scholl, P.: Publicly verifiable zero-knowledge and post-quantum signatures from
VOLE-in-the-head. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023,
Part V. LNCS, vol. 14085, pp. 581-615. Springer, Cham, Switzerland, Santa Bar-
bara, CA, USA (Aug 20-24, 2023). https://doi.org/10.1007/978-3-031-38554-4_19

https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1007/978-3-031-38554-4_19

10.

11.

12.

13.

14.

LogRobin++ 397

Baum, C., Braun, L., Munch-Hansen, A., Razet, B., Scholl, P.: Appenzeller to brie:
Efficient zero-knowledge proofs for mixed-mode arithmetic and Z2k. In: Vigna, G.,
Shi, E. (eds.) ACM CCS 2021. pp. 192-211. ACM Press, Virtual Event, Republic
of Korea (Nov 15-19, 2021).https://doi.org/10.1145/3460120.3484812

Baum, C., Braun, L., Munch-Hansen, A., Scholl, P.: MozZ,arella: Efficient vector-
OLE and zero-knowledge proofs over Z,r. In: Dodis, Y., Shrimpton, T. (eds.)
CRYPTO 2022, Part IV. LNCS, vol. 13510, pp. 329-358. Springer, Cham, Switzer-
land, Santa Barbara, CA, USA (Aug 15-18, 2022). https://doi.org/10.1007/978-
3-031-15985-5_12

Baum, C., Dittmer, S., Scholl, P., Wang, X.: Sok: vector ole-based zero-knowledge
protocols. Des. Codes Cryptogr. 91(11), 3527-3561 (2023).https://doi.org/10.
1007/510623-023-01292-8

Baum, C., Malozemoff, A.J., Rosen, M.B., Scholl, P.: Mac’n’cheese: Zero-knowledge
proofs for boolean and arithmetic circuits with nested disjunctions. In: Malkin, T'.,
Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828, pp. 92-122. Springer,
Cham, Switzerland, Virtual Event (Aug 16-20, 2021). https://doi.org/10.1007/
978-3-030-84259-8_4

Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.)
CRYPTO’95. LNCS, vol. 963, pp. 97-109. Springer, Berlin, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 27-31, 1995).https://doi.org/10.1007/3-540-44750-
4.8

Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, 1., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy. pp. 459-474. IEEE Computer Society Press,
Berkeley, CA, USA (May 18-21, 2014).https://doi.org/10.1109/SP.2014.36
Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
Verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 90-108. Springer,
Berlin, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18-22, 2013). https://
doi.org/10.1007/978-3-642-40084-1_6

Bendlin, R., Damgard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169-188. Springer, Berlin, Heidelberg, Germany, Tallinn, Estonia
(May 15-19, 2011).https://doi.org/10.1007/978-3-642-20465-4_11

Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Lie,
D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018. pp. 896-912. ACM
Press, Toronto, ON, Canada (Oct 15-19, 2018).https://doi.org/10.1145/3243734.
3243868

Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Rindal, P., Scholl, P.: Effi-
cient two-round OT extension and silent non-interactive secure computation. In:
Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 291-308.
ACM Press, London, UK (Nov 11-15, 2019). https://doi.org/10.1145/3319535.
3354255

Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseu-
dorandom correlation generators: Silent OT extension and more. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 489—
518. Springer, Cham, Switzerland, Santa Barbara, CA, USA (Aug 18-22, 2019).
https://doi.org/10.1007/978-3-030-26954-8_16

Bui, D., Chu, H., Couteau, G., Wang, X., Weng, C., Yang, K., Yu, Y.: An efficient
ZK compiler from SIMD circuits to general circuits. Cryptology ePrint Archive,
Report 2023/1610 (2023), https://eprint.iacr.org/2023/1610

https://doi.org/10.1145/3460120.3484812
https://doi.org/10.1007/978-3-031-15985-5_12
https://doi.org/10.1007/978-3-031-15985-5_12
https://doi.org/10.1007/S10623-023-01292-8
https://doi.org/10.1007/S10623-023-01292-8
https://doi.org/10.1007/978-3-030-84259-8_4
https://doi.org/10.1007/978-3-030-84259-8_4
https://doi.org/10.1007/3-540-44750-4_8
https://doi.org/10.1007/3-540-44750-4_8
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1007/978-3-030-26954-8_16
https://eprint.iacr.org/2023/1610

