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Abstract

The promise of tabular generative models is to produce realistic synthetic data
that can be shared and safely used without dangerous leakage of information from the
training set. In evaluating these models, a variety of methods have been proposed
to measure the tendency to copy data from the training dataset when generating a
sample. However, these methods suffer from either not considering data-copying from
a privacy threat perspective, not being motivated by recent results in the data-copying
literature or being difficult to make compatible with the high dimensional, mixed type
nature of tabular data. This paper proposes a new similarity metric and Membership
Inference Attack called Data Plagiarism Index (DPI) for tabular data. We show that
DPI evaluates a new intuitive definition of data-copying and characterizes the corre-
sponding privacy risk. We show that the data-copying identified by DPI poses both
privacy and fairness threats to common, high performing architectures; underscoring
the necessity for more sophisticated generative modeling techniques to mitigate this
issue.
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1 Introduction

Data-copying is a particularly concerning manifestation of generative models overfitting [28,
6]. Historically, researchers have observed that deep learning models exhibit overfitting
behaviors, sometimes generating unrealistic instances and at other times creating instances
overly similar to samples in the training dataset. While the former can be lauded as ”creative
and imaginative,” the latter poses a significant risk, threatening the confidentiality of training
data. Indeed, previous studies [3] reveal that many prominent generative models attain
high scores in terms of fidelity and diversity by memorizing or copying real samples, which
compromises their effectiveness for privacy-sensitive applications. The issue of data-copying
is paramount in the field of tabular generative models, especially as these models are often
used in scenarios involving sensitive data and strict privacy protocols [47]. This paper
focuses on the challenge of detecting and evaluating data-copying in tabular data generation,
highlighting its critical role in enhancing the trust and accountability of these methods.

Various paradigms have been proposed to study data-copying in generative models, in-
cluding hypothesis testing [28], non-parametric statistics [6], Membership Inference Attacks
[41], and ad-hoc similarity metrics [34, 3, 38]. Each of these approaches contributes unique
insights into the phenomenon of data-copying in tabular generative models but have some
sort of drawback. For instance, while similarity metrics used in tabular synthetic data liter-
ature offer an understanding of the geometric relationship between training and generated
data, they lack a threat model to assess the privacy risks associated with these geometries
(see [15]). Conversely, Membership Inference Attacks provide valuable tools for understand-
ing privacy risks but are often disconnected from the model overfitting literature and are
challenging to apply to the complex, high-dimensional and mixed-type distributions that are
common in tabular data applications. The disjoint nature of the data-copying literature fails
to address common practitioner questions, such as:

"To what extent does a model copy training data, and how practically significant is this
problem?’

Unfortunately, we show that the problem is substantial, as evidenced by Figure 1.

In this paper, we study data-copying in tabular generative model from the perspective
of all three of these disconnected areas (Membership Inference Attacks, ad-hoc similarity
metrics and Data-Copying measures). The goal is to craft a principled, interpretable, and
privacy orientated metric that can be applied to tabular generative modelling. Here, we
propose Data Plagiarism Index (DPI); a theory-motivated measure of local data-copying
(Section 4.1). We argue that DPI differs from other competing metrics and show how it
provides a novel geometric perspective on the data-copying behavior of generative models.
With the proposed privacy metric DPI, we further develop a new type of Membership In-
ference Attack, named DPI MIA (Section 4.2), that bridges this data-copying measure with
testable privacy risk. Our experiment (Section 5) find that DPI MIA identifies a tendency
among high-fidelity tabular data generators to perform risky data-copying, raising privacy
concerns.
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Figure 1: A t-SNE plot of Tab-DDPM’s training data with corresponding top 1% DPI
Scores in red on the Adult dataset. DPI identifies an outlier region in the bottom right
corresponding to an extreme privileged class (married, white, middle aged, high capital
gains, private industry, respondents making >50k in income). This provides evidence that
Tab-DDPM copies the training data of outlier and privileged classes, creating serious fairness
concerns for practitioners who use synthetic data in their downstream machine learning tasks.
See Sec. 5.3 for detailed discussions.

