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Abstract. Garbled Circuit (GC) techniques usually work with Boolean
circuits. Despite intense interest, efficient arithmetic generalizations of
GC were only known from strong assumptions, such as LWE.

We construct symmetric-key-based arithmetic garbled circuits from
circular correlation robust hashes, the assumption underlying the cele-
brated Free XOR garbling technique. Let λ denote a security parameter,
and consider the integers Zm for any m ≥ 2. Let " = "log2 m# be the bit
length of Zm values. We garble arithmetic circuits over Zm where the
garbling of each gate has size O(" · λ) bits. Contrast this with Boolean-
circuit-based arithmetic, requiring O("2 ·λ) bits via the schoolbook mul-
tiplication algorithm, or O("1.585 · λ) bits via Karatsuba’s algorithm.

Our arithmetic gates are compatible with Boolean operations and with
Garbled RAM, allowing to garble complex programs of arithmetic values.

Keywords: Garbled Circuits · Arithmetic Circuits

1 Introduction

Yao’s Garbled Circuit (GC) [25] is one of the main techniques for achieving
secure multiparty computation (MPC). GC allows two parties, a garbler G and
an evaluator E, to securely evaluate an arbitrary program over their joint private
inputs. GC’s crucial advantage is that it allows for protocols that run in only a
constant number of rounds and that rely almost entirely on fast symmetric-key
operations. Thus, GC is fast and flexible, making it a core tool in MPC.

While GC has steadily improved since Yao originally proposed the technique,
GC still had a major weakness: arithmetic operations were expensive. This weak-
ness is prominent because, by contrast, interactive secret-sharing-based MPC
cost-efficiently generalizes from Boolean to arithmetic.

The Cost of GC. GC incurs three primary costs: (1) G’s compute when garbling
the program, (2) E’s compute when evaluating the garbled program, and (3) the
size of the garbled program. We refer to the bits of the garbled program as its
material. The amount of material is the most interesting GC cost metric because
it dictates communication cost, which is typically the performance bottleneck.
We optimize GC material while keeping G’s and E’s compute reasonable.
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Let λ denote the computational security parameter. Classic GC demonstrates
how to garble any n-gate Boolean circuit with O(n · λ) bits of material. Prior
to this work, efficient arithmetic generalizations of GC were not known, except
those that only efficiently handle addition/subtraction [3] or that use heavy
cryptographic assumptions such as learning with errors or decisional composite
residuosity [1,2].

1.1 Contribution

We demonstrate efficient arithmetic garbled circuits from an assumption under-
lying most of the recent advances in symmetric-key-based GC.

Consider the integers Zm for arbitrary modulus m ≥ 2, and let " = "log2 m#.
Let C be an n-gate arithmetic circuit over Zm with addition, subtraction, and
multiplication gates. Our garbling of C uses at most O(n · " ·λ) bits of material.
Thus, each multiplication gate uses only O(" · λ) bits of material. Compare this
with Boolean-circuit-based arithmetic, requiring O("2 ·λ) bits via the schoolbook
multiplication algorithm, or O("1.585 · λ) bits via Karatsuba’s algorithm [17].
Our scheme assumes only circular correlation robust hashes, the assumption
underlying the popular Free XOR technique [8,19].

We consider two classes of moduli: arbitrary moduli m and short moduli 2k
for k = O(log n). While our handling of long moduli m is admittedly expen-
sive, our handling of short moduli is surprisingly practical. Multiplication on
short moduli 2k costs only (4k − 1) · λ bits of material. Compare this to the
≈ (1.5 · k2) · λ bits needed by state-of-the-art Boolean garbling [23] with school-
book multiplication. Our short integer arithmetic becomes even cheaper when
considering complex computations, such as vector inner products.

Our arithmetic values are compatible with Boolean operations. We can trans-
late a value from arithmetic to Boolean (and vice versa) at cost O(" · λ) bits.
This, for example, implies that comparisons are compatible with our approach.
Comparisons are often a challenge for arithmetic systems.

We formalize our techniques in a novel model of computation that we call
the switch system model. Switch systems describe computations as systems
of equations. Switch systems generalize the recently proposed tri-state circuit
model [15], a model that enables efficient garbling of RAM programs. Switch
systems unify many GC capabilities, including Free XOR [19], the half-gates
technique [26], our arithmetic techniques, the one-hot garbling technique [14],
and Garbled RAM [20].

1.2 Background and Related Work

Basic Garbling. The basic idea underlying GC is to encode each input of a
small function as keys, and then to use these keys to encrypt each row of the
function’s truth table. These keys are often called labels. We can design protocols
that ensure that the evaluator E will only obtain labels that allow decryption
of a single row, and – with care – this allows E to correctly evaluate any small
function while remaining oblivious to the function input.
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This idea sensibly extends from individual functions to Boolean circuits:
Boolean gates are small functions, and we can use gate input labels to encrypt
output labels. This basic approach leads to a garbling of size O(n · λ) [25].
While many works subsequently improved the handling of Boolean gates –
e.g. [10,18,19,21–23,26] – asymptotic cost has not changed.

Challenge of Arithmetic Garbling. The natural generalization from the Boolean
domain to arithmetic domains is impractical, because as we increase the bit-
width of the domain, function tables grow in size exponentially. One might hope,
then, that we can find ways to garble functions without encrypting function
tables, and perhaps this would lead to arithmetic generalizations.

The celebrated Free XOR technique [19] achieves one such result. Free XOR
allows us to garble XOR gates by simply XORing the gate’s input labels. [3]
showed that Free XOR indeed generalizes to arithmetic domains, so we can
garble the addition operation of finite fields “for free”.

While [3]’s arithmetic garbling can add arithmetic labels “for free”, multipli-
cation incurs exponential cost. Other works demonstrated better multiplication,
but only by making strong assumptions, such as learning with errors, decisional
composite residuosity, or bilinear maps [1,2,9]. Such approaches are of great
interest, but they discard basic GC’s practicality, and they require that we work
with large numbers; as an example, [2] estimate their approach is similar in per-
formance to the symmetric-key-based GC [23] once arithmetic values are almost
four thousand bits long.

Compiling Arithmetic to Boolean. The practical approach to garbling arithmetic
circuits did not use custom cryptography. It was better to simply compile each
arithmetic gate to Boolean gates. To keep the resulting Boolean circuit’s size in
check, this approach leverages multiplication algorithms. In practice, GC uses
either the classic schoolbook method (see e.g. [24]) or Karatsuba’s algorithm
[16,17].

Asymptotically efficient multiplication algorithms do exist, particularly the
breakthrough O("·log ") multiplication of [13], but such algorithms involve infea-
sible constants. Thus, the reasonable approach to arithmetic GC used Kara-
tusba’s algorithm, incurring O("1.585) Boolean gates per multiplication. This
superlinear circuit size made arithmetic operations expensive.

Figure 1 compares our approach with prior arithmetic techniques. In short,
powerful and general techniques for arithmetic GC remained elusive.

One-Hot Garbling. The one-hot garbling technique [14] challenges the GC
paradigm of encrypting truth table rows, and it supports efficient garbling of
a new class of functions. Let x denote a length-n Boolean vector. Given a gar-
bling of x, the technique allows to efficiently compute a garbling of the one-hot
encoding H(x), a length-2n vector that holds zero at each index except index x
(interpreting x as an integer), where it holds one.



6 D. Heath

Fig. 1. Worst case GC material cost (in bits) of our approach as compared to other
symmetric-key arithmetic GC that avoids practically infeasible algorithms. We high-
light each column’s most desirable asymptotic result. Low “<” cost demonstrates com-
patibility with Boolean operations. " denotes the bit-length of values. m denotes an
arbitrary modulus. p denotes a prime modulus. N is a product of pairwise coprime
values, suitable for the Chinese Remainder Theorem (CRT, see Sect. 2.4).

These garbled one-hot encodings support two crucial operations. First, given
a garbling of a bit y and a garbling of H(x), we can compute a garbling of
the scaled vector y · H(x) for only λ bits of material. This operation is limited
in that it only works when the GC evaluator E knows x in cleartext, but in
this case, it allows to compress the garbling of certain functions. Using basic
GC, this operation would require O(2n · λ) bits of material. Second, the one-hot
garbling technique is compatible with Free XOR, meaning that for arbitrary
affine function f , we can compute f(H(x)) for no additional material.

