Check for
Updates

Oblivious Single Access Machines

A New Model for Oblivious Computation

Ananya Appan
University of Illinois at
Urbana-Champaign
Urbana, IL, USA
aappan2@illinois.edu

ABSTRACT

Oblivious RAM (ORAM) allows a client to securely outsource mem-
ory storage to an untrusted server. It has been shown that no ORAM
can simultaneously achieve small bandwidth blow-up, small client
storage, and a single roundtrip of latency.

We consider a weakening of the RAM model, which we call
the Single Access Machine (SAM) model. In the SAM model, each
memory slot can be written to at most once and read from at most
once. We adapt existing tree-based ORAM to obtain an oblivious
SAM (OSAM) that has O(logn) bandwidth blow-up (which we
show is optimal), small client storage, and a single roundtrip.

OSAM unlocks improvements to oblivious data structures/algo-
rithms. For instance, we achieve oblivious unbalanced binary trees
(e.g. tries, splay trees). By leveraging splay trees, we obtain a notion
of caching ORAM, where an access in the worst case incurs amor-
tized O(log? n) bandwidth blow-up and O(log n) roundtrips, but in
many common cases (e.g. sequential scans) incurs only amortized
O(log n) bandwidth blow-up and O(1) roundtrips. We also give
new oblivious graph algorithms, including computing minimum
spanning trees and single source shortest paths, in which the OSAM
client reads/writes O(|E| - log |E|) words using O(|E|) roundtrips,
where |E| is the number of edges. This improves over prior custom
solutions by a log factor.

At a higher level, OSAM provides a general model for oblivious
computation. We construct a programming interface around OSAM
that supports arbitrary pointer-manipulating programs such that
dereferencing a pointer to an object incurs O(log d log n) bandwidth
blowup and O(log d) roundtrips, where d is the number of pointers
to that object. This new interface captures a wide variety of data
structures and algorithms (e.g., trees, tries, doubly-linked lists) while
matching or exceeding prior best asymptotic results. It both unifies
much of our understanding of oblivious computation and allows
the programmer to write oblivious algorithms combining various
common data structures/algorithms and beyond.

CCS CONCEPTS
« Security and privacy — Cryptography.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0636-3/24/10

https://doi.org/10.1145/3658644.3690352

David Heath
University of Illinois at
Urbana-Champaign
Urbana, IL, USA
daheath@illinois.edu

3080

Ling Ren
University of Illinois at
Urbana-Champaign
Urbana, IL, USA
renling@illinois.edu

KEYWORDS

Oblivious RAM; Oblivious Data Structures; Oblivious Graph Algo-
rithms

ACM Reference Format:

Ananya Appan, David Heath, and Ling Ren. 2024. Oblivious Single Access
Machines: A New Model for Oblivious Computation. In Proceedings of the
2024 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’24), October 14-18, 2024, Salt Lake City, UT, USA. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3658644.3690352

1 INTRODUCTION

Oblivious RAM allows a client to outsource memory to an untrusted
server while hiding both the data being accessed and the memory
access pattern, and thus provides a general framework for oblivious
computation. The most important efficiency metrics of ORAM are
the bandwidth blow-up and the number of roundtrips. Bandwidth
blow-up is the number of blocks transferred between the client and
the server for every block (unit of memory access) requested. One
roundtrip is defined as a batch of read-then-write operations that
can be dispatched in parallel. These costs are heavily affected by
the block size and client storage assumed. In the typical setting, the
client storage is small compared to the total memory size n, and
the block size is ©(log n) bits.

First proposed by Goldreich and Ostrovsky [11], numerous ef-
forts have been made towards reducing the cost of ORAM, and the
community has made encouraging progress [2, 3,12, 13, 15, 18, 21,
24, 25]. But an overall efficient scheme remains elusive. Table 1 sum-
marizes costs incurred by existing works. The recent breakthrough
work of OptORAMa [2] achieves a bandwidth blow-up of O(logn),
which is asymptotically optimal but has a very large hidden con-
stant. Moreover, all the above schemes require O(log n) roundtrips.
Existing ORAM schemes that achieve constant roundtrips [9, 10, 27],
on the other hand, require expensive server computation and incur
high bandwidth blow-up with ©(log n) block size. A lower bound
has been shown that a single-roundtrip ORAM (without server
computation) must incur Q(VN) bandwidth blow-up or Q(VN)
client storage [6] .

In sum, it is difficult to construct an ORAM that is optimal in every
aspect. While ORAM provides a general framework for oblivious
computation, it does not serve as an efficient general framework.

Our contribution. We introduce a new model of computation
called the Single Access Machine (SAM) model. In short, a single
access machine is a RAM, with the restriction that each memory
address can be written to at most once, and read from at most once.

Because the capabilities of SAM are strictly weaker than that
of RAM, OSAM is easier to instantiate than ORAM. We show

https://doi.org/10.1145/3658644.3690352
https://doi.org/10.1145/3658644.3690352
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3658644.3690352&domain=pdf&date_stamp=2024-12-09

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA.

Table 1: Comparison of our construction with existing
ORAMs for a block size of ©(logn) bits. No existing ORAM
construction simultaneously achieves optimal bandwidth
blow-up, roundtrips and client storage.

Bandwidth | Round- | Client | Server | Stat.
blow-up trips |storage|compute |secure
Circuit OSAM o) 0(1) 0(1) X v
Path OSAM O(logn) 1 o) X v
Circuit ORAM [25]| O(Alogn) [O(logn)| O(1) X v
Path ORAM [24] | O(log?n) |O(logn)| O(A) X v
OptORAMa [2] O(logn)t |0(logn)| 0(1) X X
SR-ORAM [27] O(log® n) 1 o(1) v X
\/n-ORAM [11] O(+/n) 1 o(1) X X

T With a hidden constant of ~ 2223, later reduced to ~ 9400.
"~ A (typically 128) is the statistical security parameter. Some prior works set their

statistical security parameters to c (1) log n for a negligible in n probability of failure.

We choose to write it explicitly as A to make the failure probability concrete.
" O(-) hides poly-logarithmic factors.

Table 2: Amortized bandwidth blowups and roundtrips of
our OSAM-based solution as compared to existing practical
oblivious solutions to the same problems. In all considered
cases, our approach matches or exceeds the asymptotic per-
formance of prior work.

Algo Ours ‘ Prior Work
Bandwidth | Rounds | Bandwidth Rounds Ref
DLL O(logn) 0(1) O(logn) 0(1) [26]
BBST| O(log?n) |O(logn)| O(log?n) O(logn) [[26]
S’I‘Ill:ey O(log?n) |O(logn)| O(log? n)t O(log?n) | [2]
Trie O(¢ - logn) o(t) | O(t-log T | o(- logn) | [2]
DFS/ "
prs | OUEIgIED) | O(E]) |O(|Ellog|E)"| O(E|log |EI)| [2]
SSSP |O(|E|log |[E)* | O(IE|]) |O(|E|log” [E|) |O(|E|log |E) [[16]
MST [O(|E[log [ED*| O(IE) | O(E|log? |E|) | O(E|Tog [E]) | [16]

~ Acronyms - DLL : Doubly Linked List, BBST : Balanced Binary Search Tree, SSSP :
Single Source Shortest Path, MST : Minimum Spanning Tree

"~ Symbol 1 indicates solving the problem with OptORAMa. In this case, the hidden
constant is ~ 9400.

~ Symbol * denotes that we extend OSAM with a priority queue [20].

" A trie enables lookup of strings of arbitrary length; we use ¢ to denote the length of
the search string.

" For graph algorithms, we consider arbitrary graphs, i.e., with arbitrary degrees and
where |E| and |V| are independent.

that a straightforward simplification of existing tree-based ORAMs
achieves OSAM that is optimal in every aspect: a single roundtrip,
O(log n) bandwidth blow-up with small hidden constants, small
client storage, and no server computation.

Although more restrictive, a surprising variety of oblivious data
structures and algorithms can be efficiently implemented in the
SAM model. Table 2 summarizes some of our results. In [26], the au-
thors present oblivious data structures for linked-lists and balanced
trees that are more efficient than using general purpose ORAM.
Their observations fit neatly into the SAM model.

Linear data structures. Oblivious stacks, queues, deques, linked
lists, and doubly-linked lists can all be implemented using only O(1)
SAM operations per data structure operation, leading to optimal
O(log n) bandwidth and a single roundtrip.

3081

Ananya Appan, David Heath, and Ling Ren

Balanced trees, arrays, and connections to ORAM. Tree-based data
structures can also be implemented in the SAM model. For instance,
balanced binary search trees can be implemented with O(logn)
SAM operations per insertion/update/lookup. This also implies that
we can use OSAM to implement an oblivious RAM at O(log? n)
bandwidth blow-up and O(log n) roundtrips, matching Path ORAM.

The results of [26] are restricted to linked-list like structures and
balanced trees. We show that the SAM model can also be used to
implement unbalanced trees and graphs.

Unbalanced trees and caching ORAM. More interestingly, OSAM
can implement unbalanced binary trees with only O(log n) band-
width blow-up. This allows us to achieve oblivious data structures
including tries, as well as the fascinating splay tree [23]. Splay trees
are known to have good locality properties, where, for example, re-
cently accessed elements can be more efficiently accessed a second
time.

By using OSAM to implement a splay tree, we achieve a notion
of caching ORAM that (1) has worst-case amortized O(log? n) band-
width blow-up and O(log n) roundtrips, (2) has amortized O(log n)
bandwidth blow-up and O(1) roundtrips for many “common” ac-
cess patterns, (3) is statistically secure, and (4) has constant factors
similar to the best tree-based ORAMs.

Graph algorithms. We show that the SAM model extends beyond
trees and captures common graph algorithms (for arbitrary graphs),
including depth-first search (DFS) and breadth-first search (BFS).
By augmenting the OSAM model with an oblivious priority queue
from [20], we obtain new oblivious algorithms for the minimum
spanning tree (MST) problem and the single source shortest path
(SSSP) problem. In all four of our oblivious graph algorithms, we
incur a bandwidth-blowup of O(|E|log |E|) and O(|E|) roundtrips,
where |E| is the number of edges. These algorithms outperform
prior best custom solutions by a log factor and match commonly-
used non-oblivious algorithms for those problems.

