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Abstract

The evaluation of synthetic data generation is crucial, especially in the retail sector
where data accuracy is paramount. This paper introduces a comprehensive framework
for assessing synthetic retail data, focusing on fidelity, utility, and privacy. Our ap-
proach differentiates between continuous and discrete data attributes, providing precise
evaluation criteria. Fidelity is measured through stability and generalizability. Stabil-
ity ensures synthetic data accurately replicates known data distributions, while gener-
alizability confirms its robustness in novel scenarios. Utility is demonstrated through
the synthetic data’s effectiveness in critical retail tasks such as demand forecasting
and dynamic pricing, proving its value in predictive analytics and strategic planning.
Privacy is safeguarded using Differential Privacy, ensuring synthetic data maintains a
perfect balance between resembling training and holdout datasets without compromis-
ing security. Our findings validate that this framework provides reliable and scalable
evaluation for synthetic retail data. It ensures high fidelity, utility, and privacy, mak-
ing it an essential tool for advancing retail data science. This framework meets the
evolving needs of the retail industry with precision and confidence, paving the way for
future advancements in synthetic data methodologies.
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1 Introduction

In the rapidly evolving field of data science, the evaluation of synthetic data generation frame-
works has become paramount, especially within the retail sector. This paper introduces a
comprehensive framework for assessing synthetic retail data, focusing on three critical di-
mensions: fidelity, utility, and privacy. Our framework distinguishes between continuous and
discrete attributes within retail datasets, providing clear methodologies for their evaluation.

Firstly, fidelity is evaluated through stability and generalizability [42]. Stability measures
how well synthetic retail data replicates known data distributions, highlighting the robustness
of models in familiar scenarios. Generalizability, on the other hand, assesses the performance
of synthetic data in novel contexts, ensuring that the generated data can effectively extend
beyond its training parameters. This is particularly important in retail, where market trends
and consumer behavior can shift rapidly.

Secondly, the utility of synthetic retail data is scrutinized by its applicability to real-world
tasks. In the retail sector, accurate demand forecasting and dynamic pricing [46, 27] are piv-
otal for operational efficiency and profitability. Our evaluation framework demonstrates how
synthetic datasets can effectively support these core functions, making them indispensable
for predictive analytics and strategic decision-making in retail.

Finally, privacy is assessed using Differential Privacy and related metrics. We compare
the proximity of synthetic datasets to both training and holdout datasets to ensure balanced
privacy guarantees. A well-balanced synthetic dataset should approximate both datasets
equally, indicating robust privacy protection without compromising data utility. This aspect
is critical in retail, where customer data privacy is a significant concern.

We apply our framework to evaluate generative AI models trained with the Complete
Journey dataset [15]. Our results affirm that our evaluation framework provides a robust
pipeline for large-scale assessments of synthetic retail data generation models. This frame-
work not only ensures high fidelity and utility but also maintains stringent privacy standards.
Consequently, it offers a solid foundation for future improvements in synthetic data genera-
tion and evaluation methodologies within the retail sector.

This paper concludes that with our framework, synthetic retail data can be reliably
utilized for various applications, offering a scalable solution for the ever-growing demands of
data privacy and utility in retail data science.

1.1 Background and Motivation

In the retail industry, the challenges of data privacy and availability are significant obstacles.
Synthetic data, which is artificially generated rather than obtained from real-world events,
provides a compelling solution to these issues. One primary challenge in retail is protecting
customer privacy while leveraging data for analysis and decision-making. Synthetic data
addresses this by mimicking real data without exposing sensitive customer information, and
maintaining statistical properties and patterns found in actual data. This allows retailers
to perform robust analyses and model training without risking data breaches or violating
privacy regulations.

Moreover, obtaining large volumes of high-quality data can be difficult, especially when
dealing with new products or services where historical data is sparse or non-existent. Public

2



datasets are notably smaller than standard industry datasets. They are generally collected
under biased and often undisclosed marketing policies, and they lack many critical fields
needed for accurate customer behavior modeling[14]. Moreover, business constraints and
fairness concerns restrict the potential for aggressive experimentation across the marketing
mix. Synthetic data generation overcomes these by creating abundant and varied datasets
that reflect potential future scenarios or underrepresented cases. This capability is crucial
for training machine learning models, which require large datasets to perform effectively.
Additionally, synthetic data can help mitigate biases present in real data, leading to more
fair and accurate models.

1.2 Objectives and Contributions

Developing a robust evaluation framework for synthetic data in retail is essential to ensure
the validity and utility of the data. Without rigorous evaluation, synthetic data may fail to
accurately reflect the complexities of real-world scenarios, leading to misleading insights and
poor decision-making. A strong evaluation framework involves several critical components:
assessing the statistical similarity between synthetic and real data, evaluating the impact
on model performance, and ensuring that synthetic data preserves essential patterns and
relationships. Thus, we propose a standardized evaluation framework for retail synthetic
datasets from three aspects: fidelity, utility, and privacy.