One-hot garbling is powerful because one-hot encodings are in a sense “fully
homomorphic”. Suppose we have a garbling of x where x is known to E, and
suppose we wish to compute f(x) for arbitrary f . [14] shows that we can (1) use
O(n ·λ) bits of material to compute H(x) and then (2) freely compute the linear
operation 〈T (f)·H(x)〉, where T (f) denotes the truth table of f and where 〈 · 〉
denotes a vector inner product. This inner product “selects” the x-th row of the
truth table, computing a garbling of f(x). Thus one-hot garbling can compute
f(x) for any f at material cost linear in |x|.

Despite its power, one-hot garbling is limited: E must know x in cleartext,
and (2) x must be relatively short, as the one-hot vector’s length is exponential
in x’s length. When these constraints can be satisfied, the approach is useful.

One-hot garbling is a key ingredient in our approach. Indeed, we reconstruct
the technique in our switch system formalism, and we demonstrate its compat-
ibility with arithmetic values. We also optimize [14]’s technique, reducing by
factor two the material cost to compute a one-hot encoding.
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1.3 Summary of Our Approach

Our garbling of arithmetic circuits starts with a novel generalization of Free
XOR [19]. Our new garbled labels encode integers in Z2k for any k. Unlike [3]’s
generalization of Free XOR, our arithmetic labels are not shorter than a basic
bit-by-bit garbling of an integer. However, our arithmetic labels have a crucial
advantage over bit-by-bit garbling, because they allow us to add/subtract Z2k

values “for free”.
To multiply values, we demonstrate compatibility between our new labels and

the one-hot garbling technique [14]. Let x, y ∈ Z2k . We show how to multiply a
garbled one-hot vector H(x) by an arithmetic label y yielding arithmetic label
x · y mod 2k for only k · λ bits of material.

We also give gadgets that convert between (1) garbled binary encodings of
Z2k values, (2) garbled arithmetic encodings of Z2k values, and (3) garbled one-
hot encodings of Z2k values. All such conversions cost at most O(k · λ) bits of
material. By combining our multiplication procedure with conversions and one-
time pad masks, we achieve arithmetic circuits over short integers, i.e. integers
modulo Z2k where k is at most logarithmic in the circuit size.

To achieve arithmetic over long integers (i.e. integers modulo m for arbitrary
m), we leverage the classic Chinese Remainder Theorem (CRT), which roughly
states that arithmetic on long integers reduces to arithmetic on short integers.
To complete the approach, we show that we can convert between long integers
in binary representation and long integers in CRT representation. These con-
versions, again, heavily leverage one-hot garbling and our new arithmetic labels’
free operations. With this done, we can handle arbitrary arithmetic circuits while
using at most linear material per gate.

On Our Presentation. Much of our handling is intricate. For example, our con-
version from an arithmetic label x to a one-hot encoding H(x) is tricky, as it
requires that the GC evaluator E iteratively and simultaneously refine (1) a gar-
bled binary encoding bin(x) and (2) a garbled one-hot encoding H(x). At each
step, E uses one bit of bin(x) to solve for half of the remaining bits of H(x), then
uses these new bits to solve for the next bit of bin(x), and so on. This iterative
refinement boils down to solving a system of equations.

In light of this intricacy, our presentation is modular. First, we introduce a
model of computation that we call the switch system model. This model cap-
tures our arithmetic operations, and it specifies computations as a system of
constraints that E can solve. Proving that we can securely garble (oblivious)
switch systems is relatively straightforward. With this done, we focus on switch
systems and ignore garbling-specific concerns. We formalize our arithmetic tech-
niques as switch systems, and this leads to a natural proof of security.
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2 Preliminaries

2.1 Cryptographic Assumption

We use a circular correlation robust hash (CCRH) function H [8,26]. Roughly
speaking, a CCRH produces random-looking output, even when hashing strings
related by some correlation ∆, and even when using the output of the hash to
encrypt strings that also involve the same correlation ∆. The CCRH definition
enables the Free XOR technique [19], which leverages GC labels related by ∆.
We use the CCRH definition given by [26]:

Definition 1 (Circular Correlation Robustness). We define two oracles
that each accept as input a label K ∈ {0, 1}λ, a nonce i, and a bit b:

– circ∆(K, i, b) ! H(K ⊕ ∆, i) ⊕ b · ∆ where ∆ ∈ {0, 1}λ−11.
– R(K, i, b) is a random function with λ-bit output.

A sequence of oracle queries (K, i, b) is legal when the same value (K, i) is never
queried with different values of b. H is circular correlation robust if no poly-
time adversary A issuing legal queries can distinguish circ∆ and R. I.e.:

∣∣∣Pr
∆

[
Acirc∆(1λ) = 1

]
− Pr

R

[
AR(1λ) = 1

]∣∣∣ < negl(λ)

In practice, H is often instantiated using fixed-key AES [11].

2.2 Garbling Schemes

A garbling scheme [7] is a tuple of procedures that specify how to garble a class
of circuits.

Definition 2 (Garbling Scheme). A garbling scheme for a class of circuits
C is a tuple of procedures:

{ Garble,Encode,Evaluate,Decode }

where (1) Garble maps a circuit C ∈ C to garbled circuit material Ĉ, an input
encoding string e, and an output decoding string d; (2) Encode maps an input
encoding string e and a cleartext bitstring x to an encoded input; (3) Evaluate
maps a circuit C, garbled circuit material Ĉ, and an encoded input to an encoded
output; and (4) Decode maps an output decoding string d and encoded output to
a cleartext output string (or it outputs ⊥ if the encoded output is invalid).

A garbling scheme must be correct and may satisfy any combination of
obliviousness, privacy, and authenticity [7]. The most interesting of these
is obliviousness, which informally states that the garbled material together with
encoded inputs reveals nothing to the evaluator:
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Definition 3 (Oblivious Garbling Scheme). A garbling scheme is oblivi-
ous if there exists a simulator Sim such that for any circuit C ∈ C and for all
inputs x the following indistinguishability holds:

(C̃,Encode(e, x)) c= Sim(1λ, C) where (C̃, e, ·) ← Garble(1λ, C)

For most GC techniques (including ours), authenticity and privacy follow
from obliviousness in a standard manner. Our full version expands.

2.3 Modular Arithmetic

We work with integers under various moduli, so we provide relevant notation.

– We use [x]m to denote the remainder of x divided by m.
– We use x ≡m y to denote the modular congruence relation. Namely, x is
congruent to – but not necessarily equal to – y.

When introducing variables we sometimes write [x]m to denote x is an integer
modulo m. We also extend [·]· notation to vectors. If x is a vector, then [x]m
denotes element-wise remainders:

[x]m = [x[0], . . . ,x[n − 1]]m ! [x[0]]m, . . . , [x[n − 1]]m

We recall relevant properties of modular arithmetic:

[[x]m + [y]m]m = [x+ y]m [[x]m · [y]m]m = [x · y]m
[[x]c·m]m = [x]m [x]m ≡m x

2.4 Chinese Remainder Theorem

Our handling of long integers relies on the Chinese Remainder Theorem (CRT).
Our full version reviews CRT, and it includes a formula that converts integers
in CRT representation to integers in binary reprentation. We implement this
conversion as part of our realization of long integer operations.

2.5 Barrett’s Modular Reduction

One challenge in computing over a ring Zm is simplifying values modulo m. The
näıve approach – which implements modular reduction by repeated subtraction
– uses O("2) Boolean operations, which is too expensive.