General pointer manipulating programs. More generally, the SAM
model admits arbitrary pointer-manipulating programs. Derefer-
encing a pointer to access an object that has d incoming pointers
incurs a cost of O(logd) SAM operations. When compiled to an
OSAM program, the bandwidth blow-up and roundtrips are respec-
tively O(log d log n) and O(log d), which are significantly less than
the O(log? n) bandwidth blow-up and O(log n) roundtrips incurred
by practical tree-based ORAM (typically d < n).

Writing pointer-manipulating programs starting from bare-bones
SAM operations can be tedious, so we provide an interface — which
we call smart pointers - that handles the tedious details of enforcing
the single-access rules and makes OSAM programs almost identical
to their non-oblivious counterparts. In short, the smart pointer
abstraction automatically handles the details needed to properly
maintain more than one pointer to the same object.

2 BACKGROUND AND RELATED WORK
2.1 Oblivious RAM

Oblivious RAM (ORAM) allows a client to outsource its main mem-
ory to an untrusted server [11]. An ORAM can be thought of as
a compiler that translates logical memory queries into physical
queries to the server’s memory, with the crucial security property
that the server learns nothing other than the number of logical

Oblivious Single Access Machines

queries. At the highest level, ORAM clients achieve security by
continually shuffling the server’s encrypted memory content.

Tree-based ORAM and position maps. The ORAM constructions
most related to our work are tree-based ORAMs [7, 18, 22, 25]. In
state-of-the-art tree-based ORAMs [18, 24, 25], server memory is
organized as a binary tree where each tree node holds up to a
constant number of physical blocks. Each logical block is mapped
to a leaf in the tree. The crucial invariant of a tree-based ORAM is
that each logical block must reside somewhere on the path from
the root to its mapped leaf. To read a logical block, the client reads
that entire length-O(log n) path from the server to find the block
of interest; this is guaranteed to succeed by the invariant. Once the
read finishes, the client remaps the block to a fresh random leaf
such that the same block can be securely queried again later. Lastly,
the client performs an eviction step, where blocks in client memory
are sent back to the server. The eviction step is carefully designed
to have the same O(log n) asymptotic cost as reading a path.

The client stores which leaf each logical block is mapped to in a
data structure called the position map. Ignoring the position map,
state-of-art tree-based ORAM like Path ORAM incur O(log n) blow-
up and a single roundtrip. However, the position map has linear (in
n) size, so it is too big for the client to store. The solution is to re-
cursively store the position map in another tree-based ORAM until
the final position map is small enough to fit in client memory. This
recursion pushes the bandwidth blow-up of tree-based ORAM from
O(log n) to O(log? n), and the roundtrips from O(1) to O(log n).
Looking ahead, our OSAM saves a log factor in both metrics over a
tree-based ORAM because the weaker capability of single accesses
obviates the need for a position map, avoiding recursion and its
associated cost. Using a balanced tree to implement the position
map, we can use OSAM to implement ORAM at O(log? n) band-
width blowup and O(log n) rounds. Thus, even for RAM programs,
OSAM is never asymptotically worse than tree-based ORAM.

Hierarchical ORAM. While this work focuses on tree-based ORAM,
the other major ORAM paradigm, known as hierarchical ORAM, is
also interesting as it gave rise to OptORAMa [2], the first ORAM con-
struction with asymptotically optimal O(log n) bandwidth blow-up.
Its concrete performance, however, is prohibitive due to its use of
an impractical primitive called “linear oblivious tight compaction”.
[8] improved tight compaction’s hidden constant from ~ 22 to
~ 9400, but the approach remains expensive. Recently, [4] showed
practical improvements to OptORAMa, but at the cost of greatly
increasing client storage. Asymptotically, the bandwidth blowup of
OSAM is at most a log factor worse than OptORAMa, but OSAM’s
round complexity is never worse than OptORAMa.

2.2 Special-Purpose Oblivious Computations

In this section, we review prior works that construct special-purpose
oblivious computations. [19] provides a good survey.

Oblivious Data Structures. [28] was one of the first works to
study custom oblivious data structures, i.e., without using ORAM.
They showed that stacks and queues can be implemented as small
Boolean circuits, which can be handled in an oblivious manner.

[26] studied oblivious data structures using tree-based ORAM,
and their work is closely related to ours. [26] also investigates cases

3082

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA.

where the position map can be removed. They give constructions for
data structures based on linked lists and balanced binary trees, such
as sets, maps, stacks, queues, and priority queues. They also show
algorithms for graphs of low doubling dimension, which roughly
means that the graph is a grid in a low dimensional space. Our ap-
proach is more general and handles unbalanced trees and arbitrary
graphs. We discuss details of the [26] approach in Section 3.

Oblivious priority queue. Recently, [20] used tree-based ORAM
techniques to construct an efficient oblivious priority queue. The
author shows that each priority queue operation can be achieved
at only O(log n) blow-up and O(1) roundtrips.

We can combine the priority queue of [20] with our OSAM
construction since our OSAM is instantiated with a tree-based
ORAM. This helps us attain efficient algorithms for graph SSSP and
MST. We remark that it is the combination of OSAM and priority
queues that enables these improved results.

Other works on special-purpose oblivious computation. [5] gave
oblivious graph algorithms for BFS, DFS, SSSP, and MST at a band-
width blowup of O(|V|?). This is optimal for dense graphs where
|E| = ©(|V|?), but not for graphs where |V| and |E| are independent.

[16] built a programming framework for secure computation.
With their framework, they implement oblivious algorithms for
MST and SSSP with a blow-up of O(|E|log? |V|) and O(|E|log |E|)
roundtrips, and for DFS with a bandwidth blow-up of O(|V|? log |V])
and O(]V|log |V|) roundtrips. Our oblivious algorithms for all of
these incur O(|E| log |E|) blow-up and O(|E|) roundtrips.

[17] presented a framework for implementing secure parallel
algorithms for a class of data analytic algorithms such as computing
a histogram using MapReduce, matrix factorization, and PageRank,
but they do not solve the common graph traversal problems that
we consider in this paper.

2.3 Notation

o 1 denotes a statistical security parameter.

e n denotes the memory size in words.

o w denotes the word size. We set w = @(log n) to ensure that
words are big enough to index a memory while keeping
communication low.

o A block is a unit of memory of size ®(w) stored on the server.

o Jumping ahead, we distinguish a single access machine (SAM)
from a SAM program. The program issues memory requests,
and the machine satisfies them; see Sections 3 and 4.

e m denotes the number of memory requests issued. We as-
sume m = poly(n), and hence logm = ©(logn) = O(w).

e A pointer points to a pointee. A pointer has one pointee, but
a pointee may have many pointers.

3 OVERVIEW

In this section, we sketch our techniques at a level sufficient to
demonstrate the usefulness of the SAM model. Subsequent sections
formalize all the details of our approach.

A point on notation: we will routinely use tree-based ORAM to
implement tree-like data structures. Unless otherwise stated, the
words “tree” and “path” will henceforth refer to those in the logical
data structure to be implemented, not to those in the ORAM. We

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA.

use the term ORAM position to abstractly represent a set of physical
addresses on the server that a logical block may reside in.

3.1 Avoiding Position Maps; Review of [26]

Recall from Section 2.1 that in existing tree-based ORAM, the client
maintains a structure called the position map, which maps each
logical block to an ORAM position. The position map is linear in
size and is recursively instantiated. This recursive position map
blows up bandwidth and roundtrips by a log factor.

For particular oblivious computations, the position map can be
removed, and a non-recursive ORAM suffices. Such cases were first
studied in detail by [26]. The authors noticed that when the end
goal of an oblivious computation is to implement a constant-degree
rooted tree, the position map is not needed. The idea is to augment
nodes in the tree such that each parent node stores a pointer to each
of its children, and each pointer carries the ORAM position of the
child. The client, who holds a pointer to the root, can traverse a tree
path by simply chasing pointers stored in each node and storing
the path in local memory.

When the client completes its traversal, it must write the path
back to the server so that those same nodes can be accessed later.
However, the security requirements of the ORAM force the client
to write each node back to a fresh ORAM position. Thus, existing
pointers to those nodes holding the old ORAM positions are in-
validated. [26] observe that for tree-like structures, it is easy to
eliminate invalid pointers, since all newly invalidated pointers lie
on the path itself. Hence, the client simply writes back nodes start-
ing from the leaf, and as it proceeds up the path, it updates pointers
to each node with the updated ORAM positions of its children.

Limitations. While [26]’s approach opened the door to many
improvements in oblivious computations, their approach is not
fully general. The main limitation is that they cannot generate two
pointers that point to the same memory block. In particular, imagine
we would like to implement a graph-like structure where two nodes
A and B each hold a pointer to some shared node C.

The challenge here is that if the client traverses a path from, say,
A to C, the client must write A and C back to fresh ORAM positions
so that they can be accessed again. But if the client does not also
update B, then B holds an invalid pointer to C. If the client attempts
to dereference the invalid pointer from B to C, it will not obtain the
latest copy of C. Even worse, this dereference is not secure, since
the server will observe two accesses to the same ORAM position.
On the other hand, if the client does naively update B, then it must
also update all predecessors of B with the new location of B, and
this can cascade and require that the client access essentially all
of memory. Note that tree-like structures circumvent this problem,
since each node has only one incoming pointer.

Beyond the inability to handle shared pointers to nodes, the [26]
approach is also limited in that they can only handle balanced
trees. This second limitation emerges from the fact that the client
stores entire tree paths in local memory, which must be small.
More generally, [26]’s approach only works for linked-list-like data
structures and balanced trees. In this work, we are interested in a
rich class of general pointer-manipulating programs.

3083

Ananya Appan, David Heath, and Ling Ren

3.2 SAM and OSAM

Our SAM model extends the capabilities of prior work. This section
explains the interesting aspects of the model.

The SAM model centers on an interaction between a SAM pro-
gram and the machine that it runs in. The SAM program itself
is an arbitrary randomized algorithm, with the restriction that it
runs in a small amount of space, e.g. O(1) or O(1) words. If the
program needs more memory, it must issue memory requests to
the machine. The machine can hold any polynomial amount of
memory. Looking ahead, the machine component of our oblivious
SAM will further outsource all memory requests to an untrusted
random access memory (i.e., the server).