Figure 1: The framework diagram of our synthetic retail data evaluation pipeline. Section
3.1 explains the purpose and method to split transaction data. Section 3.2 defines detailed
metrics for fidelity assessment, i.e. Wasserstein distance, Pearson correlation, etc. Section
3.3 defines the tasks for utility assessment, i.e. classification accuracy, product association,
etc. Section3.4 explains the metrics for privacy assessment, i.e. distance to the closest record.

Such a framework (Figure 1) ensures that synthetic data is not only statistically similar
to real data but also useful for practical applications in the retail sector. This process
helps identify any discrepancies and areas where synthetic data may fall short, guiding
improvements in data generation methods. Ultimately, a robust evaluation framework builds
trust in synthetic data, making it a reliable resource for retailers. In this way, we ensure
a safe and scalable way to generate high-quality synthetic data while maintaining privacy
compliance.
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2 Related Work

2.1 Existing Evaluation Frameworks

Several general frameworks have been proposed to gauge the efficacy of synthetic data pre-
viously. A sample-level metric framework evaluates generative models through fidelity and
utility lenses, facilitating the identification of discrepancies and similarities between real and
synthetic datasets [1]. Another methodology emphasizes auditing and generating synthetic
data with controllable trust trade-offs, allowing customization based on specific requirements
[5]. Further exploration of synthetic data generation discusses its benefits and limitations
across various contexts, particularly in creating a practical approach for deployment [22].

Fidelity assessment ensures synthetic data retains the essential characteristics and pat-
terns of real data. Previous work proposed a holdout-based empirical assessment method for
mixed-type synthetic data, highlighting the importance of maintaining the statistical prop-
erties and variability inherent in the original dataset [32]. On the metric aspect, Sajjadi et
al introduced a definition of precision and recall for distribution and quantified distribution
similarity not just with one-dimensional score, like total variation [38].

Utility evaluation focuses on the synthetic data’s performance in downstream tasks. Xu
et al. established a basis of relevant utility theory in a statistical learning framework and
introduced metrics of generalization and ranking of models trained on synthetic data [51]. It
considers two utility metrics: generalization and ranking of models trained on synthetic data.
There was also empirical work, for example, emphasizing generative model selection based on
performance in fraud detection[13]. Additionally, Hsieh et al. (2024) adopted a data-centric
perspective to improve both the fidelity and utility of synthetic credit card transaction time
series [20]. Liu et al. explore utility in dynamic pricing models, demonstrating how synthetic
data can support robust pricing strategies in fluctuating market conditions [28].

Privacy is a central concern in synthetic data generation. A formal framework for de-
tecting data-copying in generative models ensures synthetic data does not replicate real data
points [6], where the author also provides the requirement of minimum sample size for re-
liable detection. Meehan’s work proposed a three-sample test to solve the same issue of
data-copying in generative models [29]. BadGD addresses the vulnerabilities of gradient
descent algorithms through strategic backdoor attacks to safeguard data privacy [45]. Fur-
thermore, Chen et al. systematically summarize all approaches for differentially private data
publishing to conduct reproducible downstream analysis while preserving data privacy [10].
Tools like TAPAS provide adversarial privacy auditing. A review of privacy measurement
practices for tabular synthetic data includes a comprehensive list of privacy metrics [7], such
as Differential Privacy, k-Anonymity, Plausible Deniability, etc.

However, to our knowledge, there is no empirical work conducting a full set of fidelity,
utility, and privacy assessments on generative AI models with retail transaction data.

2.2 Synthetic Data in Retail

Synthetic data can transform the retail industry by enhancing various operational and ana-
lytical processes while ensuring customer privacy. It enables comprehensive customer ana-
lytics and segmentation without compromising personal data, aiding in the development of
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targeted marketing strategies. In supply chain optimization, synthetic data simulates differ-
ent scenarios to help forecast demand, optimize inventory, and improve logistics. Product
recommendation systems can benefit from data augmentation with synthetic datasets for
extensive training, ensuring accurate and relevant recommendations that enhance customer
experience. Furthermore, synthetic data allows safe data sharing with third parties and
partners under privacy regulations, facilitating collaborative projects and compliance checks
without using real data, thus fostering innovation while safeguarding privacy.