Barrett [4] demonstrated another approach to modular reduction. Consider
a value x that is less than m2, sufficient to simplify products of values mod
m. Barrett’s approach computes [x]m using two multiplications, a division by a
public power of four, and a conditional subtraction:

x - y !
{
x − y if x ≥ y

x otherwise
(1)
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Barrett’s approach reduces modulo m as follows:

[x]m =



x −


x ·

⌊
4"

m

⌋

4#

 ·m



- m (2)

The crucial point of Equation (2) is that once we demonstrate a linear cost
procedure for multiplying binary numbers, we obtain a linear cost procedure
for multiplying numbers modulo m. This works because (1) division by public
powers of four can be achieved by simply dropping least significant bits and
(2) conditional subtraction can be implemented using well-known linear-sized
Boolean circuits (see e.g. [24]). Therefore, it suffices to demonstrate a linear cost
multiplication procedure for binary-encoded integers.

2.6 Miscellaneous Notation

– λ is a security parameter and can be understood as key length (e.g. 128 bits).
– ‘msb’ stands for ‘most significant bit’; ‘lsb’ stands for ‘least significant bit’.
– We use n to denote circuit size. We often consider values k that are at most
logarithmic in n – i.e. k = O(log n) – such that 2k is polynomial in n.

– We emphasize a value is a vector with bold: x.
– x[0] is considered the msb of vector x.
– We denote by x . y the concatenation of x and y.
– x ! y denotes that x is equal to y by definition.
– x

c= y denotes that x is computationally indistinguishable from y.
– x ←$ D denotes that x is sampled from distribution D. If D is a set, we mean
that x is drawn uniformly from D.

We discuss the binary encoding of integers:

Notation 1 (Binary Encoding). Let x ∈ Z2k be an integer and x ∈ {0, 1}k
denote a vector. x is a binary encoding of x, written x = bin(x), if:

x = bin−1(x) !
∑

i∈[k]

2i · x[k − i − 1]

3 Garbled Switch Systems

This section introduces our switch system model of computation and demon-
strates how to garble any switch system. Sections 4 and 5 implement arithmetic
operations in this model.

Switch systems are inspired by the tri-state circuit model [15], which was
recently formalized as a basis for Garbled RAM [20]. We discuss connections
between switch systems and tri-state circuits in the full version.

Our switch system model unifies many capabilities of GC, as it captures our
arithmetic techniques, as well as many other GC techniques including Free XOR,
One-Hot Garbling, and Garbled RAM.
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3.1 Generalizing Free XOR

Our starting point is Free XOR [19]. In classic GC, the garbler G associates with
each wire w two uniformly chosen labels, K0

w and K1
w. At evaluation, E only

holds the particular label associated with the logical value on each wire.
Free XOR changes the format of labels by sampling only one label K0

w per
wire, and then defining K1

w:

K1
w ! K0

w ⊕ ∆

Here, G uniformly1 draws ∆ ∈ {0, 1}λ−11. ∆ is global to the circuit, meaning
that each pair of labels is correlated by the same value ∆.

The upshot is that G and E now implement XOR gates without G sending
any material – the gate is “free”. To garble an XOR gate z ← x⊕y, G computes
the labels for wire z based on the labels for x and y:

K0
z ! K0

x ⊕ K0
y K1

z ! K0
z ⊕ ∆

When evaluating (and overloading the name of each input wire with its value),
E holds labels Kx

x and Ky
y . E simply locally XORs the input labels, correctly

computing an output label Kx
x ⊕ Ky

y = Kx⊕y
z .

Our Generalization of Free XOR. Consider a Free XOR label Kx
x = K0

x ⊕ x ·∆,
and view K0

x,∆ as λ-bit vectors:

K0
x ⊕ x · ∆ =




K0

x[0]
...

K0
x[λ − 1]



⊕ x ·




∆[0]
...

∆[λ − 1]





Viewed this way, there is a natural generalization from labels that encode bits to
labels that encode words. Let K0

x,∆ ∈ Zλ
2k now denote vectors of Z2k elements2,

and let x ∈ Z2k now denote a word. We consider labels of the form [K0
x+x ·∆]2k :

[K0
x + x · ∆]2k =








K0

x[0]
...

K0
x[λ − 1]



+ x ·




∆[0]
...

∆[λ − 1]









2k

Remark 1 (On the Size of Arithmetic Labels.). At first glance, it seems that our
new labels have not given us anything new. To encode a k-bit word, we still
require an encoding of length k · λ, exactly as if we were to encode the word
bit by-bit. However, our new labels enable new free operations, and these free
operations ultimately enable efficient arithmetic circuits.

1 Free XOR sets ∆’s lsb to one, enabling the point-and-permute technique [6].
2 In fact, we could generalize to any modulus m. We only consider moduli 2k because
they are sufficient and because this restriction allows security from Definition 1.



12 D. Heath

Free Operations on Arithmetic Labels. The first free operation is a direct gener-
alization of Free XOR:

Lemma 1 (Free Affine Maps). Let f : Zs
m → Zt

m denote an arbitrary affine
map and let x ∈ Zs

m be a vector. Let ⊗ denote the vector outer product tensor:

f([K0
x + x ⊗ ∆]2k) = [f(K0

x) + f(x) ⊗ ∆]2k

Proof. Immediate by the fact that f is affine. 1.

This implies that addition, subtraction, and multiplication by constants are
free operations. For instance, to add two garbled words, just add the labels.

Our encoding also comes with a second free operation. Namely, we can in
certain cases compute modular reductions for free. The following is immediate
by properties of modular arithmetic:

Lemma 2 (Free Modular Reduction). Let x ∈ Z2k+c be an integer.

[[K0
x + x · ∆]2k+c ]2k = [K0

x + x · ∆]2k

Said another way, if E holds a word label modulo 2k+c, then E can freely
simplify to a smaller word modulo 2k by simply dropping msbs of each vector
entry in the label. This allows us to extract labels encoding low bits of words,
which is useful when converting from word labels to binary labels.

Remark 2 (Upcasting). Our modular reduction ‘downcasts’ large words to small
words for free, but the other direction is not free. Our construction will require
‘upcasting’ binary labels to word labels, and this will require garbled material.

Finally, our word labels support a related operation that allows us to freely
discard lsbs of labels, but only if they are known to be zero:

Lemma 3 (Free Division). Let x ∈ Z2k+c be an integer such that [x]2c = 0.
I.e., 2c divides x. Integer division by 2c is a free operation. Namely:

⌊
[K0

x + x · ∆]2k+c

2c

⌋
=
[⌊

K0
x

2c

⌋
+

x

2c
· ∆

]

2k

Proof. Immediate by the fact that 2c divides x. 1.

Crucially, if the above values K0
x,∆ are uniform in Zλ

2k+c , then 2K0
x/2c3 (resp.

2∆/2c3) is uniform in Zλ
2k . Floored division by 2c partitions the values in Z2c+k

into 2k size-2c congruence classes. This means that the above operation is safe
in the sense that if the input label is uniform, then so is the output label. On
the other hand, it is not safe to interpret the resulting quotient as an element
modulo 2k+c: the label 2K0

x/2c3 is not uniform over Zλ
2k+c .

The upshot is that if E is working with a word label encoding x, and if it
is statically deducible that the lsb of x is zero, then E can locally discard the
lsb of x by simply discarding the lsb of each of the λ vector entries in the label.
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Multidirectional Gates. Free XOR labels – and by extension our arithmetic labels
– allow E to compute addition gates by simply adding labels. As a thought
experiment, suppose E instead is missing one gate input label, but has somehow
obtained a gate output label. E can solve for the missing input label.

In other words, each XOR/addition expresses a linear relation on three labels,
and given any two labels, E can solve for the third. Thus, we need not restrict
ourselves to gates that evaluate only in one direction. This insight underlies
our switch system model, which views garbled computation as taking place in a
constraint system, where E uses some labels to solve for others, and where the
order in which the system is solved might vary from one execution to another.

As we will see, our formalization of computations as constraint systems allow
us to capture and improve the capabilities of one-hot garbling [14].

3.2 Switch Systems

We introduce our switch system model. In short, switch systems formalize the
capabilities of our arithmetic labels (Sect. 3.1), making explicit various available
operations, including our free operations.

Switch systems are circuit-like objects that establish constraints on arith-
metic wires holding values under moduli 2k for various k. As the name suggests,
switch systems focus on components that we call switches:

x y

ctrl

A switch is a component relating three wires: a mod 2 control wire ctrl, and
two mod 2k data wires x and y. If the control wire holds logical zero, then the
switch closes, connecting wires x and y such that they hold the same value;
otherwise the switch remains open, and x and y are free to hold distinct values.