398

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

C. Hazay et al.

Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS. pp. 136-145. IEEE Computer Society Press, Las Vegas,
NV, USA (Oct 14-17, 2001).https://doi.org/10.1109/SFCS.2001.959888

Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: 34th ACM STOC. pp. 494-503.
ACM Press, Montréal, Québec, Canada (May 19-21, 2002). https://doi.org/10.
1145/509907.509980

Cramer, R., Damgard, 1., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y. (ed.) CRYPTO’94.
LNCS, vol. 839, pp. 174-187. Springer, Berlin, Heidelberg, Germany, Santa Bar-
bara, CA, USA (Aug 21-25, 1994). https://doi.org/10.1007/3-540-48658-5_19
DeMillo, R.A., Lipton, R.J.: A probabilistic remark on algebraic program testing.
Inf. Process. Lett. 7(4), 193-195 (1978)

Dittmer, S., Eldefrawy, K., Graham-Lengrand, S., Lu, S., Ostrovsky, R., Pereira,
V.: Boosting the performance of high-assurance cryptography: Parallel execution
and optimizing memory access in formally-verified line-point zero-knowledge. In:
Meng, W., Jensen, C.D., Cremers, C., Kirda, E. (eds.) ACM CCS 2023. pp. 2098—
2112. ACM Press, Copenhagen, Denmark (Nov 26-30, 2023).https://doi.org/10.
1145/3576915.3616583

Dittmer, S., Ishai, Y., Lu, S., Ostrovsky, R.: Improving line-point zero knowledge:
Two multiplications for the price of one. In: Yin, H., Stavrou, A., Cremers, C.,
Shi, E. (eds.) ACM CCS 2022. pp. 829-841. ACM Press, Los Angeles, CA, USA
(Nov 7-11, 2022). https://doi.org/10.1145/3548606.3559385

Dittmer, S., Ishai, Y., Ostrovsky, R.: Line-Point Zero Knowledge and Its Applica-
tions. In: Tessaro, S. (ed.) 2nd Conference on Information-Theoretic Cryptography
(ITC 2021). Leibniz International Proceedings in Informatics (LIPIcs), vol. 199, pp.
5:1-5:24. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany
(2021). https://doi.org/10.4230/LIPIcs.ITC.2021.5

Fang, Z., Darais, D., Near, J.P., Zhang, Y.: Zero knowledge static program analysis.
In: Vigna, G., Shi, E. (eds.) ACM CCS 2021. pp. 2951-2967. ACM Press, Virtual
Event, Republic of Korea (Nov 15-19, 2021). https://doi.org/10.1145/3460120.
3484795

Goel, A., Green, M., Hall-Andersen, M., Kaptchuk, G.: Stacking sigmas: A frame-
work to compose X-protocols for disjunctions. In: Dunkelman, O., Dziembowski,
S. (eds.) EUROCRYPT 2022, Part II. LNCS, vol. 13276, pp. 458-487. Springer,
Cham, Switzerland, Trondheim, Norway (May 30 — Jun 3, 2022). https://doi.org/
10.1007/978-3-031-07085-3_16

Goel, A., Hall-Andersen, M., Kaptchuk, G.: Dora: Processor expressiveness is
(nearly) free in zero-knowledge for ram programs. Cryptology ePrint Archive,
Paper 2023/1749 (2023), https://eprint.iacr.org/2023/1749

Goel, A., Hall-Andersen, M., Kaptchuk, G., Spooner, N.: Speed-stacking: Fast
sublinear zero-knowledge proofs for disjunctions. In: Hazay, C., Stam, M. (eds.)
EUROCRYPT 2023, Part II. LNCS, vol. 14005, pp. 347-378. Springer, Cham,
Switzerland, Lyon, France (Apr 23-27, 2023).https://doi.org/10.1007/978-3-031-
30617-4_12

Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: 17th ACM STOC. pp. 291-304. ACM Press,
Providence, RI, USA (May 6-8, 1985).https://doi.org/10.1145/22145.22178
Groth, J., Kohlweiss, M.: One-out-of-many proofs: Or how to leak a secret and
spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II.