Data practitioners have widely recognized the value of synthetic data for accelerating the
development of AI systems and started to emphasize building generative models of the data
in its raw tabular forms, instead of modeling features derived from transformed data [30, 22].
Researchers identify two different paths for synthetic data generation. One is the black-box
style of privacy-preserving modeling techniques (such as Generative Adversarial Networks,
Variational Autoencoders, and Bayesian Networks) [47]. For example, Athey generated
synthetic data for the evaluation of causal effects estimators with Wasserstein Generative
Adversarial Networks [4]. These privacy-preserving modeling techniques are powerful when
sufficient historical data is available to learn an accurate data-generating process. However,
when public retail datasets are rather scarce, the other style that needs domain knowledge in
retail shines. Statisticians simplify the complexity of real-world data and specify structural
causal models to generate synthetic data. For example, prior work simulated either category
choice or the full life-cycle of customer shopping decisions based on a nested logit model
[2, 48].

However, no matter which technique is used for synthetic data generation, there is cur-
rently no well-defined evaluation framework specifically designed to assess synthetic retail
data, highlighting a crucial gap in ensuring data fidelity, utility, and privacy. The retail indus-
try particularly requires effective data to conduct analysis, such as price optimization[11, 12],
basket analysis [43, 36], customer lifetime value [35, 16], and demand forecasting [44, 17].
Given the complexity and importance of these tasks, careful evaluation of synthetic data
is essential to preserve the quality of insights derived from these analyses, ensuring that
strategic decisions are based on accurate and reliable information.

2.3 Complete Journey Dataset

The Dunnhumby Complete Journey Dataset [15] represents a comprehensive and meticu-
lously curated collection of retail transaction data, providing deep insights into consumer
purchase behaviors and patterns. Compiled from a vast array of shopping experiences, this
dataset encompasses detailed records of customer interactions, including basket-level trans-
action details, promotional influences, and loyalty program participation. We utilize three
main tables in our paper from the dataset: (1) transaction table, (2) customer demographics
table, and (3) product hierarchy table. We merge these three tables with schema explained
in Table 1 to build the raw data input to the proposed framework in Figure 1, and cover the
pre-processing details in section 4.1.
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Variable Type Description Source

household id integer Customer unique identifier 1 & 2
product id integer Product unique identifier 1 & 3

day integer Transaction day 1
week integer Transaction week 1

quantity integer Purchased units 1
sales value float Revenue 1

... ... ...

age string Customer age group 2
household size string Number of family members 2

... ... ...

department string Product department 3
brand string ”national” or ”private” 3
... ... ...

Table 1: Partial schema of merged Complete Journey dataset as an example, where (1) in
the source column represent the transactions table, (2) for the customer demographics table,
and (3) for the product hierarchy table. See Sec. 2.3 for full details.

3 The Evaluation Framework

In this session, we propose an empirical assessment framework to evaluate generative AI
models for retail synthetic data generation. Our evaluation method is distinguished by its
tripartite composition of synthetic data Fidelity, Utility, and Privacy metrics. The defin-
ing characteristic of this method is its adaptability and model-free nature, allowing it to
be deployed independently of domain-specific knowledge or preconceived notions. Utilizing
non-parametric measures, our data-centric evaluation provides a systematic review of an
array of black-box synthetic data solutions, examining whether generated data is practical,
safe, and broadly applicable. The objective underlining this methodology is to build trans-
parency, enhance confidence in data generators, and further incentivize industries to leverage
synthetic data for innovation in the modern data-driven world.

3.1 Train-Holdout-Eval Split

To robustly evaluate the generalizability of a data synthesizer, we employ a random split of
the available records into three distinct datasets: a training dataset T , a holdout dataset
H [32], and an additional evaluation dataset E, where the evaluation dataset E is only
used for assessing model utility as a evaluation set (Figure 1). The training dataset T is
exclusively used to train the synthesizer, while the holdout dataset H remains untouched
during the synthetic data generation process. By exposing only the training dataset T to the
synthesizer, we generate a synthetic dataset S of the same size as T . The isolated holdout
dataset H can then serve as a benchmark to assess the synthesizer’s ability to generalize
beyond the data it was trained on.
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To demonstrate the model generalizability, we compare the metrics obtained from both
the holdout dataset H and the synthetic dataset S. If the holdout dataset H attains better
metrics than the synthetic dataset S, the synthesizer has missed some underlying patterns
presented in the data. Conversely, suppose the synthetic dataset S achieves superior metrics.
In that case, this indicates potential overfitting by the synthesizer to the training dataset
T . Ideally, we aim for the metrics from both datasets to be as close as possible, reflecting
balanced generalization and reliable synthetic data generation.

3.2 Measuring Synthetic Data Fidelity

We treat holdout and synthetic datasets as separate data sources to evaluate fidelity metrics
against the training dataset. The design of fidelity measurement is motivated by visualizing
joint distributions and marginal distributions to discover patterns.