In the GC setting, we implement switches via a call to our CCRH function
H. Namely, suppose wire x has zero label [K0

x]2k while Boolean wire ctrl has zero
label [K0

ctrl]2. G defines the zero label for wire y as follows:

K0
y ! [K0

x +H(K0
ctrl, ν)]2k

Here, ν is a nonce, and we ensure H outputs λ · k bits (by calling H k times).
If E knows the value of ctrl, and if ctrl = 0, then E can use its ctrl label

to compute H(K0
ctrl, ν), allowing E to compute the difference between the x

and the y label such that E can indeed “connect” these wires. Note the inherent
bidirectionality of the switch: E can use the difference between labels to translate
an x label to y label, or vice versa.

Switches require that E know in cleartext the control wire’s value. This is
inherent from the fact that E’s behavior is conditional, connecting two data
wires iff ctrl = 0. Of course, our goal is to handle arithmetic circuits that protect
privacy, and so our handling must ultimately hide from E intermediate wire
values. We achieve privacy-preserving computation via oblivious switch systems,
which are explained later.
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We now formalize the switch system model which captures the capabilities
of our arithmetic representation. We show how to garble such systems shortly:

Definition 4 (Switch System). A switch system is a system of constraints
on wires (i.e., constrained variables) holding values over moduli 2k for various
k. The system is defined in terms of gates. Non-input wires in the system are
initially not set (i.e., have no value), and as the system runs, wires become set
according to the rules of each gate. The types of gates are as follows:

– A switch takes as input a binary control wire ctrl ∈ Z2 and data wire x ∈
Z2k . The gate outputs data wire y ∈ Z2k , and it establishes the following
implication constraint:

ctrl = 0 =⇒ x = y

We denote the output of a switch by writing x 5 ctrl.3 Switches are bidi-
rectional in the sense that the system ensures that if ctrl = 0, then x = y,
regardless of which data wire is set first.

– A join takes input wires x, y ∈ Z2k and establishes an equality contraint:

x = y

We denote a join by writing x %& y. Joins are bidirectional in the sense that
the system ensures x = y, regardless of which wire is set first.

– An affine gate is parameterized by an affine map f : Zin
2k → Zout

2k . It takes
as input a vector of wires x ∈ Zin

2k , and it outputs a vector of wires y ∈ Zout
2k .

The gate establishes the following constraint:

f(x) = y

We denote affine gates by simply writing affine constraints of wires. Affine
gates are multidirectional in the sense that the system uses the values of set
wires to solve for unset wires.

– A modulus gate takes as input a wire x ∈ Z2k+c for arbitrary c, k. It outputs
a wire y ∈ Z2k , and it establishes the following constraint:

y = [x]2k

Modulus gates are one directional: the system uses x to solve for y.
– A division gate takes as input a wire x ∈ Z2k+c where it is statically guar-

anteed that 2c divides x. It outputs a wire y ∈ Z2k , and it establishes the
following constraint:

y = [x/2c]2k

Division gates are one directional: the system uses x to solve for y.

For convenience, we assume each gate has some unique identifier gid. A switch
system has input wires and output wires. For a switch system S, we denote
by S(x) the values on output wires after running with input wires x.
3 x $ ctrl can be read ‘x controlled by ctrl’. The symbol ‘$’ is meant to depict two
vertical data wires connected at a point controlled by the horizontal control wire.
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Remark 3 (Mismatched Moduli). Switch system joins/affine gates cannot com-
bine values with different moduli. Indeed, corresponding operations on garbled
words are only secure and correct when operating on matching moduli. Thus to,
e.g., add a 1-bit value to a k-bit value, one must first “upcast” the 1-bit value
to a k-bit value. Implementing such casts is a main challenge in our approach.

A crucial component of a switch system is its collection of control wires:

Definition 5 (Controls). Let S be a switch system and let x be an assignment
of input wires. The controls of S on x, denoted controls(S,x) ∈ Z∗

2, is the set
of all switch control wire values (each labeled by its gate ID).

As we discuss later, in a garbled switch system the controls of the switches
are revealed to E; we introduce random masks as auxiliary input wires to ensure
that all such revealed wires can be simulated.

Ruling Out Degenerate Systems. So far, it is not guaranteed that a switch system
S with input x has only one possible configuration of wire values. For instance,
using switches it is possible to introduce wires that, under particular inputs,
are disconnected from the rest of the system. We are interested in well-formed
systems where all wires are uniquely determined by the input wires:

Definition 6 (Legal Switch System). A switch system S is legal if for any
input x, there exists only one assignment of circuit wires that satisfies the gate
constraints. I.e., wire values are a function of the input wires.

From here on, we only consider/construct legal switch systems.

Order of Gate Definition and the Need for Joins. It may seem strange that we
specify gates as having inputs and outputs when gates are bidirectional.

We view such gates as producing their output wires because this is how the
garbler G chooses wire labels. For example and as already discussed, for a switch
gate, the label for wire y is computed from the labels for x and ctrl. Thus, we
insist that switch system be written out as gates, each of which produces fresh
output. This ensures G can compute all labels.

Joins provide a mechanism to connect two wires that are each the output of
some gate. Joins may at first glance seem innocuous or even ad hoc. Not so. In
our garbling, joins are the only significant source of garbled material. All other
gates allow G and E to compute wire labels as a function of labels they already
hold; joins require that G send to E the difference between two wire labels.

Crucially, switch system gates need not execute in the same order they are
written down; E solves for unset wire labels as gate constraints become solvable.

Cost Metrics. The size of a switch system |S| (the number of gates) is misleading
as a cost metric, because switch systems allow wires over various moduli. Thus
some wires carry more information than others, and, accordingly, some gates
perform more work than others. To measure the complexity of a switch system,
we measure the amount of information on wires. As we will see, the garbling of a
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switch system grows only from join gates. Other gates are are ‘free’. Accordingly,
our most important metric is the total width of joined wires:

Definition 7 (Switch System Join Width). Consider a switch system S,
and let x ∈ Z2k denote a wire modulo 2k in S. We say that wire x has width k.
We denote the width of wire x by writing width(x). Consider a join x %& y. The
width of x %& y is the width of wire x (which is equal to the width of y):

width(x %& y) ! width(x)

The join width of S is defined by summing the width of each of S’s join gates.
We denote the join width of S by join-width(S). Width is measured in bits; we
often say that S joins join-width(S) bits.

Remark 4 (Reducing Garbled Material). As we will see, the amount of material
needed to garble a switch system S is almost exactly join-width(S) · λ bits. We
can thus reformulate our goal of reducing material to reducing join-width(S).

Completeness. It may not be obvious that switch systems form a complete model
of computation. To show that they are complete, and as a warm-up, we demon-
strate switch systems are at least as powerful as Boolean circuits. (The following
is similar to an argument about tri-state circuits [15]).
Theorem 1 (Emulating Boolean Circuits). For any Boolean circuit C,
there exists a switch system S such that:
– |S| = O(|C|) and join-width(S) = O(|C|).
– For all inputs x, S(x) = C(x).

Proof. By constructing Boolean gates from switch system gates. More specifi-
cally, we emulate the complete Boolean basis {⊕,∧, 1}.