The limitation of the SAM model is that for each of the machine’s
logical memory addresses i, the program can write to i at most once,
and it can read from i at most once. This constraint is meant to
capture limitations imposed by an ORAM: we can only write/read
each ORAM position once. Before the SAM program can read or
write a value, we insist that it first ask the machine to allocate an
address. The machine can respond with an arbitrary fresh address
(in our OSAM instantiation, an address encodes an ORAM position).
We will see how this preallocation of addresses is useful shortly.

Jumping ahead, our definition of OSAM will require that any
sequence of Read/ Write operations (of the same length) should be
indistinguishable, and our OSAM construction will require that
for each Read/ Write operation, the client will read/write ©(log n)
words from the server.

A basic example; stacks. The basic way a SAM program can use
machine memory is by allocating an address, writing to that address,
and then later reading from it:

addr « Alloc(), ..., Write(addr, val), . . ., val < Read(addr)

As an example, we can implement a program that achieves a stack
data structure. The program maintains a pointer to the top of the
stack. Pushing/popping from the stack is a simple matter of issuing
appropriate calls to Alloc/Read/ Write and renaming variables:

def push(x): def pop():
top’ «— SAM.Alloc() {x, top’ } —
SAM.Write(top’, { x, top }) SAM.Read(top)
top « top’ top « top’
return x

Similarly, we can implement binary trees in SAM by storing
pointers to child nodes in the parent nodes, as was done in [26].

Allocating before writing; unbalanced trees. So far, we have not
shown additional capabilities as compared to prior work. In [26], it
was not possible to traverse an arbitrary length path through an
unbalanced tree, since client memory is bounded.

In the SAM model, we can traverse paths of arbitrary length. The
key to this is our decoupling of the allocation of an address from the
writing to that address. Recall that the challenge of ORAM-based
path traversal is that we must rebuild the path after we traverse it,
since each pointer along the path will be invalidated. In the SAM
model, we can rebuild the path as we go. More specifically:

o Suppose address addr that points to the tree root. We allocate
a fresh address: addr’ < Alloc() to store the updated root.

Oblivious Single Access Machines

e We call Read(addr) to load the root from machine memory,
which invalidates addr. The machine returns a block that, in
particular, holds addresses of child nodes.

Depending on the traversal algorithm, we choose some child
address to read. Before we read that child we (1) allocate a
new address addr’’ « Alloc() to save the updated accessed
child (2) update the content of the root to point to addr’’, and
(3) write the root node to addr’ . Thus, we have proactively
rebuilt the root node by updating it to point to where its
child node will be, before anything actually resides there.
From here, we can recursively traverse the child node, and
so on, resulting in a full traversal of the target path.

The crucial point is that the program can traverse an arbitrary
path through a tree while maintaining only a constant number
of words of local memory; the program only needs to keep data
corresponding to the current node under consideration.

Section 6 formalizes our ability to handle unbalanced trees. Be-
cause we can handle arbitrary trees, we are able to handle oblivious
tries and oblivious splay trees with better efficiency than prior work.
Oblivious splay trees allow us to achieve an interesting notion of
caching ORAM; see Section 6.

Sharing. Perhaps somewhat surprisingly, we allow a SAM pro-
gram to read from an allocated address without writing to it first.
In other words, the sequence below is valid.

addr « Alloc(), ..., val < Read(addr)

When such a sequence occurs, the machine responds to the Read by
returning a distinguished symbol None. A slight adjustment to tree-
based OSAM can easily handle read-without-write: the OSAM client
scans a path through the OSAM tree, and if the desired address is
not present, the lookup returns None.

The ability to read without write is surprisingly powerful. The
crucial point is that the program can use the None symbol to branch
its execution, depending on whether or not a particular address has
been written. Recall from Section 3.1 our discussion of two nodes A
and B, each of which holds a pointer to some node C. This problem
is difficult for prior work, but by using read-without-write, we can
solve it. Consider the following picture:

S
X

Here, we indeed give to A and B a pointer to C, and we also give
each of these a pointer to an auxiliary address, X and Y respectively.
These auxiliary addresses are also given to C and are initially al-
located, but not written. When a SAM program wishes to traverse
from A to C, it first reads A’s pointer to X. Per SAM semantics, this
read returns None, which the program interprets as an indication
that it is safe to read C. The memory cell pointed to by C now
resides in SAM program local memory, but B’s pointer to C is now
invalid. Since C is in local memory, the program holds a pointer to
B’s auxiliary address Y. The program writes a value to Y, indicating
that a traversal from B to C is not safe.

By using these auxiliary memory addresses, we can use just a
few SAM operations to convey a single bit of information — whether

3084

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA.

a pointer is valid or not — and this is sufficient to enable C to alert B
without updating B in memory. This means that we avoid the need
to recursively update B and all of its predecessors, which would in
the worst case lead to updating all of memory.

Building on this basic technique, we can not only alert B that its
pointer to C is invalid, we can also tell it where the new version of C
resides. To achieve this, we implement a simple queue of addresses
between a pointer (e.g. B) and the pointee (e.g. C). The pointee
can push to the end of a queue to indicate its new location. The
pointer can traverse this queue from beginning to end; it knows it
has reached the end of the queue when it reads None from memory,
and it uses the last address in the queue to fetch the latest copy of
the pointee; see a full description in Section 5.

Smart pointers. SAM’s ability to manage multiple pointers to one
node, described above, is relatively intricate. It involves managing
and creating queues between nodes that must be updated carefully.

In light of this intricacy, we build a pointer model on top of the
basic operations of SAM. We call the pointers in this model ‘smart
pointers’. The idea is to provide a small number of operations on
smart pointers: (1) given a value, we can construct a pointer to a
value, (2) we can make an explicit copy of a pointer, (3) we can
delete a pointer, and (4) we can dereference a pointer.

The implementations of smart pointer operations are non-trivial.
For instance, copying a smart pointer involves setting up a new
queue between the new copy and the pointee. With these details
worked out, it becomes much easier to reason about SAM programs.
Algorithms/data structures written using these smart pointer oper-
ations tend to look very similar to their standard implementation in
the RAM model. We show that each of the smart pointer operations
reduces to (amortized) O(logd) SAM operations, where d is the
number of pointers pointing to the pointee being dereferenced.

Smart pointers enable us to handle a broad class of pointer-
manipulating programs. Because of the ease with which smart
pointers can be used, we implement all of our oblivious data struc-
tures and algorithms on top of them; see Section 6.

Graph algorithms; priority queues. Dereferencing a pointer incurs
O(logd) SAM operations. This immediately reduces bandwidth
blow-up and roundtrips while handling graphs of constant degree,
but does not do so for graphs of arbitrary degree. Despite this, we
achieve breadth-first search and depth-first search with asymptotics
that outperform prior works. We achieve this improvement by
emulating a graph of arbitrary degree via a graph of constant degree.
The considered algorithms traverse the entire graph, and we exploit
this to circumvent overhead imposed by the emulation.

Achieving our efficient algorithms for SSSP and minimum span-
ning tree is more nuanced. To achieve our stated costs (Table 2),
we need to integrate in our OSAM the oblivious priority queue
operations of [20]. This amounts to mainly adding two additional
operations to the SAM model: Insert, which inserts an element to
a global priority queue, and Pop, which extracts the element of
highest priority. We note that it is the combination of SAM and
priority queue operations that achieve our stated O(|E| - log |E|)
efficiency. See Section 7 and the full version of our paper [1] for
details on our graph algorithms and priority queue integration.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA.

4 OBLIVIOUS SINGLE ACCESS MACHINES

This section formalizes our definitions of SAM and OSAM, we give
our OSAM construction. We refer the reader to Section 3 for an
informal explanation of our model. Our construction is achieved
by removing the position map from tree-based ORAM.

Definition 4.1 (Single Access Machine (SAM)). A Single Access
Machine (SAM) is a memory storing a polynomial number of
addressable memory cells, each of some specified bit-width w. The
machine responds to three types of memory requests:

e addr « Alloc(): The machine responds with a fresh memory
address (i.e., an address that has not been chosen before).
The machine may choose addresses in any arbitrary manner.
Write(addr, val): The machine writes value val € {0,1}" to
address addr. If (1) addr was not allocated by the machine
or (2) addr was already written to, then the machine instead
halts and outputs L.

val « Read(addr): The machine responds with the value
written to addr, or it responds with None if nothing is written.
If (1) addrwas not allocated or (2) addr was already read from,
then the machine instead halts and outputs L.

A SAM program is an interactive, randomized algorithm that
issues memory requests to the machine. A program is valid if it
never issues a request that causes the machine to output L.

From here on, we only consider valid SAM programs (i.e., pro-
grams that properly allocate memory addresses and read/write each
address at most once). For simplicity, we consider SAM programs
that use at most O(w) bits of local space. Looking forward, we will
instantiate oblivious SAM using two tree-based ORAM techniques:
Path ORAM [24] and Circuit ORAM [25], which require that the
client have O(A - w) and O(w) bits of space respectively. Thus, the
compilation of our SAM programs by our OSAM compiler will use
either O(w) bits of space or O(w - 1) bits of space, depending on
the underlying ORAM technique.

An oblivious single access machine (OSAM) is formally a compiler
that translates SAM memory requests into requests to a standard
random access memory (allowing repeated accesses to an address).
In an OSAM protocol, these requests are sent to the server, which
satisfies each request. The crucial security property is that these
requests can be simulated. This, in particular, means that the server
learns nothing more than the number of read/write SAM requests:

Definition 4.2 (Oblivious Single Access Machine (OSAM)). A single
access machine compiler IT is a poly-time, online algorithm that im-
plements the single access machine interface (it correctly responds
to Alloc/Read/ Write requests) and issues random access memory
requests. We say that IT is an oblivious single access machine
(OSAM) if there exists a poly-time simulator S such that for any
polynomial-length sequence of requests R that form a valid SAM
program, the following ensembles are statistically close (in A):

(4 R) 2 S(14, L(R))

Above, L(R) denotes the number of Read/ Write requests (i.e., non-
Alloc requests). In other words, the RAM requests issued by the
OSAM can be simulated given only the total nhumber of Read/ Write
requests in the underlying SAM program.