Similarity of Marginal Distribution One critical part of exploratory data analysis
is to demonstrate the distribution of numerical features. This involves plotting histograms,
density plots, and cumulative distribution functions to visualize how numerical data is spread
across different ranges. A robust generative synthesizer must accurately learn and replicate
these numerical distributions, ensuring that the synthetic data mirrors the real-world data in
terms of central tendencies, variability, and distribution shape. Furthermore, we can also de-
rive additional features from primitive columns and test their distribution similarities. This
includes calculating ratios, differences, and other mathematical transformations to extract
business insights. By assessing the distribution of these derived features, we can further
evaluate the synthesizer’s stability and robustness, ensuring that it captures intricate rela-
tionships and patterns within the data. For both primitive numerical features and derived
numerical features, we report Wasserstein distance [37] to measure distribution similarities,
where the small value indicates the synthetic dataset is closely attached to the real dataset.

Another important aspect is to check the distribution of categorical features. This in-
volves visualizing the frequency of each category, cross-tabulations, and bar plots to under-
stand the distribution of categorical data. A competent generative synthesizer must also
learn these categorical distributions accurately. It should preserve the proportions and re-
lationships among categories, ensuring that the synthetic data accurately represents the
categorical structures observed in the real dataset. To quantify the degree of similarity, we
compute the Jensen-Shannon distance [9] and expect a small value as an indicator of an
excellent synthesizer.

Similarity of Joint Distribution Besides capturing the distribution of a single at-
tribute, a synthesizer with high fidelity should also be able to identify multivariate combina-
tions and relationships among the set of attributes, assessing how pairs of features interact
and co-vary. We compute the Pearson correlation matrix for number-to-number interaction,
Theil’s U matrix for category-to-category interaction, and the correlation ratio matrix for
number-to-category interactions. To verify if the synthesizer understands feature interac-
tions and dependencies, we compute the L2 distance of flattened correlation arrays between
the training dataset and the synthetic dataset or the holdout dataset. This step is vital for
applications where the relationship between variables significantly impacts outcomes, such
as customer segmentation and market basket analysis in the retail industry. Ensuring that
these joint distributions are faithfully replicated in the synthetic data guarantees that the
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model maintains the integrity of multivariate relationships, providing a more comprehensive
and realistic representation of the underlying data structure.

3.3 Measuring Synthetic Data Utility

In evaluating the efficacy of generative models for retail synthetic data generation, a critical
consideration is the preservation of Machine Learning (ML) utility. This step entails formu-
lating a classification task f : X → Y using a predefined dataset, enabling a comprehensive
assessment of how well-synthesized data can replicate real-world data’s utility in predictive
modeling. The evaluation framework is meticulously designed to ensure a robust comparison
of model performance on both utility and generalizability.

To achieve this, we train machine learning models separately using the training dataset
T , holdout dataset H, and synthetic dataset S. This approach allows us to systematically
assess the performance of each model on the same evaluation set, referred to as evaluation
dataset E. The model trained with T , fT , provides a baseline for understanding performance
metrics under standard conditions. Conversely, the model trained with H, fH , offers insights
into the model’s behavior when exposed to unseen real-world data, thereby indicating its
generalizability. Furthermore, the model trained with S, fS, in this evaluative procedure
enables a direct comparison of how well the generative models could replicate actual data
characteristics and maintain predictive accuracy.

By testing fT , fH , fS on evaluation dataset E and computing metrics like accuracy, F1,
ROC, precision, and recall, we are able to systematically quantify and compare the utility of
data generated by various generative AI models. This empirical assessment framework not
only facilitates a granular understanding of each model’s performance but also highlights
the strengths and limitations of generative AI in capturing complex data patterns crucial for
prediction tasks in the retail sector.

3.4 Measuring Synthetic Data Privacy

Privacy is a paramount concern in the realm of synthetic tabular data generation, primar-
ily due to the sensitive nature of information often contained within retail datasets. The
generation of synthetic data aims to mitigate the risk of disclosing private or proprietary
information while still enabling valuable data-driven insights. To rigorously evaluate the
privacy-preserving capabilities of generative AI models, we compute the Distance to Closest
Record (DCR) , with L1 distance as the definition of distance between two records. Specif-
ically, we assess the DCR from the synthetic data S to the training data T , and from the
holdout data H to the training data T . The DCR quantifies the likelihood of synthetic data
points being too similar to actual data points, thereby posing a privacy threat. A high DCR
value indicates effective anonymization.

Additionally, we introduce a metric termed the Closest Cluster Ratio (CCR) further
to scrutinize the privacy and generalizability of synthetic data. The CCR measures the
proportion of synthetic data points that are closer to the training dataset compared to the
holdout dataset, ranging from [0, 1]. Ideally, the values of CCR should be as low as possible,
indicating that synthetic data points are not a close copy of the training dataset. A CCR
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close to 1 signals an overfitting generative model, highlighting the necessity for continuous
refinement in synthetic data generation techniques.