https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1145/509907.509980
https://doi.org/10.1145/509907.509980
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1145/3576915.3616583
https://doi.org/10.1145/3576915.3616583
https://doi.org/10.1145/3548606.3559385
https://doi.org/10.4230/LIPIcs.ITC.2021.5
https://doi.org/10.1145/3460120.3484795
https://doi.org/10.1145/3460120.3484795
https://doi.org/10.1007/978-3-031-07085-3_16
https://doi.org/10.1007/978-3-031-07085-3_16
https://eprint.iacr.org/2023/1749
https://doi.org/10.1007/978-3-031-30617-4_12
https://doi.org/10.1007/978-3-031-30617-4_12
https://doi.org/10.1145/22145.22178

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

LogRobin++ 399

LNCS, vol. 9057, pp. 253-280. Springer, Berlin, Heidelberg, Germany, Sofia, Bul-
garia (Apr 26-30, 2015). https://doi.org/10.1007/978-3-662-46803-6-9

Hazay, C., Heath, D., Kolesnikov, V., Venkitasubramaniam, M., Yang, Y.:
LogRobin++: Optimizing proofs of disjunctive statements in VOLE-based ZK.
Cryptology ePrint Archive, Paper 2024/1427 (2024), https://eprint.iacr.org/2024/
1427

Hazay, C., Yang, Y.: Toward malicious constant-rate 2PC via arithmetic gar-
bling. In: Joye, M., Leander, G. (eds.) EUROCRYPT 2024, Part V. LNCS, vol.
14655, pp. 401-431. Springer, Cham, Switzerland, Zurich, Switzerland (May 26-30,
2024).https://doi.org/10.1007/978-3-031-58740-5_14

Heath, D., Kolesnikov, V.: Stacked garbling for disjunctive zero-knowledge proofs.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol.
12107, pp. 569-598. Springer, Cham, Switzerland, Zagreb, Croatia (May 10-14,
2020).https://doi.org/10.1007/978-3-030-45727-3_19

Heath, D., Yang, Y., Devecsery, D., Kolesnikov, V.: Zero knowledge for every-
thing and everyone: Fast ZK processor with cached ORAM for ANSI C programs.
In: 2021 IEEE Symposium on Security and Privacy. pp. 1538-1556. IEEE Com-
puter Society Press, San Francisco, CA, USA (May 24-27, 2021).https://doi.org/
10.1109/SP40001.2021.00089

Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled circuits:
how to prove non-algebraic statements efficiently. In: Sadeghi, A.R., Gligor, V.D.,
Yung, M. (eds.) ACM CCS 2013. pp. 955-966. ACM Press, Berlin, Germany
(Nov 4-8, 2013). https://doi.org/10.1145/2508859.2516662

Li, X., Weng, C., Xu, Y., Wang, X., Rogers, J.: Zksql: Verifiable and efficient
query evaluation with zero-knowledge proofs. Proceedings of the VLDB Endow-
ment 16(8), 1804-1816 (2023)

Lin, F., Xing, C., Yao, Y.: More efficient zero-knowledge protocols over Z,x via
galois rings. In: Reyzin, L., Stebila, D. (eds.) CRYPTO 2024, Part IX. LNCS,
vol. 14928, pp. 424-457. Springer, Cham, Switzerland, Santa Barbara, CA, USA
(Aug 18-22, 2024). https://doi.org/10.1007/978-3-031-68400-5-13

Liu, T., Xie, X., Zhang, Y.: zkCNN: Zero knowledge proofs for convolutional neu-
ral network predictions and accuracy. In: Vigna, G., Shi, E. (eds.) ACM CCS
2021. pp. 2968-2985. ACM Press, Virtual Event, Republic of Korea (Nov 15-19,
2021).https://doi.org/10.1145/3460120.3485379

Lu, T., Wang, H., Qu, W., Wang, Z., He, J., Tao, T., Chen, W., Zhang, J.: An
efficient and extensible zero-knowledge proof framework for neural networks. Cryp-
tology ePrint Archive, Paper 2024/703 (2024), https://eprint.iacr.org/2024/703
Luick, D., Kolesar, J.C., Antonopoulos, T., Harris, W.R., Parker, J., Piskac,
R., Tromer, E., Wang, X., Luo, N.: ZKSMT: A VM for proving SMT the-
orems in zero knowledge. In: Balzarotti, D., Xu, W. (eds.) 33rd USENIX
Security Symposium, USENIX Security 2024, Philadelphia, PA, USA, August
14-16, 2024. USENIX Association (2024), https://www.usenix.org/conference/
usenixsecurity24 /presentation /luick