Other than AND gates, emulation is straightforward: we can respectively
emulate Boolean 0 and 1 by wire value [0]2 and [1]2, and each XOR is trivially
emulated by an affine gate that adds values modulo 2 (i.e., computes XOR).
Similarly, NOT gates can be emulated via an affine gate that adds [1]2 to its
input. AND gates are more complex, but can be emulated as follows:

AND(x, y) ! z ← x 5 ¬y ; z %& ([0]2 5 y) ; return z

We sketch the emulated gate:

x

y

z

◃▹¬

0

In our system, y and ¬y are controls. If y holds 1, then only the top switch closes,
connecting x to z; if y holds 0, then only the bottom switch closes, connecting 0
to z. Thus z is indeed the AND of x and y. We emphasize that we must include
a join to properly set z. The system4 joins only one bit. 1.
4 In the terminology of [26], this system implements a “half gate”, where E learns
the cleartext bit y.
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Oblivious Switch Systems. As already mentioned, our garbling of switch systems
reveals to E all controls (Definition 5). Of course, our goal is to build garbling
that preserves privacy, so we must ensure that the controls reveal no useful
information. To achieve this, we consider switch systems with auxilliary random
inputs; these random inputs will act as masks on cleartext values:

Definition 8 (Randomized Switch System). A randomized switch sys-
tem is a pair consisting of a switch system S and a distribution D. The execu-
tion of a randomized switch system on input x is defined by randomly sampling
r ←$ D, then running S on x and r:

(S,D)(x) ! S(x; r) where r ←$ D

As we will see, we garble randomized switch systems by having G locally
sample the distribution r ←$ D; E does not know r.

By including randomized inputs, we can consider switch systems that are
oblivious, meaning that their control wires can be simulated:
Definition 9 (Oblivious Switch System). Consider a family of legal ran-
domized switch systems (Si,Di) for i ∈ N. This family is oblivious if the dis-
tribution of controls (Definition 5) of (Si,Di) can be simulated. I.e., there exists
a simulator Simctrl such that for all inputs x:

Simctrl(1λ) s= { controls(Sλ, (x; r)) | r ←$ Dλ }

Here, s= denotes that the distributions are statistically close (wrt λ).
Like deterministic switch systems, oblivious switch systems also form a com-

plete model of computation. Namely, for any Boolean circuit, there is an oblivious
switch system computing the same function.

Theorem 2 (Obliviously Emulating Boolean Circuits). For any Boolean
circuit C, there exists an oblivious switch system (S,D) such that:

– |S| = O(|C|) and join-width(S) = O(|C|).
– For all inputs x, (S,D)(x) = C(x).

Proof. Theorem 1 shows that switch systems are complete, but the resulting
construction is not oblivious. We achieve obliviousness via the ‘half-gates’ tech-
nique [26]. Namely, to AND bits x and y, we include in our randomized switch
system’s distribution D a Beaver multiplication triple [5]:

{ α,β,α · β | α,β ←$ Z2 }

Then, we use two non-oblivious AND gates (Theorem 1) to compute:

x · (y ⊕ β) ⊕ β · (x ⊕ α) ⊕ α · β = x · y

Because non-oblivious AND reveals its second argument to E, E learns y ⊕ β
and x⊕α. α and β are uniform, so y⊕β, x⊕α can be simulated by uniform bits.
Thus, the half-gates technique can be embedded in switch systems (the resulting
GC material cost will match [26]’s 2λ bits per AND). 1.

We rely on Theorem 2 in parts of our construction of arithmetic circuits.
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Fig. 2. Our procedure for garbling oblivious switch system families (left) and our sim-
ulator used to prove security (right). max-width denotes the maximum width of any
system wire. f ranges over affine functions. gid denotes a gate-specific nonce. lsb out-
puts the lsb of a Boolean GC label. H is a CCRH (Definition 1). send indicates to
attach a string to the garbled material. The crucial security argument is that for each
switch with a one control (highlighted), we can simulate the gate’s output label by a
uniform string.

3.3 Garbling Switch Systems

Our approach to garbling oblivious switch systems is relatively straightforward.
We use H to implement switches, G sends lsbs of control wire labels to reveal
their values, G sends differences between labels to implement joins, and all other
gates are implemented via arithmetic label free operations (Sect. 3.1). G locally
samples the oblivious distribution r ←$ D; E does not learn r. Crucially, the
garbling of a switch system uses only ≈ λ · join-width(S) bits of material.

One key point is that G garbles gates in a fixed order, but E evaluates gates
in whichever order it can. This order can vary with the system input, depending
on which switches close and which do not. We formalize our handling:

Construction 1 (Garbled Switch Systems). We define our garbling scheme
(Definition 2) for oblivious switch systems (Definition 9). In the following,
each wire w has zero label K0

w; we denote the runtime label held by E as
Kw = K0

w ⊕ w · ∆. For simplicity, assume system input/output wires are mod 2
wires:
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– Garble is defined in Fig. 2.
– Encode encodes each input wire value x as an input label Kx = K0

x ⊕ x · ∆,
where K0

x and ∆ are chosen by Garble. Namely, our scheme’s input encoding
string e includes for each input wire the pair of possible labels.

– Evaluate uses available labels to solve for further labels:
• Consider a switch y ← x 5 ctrl. Suppose Kctrl and Kx (resp. Ky) are

available. Evaluate uses the lsb included by Garble to decrypt ctrl. If ctrl =
1, the gate is solved. If ctrl = 0, Evaluate computes H(Kctrl, gid) to find
difference K0

y − K0
x. It then adds (resp. subtracts) this difference to Kx

(resp. Ky) to compute Ky (resp. Kx).
• Consider a join x %& y. Suppose Kx (resp. Ky) is available. Evaluate
fetches the material K0

y −K0
x and adds (resp. subtracts) this difference to

solve for Ky (resp. Kx).
• Consider an affine gate y ← f(x), and suppose some set wires in x,y

fully determine some other wire. Evaluate uses affine operations on labels
to solve for the determined wire’s label.

• Consider modulus gate y ← [x]2k . Evaluate drops msbs of entries of the
vector Kx to compute Ky ← [Kx]2k .

• Consider division gate y ← [x/2c]2k where x is statically guaranteed to be
a multiple of 2c. Evaluate drops lsbs of entries of the vector Kx to compute
Ky ← [Kx/2c]2k .

– Decode decodes each output wire label Ky as follows:

Decode(Ky) =






0 if H(Ky, ν) = H(K0
y , ν)

1 if H(Ky, ν) = H(K0
y ⊕ ∆, ν)

⊥ otherwise

Here, K0
y and ∆ are chosen by Garble. Namely, our scheme’s output decoding

string d includes for each output wire the hash of the pair of possible output
labels. Note, hashing the output labels ensures even a malicious evaluator
cannot forge an output label that successfully decodes.

Remark 5 (Revealing Control Bits). Construction 1 reveals control bits to E by
including in the GC material lsbs of control wires. These are individual bits, not
length-λ strings. Sending a bit for every switch is overkill, as the value of one
control bit is often deducible from other control bits. Rather than meticulously
accounting for this, we simply point out that in our constructions the number of
control bits that need to be revealed is small, and is not asymptotically relevant.
From here on and when counting material cost, we only count joined bits, which
are significantly more expensive than revealed control bits.

Construction 1 is correct, and it is also oblivious (Definition 3) so long as the
switch system is itself oblivious (Definition 9). Accordingly, the scheme can be
used to build GC protocols.
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Theorem 3 (Obliviousness). When (Si,Di) is an oblivious switch system
family, Construction 1 is an oblivious garbling scheme. Namely, let H be a cir-
cular correlation robust hash function (Definition 1). There exists a simulator
Sim such that for all inputs x the following indistinguishability holds:

(S̃,Encode(e,x)) c= Sim(1λ, (Sλ,Dλ)) where (S̃, e, ·) ← Garble(1λ, (Sλ,Dλ))

The full version provides a detailed proof of Theorem 3. For now, we provide
a detailed obliviousness simulator and sketch an argument of security.

Proof Sketch By construction of a simulator Sim (Fig. 2). In short, Sim produces
a convincing view by using (1) the properties of H and (2) the switch system’s
control wire simulator Simctrl.

The real garbling of (Sλ,Dλ) reveals to E the control bits controls(Sλ, (x; r)),
and this string depends on the input x. Sim does not know x, so it cannot reveal
the same values. Instead, it uses the obliviousness of (Si,Di) to call Simctrl,
allowing it to reveal values that are statistically close to the real world controls.

The remaining challenge is to simulate output labels from switches. For each
switch, there are two cases. If the control holds zero (the switch is closed), Sim
matches the real-world garbling. If the control holds one, Sim simulates the label
with a uniformly random string; this is a good simulation because of the prop-
erties of the CCRH and because we know E will not learn the control wire zero
label. There is some nuance in showing CCRH is sufficient to garble an inactive
switch, since CCRH is defined for Boolean strings, but our labels are Z2k vectors.
Resolving this mismatch is not hard; see the full proof for details. 1.