Furthermore, our empirical evidence (Figure 1) reveals that tabular generative models
disproportionately favor certain privileged sub-populations within the synthetic
sample of the classic Adult dataset, raising serious fairness concerns when practitioners use
synthetic data in downstream machine learning tasks. This troubling finding underscores
that the proposed Data Plagiarism Index (DPI) is not merely a technical curiosity but
a critical issue that can compromise both the privacy and fairness of tabular generative
models.

Overall, we summarize our contribution to the Trustworthy Generative Modeling litera-
ture as follows:



1. We propose a novel privacy measure called Data Plagiarism Index (DPI) and a cor-
responding Membership Inference Attack called DPI MIA that measures the privacy risk
of synthetic tabular data from data-copying.

2. We provide empirical evidence (Figure 4) that DPI identifies a positive correlation between
tabular generative models’ utility and privacy risks.

3. We provide empirical evidence (Figure 1) that reveals that Tab-DDPM [23] drastically
copies the source training data of privileged sub-classes, creating a source of structural
unfairness in the synthetic data.

4. We show (Figure 4, Table 1) that DPI MIA can identify a different kind of data-copying
undetectable by existing Membership Inference Attacks with comparable threat perfor-
mance, providing a new way to deploy privacy attacks to audit synthetic data privacy.

2 Related Work

In this section, we review three major literature to measure the overfitting and data-copying
phenomenon of tabular generative models.

2.1 Measure Data-Copying in Generative Models

Generative models’ data-copying in the literature is identified when synthetic data is exces-
sively similar to training samples [28]. This is typically evaluated using a reference dataset,
sampled from the same distribution as the training dataset. The common method involves
an "appropriate distance function” to check whether synthetic data is closer to the training
data or the reference data [34]. [28] for example focuses on identifying a suitable distance
function to determine whether a synthetic dataset or a reference dataset is closer to the
training dataset, thus testing if generative models exhibit data-copying. They devised a non-
parametric method that divides the instance space into cells, tests each cell individually, and
combines the results to understand the overall degree of data-copying. This concept inspired
our more sophisticated data-copying measure (See Section 3.1). [6] introduces a more ad-
vanced data-copying test, capable of detecting data-copying behaviors not identified by [28].
Both of these studies however have limitations in high-dimensional complex distributions
and also do not evaluate data-copying from a privacy perspective. DPI is more practical and
accurately captures the degree of local data-copying, aiding in the assessment of synthetic
data privacy risks (See Fig 1).

2.2 Similarity Metrics between Real and Synthetic Data

A variety of ad-hoc metrics have been proposed to evaluate the privacy of tabular synthetic
data from a model overfitting perspective. Broadly speaking, these metrics focus on de-
termining the level of similarity between the training and synthetic datasets ideally hoping
to find that the generated data is in a 'Goldilocks’ zone: not too similar to the training



data, but also not too dissimilar. These metrics will often be posed as a comparison be-
tween the training and a reference set and training and synthetic sets creating a sort of "Null
Distribution’ in which to test privacy.

A common example of an often used similarity metric is Distance to Closest Record
(DCR) [31, 27, 46, 51, 16, 25] where for each training point the distance to its closest
neighbor in the synthetic dataset is compared with the distance of the closest neighbor in
the reference dataset. Another is Identical Matching Score [1, 2, 27] which compares the
proportion of identical records in the training and synthetic observations.

There are a variety of problems with this style of privacy evaluation. The first is that
these similarity metrics do not actually guarantee nor are they evaluated by any idea of
privacy protections against some sort of attack. For example, passing or failing a DCR or
IMS test does not provide any information for how well a privacy attack may or may not
do. Secondly, posing privacy as a hypothesis testing problem is a cardinal Statistics sin in
that if the null hypothesis is: "the synthetic data are private” and the alternative is: ”the
synthetic data are not private”, passing the test does not imply confirmation of the null,
only that there is a failure to find sufficient evidence in which to reject the null [7]. However,
while not being theoretically motivated, these metrics do provide an intuitive tool to study
the geometric relationships between the training and synthetic datasets. Technically, DPI
can be classified as a similarity metric and used in this way but these problems motivate
DPI to adopt a Membership Inference Attack paradigm to overcome these dubious privacy
interpretations.