By combining DCR and CCR metrics, we can provide deep insights into how effectively
synthetic data can protect sensitive information, thereby fostering trust and reliability in
the deployment of generative AI solutions in real-world retail scenarios.

4 Evaluation Results

To demonstrate the proposed framework (Figure 1), we conducted an empirical assessment on
the open-source Complete Journey dataset [15] of retail transactions from frequent customers
in a retail grocery store (accessed from completejourney-py 1). The dataset documents the
purchasing patterns of more than two thousand households over a one-year period, who
frequently shop at the retailer.

We examined 5 generative models to produce the synthetic datasets: GAN-based tabular
generative models ((1) CTGAN[50], (2) AutoGAN) and Diffusion-based tabular generative
models ((3) TabDDPM[23], (4) StasyAutoDiff[41], (5) TabAutoDiff[41]). Specifically, we im-
plemented AutoGAN by preparing input features with AutoDiff [41] and training a GAN[18]
using Torch [3]. Unless otherwise specified, models are cloned from the cited repositories and
the training features are prepared according to encoding methods stated in the corresponding
paper.

4.1 Data Description and Analysis

Data Preprocess The raw transaction data includes approximately 1.47 million transac-
tions and a wide range of about 92,000 products. The dataset presents a detailed category
hierarchy that includes product department, product category, and product type. It also of-
fers comprehensive customer demographics, such as age, income, household size, and marital
status. Key transaction information, like item quantity, transaction sales amount, and dis-
counts, are documented, enabling the calculation of unit prices and discounts 1. We followed
the same pre-process procedure shown in RetailSynth [48] to remove seasonality effects, by
cleaning out unregistered customers, excluding transactions with non-positive transactions,
de-duplicating the product catalog, removing infrequent products, and aggregating weekly
transactions for each customer. This is a typical procedure for optimizing marketing spend,
customer lifetime value calculation, etc. To further increase the effective data points for each
customer, we clustered customers by their demographic information and ended up with a
weekly retail transaction with about 251,000 records from 6000 products and 400 customer
clusters.

Data Analysis To generate more customer- and product-level insights, we calculated de-
rived features from the processed dataset, such as product purchase probability, store visit
probability, basket size, etc. Figure 2 exhibits two numeric columns on the top row, showing
the skewed distributions of native feature, quantity, and derived feature, basket size, in the

1https://pypi.org/project/completejourney-py/
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real-world retail transaction dataset. The distribution of quantities purchased tends to be
positively skewed because most customers typically buy products in small quantities. Bulk
purchases are less frequent, leading to a long tail on the right side of the distribution. The
”Basket Size” subplot shows the probability distribution of the total number of items in a
customer’s basket. The distribution is right-skewed, indicating that while most transactions
have a lower total basket size, a few transactions involve significantly higher total purchases.
This is typical in retail, where a small number of premium customers can drive a substantial
portion of revenue.

Figure 2: Selected univariate distributions for dataset “Complete Journey” illustrate diverse
distributional patterns encountered in real-world datasets (see section 4.1).

Similarly, the bottom row details categorical distributions for ”Customer Age”, and
”Household Size”. Our dataset has a slight concentration of customers in the middle age
groups (e.g., 35-44 and 45-54), suggesting that middle-aged consumers form a large portion
of the customer base. However, younger (19-24, 25-34) age groups are also well-represented.
Household size describes the number of members per household. The distribution peaks at
household sizes of 2 and 3, indicating that most customers come from small to medium-sized
households.

We also looked into multivariate combinations to explore relationships among the pair of
columns. For example, Figure 3 demonstrates that as household size increases, the distribu-
tion of basket sizes progressively shifts to the right. In single-member households, purchases
predominantly consist of smaller basket sizes. As household size grows from two to three
and onward to five plus members, the distribution begins to show a higher density of larger
basket sizes. This shift to the right indicates that larger households tend to buy more in a
single transaction, reflecting their greater consumption needs.

Figure 4 shows a more comprehensive view on the Pearson correlation coefficient for
numerical-numerical feature relationships, Theil’s U statistic for assessing dependence be-
tween categorical-categorical features, and the correlation ratio for categorical-numerical
feature associations. For example, a high positive correlation between manufacturer id (C3)
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Figure 3: Marginal distribution of basket size by different household sizes. Customers with
more family members in the household tend to buy more products in one visit (see section
4.1).

Figure 4: Correlation of selected numeric and categorical distributions for dataset “Complete
Journey” illustrating contextual relationships observed in the real-world dataset (see Sec.
4.1).

and department (C4), see appendix A for a full list column mapping. Department, man-
ufacturer, product category, product type, and package size are strongly associated with
indicating a given product.