Luo, N., Antonopoulos, T, Harris, W.R., Piskac, R., Tromer, E., Wang, X.: Proving
UNSAT in zero knowledge. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.)
ACM CCS 2022. pp. 2203-2217. ACM Press, Los Angeles, CA, USA (Nov 7-11,
2022). https://doi.org/10.1145/3548606.3559373

Luo, N., Judson, S., Antonopoulos, T., Piskac, R., Wang, X.: ppSAT: Towards two-
party private SAT solving. In: Butler, K.R.B., Thomas, K. (eds.) USENIX Security
2022. pp. 2983-3000. USENIX Association, Boston, MA, USA (Aug 10-12, 2022)

https://doi.org/10.1007/978-3-662-46803-6_9
https://eprint.iacr.org/2024/1427
https://eprint.iacr.org/2024/1427
https://doi.org/10.1007/978-3-031-58740-5_14
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1109/SP40001.2021.00089
https://doi.org/10.1109/SP40001.2021.00089
https://doi.org/10.1145/2508859.2516662
https://doi.org/10.1007/978-3-031-68400-5_13
https://doi.org/10.1145/3460120.3485379
https://eprint.iacr.org/2024/703
https://www.usenix.org/conference/usenixsecurity24/presentation/luick
https://www.usenix.org/conference/usenixsecurity24/presentation/luick
https://doi.org/10.1145/3548606.3559373

400

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

C. Hazay et al.

Luo, N., Weng, C., Singh, J., Tan, G., Piskac, R., Raykova, M.: Privacy-preserving
regular expression matching using nondeterministic finite automata. Cryptology
ePrint Archive, Paper 2023/643 (2023), https://eprint.iacr.org/2023/643

Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous distributed
E-cash from Bitcoin. In: 2013 IEEE Symposium on Security and Privacy. pp.
397-411. IEEE Computer Society Press, Berkeley, CA, USA (May 19-22, 2013).
https://doi.org/10.1109/SP.2013.34

Nielsen, J.B., Nordholt, P.S.; Orlandi, C., Burra, S.S.: A new approach to prac-
tical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681-700. Springer, Berlin, Heidelberg, Ger-
many, Santa Barbara, CA, USA (Aug 19-23, 2012). https://doi.org/10.1007/978-
3-642-32009-5-40

Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy. pp. 238-252.
IEEE Computer Society Press, Berkeley, CA, USA (May 19-22, 2013).https://doi.
org/10.1109/SP.2013.47

Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO’91. LNCS, vol. 576, pp. 129-140.
Springer, Berlin, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 11-15,
1992). https://doi.org/10.1007/3-540-46766-1-9

Schoppmann, P., Gascén, A., Reichert, L., Raykova, M.: Distributed vector-OLE:
Improved constructions and implementation. In: Cavallaro, L., Kinder, J., Wang,
X., Katz, J. (eds.) ACM CCS 2019. pp. 1055-1072. ACM Press, London, UK
(Nov 11-15, 2019).https://doi.org/10.1145/3319535.3363228

Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-
ties. Journal of the ACM (JACM) 27(4), 701-717 (1980)

Wang, X., Malozemoff, A.J., Katz, J.: EMP-toolkit: Efficient MultiParty compu-
tation toolkit. https://github.com/emp-toolkit (2016)

Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: Fast, scalable, and
communication-efficient zero-knowledge proofs for boolean and arithmetic circuits.
In: 2021 IEEE Symposium on Security and Privacy. pp. 1074-1091. IEEE Com-
puter Society Press, San Francisco, CA, USA (May 24-27, 2021). https://doi.org/
10.1109/SP40001.2021.00056

Weng, C., Yang, K., Xie, X., Katz, J., Wang, X.: Mystique: Efficient conversions
for zero-knowledge proofs with applications to machine learning. In: Bailey, M.,
Greenstadt, R. (eds.) USENIX Security 2021. pp. 501-518. USENIX Association
(Aug 11-13, 2021)