3085

Ananya Appan, David Heath, and Ling Ren

4.1 Owur OSAM Construction

counter < 0 def Write(i : addr, v : val) :

stash « empty-list ReadAndRm(Alloc())
// Read a dummy address
def Alloc() — addr: stash.append({ i, v})
Evici()

leaf <¢ [N] // Uniformly
sample a leaf

a — counter Ul leaf def ReadAndRm(i : addr) —

val | None:
/ sy mbol l_I denotes interpret i as counter LI
concatenation leaf

counter < counter + 1
return a

// Load path to leaf from
server, then search the
path and stash for
element labelled with i;
See [24, 25]

def Read(i : addr) — val
| None :
v «— ReadAndRm(i)
// None if no such address
written to previously
Evict()

return v

def Evict() :

// Store stash elements to
server by evicting paths;
See [24, 25]

Figure 1: Our OSAM removes the position map from tree-
based ORAM. In particular, procedures ReadAndRm and
Evict can be taken from the Path ORAM construction [24] or
the Circuit ORAM construction [25].

Figure 1 formalizes our tree-based OSAM. We present three algo-
rithms — Alloc, Read, and Write - that respectively formalize how
we compile the corresponding SAM operation into RAM operations.
At a high level, our construction follows the handling of existing
tree-based ORAMS [24, 25], except that we have no need for a
position map — the underlying SAM program is responsible for
keeping track of ORAM positions. Our compiler (i.e., our OSAM
client) maintains the common tree-based ORAM structure stash
that temporarily holds a small number of blocks.

Alloc allocates fresh addresses by sampling a uniformly random
leaf position, and then concatenating this with a global and mono-
tonically increasing counter to ensure that each address is unique.

ReadAndRm and Evict are sub-procedures typical in tree-based
ORAM [24, 25]. ReadAndRm fetches the value (if any) written to a
specified address by reading the stash and the path from the root
to the specified leaf. If no value is written to the specified address,
then ReadAndRm returns None (recall, returning None is important
for allowing read-without-write). Evict moves values, including
those in the stash, towards their assigned leaves and is used to
write values back to the server. Thus, ReadAndRm can be used to
implement Read and Evict can be used to implement Write. Note
that Write also calls ReadAndRm on a dummy address to ensure
obliviousness: regardless of whether the memory request is a Read
or a Write, the server observes the client read a uniformly random
path, followed by an eviction.

Figure 1 can be instantiated with different underlying tree-based
ORAMs. The two most natural choices are Path ORAM [24] and
Circuit ORAM [25]. Path ORAM bounds the stash size (client mem-
ory) to O(A) words, and each read/write consumes O(log n) words

Oblivious Single Access Machines

of communication [24]. Circuit ORAM can additionally outsource
the stash to server memory to achieve O(1) client memory, at the
expense of O(A) read/write cost [25]. These immediately give the
following main results of this paper. Let IT denote the compiler in
Figure 1.

THEOREM 4.3 (SAM CoRrRRECTNESS). II is a single access machine.

Proor. Since the considered SAM operation sequence is valid
(Definition 4.1), when the client reads an (allocated) address, there
are two cases.

The address has been written to : the OSAM construction ensures
that the written element is stored either (1) along its assigned path
or (2) in stash. On a read, ReadAndRm searches both the stash and
the path, finds the corresponding element, and returns it.

The address has not been written to : the client’s call to ReadAndRm
exhaustively searches the address’s assigned path and the stash;
since allocated addresses are unique, the client will not find an
element with the target address, so ReadAndRm will return None.

Note that prior work [24, 25] show that the stash will not over-
flow (except with negligible probability). O

THEOREM 4.4 (OBLIVIOUS SAM). II is an oblivious single access
machine.

PRrooOF. We prove our construction is oblivious by constructing
a simulator S. Let L = L(R) be the number of Read or Write oper-
ations in the sequence R (i.e, not counting Alloc()). S does the fol-
lowing L times: call ReadAndRm(Alloc()), then call Evict(). This is
indistinguishable from the real-world since both Read and Write call
ReadAndRm followed by Evict (see Figure 1). The server observes
an alternating sequence of (1) requests to read particular paths (via
calls to ReadAndRm) and (2) requests to evict paths (via calls to
Evict). Consider the entire sequence of calls to ReadAndRm/Evict in
both worlds. The only differences between these sequences are the
leaf addresses passed as arguments to ReadAndRm. We show that
in both worlds these leaf addresses are uniformly random. There
are two types of requests to consider:

- Write request : Write calls ReadAndRm on a uniformly random
address by calling Alloc.

- Read request : Since R is a valid request sequence, each address
read is a uniformly random leaf that is never read again.

The underlying tree-based ORAM thus ensures the simulated
view and the real execution are statistically close. O

The below theorem is straightforward from the respective un-
derlying ORAM construction (see [24], [25]).

THEOREM 4.5 (SAM PERFORMANCE). If1I is instantiated using

Path ORAM [24], then 11 achieves the following performance:

o I1(14, R) outputs O(m-log n) random access memory requests,

o TI(14, R) runs in O(w - 1) bits of space where A is a statistical

security parameter,

o TI(14, R) incurs exactly m roundtrips.
If1I is instantiated using Circuit ORAM [25], then II achieves the
following performance:

o II(14, R) outputs O(m - A) random access memory requests,

o TI(1*, R) runs in O(w) bits of space,

. H(IA,Q) incurs O(m) roundtrips.

3086

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA.

Augmenting SAM with Priority Queue Operations. We leverage
prior work [20] to extend the SAM model with the following op-
erations of a priority queue (1) Insert(val, p) : inserts value val €
{0, 1} into a priority queue with priority p (2) val « Pop() : reads
and removes the element with the highest priority from the queue
(3) IsQueueEmpty : checks if the queue is empty. In this extended
model, the number of Read/ Write/Insert/Pop requests are leaked. A
formal definition, as well as our construction and related theorems,
is presented in [1].

Space Complexity of the OSAM Server. The space required on
the server scales with the number of addresses that are written to
but not read. This is because when an address is read, ReadAndRm
removes data from the stash and the server, thus clearing space.

5 SMART POINTERS

In subsequent sections, we use the SAM model to construct specific
data structures and algorithms. Here, we develop smart pointers,
which abstract detailed handling needed to allow two nodes to
share the same SAM address. We begin by describing the interface
of our smart pointers; our implementation on top of the basic SAM
operations (Alloc/ Read/ Write) follows.

A smart pointer is conceptually a pointer that can be derefer-
enced to obtain a value of some user specified type, which we
henceforth refer to as userT. A user specified type is permitted to
hold a constant number of smart pointers. This allows us to build
up complex data structures. Operations on pointers, which are of
type ptr, include the following:

o new(userT) — ptr: Save an instance of the user datatype to
memory, and return a smart pointer to the allocated address.
get(ptr) — userT : Dereference a smart pointer. A pointer
can be dereferenced multiple times.

o put(ptr, userT) : Overwrite content of the pointee. A pointer
can be used to overwrite its pointee multiple times.
operator < (ptr, ptr) : Assign one smart pointer to another
by creating a copy, thereby creating multiple pointers that
point to the same content.

o delete(ptr) : Delete a smart pointer.

o isnull(ptr) — {0, 1} : Check if a given smart pointer is null.

There are two points worth exploring. First, we have overloaded
the syntax x « y. In particular, if x and y are smart pointers (are of
type ptr), then the statement x < y does not mean that x becomes
a verbatim, bitwise copy of y. Instead, an algorithm runs to set up
queues between nodes (see discussion in Section 3). As a result, y
becomes a “smart copy” of x, and it is safe to dereference both x
and y.

Second, when a variable falls out of lexical scope, we automat-
ically call delete on that variable. Calling delete is important to
ensure that the cost of dereferencing a pointer depends solely on
the number of pointers currently referencing an object.

Our final two operations extend our assignment and delete op-
erators to user specified types in the natural manner:

o operator « (userT, userT) : Assign one piece of user data to
another by smart-copying any contained pointers.

o delete(userT) : Delete the specified content by deleting any
contained pointers.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA.

5.1 Implementing Smart Pointers

def initQueue() — addr,addr:
head — SAM.Alloc() def dequeue(head) — addr,
tail «— head addr:

return head, tail
do

def enqueue(tail: addr, a: case None do

addr) — addr: | return null, null

case { a, head’ } do

tail «— SAM.Alloc() pse o head') do

SAM.Write(tail, { a, tail’ })
return tail’

Figure 2: SAM program fragment for an address queue.

Address queues. Recall from Section 3 that we enable multiple
pointers to share a pointee via address queues. The pointee uses
such queues to update pointers to it, alerting each pointer of its
latest SAM address. We start by constructing this simple address
queue data structure in the SAM model; see Figure 2.

An address queue is a sequence of addresses sent from a sender
to a receiver. Each node in the queue stores (1) an address from
the sender and (2) the address of the next node in the queue. The
SAM program manipulates the queue via a pair of addresses — head
points to the queue’s first node, and tail is a pre-allocated address
that the next node will live at. Addresses are dequeued by reading
head, and they are enqueued by writing to the queue’s tail and
allocating a fresh tail. The underlying SAM requests are valid since,
whenever headis read during dequeue, it is updated to the address of
the next node in the queue. Further, head was previously allocated
and written to during enqueue. Note that calling dequeue when the
head has not been written to returns None, which indicates that the
queue is empty. This is also a valid SAM request, since head was
not read before. It is clear from inspection that each of our address
queue operations uses only O(1) SAM operations.

Overview of implementation of smart pointers. We first describe
how address queues can be used to allow two pointers to point to
the same pointee. We later extend this idea to allow an arbitrary
number of pointers to the same pointee.

A connection between a pointer and its pointee is established
by allowing them to share a queue, with the pointer as the receiver
and the pointee as the sender. Each pointer holds the head of an
address queue, and the pointee holds the two tails (as there is one
queue per pointer). When one of the two pointers is de-referenced,
the pointee is re-written to a new address and alerts both pointers
of this fact by calling enqueue to write the new address into both
queues using their tails. If the other pointer is de-referenced later,
the dequeue procedure can be used to chase addresses through the
queue until reaching the tail. The last address in the queue can then
be read to fetch the pointee. We can determine if the queue’s tail
has been reached due to SAM’s support for read-without-write.