4.2 Synthetic Data Fidelity Assessment

Distributional similarity overview For the holdout dataset and synthetic datasets,
we computed the average Wasserstein distance for numerical columns, the average Jensen-
Shannon distance for categorical columns, and Euclidean distances of the Pearson correlation
matrix, Theil’s U matrix, and correlation ratio matrix against the training dataset. Table
2 presents a comprehensive evaluation of various generative AI models for retail synthetic
data generation, highlighting the diverse strengths and weaknesses of each model.

Among the models evaluated, TabAutoDiff and CTGAN emerge as standout performers.

11



Marginal Joint

Num Cat Num-Num Cat-Cat Num-Cat

Holdout 0.04 0.38 0.45 0.04 0.04

CTGAN 2.24 0.46 0.49 4.06 0.75
AutoGAN 1646.88 0.41 2.13 8.15 4.28
TabDDPM 5.36 0.38 0.85 3.79 1.22

StasyAutoDiff 7.55 0.38 1.18 3.89 1.59
TabAutoDiff 2.04 0.42 0.63 3.65 0.81

Table 2: Fidelity metrics of similarities on marginal distributions and joint distributions,
analyzed in 4.2. Different models have different strengths, with the best-performed model
being highlighted for each metric. CTGAN and TabAutoDiff show more balanced perfor-
mance from the fidelity aspect (see section 4.2).

TabAutoDiff demonstrates a consistently balanced performance across all metrics, excelling
in capturing numerical marginal distributions and category-to-category joint distributions.
This balanced prowess suggests TabAutoDiff’s ability to effectively replicate retail datasets’
complex, inherent patterns. CTGAN, on the other hand, excels particularly in learning
number-to-number and number-to-category interactions. Both TabDDPM and SatAutoDiff
models showed their strengths in learning categorical marginal distribution but failed to
prove their intelligence in other distributions. We would not recommend AutoGAN from the
fidelity perspective, because it did not stand out from any type of distribution examinations.
. GAN models can lead to poor representation of the relationships and correlations among
columns when the generator fails to capture the full diversity and complexity of the original
dataset because of Mode Collapse. This can happen especially when the category columns
present imbalanced distributions. However, CTGAN employs techniques like mode-specific
normalization to stabilize the learning process.

Marginal Distribution Visualization We brought back features from Figure 2 and pre-
sented learned distributions from various generative models in Figure 5, plotting not only the
feature distribution but also distributional differences between the real training data and the
synthetic data. When it came to numerical features, quantity and basket size, TabAutoDiff
and CTGAN were the only models that replicated the skewed distribution, though TabAu-
toDiff generated a small spike at the tail unexpectedly for the quantity distribution and
CTGAN learned much fatter tails for both distributions. The diff plot proved These models’
robustness again, where distributional difference histograms presented bars with height near
0. All models, except StasyAutoDiff and AutoGAN, were all capable to capture the right
shape of category distributions, especially when the number of unique values in one category
is low. However, if the dataset contains categorical columns with dramatic variation, we
should expect a more concerning model performance.

Correlation Matrix Visualization To build a more informative presentation, we specifi-
cally provided a more detailed presentation on CTGAN, which performed the best in replicat-
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Figure 5: Distribution of feature columns from the training dataset, holdout dataset, and
synthetic datasets, as well as the corresponding distribution difference to the one observed in
the training dataset. The figure contains a primitive numerical column (Quantity), a derived
numerical column (Basket Size), and primitive categorical columns (Age, Household Size),
see 4.2. Synthetic data generated by TabAutoDiff demonstrates feature distributions that
closely mirror the ones of the original training dataset.

ing joint distributions. Though the real dataset shows a weak correlation between features,
CTGAN exhibits remarkable strength in capturing both numerical interactions and mixed-
type interactions in Figure 6, highlighting its capability to generate coherent and realistic
relationships within the data. This makes CTGAN a top choice for applications where high
fidelity in interaction data is critical.
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Figure 6: Heatmap of correlation metrics for Num-Num and Num-Cat interactions in the
training, holdout, and CTGAN synthetic dataset. CTGAN model can replicate the feature
interaction observed in the training dataset (see section 4.2)

Though we recommended TabAutoDiff and CTGAN from the fidelity perspective, all gen-
erative models have metrics larger than the corresponding values from the holdout dataset.
This indicates that there are still hidden patterns in the training dataset that these models
are not fully replicating. Synthetic data generation for retail is inherently challenging due to
the high degree of heterogeneity and the dynamic nature of customer shopping preferences.
Due to the complexity and challenges in synthetic data generation, generative models still
have further headroom to capture the latent structure of retail datasets fully. The proposed
evaluation framework is pivotal in this regard, as it provides a standardized approach to
assess model stability and performance. By enabling a consistent comparison across differ-
ent models and metrics, this framework aids in understanding the nuances of each model’s
strengths and areas for improvement.