4 Generalized One Hot Garbling

The core of our approach uses switch systems to connect our arithmetic labels
(Sect. 3.1) with the one-hot garbling technique [14]. Our handling of arithmetic
circuits ultimately reduces to switch systems developed in this section.

Our new one-hot formalism is more efficient than the presentation of [14]. [14]
uses 2(n − 1) · λ bits of material to garble a one-hot encoding (defined shortly)
of a length-n string; we improve by factor two, achieving the same result at cost
(n − 1) · λ bits. Unwinding our handling of switch system gates, the following
approach is similar to the GGM tree improvement of [12].

We start by defining one-hot encodings. The one-hot encoding of an integer
x is a zero/one vector that – as the name suggests – is one-hot : it has exactly
one non-zero entry, and the location of this entry encodes x:

Notation 2 (One-Hot Encoding). Let x ∈ Z2k be an integer. The one-hot
encoding of x is a length 2k vector H(x) s.t. each H(x)[i] is a one iff x = i:

H(x) =
⊔

i∈[2k]

(x ?= i)
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Remark 6 (Arithmetic and Binary One-Hot Encodings). It will be convenient
to consider one-hot encodings both where zero/one entries are in Z2 and where
zero/one entries are in Z2k . We refer to the former as a binary one-hot encoding
and to the latter as an arithmetic one-hot encoding.

The crucial property of one-hot encodings is that they are ‘fully homomor-
phic’ in the sense that we can evaluate an arbitrary function via an affine map:

Lemma 4 (Evaluation via Truth Table [14]). Let x ∈ Z2k and f : Z2k →
Z2k denote a function.

〈T (f) · H(x)〉 = f(x)

Here, entries of H(x) are Z2k elements, T (f) denotes the truth table of f
expressed as a vector, and 〈 · 〉 denotes the vector inner product operation.

Thus, if we construct a one-hot encoding of a value x, then we can compute
f(x) for free. This is crucial throughout our approach.

Remark 7 (Obliviousness). In the remainder of this section, assume that all one-
hot positions are known in the clear to the evaluator E. Our handling of arith-
metic circuits later uses one-time pads to mask true values from E, achieving
oblivious switch systems (Definition 9) and thus secure arithmetic GC.

4.1 Our Approach to One-Hot Garbling

Our first goal is to construct a switch system that on input a binary encoding
x = bin(x) outputs a binary one-hot encoding H(x). We approach this problem
recursively, so assume that we have a one-hot encoding of the first i bits of x;
we wish to construct a one-hot encoding of the first i+ 1 bits.

Our key tool for taking this step is a switch system that scales a one-hot
vector h by some scalar s ∈ Z2k for arbitrary k:

scalek(h = H(x)) ! y ←
(
⊔

i

[0]2k 5 h[i]

)
; s ←

∑

i

y[i] ; return (s,y)

The system treats scalar s as an output, not as an input; this will be formally
convenient later. As wires are bidirectional, s can be ‘converted to an input’ by
joining it with some other wire. For reference, we draw an example of the above
system both with symbolic inputs (left) and on a concrete input (right):
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We construct each word of the output vector y[i] by switching data value
0 ∈ Z2k with control h[i]. Because h is one-hot, all except one switch closes. We
add together the entries of y, and we name the sum s.

Since all except one wire in y holds a zero, there is a unique wire assignment
that satisfies the system: the single non-zero entry of y must be equal to s. In
the context of garbling, this means that E can use available zero labels and a
label that encodes s to solve for the single non-zero label in the encoding of y.
Thus, this system indeed scales the one-hot vector h by the scalar s. The scale
system has no join gates, and hence it is “free”.

We can use scale to construct a one-hot encoding of the binary vector x
recursively. In the base case, the one-hot encoding of a single bit x[0] is simply
the pair (¬x[0],x[0]). In the recursive case, we take the one-hot encoding of the
first i bits of x and scale it by the next bit of x. From here, we extend the one-hot
encoding with XORs (addition mod 2). The construction is as follows:

1 bin-to-hot(x = bin(x)) !
2 if (|x| = 1) : return (¬x[0],x[0])
3 else :
4 h ← bin-to-hot(x[1..]) ; (s,h′) ← scale1(h) ; s %& x[0]
5 return ([h′ + h]2) . h′

Given a length-n input vector, each recursive call joins one bit, so bin-to-hot
joins n − 1 total bits. Again, this is a factor two improvement over [14].

4.2 Half Multiplication

As a stepping stone to full multiplication of short arithmetic values, we build a
‘half multiplier’, similar in flavor to [26]’s half AND gate (see Theorem 1). The
system takes as input one-hot-encoded x and word-encoded y ∈ Z2k :

half-mul(h = H(x), y) ! (s,h′) ← scalek(h) ; s %& y ; return
∑

i

i · h′[i]

half-mul observes that we can scale x’s one-hot vector by y, then use affine
operations to scale each entry of h′[i] by its index i (each i is a constant). After
this, the one-hot location stores [x · y]2k , and all other locations store zero.
Summing these products computes [x · y]2k . half-mul joins only k bits.

4.3 Conversions

To support general arithmetic operations, we need a variety of conversion oper-
ators that move between various data representations.
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Conversions from One-Hot Encodings. It is useful to convert an arithmetic one-
hot encoding H(x) to binary encoding bin(x) and/or word encoding x. These
conversions are free, due to the ‘fully homomorphic’ nature of one-hot encodings.

In more detail, let id : Z2k → Z2k denote the identity function.

hot-to-word(h = H(x)) ! 〈T (id) · h〉

By Lemma 4 this correctly computes the word encoding of x.
Similarly, we can extract a binary encoding of an arithmetic one-hot encoded

value H(x). We simplify the one-hot indices modulo 2, then take an appropriate
linear combination of the wires:

hot-to-bin(h = H(x)) ! 〈T (bin) · [h]2〉

Converting Words to One-Hots. We can now convert binary strings to one-hot
vectors, and we can easily convert one-hot vectors to words/binary. The final
conversion – words to one-hot vectors – is significantly more complex.

Our observation is that to compute a one-hot encoding of x, we first need a
binary encoding bin(x). If we can achieve this, then we can apply bin-to-hot, scale
the result by [1]2k , and the problem is solved. However, efficiently converting a
word x to a binary encoding bin(x) is non-trivial.

Our mod gate allows us to freely extract from x the lsb [x]2. However, higher
bits are harder to extract. Our division gate would allow us to make progress, if
we could ensure that the lsb of x was zero. Of course, x might have lsb one, so
this does not yet work. To extract the second lsb of x, we need to first subtract
off the lsb. We have this lsb [x]2, but we cannot yet subtract it off, because its
modulus 2 does not match x’s modulus 2k, and our linear operations require
wires with matching moduli (Remark 3). Thus, to compute [x− [x]2]2k , we first
need to “upcast” the bit [x]2 to a word [[x]2]2k .

As a strawman solution to this upcast problem, consider the following system:

([0]2k 5 [x]2) %& ([1]2k 5 ¬[x]2)

This strawman is correct: if [x]2 = 0, then the joined wire hold [0]2k ; otherwise,
the joined wires hold [1]2k . The problem is that this system joins k bits, which
is simply too expensive. To extract all bits of x, we would need to upcast each
of its bits in turn, and each upcast would join O(k) bits. In total we would join
O(k2) bits, which is useless for linear cost arithmetic.