To allow an arbitrary number of pointers to point to the same
pointee, we construct an “inverted” binary tree. The pointee is at
the root of this tree. A non-root node has a directed edge to its
parent, and has at most two address queues “leading to” it. Just like
the case with two pointers sharing the same pointee, after fetching
the node using one of these queues, we can still fetch the node

switch SAM.Read(head)

Ananya Appan, David Heath, and Ling Ren

Figure 3: De-referencing pointer 1 in an inverted tree of 4
pointers. Black and blue arrows indicate queue heads and
tails respectively. nj, ny; and n3 have moved from addresses
a%, a% and a% to a?, ag and ag respectively.

struct pir:
| head: addr

// root holding the pointee
struct rootNode extends node

struct userT :

‘ ... // user-specified fields content : userT

isRoot : true

// node in inverted t
node in inverted tree) non-root node

struct branchNode extends
node :

headP : addr

isRoot : false

struct node :
tailL : addr
tailR : addr
isRoot : bool

def chase(head : addr) — def saveNode(n: node) :
node : a «— OSAM.Allo()
target < null if n.taill then
latest « null ‘ n.taill «—
enqueue(n.tailL, a)
if n.tailR then
n.tailR «
enqueue(n.tailR, a)

tail — null
while head # null do
latest « target

tail « head OSAM. Write(a, v)
target, head < ;
dequeue(head) def addTail(n: node) = addr

head, tail «— initQueue()
if n.tailL= null then
n.taill « tail

n «— OSAM.Read(latest)
if n.taill = tail then

| n.taillL « null
else n.tailR <« null
return n

else n.tailR « tail
return head

Figure 4: Smart pointers helper procedures.

using the other queue. Thus, when a pointer is de-referenced, we
can fetch the pointee by fetching the parent until we reach the root.
Figure 3 provides an illustration.

Figure 4 implements helper procedures for our smart pointer
operations, building on basic SAM operations and address queues.
At the top we declare our data types which include the type of smart
pointers (ptr), a user-specified datatype (userT) for the pointee, and
a type node for each node in the inverted tree. Figure 5 implements
smart pointer operations using the helper procedures.

Oblivious Single Access Machines

def get(p: ptr) — userT:
n < chase(p.head)
p-head «— addTail(n)
while —n.isRoot do

n’ « chase(n.headP)

// out is a smart copy of n.content
out < n.content
saveNode(n)
return out
def put(p: ptr, c: userT) :
n « chase(p.head)
p.head — addTail(n)
while —n.isRoot do
n’ <« chase(n.headP)
n.headP «— addTail(n’)
saveNode(n)

nen
// n.content is a smart copy of ¢ \

n.content «— ¢
saveNode(n)

def delete(p: ptr) :
if p.head # null then
n <« chase(p.head)
if n.isRoot then

if —(n.tailL V n.tailR) then
delete(n.content)

if n.taill then tail < n.taillL
else tail — n.tailR
n « chase(n.headP)

if —n.taillL then
n.taill « tail
else n.tailR « tail
saveNode(n)

def delete(c: userT) :
// Delete user type by deleting
// its constituent pointers

def isnull(p: ptr) — bool :
return p.head = null

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA.

def operator —(po : ptr, p1 : ptr) :
n « chase(p;.head)
if n.taillL v n.tailR then
nNew «— branchNode {
.headP < addTail(n) }

n.headP < addTail(n’) ‘ saveNode(nNew)
saveNode(n) else saveNode(n) n < nNew
nen else po-head «— addTail(n)

p1.head — addTail(n)

saveNode(n)

def operator «(cy : userT, c; : userT):
// Copy user type by smart copying
// its constituent pointers

def new(c: userT) — ptr:
// .content is a smart copy of ¢
n « rootNode {

.tailL < null,

.tailR <« null,

.content « ¢}
p « ptr{.head «— addTail(n) }
saveNode(n)
return p

Figure 5: Smart pointers abstract the underlying SAM model, making SAM operations easier to work with. A smart pointer can
be created (new), deleted (delete), copied (<), dereferenced (get), or updated (put). When dereferenced, a smart pointer returns
a user-specified data type, which might hold other smart pointers. If a (smart) copy of that same pointer is also dereferenced, it

will yield a (smart) copy of the same content.

Smart pointer helper procedures. The procedure chase is used to
fetch a node in the inverted tree by reading an address queue till
the end. Note that this destroys the queue. To be able to fetch the
node again, addTail is used to initialize a new address queue and
stores the tail in the node. Once a node is fetched, it must be saved
back to SAM memory so that it can be dereferenced again later.
This involves allocating and writing the node to a new address, and
we enqueue the newly allocated address to each queue leading to
the node. The helper procedure saveNode handles these.

Smart pointer operations. Each of our smart pointer operations
is primarily a delegation to the above three helper procedures.

get dereferences a pointer by repeatedly calling chase to fetch
the parent node to eventually fetch the root of the inverted tree
where the pointee resides. Note that chase chases down an address
queue, and then removes the tail of the chased queue from the deref-
erenced element. This is because after an address queue is chased
down, it is destroyed. get ensures that a dereferenced pointer can
be dereferenced again by re-establishing the connection between a
node and its parent (via addTail) before saving it back to memory.

get contains one subtle but important detail: get returns a smart
copy of the user data type i.e., any pointers within the user type are
“smart copied”. This is crucial, because it ensures that the version
of the element stored in machine memory and the version stored
in the SAM program’s local memory do not hold two copies of the
same SAM address. This avoids a possible error where one could

3088

(1) dereference an element stored in SAM memory, (2) read a SAM
address within that element, (3) dereference the element from SAM
memory a second time, and (4) read the exact same SAM address
within that element a second time. Such a sequence would yield an
invalid SAM program, and we avoid it by making a smart copy
when dereferencing.

put is similar to get: we repeatedly use chase to fetch the root,
make a smart copy of the value to be stored in memory, and save the
root back to memory. While doing this, we make sure to re-establish
queues between nodes and their parents. put makes a smart copy
for the same reasons as get.

new saves a user datatype (possibly some default initial value)
to memory and returns a pointer to it. This creates the root of the
inverted tree with the pointer directly pointing to this. To do so, we
initialize a single address queue (via addTail) and save the resulting
rootNode to memory (via saveNode). new makes a smart copy of the
saved value for the same reasons as discussed above for get.

delete deletes a pointer by by deleting the node that the pointer
points to. This is done by copying the tail of the other queue leading
to the node to the node’s parent, and saving the parent back to
memory. Special care is taken when the pointer directly points to
the root. In this case, if the root does not have another pointer
pointing to it, we recursively delete the content of the pointee.

The overloaded « operator for pointers creates a smart copy of
a pointer by using the pointer’s address queue to fetch the node,
say n, being pointed to. If n already has a second queue leading to

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA.

it, a new pointer cannot be made to point to it. Instead, a new node
nNew is created, and the new pointer and the pointer being copied
are made to point to nNew, which is made to point to n.

5.2 Validity and Efficiency

In the subsequent sections, we will use smart pointers to implement
data structures and algorithms. To properly analyze such programs,
we must argue two points:

e A smart-pointer-based program is a valid SAM program.
e Smart-pointer operations have good efficiency.

Both of these points rely on the properties of the smart pointer in-
terface itself. Thus, we formalize the rules for using smart pointers:

Definition 5.1 (Smart-Pointer-Based Program). A SAM program
%P makes legal use of the smart pointer interface if it satisfies the
following criteria:

o P issues no calls to Alloc/Read/ Write, except those implied
by the implementation of smart pointers.

e P does not call get/put on null smart pointers. That is, P
does not dereference null smart pointers.

If it satisfies the above criteria, we say that # is a smart-pointer-
based program.

We argue that any smart-pointer-based program is a valid SAM
program. The « operator for pointers is overloaded to create only
smart pointer copies. This ensures that, under the hood, every
address queue used by the program is unique. We provide a proof
sketch of the below Lemma in Appendix A.

LEMMA 5.2. Let P be a smart-pointer-based SAM program (Defi-
nition 5.1). P is a valid SAM program (Definition 4.1).

We also argue the efficiency of smart-pointer-based programs.

LEmMA 5.3. Consider a smart-pointer-based SAM program (Def-
inition 5.1). Each call to a smart pointer operation (Figure 5) issues
amortized O(d) SAM memory requests, where d pointers point to the
associated pointee.

Proor. It suffices to show that addTuil, chase, and saveNode each
issue amortized O(1) SAM requests. Since the height of the inverted
tree is d in the worst case, each smart pointer operation makes
O(d) calls to these sub-procedures, and the lemma is proved. From
Figures 2 and 4, addTail and saveNode each issue O(1) SAM requests.
chaseis more nuanced: a call to chase can cause the program to chase
down a queue of arbitrary length, incurring an arbitrary number
of calls to dequeue. However, we discharge this cost by charging in
advance - for every block that is read, we charge this cost at the
time when block was written to the queue during saveNode. O

We reduce this cost to O(log d) by maintaining that the tree of
pointers pointing to a pointee is always a complete (balanced) binary
tree. This is done with the following changes to « (copy) and delete.
Our new implementation of « creates a new node at the location
expected for a complete binary tree with one more node, and the
new pointer is made to point to this new node (irrespective of which
source pointer is being copied). Our new implementation of delete
also needs to keep the tree complete. This is done by swapping the
to-be-deleted pointer with the last pointer in the complete binary

3089

Ananya Appan, David Heath, and Ling Ren

tree, i.e., the one that points to the rightmost node in the last level.
We ensure that given the root, this rightmost node can be fetched
by 1) storing the value of d in the root and 2) making each node
also store edges to its children. These edges are implemented as
address queues.

On concrete efficiency. The cost of dereferencing a pointer de-
pends on the number of pointers held in the pointee; it is 7 log d
SAM requests if the pointee does not contain any pointers, and
35logd even if it contains just two. Note that get uses the « op-
erator to smart copy pointers contained in the pointee. This re-
quires walking up and down an inverted pointer tree. If the pointee
contains two pointers, this leads to X5 blowup in cost. We leave
improving the constant factors in SAM-based handling of pointer
programs as future work.

We provide updated algorithms and concrete efficiency analysis
in the full version [1].

6 OBLIVIOUS DATA STRUCTURES

In this section, we apply the SAM model to construct oblivious
data structures. Table 2 summarizes the asymptotic performance
of our constructions. Our constructions are formalized using our
smart pointer interface (Section 5); each construction is a smart-
pointer-based (Definition 5.1) program (and hence a valid SAM
program), and each program is almost identical to the equivalent
RAM implementation. As we present our constructions, we use
them to prove interesting properties of OSAM.