Weng, C., Yang, K., Yang, Z., Xie, X., Wang, X.: AntMan: Interactive zero-
knowledge proofs with sublinear communication. In: Yin, H., Stavrou, A., Cremers,
C., Shi, E. (eds.) ACM CCS 2022. pp. 2901-2914. ACM Press, Los Angeles, CA,
USA (Nov 7-11, 2022). https://doi.org/10.1145/3548606.3560667

Yang, K., Sarkar, P., Weng, C., Wang, X.: QuickSilver: Efficient and affordable
zero-knowledge proofs for circuits and polynomials over any field. In: Vigna, G.,
Shi, E. (eds.) ACM CCS 2021. pp. 2986-3001. ACM Press, Virtual Event, Republic
of Korea (Nov 15-19, 2021). https://doi.org/10.1145/3460120.3484556

Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: Fast extension for
correlated OT with small communication. In: Ligatti, J., Ou, X., Katz, J., Vigna,
G. (eds.) ACM CCS 2020. pp. 1607-1626. ACM Press, Virtual Event, USA (Nov 9-
13, 2020). https://doi.org/10.1145/3372297.3417276

https://eprint.iacr.org/2023/643
https://doi.org/10.1109/SP.2013.34
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1145/3319535.3363228
https://github.com/emp-toolkit
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1145/3548606.3560667
https://doi.org/10.1145/3460120.3484556
https://doi.org/10.1145/3372297.3417276

53.

54.

55.

56.

57.

LogRobin++ 401

Yang, Y., Heath, D., Hazay, C., Kolesnikov, V., Venkitasubramaniam, M.: Batch-
man and robin: Batched and non-batched branching for interactive ZK. In: Meng,
W., Jensen, C.D., Cremers, C., Kirda, E. (eds.) ACM CCS 2023. pp. 1452-1466.
ACM Press, Copenhagen, Denmark (Nov 26-30, 2023). https://doi.org/10.1145/
3576915.3623169

Yang, Y., Heath, D., Hazay, C., Kolesnikov, V., Venkitasubramaniam, M.: Tight
zk cpu: Batched zk branching with cost proportional to evaluated instruction.
Cryptology ePrint Archive, Paper 2024/456 (2024), https://eprint.iacr.org/2024/
456

Yang, Y., Heath, D., Kolesnikov, V., Devecsery, D.: EZEE: epoch parallel zero
knowledge for ANSI C. In: 7th IEEE European Symposium on Security and Pri-
vacy, EuroS&P 2022, Genoa, Italy, June 6-10, 2022. pp. 109-123. IEEE, Genoa,
Ttaly (2022). https://doi.org/10.1109/EuroSP53844.2022.00015

Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS. pp. 162-167. IEEE Computer Society Press, Toronto, Ontario, Canada
(Oct 27-29, 1986). https://doi.org/10.1109/SFCS.1986.25

Zippel, R.: Probabilistic algorithms for sparse polynomials. In: International sym-
posium on symbolic and algebraic manipulation. pp. 216-226. Springer (1979)

https://doi.org/10.1145/3576915.3623169
https://doi.org/10.1145/3576915.3623169
https://eprint.iacr.org/2024/456
https://eprint.iacr.org/2024/456
https://doi.org/10.1109/EuroSP53844.2022.00015
https://doi.org/10.1109/SFCS.1986.25

	LogRobin++: Optimizing Proofs of Disjunctive Statements in VOLE-Based ZK
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Schwartz-Zippel-DeMillo-Lipton Lemma
	2.3 Security Model
	2.4 IT-MACs
	2.5 VOLE Correlation
	2.6 VOLE-Based ZK for a Single Circuit and LPZK Technique ch12DIO21
	2.7 Disjunctive Statements in VOLE-Based ZK: Robin ch12BR

	3 Technical Overview
	3.1 LogRobin: Optimizing the Proof of IT-MACs Containing 0
	3.2 Robin++: Committing to Lesser Values Within the Active Branch
	3.3 LogRobin++: Non-trivially Combining LogRobin and Robin++

	4 Formalization
	4.1 Sub-procedures
	4.2 LogRobin++

	5 Implementation and Benchmark
	5.1 Setup
	5.2 Overall Performance
	5.3 Growth Trend of Communication in the VOLE-Hybrid Model
	5.4 B Identical Branches v.s. B Different Branches
	5.5 RO Variant v.s. IT Variant

	References