4.3 Synthetic Data Utility Assessment

Classification Task To evaluate the model utility, we formulate two tasks. One is a clas-
sification task to identify premium customers who buy more products in one visit, predicting
whether a customer will purchase more than 10 products based on their demographics and
average unit price. We trained all classifiers supported by scikit-learn [31] and reported ac-
curacy, F1, ROC, precision and recall of the model produces the highest accuracy, Bagging
Classifier [8], in Table 3. Among the synthetic data models evaluated, TabAutoDiff emerges
as the best-performing model for the classification task, indicating TabAutoDiff’s superior
performance in generating useful synthetic data that can effectively train classification mod-
els. When comparing the utility metrics of the synthetic data generated by TabAutoDiff to
those of the train and holdout datasets, it is evident that the model trained with synthetic
data achieved similar performance on all metrics, which indicates the capability of synthetic
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data to generalize well to real data scenarios and serve as an effective proxy for real data. In
this way, retailers can test marketing algorithms using synthetic data, eliminating the costs
and risks of live A/B testing on real customers.

Classification

Accuracy F1 ROC Precision Recall

Train 0.65 0.62 0.67 0.52 0.76
Holdout 0.66 0.62 0.68 0.52 0.77

CTGAN 0.68 0.40 0.60 0.63 0.29
AutoGAN 0.38 0.53 0.50 0.37 0.96
TabDDPM 0.63 0.11 0.51 0.52 0.06

StasyAutoDiff 0.62 0.16 0.51 0.45 0.10
TabAutoDiff 0.68 0.52 0.64 0.59 0.47

Table 3: Utility metrics on a classification task. TabAutoDiff model achieves the best
performance from the utility aspect as it scores high on accuracy, F1, ROC, and precision.
See detailed description in Sec.4.3

Product Association Analysis The other task is to analyze product association in the
training, holdout and synthetic datasets. We performed market basket analysis at the prod-
uct level to see if there is a significant affinity for products to be purchased together using the
Apriori algorithm [34], a popular method used in data mining for extracting such association
rules. Table 4 presents the Lift metric, a measure of the likelihood that product B is bought
when product A is bought, and the Conviction metric, which compares the probability that
A appears without B if they were independent vs the actual frequency of A’s appearance
without B.

Confidence(A → B) = P (A ∩B)
/
P (A) (1)

Lift(A → B) = Confidence(A → B)
/
P (B) (2)

Conviction(A → B) = (1− P (B))/(1− Confidence(A → B)) (3)

where P (A ∩ B) is probability both products being purchased, andP (A), P (B) is the
individual probability of purchasing product A or B accordingly.

If Lift and Conviction much larger than 1, it means that product B is likely to be bought
if product A is bought. In Table 4, both values for the synthetic datasets generated by
AutoGAN and TabAutoDiff are significantly different from those of the Train and Hold-
out datasets. AutoGAN shows an exceptionally high lift and conviction values, indicating
an overestimation of product pair occurrences, whereas TabAutoDiff’s lift, although lower,
still does not align closely with the real datasets. The synthetic data generated by CT-
GAN, TabDDPM, and StasyAutoDiff did not observe any frequently purchased product
pairs, indicating a fundamental gap in learning the essential co-occurrence relationships of
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products. This metric is invaluable for retailers as it helps identify product bundles, opti-
mize placement strategies, and enhance cross-selling opportunities, thus leveraging consumer
purchasing patterns to drive sales and customer satisfaction. By incorporating lift values,
retailers can make data-driven decisions to refine their marketing and inventory strategies
effectively. The evident difficulties reveal that existing generative models struggle in this
aspect, which highlights the need for further refinement in replicating complex pairwise and
higher-order relationships between products.

Train Holdout AutoGAN TabAutoDiff

Confidence 0.18 0.18 0.99 0.26
Lift 1.73 1.72 20.89 4.83

Conviction 1.10 1.09 inf 1.30

Table 4: Product association analysis for the listed synthetic data. Neither of the reported
models can identify a similar product association rule observed in the training dataset. See
analysis for each metric in Sec.4.3

4.4 Synthetic Data Privacy Assessment

Among the models we evaluated, TabAutoDiff showed a balanced performance in data pri-
vacy protection and model generalization. Table 5 presents privacy metrics for synthetic
datasets generated by various models, focusing on the Distance to Closest Record (DCR)
and the Closest Record Ratio (CCR). These metrics are crucial for assessing the privacy
preservation capabilities of synthetic data, as they indicate how closely synthetic records
resemble real training data points and the distribution balance, respectively.