6.1 Doubly Linked Lists; OSAM Lower Bound

Doubly Linked Lists. We start with a doubly-linked list (DLL) to
showecase the capabilities of smart pointers. A DLL is a list of nodes
where each node stores some data, as well as pointers to the next
and previous nodes in the list. The user can access the first and last
elements of the list, and if holding a pointer to an element in the
middle of the list, can move to the left/right, and access/insert/delete
elements. Figure 6 lists our smart-pointer-based implementation.
Note that two nodes of the DLL can point to one another, and this
non-tree-like structure was out of scope for prior work.

Each of our DLL procedures uses a constant number of smart
pointer operations. Since each node has at most two pointers point-
ing to it, each procedure uses amortized O(1) SAM operations. Thus,
when we compile our data structure with our OSAM, our DLL uses
amortized O(logn) words of communication per procedure call.
We remark that [26] also describes an oblivious doubly-linked list,
but theirs requires packing ©(log n) elements in each ORAM block,
requiring a block size of Q(log? n).

OSAM Lower Bound. Using the same smart-pointer-based style
as Figure 6, we can construct stacks supporting push/pop. Each
procedure uses O(1) smart pointer operations, and the compiled
oblivious stack incurs amortized O(log n) words of communication.
These constructions imply a lower bound on the bandwidth cost of
any OSAM. [14] proved that any oblivious stack must have expected
amortized cost Q(log n), if the client runs in sublinear space and
the data structure stores elements of ©(log n) bits.

THEOREM 6.1 (OSAM LOwWER BouND). LetII be an OSAM compiler
that runs in space n1=€, where € > 0 and where the word size is

Oblivious Single Access Machines

// The type userT is set to node

def insertBefore(last : ptr, d:

struct node : int) — ptr:
prev: ptr ‘ // Analogous to insertAfter
next : ptr
data : int def insertBeg(d: int) — ptr:

if isnull(first) then
p < new(node{
.prev «— null,

first: ptr — null
last : ptr «— null

.next «— null,

def next(p: ptr) — ptr: .data — d})
n < get(p) first—p
return n.next last «— p

def prev(p: ptr) — pir:
n get(p)

return n.prev def insertEnd(d: int) — ptr

def insertAfter(p: ptr, d: int)

Figure 6: Our SAM-based doubly-linked list.

w = O(logn). Given a length-m sequence of SAM requests R, I1(R) in
expectation outputs a sequence of RAM requests of length Q(m-log n).

This implies that our tree-based OSAM construction (Figure 1)
is essentially optimal, as it issues sequences of length O(m - log n).

6.2 Trees

By applying our smart-pointer-based methodology, we can imple-
ment arbitrary tree data structures, so long as each tree node has a
constant number of children. We emphasize our ability to handle
arbitrarily unbalanced trees with depth w(log n). Our implementa-
tions are almost identical to their non-oblivious versions and we
provide them in ??. We highlight our ability to handle tries and
splay trees, and use these to connect OSAM with ORAM.

Tries and connections to RAM. A trie (or prefix-tree) is a search
tree where each key is a string over some alphabet. The tree is
structured such that each subtree contains all strings that start with
the same prefix, and each node has one child per character in the
alphabet. Thus, a given search string determines a path through
the tree, and we store the value associated with that string at the

— ptr: def remove(p: ptr) :
n <« get(p) n < get(p)
q < new(node { if isnull(n.prev) then
preve p | first < n.next
.next «— n.next, else
“data — d}) nprev « get(n.prev)
if isnull(n.next) then nprev.next < n.next
| last — gq put(n.prev, nprev)
else if isnull(n.next) then
nnext < get(n.next) ‘1 last — n.prev
nnext.prev < q else
put(n.next, nnext) nnext « get(n.next)
n.next < q nnext.prev < n.prev
put(p, n) put(n.next, nnext)
return g

else insertBefore(first, d)

‘ // Analogous to insertBeg

3090

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA.

end of that path. Because the height of a trie is determined by the
longest string in its key set, it may be unbalanced.

The full version of our paper [1] formalizes our smart-pointer-
based trie. We limit our handling to alphabets of constant size. To
search for a string of length ¢, our trie issues O(f) SAM requests.
By compiling with OSAM, we obtain an oblivious trie structure
where each lookup incurs O(¢ - log n) bandwidth blow-up and O(1)
roundtrips.

The lookup operation issues a number of memory requests that
depends on the search string length ¢, and this may raise concern
about security. However, the server’s view is determined by the
aggregate of all requests issued by an entire SAM program. A SAM
program might look up elements in a trie multiple times, interleaved
with operations to other SAM-based data structures; the server
learns only the total number of SAM memory requests.

A trie on the alphabet {0, 1} can instantiate a random access
memory: each logical address is treated as a string, and by searching
for a logical address, we access the content of that logical access.
For a memory with n elements, each logical address is a string of
length log n, so the trie has log n depth. Since each node has a single
pointer pointing to it, searching for a logical address can be done
using O(1) SAM operations. By implementing a trie in the SAM
model, we establish a connection between RAM and SAM:

THEOREM 6.2 (RAM FrROM SAM). Let P be a random access ma-
chine program with memory size n and word-size w = @(log n) that
halts in time T. There exists a SAM program that on the same input
incurs while issuing T - O(log n) SAM memory requests.

Thus, we can plug SAM-based RAM in our OSAM construction
(Figure 1) and achieve an ORAM with O(log? n) bandwidth blow-up
and O(log n) roundtrips. This is not surprising: the SAM program
embeds the O(log n) position maps of a tree-based ORAM into a
single trie. Thus, moving from the RAM model to the SAM model
does not lose asymptotic performance.

Splay trees and caching ORAM. A splay tree [23] is a self-adjusting
binary tree where each time a node is accessed, a splay operation
rotates that node to the tree’s root. Splay trees are known to have
good locality properties. For instance, performing an in-order tra-
versal of the leaves of a size-n splay tree only takes time O(n); The
data structure also has good amortized performance: its lookup
procedure incurs amortized O(log n) cost, regardless of the access
pattern. It is easy to embed splay trees in our smart pointer frame-
work. The interested reader is referred to the full version of our
paper [1] for the code.

Splay trees are rightfully the focus of some theoretical attention.
Since their introduction [23], they have been conjectured to be
the “asymptotically best possible binary tree”. The long-standing
Dynamic Optimality Conjecture [23] roughly states that for any se-
quence of lookups, the tree will perform within a constant factor of
any binary tree algorithm that is custom designed for that sequence.

It is easy to implement random access memory with a splay tree
by using logical memory addresses as keys. By plugging a splay
tree into our OSAM, we obtain what we call a caching ORAM:

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA.

THEOREM 6.3 (CACHING ORAM). Assume the Dynamic Optimal-
ity Conjecture holds. There exists a statistically-secure ORAM I1 with
the following properties:!

o The RAM has n addressable memory cells.

o The client runs in O(w - 1) bits of space.

o Let R be a length-Q(n) sequence of memory requests issued by
the client, and suppose there exists some binary tree algorithm
that could satisfy the requests in R in time T. Then II(R) issues
O(T - log n) memory requests to the server.

This caching ORAM has amortized cost at most O(log? n) per
access, but it can have cost as low as O(log n), depending on the
access pattern. Sequences that tend to repeatedly access a relatively
small number of elements, or that scan elements that are close
together, will be accelerated. Even if the Dynamic Optimality Con-
jecture proves false, this splay-tree-based statistical ORAM will
still have interesting properties, as splay trees are known to satisfy
certain weaker properties, such as the static optimality; see [23].

7 OBLIVIOUS GRAPH ALGORITHMS

In this section, we use the SAM model to implement oblivious graph
algorithms for the breadth-first search (BFS), depth-first search
(DES), single-source shortest path (SSSP), and minimum spanning
tree (MST) problems. We refer to these as our target algorithms. We
solve SSSP using Dijkstra’s algorithm and solve MST using Prim’s
algorithm. All our algorithms run at cost O(|E|) SAM requests,
where |E| is the number of edges. We remark that we consider
directed graphs. For SSSP and MST, we equip our OSAM with an
oblivious priority queue using the techniques of [20].

Smart pointers can be directly used to implement textbook ver-
sions for these problems (after some natural modifications). These
algorithms require dereferencing each pointer to a vertex to visit
it. Since smart pointer operations incur O(logd) SAM memory
requests when the dereferenced pointee is shared by d pointers,
oblivious versions of these textbook algorithms are only efficient if d
is a small constant. But for graphs of arbitrary degree, O(|E|log |E|)
SAM requests can be made in the worst case.

We can reduce the cost to O(|E|) even for arbitrary degree graphs
by emulating the arbitrary degree graph, which we call the original
graph, by a larger graph of constant degree that stores information
about whether a vertex has been visited. If the original graph has
|V] vertices and |E| edges, then the emulating graph has O(|E|)
vertices and O(|E|) edges. Our approach is to specify a template
algorithm that traverses each edge in the emulating graph at most
twice. Being a graph of constant degree, this incurs only O(|E|)
SAM memory requests — and hence the compiled OSAM program
makes O(|E| log |E|) requests to the server. Each target algorithm is
achieved by plugging in appropriate details to the template. More
precisely, our emulation proceeds as follows:

e For each vertex in the original graph, create an original vertex
in the emulating graph, denoted by u.

o Consider an original vertex u. For each of u’s incoming edges
(v, u) in the original graph, we add a vertex to the emulating

IThe stated efficiency is based on an instantiation with Path ORAM. If we instead
instantiate caching ORAM via Circuit ORAM, we achieve O(w) bits of client space
and O(T - 1) memory requests.

3091

Ananya Appan, David Heath, and Ling Ren

graph encoding that edge. Each such vertex is called an
incoming edge vertex, denoted ,u.

e For each edge (v, u) in the original graph, we create a smart
pointer to ,u. This pointer is called an original edge, denoted
by v — u.

e For each edge (u,v) in the original graph, we create a vertex
in the emulating graph. We call this vertex an outgoing edge
vertex, denoted u,. We store the original edge u — v (recall,
the original edge is a pointer) in u,,.

e Consider all outgoing edge vertices originating from u. We
use smart pointers to create a binary tree where the original
vertex u is the root and each outgoing edge node u, is a leaf.
This tree is called u’s outgoing edge tree.

o Consider all incoming edge vertices incident on u. We use
smart pointers to create a binary tree where the original
node u is the root and each incoming edge node yu is a leaf.
We augment this tree with parent pointers. Namely, from a
tree node, we can traverse to its two children or its parent.
This tree is called u’s incoming edge tree.