Still, the above template ultimately leads to an efficient solution: (1) use mod
to obtain the lsb of x, (2) upcast the lsb to a word, (3) subtract the upcasted
lsb from x, (4) now that the lsb of x is guaranteed to be zero, use division to
remove the lsb, and (5) repeat. To instantiate this template efficiently, our system
upcasts all of the lsbs of x in batch. The resulting solution is a single switch
system that converts each bit of x to binary, and it simultaneously converts x
to arithmetic one-hot representation. The full system joins only 2k − 1 bits.
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1 word-to-hotk(x) !
2 hbin ← bin-to-hot(bin(x)) ; harith ←

⊔
i
([0]2k " hbin[i])

3 (h!,hr) ← halves(harith) ; bin(x) ← solve-bink−1(h! + hr)
4 return harith

5 where solve-bini(h = H([x]2i)) !
6 if (i = 0) : h[0] !" [1]2k ; return [x]2
7 else :

8 [[x]2i ]2k ← hot-to-word(h) ; msb ← [(x − [x]2i)/2
i]2

9 (h!,hr) ← halves(h) ; lsbs ← solve-bini−1(h! + hr)
10 return msb $ lsbs

[11]16 ????

word bin hot

[11]16 ???1

[1]16

[
⌊ 11−1

2

⌋
]8 = [5]8 ??11

?011

1011

[3]16

[3]16

[
⌊ 11−3

4

⌋
]4 = [2]4

mod2

mod2

mod2

[
⌊ 11−3

8

⌋
]2 = [1]2

Fig. 3. (Top) our word-to-hot switch system converts an arithmetic word [x]2k to an
arithmetic one-hot vector [H(x)]2k . halves splits a length-2i vector at its middle, giv-
ing two length-2i−1 outputs. (Bottom) an example word-to-hot execution. The system
maintains three encodings of its input x: a word encoding, a binary encoding, and
an arithmetic one-hot encoding (as well as one-hot encodings of x modulo powers of
two). Black squares represent logical zero; white squares represent one; gray squares
represent an unknown value. At each step, the system uses mod to extract the lsb of x,
yielding the next bit in the binary encoding. It then can refine its one-hot encodings.
These one-hot encodings allow to linearly compute a word encoding of lsbs, which are
subtracted from x, allowing us to repeat until we fully solve the one-hot encoding.

word-to-hot (see Fig. 3) is our most intricate construction. It leverages gate
bidirectionality to solve for x’s binary encoding and one-hot encoding together.
Figure 3 sketches an example, and it show how E solves the constraints.
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The system itself is circularly defined: the binary one-hot vector hbin is defined
based on bin(x), which is not defined until the later call to solve-bin. This defini-
tion is nevertheless sensible: the system iteratively refines its solution for both
bin(x) and hbin. Note, the system can immediately solve for the lsb of x (base
case of solve-bin) via a mod gate.

In a sense, we construct hbin = [H(x)]2 by imagining that we already have
bin(x). With hbin constructed, we use switches to cast the zero slots of hbin to
words mod 2k, yielding an arithmetic one-hot vector harith whose one slot is
initially unconstrained. We again imagine that this one slot is filled with [1]2k ,
in which case harith would be a valid arithmetic one-hot encoding of x. Then, we
repeatedly take left and right halves of harith and sum them to a vector of half
the length. This iteratively yields shorter and shorter arithmetic one-hot vectors:

[H([x]2k)]2k [H([x]2k−1)]2k ... [H([x]2)]2k [1]2k

The final singleton one-hot vector is degenerately equal to [1]2k , but only because
we imagined that the one slot of harith was filled, so in fact this final value is so
far unconstrained. We insist that this final value is indeed [1]2k by applying a
join gate (base case of solve-bin).

If we can indeed solve for the one-hot encoding of x, then we can solve
for intermediate arithmetic one-hot encodings by propagating [1]2k backwards
through the system (see Fig. 3). From here, we use the intermediate encodings
to linearly compute word encodings of each bit of x.

Evaluation of the system proceeds as follows. Because the lsb of x is initially
available, E can solve for half of the entries of hbin. Specifically, E solves for each
one-hot index whose lsb does not match that of x; see Fig. 3. This, in turn, lets
E solve for a word encoding of x’s lsb, which can be subtracted from x. Now x
must have lsb zero, so we can iterate, extracting a binary encoding of x’s second
lsb, allowing E to refine the one-hot encoding of x, allowing E to obtain a word
encoding of x’s second lsb, and so on.

While intricate, word-to-hot is lean: it joins only 2k − 1 bits. This low cost
makes it affordable to convert arithmetic labels to arithmetic one-hot encodings.

5 Garbled Arithmetic from Switch Systems

We now have our core tools that combine one-hot garbling with arithmetic labels.
From here, we assemble arithmetic garbling. We start by building switch systems
for short integers; this handling is straightforward and practical. We use short
integers to achieve long integers by applying the Chinese Remainder Theorem.

5.1 Short Integers

Based on our new one-hot operations (Sect. 4), we can construct oblivious switch
systems (Definition 9) that operate on short integers (henceforth, “shorts”).
Here, we consider integers modulo 2k where k = O(log n) is at most logarithmic
in the circuit size n. The fact that k is small allows us to write out one-hot
encodings of integers in polynomial time. Later, we will use shorts as a building
block to garble long integers, which have no restriction on the modulus.
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Notation 3 (Short). The short encoding of integer x ∈ Z2k – written short(x)
– consists of (1) a uniform mask α ∈ Z2k and (2) a length 2k arithmetic one-hot
encoding H(x+ α).

Recall that in a one-hot encoding, the evaluator E knows the one-hot value
in cleartext; the one-time pad mask α hides x. In the context of a randomized
switch system, the mask α is part of the system’s randomized inputs, and in GC
the garbler G knows α in cleartext.

Conversions on Shorts. Before explaining how to add/subtract/multiply shorts,
we need conversion operations on shorts. These operations are a straightforward
consequence of conversion operations on one-hot encodings (Sect. 4.3).

For instance, to convert short encoding short(x) to word encoding x, we
simply use the appropriate conversion on one-hot vectors, then subtract off α:

short-to-word((h,α) = short(x)) ! return hot-to-word(h) − α

This system is free (i.e., has no joins).
Conversions from a word to a short and between shorts and binary are similar:

word-to-short(x) ! α ←$ Z2k ; return (word-to-hot(x+ α),α)

short-to-bin((h,α) = short(x)) ! return hot-to-bin(h) − α

bin-to-short(x = bin(x)) ! α ←$ Z2k ; return (bin-to-hot(x+ bin(α)),α)

word-to-short joins 2k − 1 bits, due to the call to word-to-hot.
short-to-bin and bin-to-short requiring adding/subtracting uniform mask α in

binary representation. Here, addition/subtraction is implemented by a ripple-
carry adder built from oblivious Boolean gates (Theorem 2). It is crucial to use
oblivious gates to hide x from E. A ripple-carry adder can be built from XORs
and k − 1 oblivious ANDs (see e.g. [24]), so the full adder joins 2k − 2 bits.

Operations on Shorts. We use our new conversions to operate on shorts. Addi-
tion/subtract/scaling by public constants are simple: convert arguments to word
representation, perform the operation for free, then convert the result back to
short representation. Let x, y be short encodings and let s ∈ Z2k be a constant:

x+ y ! word-to-short(short-to-word(x) + short-to-word(y))

x − y ! word-to-short(short-to-word(x) − short-to-word(y))

s · x ! word-to-short(s · short-to-word(x))

Each operation joins only 2k − 1 bits, due to the call to word-to-short.
Multiplication on shorts is more difficult, but can be achieved with two half

multipliers (Sect. 4.2) and conversions. Consider two values short(x), short(y),
and suppose we wish to compute short(x · y):
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1 ((hx,α) = short(x)) · ((hy,β) = short(y)) !
2 y ← short-to-word(short(y))
3 (x+ α) · y ← half-mul(hx, y)
4 (y + β) · α ← half-mul(hy,α)
5 x · y ← (x+ α) · y − (y + β) · α + α · β
6 return word-to-short(x · y)

Here, α · β is part of the switch system’s randomized input.
The full multiplication procedure joins only 4k− 1 bits: k bits are joined per

half-mul, and 2k − 1 bits are joined as part of word-to-short.

Delayed Conversions and Inner Products. Our operations on shorts convert from
words to shorts, joining 2k − 1 bits. When handling more complex arithmetic
expressions, we can as an optimization simply delay conversion back to short
representation. For example, to compute the inner product of two length-n vec-
tors of shorts, we can pointwise multiply the vector elements to obtain n words,
add the words together, then perform only a single conversion back to short
representation. This inner product operation thus uses 2n half multipliers and
one word-to-short conversion, joining only 2nk + 2k − 1 total bits.