Analyzing the DCR metric, the holdout set has the lowest DCR value, representing the
benchmark distance within the real dataset. A larger DCR is preferred as it signifies that
synthetic data points are not too close to any specific real training data points, thereby en-
hancing privacy. Among the models evaluated, TabAutoDiff demonstrates one of the higher
DCR values. This indicates that its synthetic data maintains a significant privacy distance
from the real data compared to other models, and stays at a lower risk of privacy leaking com-
pared to the holdout dataset. TabAutoDiff also achieves the lowest CCR value, suggesting
that the model did not overfit with the training data, thus providing good generalizability.
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DCR CCR

Holdout 1.0 -

CTGAN 4.24 0.48
AutoGAN 8.82 0.51
TabDDPM 4.52 0.72

StasyAutoDiff 4.02 0.54
TabAutoDiff 10.86 0.45

Table 5: Privacy metrics of all tested models. TabAutoDiff stands out from the privacy
aspect as it obtains the best performance in DCR and CCR. See detailed description in
Sec.4.4

The retail industry is particularly cautious with customer data due to the sensitivity
and privacy issues associated with handling such information. Strict regulations and the
potential for reputational damage necessitate robust privacy preservation measures. The
mixed performance of different models in terms of DCR and CCR highlights the need for a
nuanced choice in synthetic data generation. While DCR is critical for ensuring individual
data points are not too closely replicated, CCR helps ensure data generalizability, crucial
for practical use in retail analytics. Thus, TabAutodiff is the best among evaluated models
from the privacy perspective.

5 Discussions

Our comprehensive evaluation framework revealed distinct performances across various gen-
erative AI models in terms of fidelity, utility, and privacy for synthetic retail data. For
fidelity, TabAutoDiff and CTGAN stood out, with TabAutoDiff demonstrating balanced
performance across all metrics and CTGAN excelling in capturing joint distribution met-
rics, though all models showed room for improvement. In utility assessment, TabAutoDiff
emerged as the top performer, effectively replicating the utility of real data in the classifi-
cation task. However, none of the tested models demonstrate even a minimally acceptable
performance in the product association analysis, indicating that further refinement of the
model structure is necessary to achieve satisfactory results. For privacy, Distance to Closest
Record (DCR) and Closest Cluster Ratio (CCR) metrics highlighted the models’ ability to
anonymize data effectively and balance generalization and identified TabAutoDiff again as
the best one among the tested models. The proposed evaluation framework successfully high-
lighted the strengths and areas for improvement of each model, promoting the development
of more effective and reliable synthetic data generation techniques for the retail sector.

Overall, our evaluation framework offers a standardized approach to assessing synthetic
data generation models, facilitating consistent and transparent benchmarking. This can
drive further research and development in the field, encouraging the creation of more so-
phisticated models capable of better capturing the complexities of retail data. To improve
the evaluation framework, future research could focus on developing domain-specific metrics
that capture the unique characteristics and complexities of various retail datasets, such as
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transactional data, inventory data, etc. Expanding the diversity and size of the datasets
used for evaluation, possibly through collaboration with industry partners or data-sharing
initiatives, would enhance the robustness and generalizability of the evaluation framework’s
findings.

Anticipated advancements in synthetic data generation and evaluation include the de-
velopment of more sophisticated generative models or LLM models capable of capturing
higher-order dependencies and dynamic patterns presented in retail data. As these models
evolve, they will not only improve in faithfully replicating the complexities of consumer be-
haviors but also in their ability to fill gaps where real-world data might be sparse or biased.
Once the model reaches a mature level of learning all the patterns that retailers care about,
we can confidently say that the generative model mirrors real customer purchase behavior.
This validation would open up a multitude of applications, allowing the model to be used for
inference such as demand forecasting and dynamic pricing. Furthermore, the robust nature
of such advanced models could be leveraged within simulation environments to develop simu-
lated A/B testing and test variations of a product or service in a controlled and cost-effective
manner. A simulation environment with reliable generative models can also bridge the gap
of reinforcement learning (RL) agents deployment aimed at personalized coupon-targeting
strategies and optimizing customer engagement [49, 21]. By aligning synthetic data genera-
tion advancements with these application areas, businesses can not only gain deeper insights
but also implement more dynamic and responsive retail strategies
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A Column name mapping

The complete journey data has relative long names for each column. For a succinct presenta-
tion of the correlation heatmap in figure 4, we created a column mapping to label numerical
columns and categorical columns.

Raw name Type Label

product id categorical C1
household id categorical C2
week categorical C3
manufacturer id categorical C4
department categorical C5
brand categorical C6
product category categorical C7
product type categorical C8
package size categorical C9
age categorical C10
homeownership categorical C11
marital status categorical C12
household size categorical C13
household comp categorical C14
kids count categorical C15

quantity numerical N1
sales value numerical N2
retail disc numerical N3
coupon disc numerical N4
coupon match disc numerical N5
unit price numerical N6

Table 6: Column name mapping to the shortened label.
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