2.3 Membership Inference Attacks for Generative Models

Membership Inference Attacks have traditionally been studied in a supervised learning con-
text and only relatively recently have become applied to generative models. Here, the goal
of the attack is to determine whether some sample of test data z* € X* was used in the
training of the model based on some information about that model [37]. The scenario of
what information is available for an attacker is called the threat model to which there are
a variety of identified contexts for generative model MIAs. These include black box attacks
[17, 18, 8] in which only generated synthetic data is available, white box attacks in which
both synthetic data and the internals of a model are known, and calibrated (also called
shadow) attacks in which both a synthetic dataset and then a reference dataset from the
same or similar distribution as the training set are given [8, 17, 41]. Most attacks generally
fall into the black box and calibrated paradigms as white box attacks are usually specific to
the model architecture in question [36]. The value of MIAs is that they provide a tangible,
practical scenario in which to study privacy risks. We will later frame DPI as an MIA in
order to study how identifying local data-copying corresponds to privacy leakage.



3 Preliminaries

3.1 Formal definition of Data-Copying

We first introduce a formal definition of data-copying motivated by [28] to provide theoretical
context for Data Plagiarism Index. Given a data distribution P and a region C, consider the
following probability measure: P|c(A) = P(A N C)/P(C) for all measurable set A. Let R
denote the distribution of reference data points and S denote the distribution of synthetic
data points.

Given a neighborhood D(x) of target data point x, define a one-dimensional distribution
by L(R) = I(R € D(z)) and L(S) = I(S € D(z)) to denote separately the event of the
reference data distribution and synthetic data distribution belonging to the neighborhood
D(x). By definition, L(R) ~ R|p(z) and L(S) ~ S|p()

Define A(R,S) = P(B > A|B ~ L(S), A ~ L(P) to be the event that the synthetic data
points have a greater probability in belonging to neighborhood D(z) than the reference data
points.

In the spirit of Definition 2.1 of [28], we define a generative model as data-copying a
training data point x, if there exists a neighborhood D(z) of x such that the synthetic data
distribution S is systematically closer to the training data point = than the reference data
distribution R, in the sense that

A(R|p): Slp)) <

| —

See Figure 2(a) as an example.

3.2 Distance to Closest Records (DCR)

The Distance to Closest Records (DCR) technique was developed to identify identical matches
between synthetic and training data [31, 27]. However, it is essential to note that detecting
identical matches and identifying data-copying are distinct tasks. While distance measures
are appropriate for finding identical matches, they are not as effective for detecting data-
copying, which is more appropriately viewed as a proportional measure. As discussed in
Section 3.2 of [34], a DCR of zero signifies an identical match, but a non-zero DCR does not
capture the extent of personal information disclosure. This inherent flaw renders DCR an
unsuitable measure of synthetic data privacy, as it does not accurately assess privacy risk.
Our proposed Data Plagiarism Index (DPI) provides a more effective metric for synthetic
data privacy by quantifying privacy risk. We utilize DPI to construct a Membership Attack,
whose results reveal the privacy risks of synthetic data. See Section 4.2.

3.3 Membership Inference Attacks as Privacy Auditors

Membership Inference Attacks (MIA) for synthetic data aim to determine if a given sample
was a member of the original training set used to train a generative model. Consider a random
variable X defined on the domain X, following a probability distribution px(X). Let Dyqin
represent a training dataset consisting of independently sampled observations from py(X).



(a) Serious Data Plagiarism (b) Generator Under-fitting (c) Data-Copying Free

Target Data Point

. °
Synthetic Data Point ) °
Reference Data Point
p=4 p=0.25

Figure 2: Data Plagiarism Index (DPI): We propose a novel privacy metric named Data
Plagiarism Index (DPI). For each target data point (black point), we calculate the Data
Plagiarism Index p by first construct a k-nearest neighborhood (blue circle) around the
target data point on the space with reference data points (green points) and synthetic data
points (red points). The Data Plagiarism Index p is defined simply as the ratio of number of
synthetic data points to the number of reference data points. See Sec. 4.1 for whole details.