Binary Multiplication; Modular Reduction. By using binary/short conversions
with short multiplication, we can multiply k-bit binary numbers while joining
only O(k) bits. Because we can efficiently multiply short binary integers, we have
the tools we need to apply Barrett’s modular reduction algorithm (Sect. 2.5) to
short integers. Namely, we can we can reduce short binary numbers modulo m
while joining only O(k) bits, so long as the binary number is less than m2.

We now have all the tools we need to implement arithmetic circuits over Zm

for arbitrary small modulus m ≥ 2. To garble an arithmetic operation over Zm,
choose a modulus 2k > m2, perform the operation on shorts in 2k, then use
Barrett reduction to simplify the result modulo m. This fact will be useful in
constructing switch systems for long integers, see next.

5.2 Long Integers

All that remains is to upgrade our handling of words and shorts to handling of
long integers, i.e. integers modulo arbitrary m ≥ 2. Let " = "log2 m#. We show
that for any choice of m, our arithmetic gates join at most O(") bits.

Before presenting our approach, we remark that our handling here is more
theoretical than in Sect. 5.1. Our operations on longs require many conversions
between representations, and this is concretely expensive. Accordingly, our pre-
sentation is less granular and less concerned with constants. Nevertheless, when
garbling "-bit integers, all operations join O(") bits. We believe our work will
help lead to practically efficient garbling of long integers.

Our basic idea is to apply the Chinese Remainder Theorem (CRT, Sect. 2.4).
To operate on arbitrary modulus m ≥ 2, we consider a CRT modulus N >
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m2, large enough to support overflow from multiplication. We choose N as the
product of the smallest distinct primes such that N > m2 holds. Let r denote
the number of distinct primes.

We represent a long as r shorts, where each j-th short computes operations
over prime modulus pj . We refer to each such short as a residue. Let P denote
the largest prime modulus. Our shorts use as their word modulus the smallest
modulus 2k such that 2k > max(P 2, P · "2), sufficient to prevent overflow in
all considered cases. P is at most O("), so k = O(log "); moreover, P is the
O("/ log ")-th prime.

Longs modulo N . To multiply/add/subtract longs modulo a CRT modulusN , we
simply pairwise operate on the r residues, then reduce each j-th result modulo
pj (see discussion of modular reduction in Sect. 5.1). By the Chinese Remainder
Theorem, this implements the corresponding operation modulo N . Morever, the
total bit-length of all r residues is linear in " = "log2 N#, so this indeed joins
only O(") bits per operation.

Longs modulo m; conversions to/from binary. To operate over an arbitrary mod-
ulus Zm, we operate over ZN and simplify modulo m after each operation. To
do so, we will apply Barrett’s modular reduction (Sect. 2.5). However, Barrett’s
algorithm uses operations on binary integers, and our integers are currently in
CRT representation. Thus, we must explain how to convert long integers to
binary and vice versa. In the following, let x ∈ ZN be the converted integer.

Converting from binary to long roughly proceeds as follows: (1) partition
the bits of x into small chunks so that we can sensibly make a one-hot vector
encoding each chunk, (2) use free operations on one-hot encodings to convert
each chunk to CRT representation, and (3) use free addition to combine the
CRT chunks into a CRT representation of x.

More precisely, we first sample a uniform mask α ∈ ZN and use oblivious
Boolean gates (Theorem 2) to compute (x+α)-N = [x+α]N . Recall, - denotes
conditional subtraction (Equation (1)), which can be achieved by a Boolean
comparator and ripple-carry adder, joining only O(") bits.

Now that x is masked, we can reveal [x+α]N to E, allowing us to use one-hot
techniques. We partition the bits of [x+α]N into chunks of "log2 "# bits (we pad
with msb zeros to ensure chunks have equal length). We use bin-to-hot and scale
to convert each chunk to an arithmetic one-hot encoding (where one-hot vector
entries are Z2k words).

Let H(ci) be the i-th chunk, such that x =
∑

i 2
i·'log2 #( · ci. We convert each

chunk to r residue words. Computing each j-th residue is a free operation:

〈T (x 7→ [2i·'log2 #( · x]pj ) · H(ci)〉 = [2i·'log2 #( · ci]pj Lemma 4

Now, for each chunk we have a word representing the residue of that chunk
modulo each prime pj . For each such j, we use free addition to sum all such
residues. The result is a Z2k value congruent to – but not equal to – [x + α]pj .
Note that each sum is at most (pj − 1) times the number of chunks, which is
O("/ log "). By our choice of k, this sum does not overflow Z2k . To complete the
conversion, we use short operations to subtract off α and reduce modulo pj .
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This full conversion joins only O(") bits. Its non-free operations involve (1)
adding a uniform mask α, (2) converting chunks to arithmetic one-hot represen-
tation, and (3) simplification of the short residues.

Converting from long to binary leverages similar ideas. To start, G sam-
ples a uniform mask α ∈ ZN and adds [α]pj to each j-th residue. CRT supports
the following conversion between residues [x+ α]pj and [x+ α]N

[x+ α]N =

[
r−1∑

i=0

sj · [(x+ α) · s−1
j ]pj

]

N

where sj =
N

pj

Roughly speaking, we implement this equation while using as many free opera-
tions as we can. Note that each sj and [s−1

j ]pj is a constant.
We use operations on shorts to compute [(x+α) · s−1

j ]pj as a word. Next, we
treat each constant sj as an integer mod N , and we partition its bits into chunks
of size "log2 "#. Let cij denote the i-th such chunk, such that sj =

∑
i 2

i·'log2 #( ·cij .
We use free operations to scale the residue [(x+α) ·s−1

j ]pj by each chunk cij . The
result from each residue is ""/ log2 "# words, each with value at most "log2 "# ·pj .
These words together represent the product sj · [(x+α) ·s−1

j ]pj . We refer to these
words as the radices of this product.

Next, we sum each i-th radix of each residue. The result is O("/ log ") radices
that jointly represent

∑r−1
i=0 sj · [(x + α) · s−1

j ]pj . Each sum has value at most
""/ log2 "# · " ·P . Our choice of k ensures that this does not overflow modulus 2k.

We convert each radix to binary representation via the word-to-hot system.
Note, this is oblivious due to the inclusion of uniform mask α. We use (non-
oblivious) ripple-carry adders to add together all such binary integers. This may
seem problematic, since we are adding O("/ log ") values, and ripple carry adders
use linear gates. However, because each binary integer is only O(log ") bits long,
we can with basic care achieve the sum while joining only O(") bits.

The sum of all these binary integers may be as high as ""/ log2 "# · N , and
we need to simplify the result modulo N to complete the conversion. To do so,
we strip the top "log2 "# bits from the binary representation, convert these to
one-hot via bin-to-hot, and use a free operation to compute a binary encoding of
these bits modulo N . We then use a ripple-carry adder to recombine this with
the unstripped low bits. The result is still congruent to [x + α]N , and now it
must be lower than 2N . Finally, we use more Boolean gates to (1) conditionally
subtract off N and (2) subtract off α, resulting in a binary encoding of [x]N .

Garbling Arithmetic Circuits. By combining constructions in this section, we
achieve the following:

Theorem 4. Let m ≥ 2 be an arbitrary modulus, and let " = "log2 m#. For
any n-gate arithmetic circuit C over Zm, there exists an oblivious switch system
(S,D) that emulates C and such that join-width(S) = O(n · ").

In the full version we prove that the system is oblivious; in short, the argu-
ment is straightforward from our inclusion of uniform masks on all values. Com-
bining Theorem 4 with Construction 1, we achieve the following:
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Corollary 1. (Arithmetic Garbled Circuits from Free XOR). Let m ≥ 2
be an arbitrary modulus, and let " = "log2 m#. Assuming circular correlation
robust hashes (Definition 1), there exists a correct, oblivious, private, and authen-
tic garbling scheme [7] for arithmetic circuits over Zm. For an n-gate circuit C,
the scheme’s Garble procedure outputs O(n · " · λ) bits of material.
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