Note that the number of edges in the emulating graph is only
a constant factor higher than the number of edges in the original
graph.

7.1 Implementing Oblivious Graph Algorithms

A common structure shared by these algorithms is to traverse the
graph and generate a labeling for the original vertices. In the case
of SSSP, each label is that vertex’s distance from the source; in the
other algorithms, each label is a pointer to the parent in a tree that
describes the traversal. Each algorithm’s traversal is guided by a
data structure that dictates the order in which vertices should be
visited. The particular traversal structure is specific to the algorithm:

Problem ‘ Labels Traversal Structure
DFES pointer to parent in tree stack
BFS pointer to parent in tree queue
MST pointer to parent in tree priority queue
SSSP | distance from source vertex priority queue

Typically, graph algorithms are written in a style where metadata
corresponding to each vertex (e.g., latest distance from the source
node in Dijkstra’s algorithm) is stored in an external array. For us,
it is more efficient to store such metadata in the vertices themselves.
In particular, we store whether an original vertex has been visited or
not in its incoming edge vertices, we store edge weights in outgoing
edge vertices, and the label in the original vertex itself.

The core loop of each of our algorithms follows the following
template .

e Pop a pointer to a vertex u from the traversal structure. More
precisely, pop a pointer to some incoming edge vertex ,u,
along with information needed to update u’s label.

o Check whether or not u has been visited. We store whether
u has been visited in each incoming edge vertex ,u. If u has
been visited, proceed to the next iteration of the loop.

o Otherwise, traverse the incoming edge tree to find the origi-
nal vertex u and update u’s label.

e Add all neighbors of u to the traversal structure. More pre-
cisely, we walk u’s outgoing edge tree, and for each leaf u,,

Oblivious Single Access Machines

we add u, to the structure, along with data (the output of
getL) needed to update that neighbor’s label.

e We mark u as visited so that it will not be visited again. More
precisely, we walk u’s incoming edge tree, and for each leaf
oU, we update ,u to denote that u has already been visited.

Instantiating our graph algorithms amounts to plugging into the
above template: (1) the correct traversal structure and (2) algorithm-
specific handling for labels. We remark that we tweak Dijkstra’s
algorithm to fit into the template. The full version of our paper gives
a [1] a side-by-side comparison of the original Dijkstra’s algorithm
and the tweaked version and presents SAM programs for BFS, DFS,
SSSP, and MST .

Crucially, each of our algorithms dereferences each emulating
graph vertex at most twice. We dereference each original vertex,
as well as each of its outgoing edge vertices, once. We dereference
each incoming edge vertex once to set an original vertex as visited,
and some incoming edge vertices will be dereferenced a second
time to perform a visit. Since there are O(|E|) vertices in the emulat-
ing graph, our algorithms perform a total of O(|E|) SAM memory
requests and, when compiled with OSAM, our oblivious algorithms
incur O(|E| - log |E|) bandwidth blow-up and O(|E|) roundtrips.

Acknowledgements. Thanks to Javier Nieto and Ziling Yang for a
discussion that helped inspire our design of smart pointers.

This research was developed with funding from NSF grants CNS-
2246353 and CNS-2246386.

REFERENCES

[1] Ananya Appan, David Heath, and Ling Ren. 2024. Oblivious Single Access
Machines: A New Model for Oblivious Computation. Cryptology ePrint Archive
(2024).

Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Peserico, and
Elaine Shi. 2020. OptORAMa: Optimal Oblivious RAM. In EUROCRYPT 2020, Part I
(LNCS, Vol. 12106), Anne Canteaut and Yuval Ishai (Eds.). Springer, Heidelberg,
403-432. https://doi.org/10.1007/978-3-030-45724-2_14

Gilad Asharov, Ilan Komargodski, and Yehuda Michelson. 2023. FutORAMa: A
Concretely Efficient Hierarchical Oblivious RAM. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security. 3313-3327.
Gilad Asharov, Ilan Komargodski, and Yehuda Michelson. 2023. FutORAMa: A
Concretely Efficient Hierarchical Oblivious RAM. CCS (2023).

Marina Blanton, Aaron Steele, and Mehrdad Aliasgari. 2013. Data-oblivious
graph algorithms for secure computation and outsourcing. In ASIACCS 13, Kefei
Chen, Qi Xie, Weidong Qiu, Ninghui Li, and Wen-Guey Tzeng (Eds.). ACM Press,
207-218.

David Cash, Andrew Drucker, and Alexander Hoover. 2020. A lower bound
for one-round oblivious RAM. In Theory of Cryptography: 18th International
Conference, TCC 2020, Durham, NC, USA, November 16-19, 2020, Proceedings, Part
I 18. Springer, 457-485.

Kai-Min Chung, Zhenming Liu, and Rafael Pass. 2014. Statistically-secure ORAM
with O(log2 n) Overhead. In ASIACRYPT 2014, Part I (LNCS, Vol. 8874), Palash
Sarkar and Tetsu Iwata (Eds.). Springer, Heidelberg, 62-81. https://doi.org/10.
1007/978-3-662-45608-8_4

Samuel Dittmer and Rafail Ostrovsky. 2020. Oblivious Tight Compaction In O(n)
Time with Smaller Constant. In SCN 20 (LNCS, Vol. 12238), Clemente Galdi and
Vladimir Kolesnikov (Eds.). Springer, Heidelberg, 253-274. https://doi.org/10.
1007/978-3-030-57990-6_13

Christopher Fletcher, Muhammad Naveed, Ling Ren, Elaine Shi, and Emil Ste-
fanov. 2015. Bucket ORAM: single online roundtrip, constant bandwidth oblivious

(2]

=

3092

[10

[11

[12

[13

[14

[15

[16]

[17

oy
&

[19

[20

[21

~
5,

[23

[24

[25

[27

(28]

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA.

RAM. Cryptology ePrint Archive (2015).

Sanjam Garg, Payman Mohassel, and Charalampos Papamanthou. 2016.
TWORAM: Efficient oblivious RAM in two rounds with applications to searchable
encryption. In Annual International Cryptology Conference. Springer, 563-592.
Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simulation
on Oblivious RAMs. J. ACM 43, 3 (1996), 431-473. https://doi.org/10.1145/
233551.233553

Michael T Goodrich and Michael Mitzenmacher. 2011. Privacy-preserving access

of outsourced data via oblivious RAM simulation. In International Colloquium on
Automata, Languages, and Programming. Springer, 576-587.

Michael T Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto
Tamassia. 2012. Privacy-preserving group data access via stateless oblivious RAM
simulation. In Proceedings of the twenty-third annual ACM-SIAM symposium on
Discrete Algorithms. SIAM, 157-167.

Riko Jacob, Kasper Green Larsen, and Jesper Buus Nielsen. 2019. Lower Bounds
for Oblivious Data Structures. In 30th SODA, Timothy M. Chan (Ed.). ACM-SIAM,
2439-2447. https://doi.org/10.1137/1.9781611975482.149

Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. 2012. On the (in) security
of hash-based oblivious RAM and a new balancing scheme. In Proceedings of
the twenty-third annual ACM-SIAM symposium on Discrete Algorithms. SIAM,
143-156.

Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. 2015.
ObliVM: A Programming Framework for Secure Computation. In 2015 IEEE
Symposium on Security and Privacy. IEEE Computer Society Press, 359-376.
https://doi.org/10.1109/SP.2015.29

Kartik Nayak, Xiao Shaun Wang, Stratis Ioannidis, Udi Weinsberg, Nina Taft,
and Elaine Shi. 2015. GraphSC: Parallel Secure Computation Made Easy. In 2015
IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 377-394.
https://doi.org/10.1109/SP.2015.30

Ling Ren, Christopher W. Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten
van Dijk, and Srinivas Devadas. 2015. Constants Count: Practical Improvements
to Oblivious RAM. In USENIX Security 2015, Jaeyeon Jung and Thorsten Holz
(Eds.). USENIX Association, 415-430.

Zihao Shan, Kui Ren, Marina Blanton, and Cong Wang. 2018. Practical secure
computation outsourcing: A survey. ACM Computing Surveys (CSUR) 51, 2 (2018),
1-40.

Elaine Shi. 2020. Path Oblivious Heap: Optimal and Practical Oblivious Priority
Queue. In 2020 IEEE Symposium on Security and Privacy. IEEE Computer Society
Press, 842-858. https://doi.org/10.1109/SP40000.2020.00037

Elaine Shi, T H Hubert Chan, Emil Stefanov, and Mingfei Li. 2011. Oblivious
RAM with O ((log N) 3) worst-case cost. In Advances in Cryptology—-ASIACRYPT
2011: 17th International Conference on the Theory and Application of Cryptology
and Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings 17.
Springer, 197-214.

Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. 2011. Oblivious
RAM with O((log N)*) Worst-Case Cost. In ASTACRYPT 2011 (LNCS, Vol. 7073),
Dong Hoon Lee and Xiaoyun Wang (Eds.). Springer, Heidelberg, 197-214. https:
//doi.org/10.1007/978-3-642-25385-0_11

Daniel Dominic Sleator and Robert Endre Tarjan. 1985. Self-adjusting binary
search trees. Journal of the ACM (JACM) 32, 3 (1985), 652-686.

Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren,
Xiangyao Yu, and Srinivas Devadas. 2013. Path ORAM: an extremely simple
oblivious RAM protocol. In ACM CCS 2013, Ahmad-Reza Sadeghi, Virgil D. Gligor,
and Moti Yung (Eds.). ACM Press, 299-310. https://doi.org/10.1145/2508859.
2516660

Xiao Wang, T.-H. Hubert Chan, and Elaine Shi. 2015. Circuit ORAM: On Tightness
of the Goldreich-Ostrovsky Lower Bound. In ACM CCS 2015, Indrajit Ray, Ninghui
Li, and Christopher Kruegel (Eds.). ACM Press, 850-861. https://doi.org/10.1145/
2810103.2813634

Xiao Shaun Wang, Kartik Nayak, Chang Liu, T.-H. Hubert Chan, Elaine Shi,
Emil Stefanov, and Yan Huang. 2014. Oblivious Data Structures. In ACM CCS
2014, Gail-Joon Ahn, Moti Yung, and Ninghui Li (Eds.). ACM Press, 215-226.
https://doi.org/10.1145/2660267.2660314

Peter Williams and Radu Sion. 2012. Single round access privacy on outsourced
storage. In Proceedings of the 2012 ACM conference on Computer and communica-
tions security. 293-304.