A generative model G is then trained on Dy,4;, and used to produce a synthetic dataset Dyy,.
An attacker model, A : X — 0,1, has access to the synthetic dataset D, a test data point
x* drawn from the same distribution as X, and depending on the threat model, potentially
other information. The attacker’s objective is to determine whether the test point z* belongs
to the original training set Dy.q;n. An ideal attacker would output A(z*) = 1 if 2* € Dyygin,
and 0 otherwise. By considering privacy in this framework, MIAs allow for the practical
evaluation of the risk of synthetic data release, relative to an adversarial scenario [37].

In this paper, we study a special case of Membership Inference Attacks in which the
attacker has access to an additional reference dataset D,.; sampled from same distribution
as Dyqin but not used in the training of G. There are a variety of both practical and
theoretical reasons for the inclusion of D,.; in the attack. First, D,.; represents a worse-
case scenario in which the attacker has access to the most information possible in which to
build an attack which makes this situation important to study from a conservative, privacy
conscious data publisher’s perspective. Second, it is a real scenario that particularly tabular-
orientated data publishers face in that D,.; can be a leaked dataset, historic data, data from
a competitor, or even a dataset built from publicly available data. Lastly, the inclusion of
D,y is theoretically motivated from the growing body of literature involved with testing for
data-copying in a generative model in that in order most frameworks contextualize model
miss-specification between Dy,q;, and Dy, as being relative to a holdout dataset [28, 6, 34].



4 Measuring Data-Copying Misbehavior

4.1 Data Plagiarism Index (DPI)

We propose a novel privacy metric called Data Plagiarism Index (DPI), as illustrated in
Figure 2. For each training data point x, we calculate the Data Plagiarism Index p by first
constructing a K-Nearest Neighborhood D(z) around x on the space with reference data
points and synthetic data points. The Data Plagiarism Index p is defined simply as the ratio
of number of synthetic data points to the number of reference data points; that is

7) = ineD(x) [(mi < S)
o) = ST 1)

The DPI ranges from 0 to infinity, capturing a spectrum of data generation scenarios:

e DPI = 0: Indicates no synthetic data points in the neighborhood, suggesting potential
under-fitting by the generative model.

e DPI = 1: Represents an equal number of synthetic and reference data points, implying
no data plagiarism or under-fitting, signifying a balanced data generation process.

e DPI > 1: Highlights a greater presence of synthetic data points compared to reference
data points, with increasing values pointing towards significant data plagiarism.

This comprehensive range allows the DPI to effectively capture various data generation
scenarios, providing critical insights into the quality and privacy of synthetic datasets.

We provide 3 toy examples to help better understand how to interpret DPI values. In
each example, consider the K = 10 nearest neighborhood for the target data point x, denoted
by D(x) = {z1,--+ ,x,}. Each element z; in the neighborhood may come from the synthetic
dataset S or reference dataset R:

Toy Example 1 (Data Plagiarism, Figure 2.(a)). Say 8 elements come from the
synthetic dataset and 2 elements come from the reference dataset. Then the Data Plagiarism
Index p(z) = 8/2 = 4, which means the number of synthetic data points is 4 times that of
the reference data points! This marks serious data-copying behavior from that generative
model.

Toy Example 2 (Generator Under-fitting, Figure 2.(b)). In this situation, say 2
elements come from the synthetic dataset and 8 elements from the reference dataset. Then
the Data Plagiarism Index p(x) = 2/8 = 1/4, which means the number of synthetic data
points is 25% of that of the reference data points! This marks little data-copying behavior,
but also suggests a potential underfitting issue around the target data point x.

Toy Example 3 (Data-Copying Free, Figure 2.(c)). Lastly, say there are 5 items
from the synthetic dataset and 5 from the reference dataset. The Data Plagiarism Index is
then p(z) = 5/5 = 1, meaining the number of synthetic data points is equal to the number of
reference data points! This marks no data plagiarism and no underfitting behavior around
the target data point z.