Samee Zahur and David Evans. 2013. Circuit Structures for Improving Efficiency
of Security and Privacy Tools. In 2013 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, 493-507. https://doi.org/10.1109/SP.2013.40

https://doi.org/10.1007/978-3-030-45724-2_14
https://doi.org/10.1007/978-3-662-45608-8_4
https://doi.org/10.1007/978-3-662-45608-8_4
https://doi.org/10.1007/978-3-030-57990-6_13
https://doi.org/10.1007/978-3-030-57990-6_13
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/233551.233553
https://doi.org/10.1137/1.9781611975482.149
https://doi.org/10.1109/SP.2015.29
https://doi.org/10.1109/SP.2015.30
https://doi.org/10.1109/SP40000.2020.00037
https://doi.org/10.1007/978-3-642-25385-0_11
https://doi.org/10.1007/978-3-642-25385-0_11
https://doi.org/10.1145/2508859.2516660
https://doi.org/10.1145/2508859.2516660
https://doi.org/10.1145/2810103.2813634
https://doi.org/10.1145/2810103.2813634
https://doi.org/10.1145/2660267.2660314
https://doi.org/10.1109/SP.2013.40

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA.

Appendices

A PROOFS OF SECURITY

Recall that a SAM program is valid if an address is allocated before
use, and each address is read from or written to only once. It is
essential that a SAM program is valid for obliviousness, as secu-
rity of our OSAM compiler holds only for valid SAM programs.
In this section, we prove that any smart-pointer-based program
(Definition 5.1) is a valid SAM program.

We do this in three parts. First, we show that operations per-
formed on address queues result in valid SAM programs, as long
as they are performed in a certain queue-valid way. Similarly, we
next show that invoking helper procedures (Figure 4) in a certain
helper-valid way results in a valid SAM program. Finally, we show
that any smart pointer program invokes helper procedures in a
helper-valid way, and is thus a valid SAM program.

First, we define queue-valid sequences of procedure calls to ad-
dress queues.

Definition A.1. A sequence of address queue operations is said
to be queue-valid if

- Any address passed to dequeue is either (1) a first output of
initQueue or (2) a second output of dequeue, and any such
argument is passed to dequeue at most once.

- Any address passed as the first argument to enqueue is either
(1) a second output of initQueue or (2) an output of enqueue,
and any such argument is passed to enqueue at most once.

LEMMA A.2. Any queue-valid sequence of calls to procedures in
Figure 2 is a valid SAM program.

ProOF. By inspection of Figure 2. In more detail, we prove that
every address used in the sequence is first allocated, then written
to / read from at most once.

Consider any tail that is written to during a call to enqueue. If tail
was returned by initQueue, then it was allocated during initQueue.
Otherwise, it was allocated during another call to enqueue. Since
the sequence of calls is queue-valid, tail is passed only to a single
call to enqueue, so it is written to at most once.

Now, consider any head that is read from during a call to dequeue.
If head was returned by initQueue, then it was allocated during
initQueue. Otherwise, it was returned from another call to dequeue.
Each node in any address queue stores values of the form {c, head},
where head is allocated during a call to enqueue. dequeue returns
this head, and thus head is an allocated address. Since the sequence
of calls is queue-valid, head is passed only to a single call to dequeue,
so it is read at most once. O

We next define a helper-valid sequence of procedure calls. Recall
that helper procedures are used to manipulate nodes in an “inverted
pointer tree”: addTail creates a queue “leading” to a node, saveNode
writes a node to a new address, and chase reads a node from its
latest address. Our definition captures how these procedures must
be called so that the underlying address queues are used in a queue-
valid way, and so that they always point to the latest address of the
node.

Definition A.3. Suppose that calling the constructor rootNode /
branchNode returns a node that contains an assigned id. When we

3093

Ananya Appan, David Heath, and Ling Ren

refer to node n, we refer to the node with id n. We say that a call
to a helper procedure is tied to node n if it takes n as argument
or returns n. A sequence of helper procedure calls (Figure 4) is
helper-valid if for every node n, the helper procedure calls tied to n
satisfy the following.

(1) Any head passed to chase is returned by a previous call to
addTail, and is not used in a previous call to chase.

(2) For every prefix of the sequence, the number of addTail
operations exceeds the number of chase operations by at
most 2, i.e. at all times n has at most two incoming queues.

(3) Ignoring calls to addTail, the sequence is an alternating se-
quence of calls to saveNode and chase, starting with a call to
saveNode.

LEMMA A.4. Any helper-valid sequence of helper-procedure calls
(Figure 4) is a valid SAM program.

Proor. We prove that every address used in a helper-valid se-
quence of helper-procedure calls is first allocated, and read / written
at most once. Note that there are two types of address (1) addresses
used as part of address queue operations and (2) addresses used to
write (or read) any node n in an inverted tree to (or from) memory
(see mentions of read/write in Figure 4).

For addresses of the first type, we show that any sequence of
address-queue operations is queue-valid. All calls to enqueue are
made during calls to saveNode, which check that tail passed to
enqueue is not null. Further, tail is either returned by initQueue
during a call to addTail, or is updated to be the tail returned from a
call to enqueue. Similarly, any head read during dequeue is not null,
and is either returned by initQueue during a call to addTail, or is
updated to be the head returned from the call to dequeue. Also note
that since tail and head are updated to be the addresses returned
from enqueue and dequeue respectively, each tail and head is used
at most once. Thus, the sequence of address-queue operations is
queue-valid.

Now, consider an address of the second type. This address is
allocated and written to during a call to saveNode. Since each call
to saveNode allocates and writes to a new address, each address is
written to at most once. Addresses are read during calls to chase,
and each address (say a) read is the last address in an address-
queue. Since the sequence of calls is helper-valid, any later call to
chase is preceded by a call to saveNode. Thus, addTail called during
saveNode appends a new address (say a’) to each queue leading to
n. The last address that is dequeued by a later call to chase for any
incoming queue to n is @’ (not a), and a is read at most once. To
finish the proof, note that any later call to chase is indeed performed
on an incoming queue to n. Since the sequence is helper-valid, n
has at most 2 incoming queues at any point in time, and n stores
the tails of both queues.

O

Finally, we show that any smart-pointer-based program makes
helper procedure calls in a helper-valid way, and is thus a valid SAM
program.

Lemma 5.2 Let P be a smart-pointer-based SAM program (Defi-
nition 5.1). P is a valid SAM program (Definition 4.1).

Oblivious Single Access Machines

Proor. By inspection of Figure 5. Note that makes no calls
to SAM operations except those implied by helper procedures. We
show that ? is a valid SAM program by showing that the helper
procedure calls it makes form a helper-valid sequence (Lemma
A.4). Consider node n in any inverted pointer tree. For the helper
procedure calls tied to n, we show that the following hold.

(1) Any head passed to chase is returned by a previous call to
addTail, and is not used in a previous call to chase : There
are two cases to consider (1) head is held in a pointer p (2)
head is held in a branchNode (a node that is not the root).
In the former case, since p is not null, p was either created
using a new operation, or by copying another pointer using
«. In both cases, p.head is initialized by a call to addTail.
Thus, the statement holds when chase(p.head) is used imme-
diately after p is created. Otherwise, note that after calling
chase(p.head), calls to get, put and < immediately update
p.head to be the value returned by a call to addTail.

Now, consider the case when head is held in a branchNode
(say b). Note that b is created while copying a pointer using
the < operator. When b is created, b.headP is initialized
using addTail. Thus, the statement holds when chase is used
immediately after b is created. Otherwise, similar to the
previous case, calls to get, put and < immediately update
b.headP to be the value returned by a call to addTail after
calling chase(b.headP).

Finally, note that no (bitwise) copy of head is ever created.
The only way to copy a pointer is by using the « opera-
tor, which returns a new head for the copy. This argument

3094

~

=

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA.

also extends to user defined data-types: the < operator for
userT is overloaded to copy contained pointers. Note that get
and put invoke the overloaded « operator while fetching /
saving the pointee.

At most 2 queues lead to n : By inspection of Figure 4, a new
queue is created in two ways (1) immediately after calling
chase and (2) after creating a new pointer during a call either
to «— or to new. In the former case, addTuail is used to re-build
a new queue in place of one that was just destroyed, and
thus, no new queue is created to n. In the latter case, if this
is done during a call to new, then this is the only queue that
leads to n. Otherwise, when « copies a pointer that points
to a node (say n’) that already has two incoming pointers,
the pointer and its copy are made to point to a new node.
The new node is made to point to n’. Thus, each node always
has at most two incoming queues.

Ignoring calls to addTail, the sequence is an alternating se-
quence of calls to saveNode and chase, starting with a call to
saveNode : Consider any node n. n is either a root node, or a
branch node, created during a call to new or < respectively.
In both cases, the first helper procedure called is addTail,
which is immediately followed by a call to saveNode. Thus,
ignoring addTail, the first call is made to saveNode.

Now, consider any call made to chase. Irrespective of whether
this is made during get, put, < or delete, this is followed
by a call to saveNode. Thus, the sequence is an alternating
sequence of calls to chase and saveNode.

[m]

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Oblivious RAM
	2.2 Special-Purpose Oblivious Computations
	2.3 Notation

	3 Overview
	3.1 Avoiding Position Maps; Review of CCS:WNLCSS14
	3.2 SAM and OSAM

	4 Oblivious Single Access Machines
	4.1 Our OSAM Construction

	5 Smart Pointers
	5.1 Implementing Smart Pointers
	5.2 Validity and Efficiency

	6 Oblivious Data Structures
	6.1 Doubly Linked Lists; OSAM Lower Bound
	6.2 Trees

	7 Oblivious Graph Algorithms
	7.1 Implementing Oblivious Graph Algorithms

	References
	A Proofs of Security