In summary, the Data Plagiarism Index offers a robust and intuitive metric for evaluating
the balance between synthetic and reference data points within a specified neighborhood
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Figure 3: Data Plagiarism Index Membership Inference Attack (DPI MIA) See Sec. 4.2 for
full details.

around a target data point. By calculating the ratio of synthetic to reference data points, the
DPI effectively highlights critical instances of data plagiarism, under-fitting, or a balanced
data generation process. This metric is invaluable for rigorously assessing the performance
of generative models, ensuring data integrity, and proactively identifying potential issues in
synthetic data generation.

4.2 Data Plagiarism Membership Inference Attack

While the Data Plagiarism Index defined at Equation (1) provides insight into the local
behavior of generative models, on its own it does not characterize the actual privacy risk of
data-copying in tabular generative models. We therefore show that a Membership Inference
Attack can be derived from DPI which is designed to measure and then attack the local
data-copying of generative models to evaluate the privacy risk.

Note that, in the literature of similarity metrics (Sec. 2.2), only the training dataset Dyyqin
is compared to the synthetic Dy, and reference D,.s sets. In the MIA paradigm however
(Sec. 2.3), a fourth holdout dataset Djog0u: is taken and combined with the training dataset
post generator training: X = Dyyqin U Dpogour- The goal of an attacker A(x) is to effectively
discriminate which set each record x € X originated from.

The Membership Inference Attack based on the Data Plagiarism Index can divided into
three steps (See Figure 3):

Step 1: Prepare 4 Datasets. In the initial step, four distinct datasets are prepared to
facilitate an attack construction. The foundation begins with the original dataset (denoted
in black), which is divided into 3 equal sized sub-sets: the Training Dataset (blue), the
Holdout Dataset (Yellow) and the Reference Dataset (green). The Training Dataset is used
to train the generative model, which subsequently generates the Synthetic Dataset (red). In
parallel, the Holdout Dataset serves as an independent test set, deliberately excluded from
the training phase.

Step 2: Compute DPI Values. The second step involves the computation of the Data
Plagiarism Index (DPI) values defined at (1) for each data point within both the Holdout
and Training datasets. This identifies data-copying in the local neighborhoods of test points
from both datasets. The intuition here is that scores for test points from the Training set



should theoretically be higher than the Holdout set if a model is vulnerable to copying data.

Step 3: Perform MIA for Each Test Point In Step 3, a Membership Inference Attack
(MIA) is executed to evaluate the privacy risk associated with a specific target data point.
This uses the DPI score of the target data point, which is compared against a predefined
threshold c¢. The attack can be written as:

A() =1(p(-) > o), (2)

where A denotes the attack function, p(-) signifies the DPI value, and I is an indicator
function assessing if the DPI surpasses the threshold c. Should the DPI value of the target
data point exceed ¢, it indicates that the data point is likely to have been part of the training
data, thereby exposing a potential privacy breach. In practice, MIAs are often benchmarked
using AUCROC and so the choice of ¢ is largely irrelevant. Our implementation chooses ¢
as the median of p(z) for x for all test data.

The proposed DPI MIA defined at Equation (2), though straightforward, is a fast and
easily interpretable attack, well-suited for auditing privacy in high-dimensional, mixed-type
datasets. Indeed, as it only uses a K-Nearest Neighbor Search, it can be ran with linear or
logarithmic time complexity (see [14], [21]). Moreover, DPI MIA is compatible with various
definitions of distance, making it versatile to many specific applications.

5 Results

5.1 Experiment Setup

We are interested in studying how DPI compares with other Membership Inference Attacks,
to what extent different tabular data generator architectures copy data, and if there are
trends in the kind of data copied. To investigate these research questions, we benchmark
a variety of model architectures and MIAs on the Adult Census dataset [5]. We provide
descriptions of each model and MIA in appendix B and C respectively. In each experiment,
Adult is randomly split into 3 equal sized training, holdout and reference sets where the
generated synthetic size is also equal to these set. We replicate each experiment 5 times
and visualize or report the means and standard deviations of the measures of interest where
applicable.

For DPI, K has to be chosen as a hyperparameter and for data visualization purposes we
plot the best performing DPI attack (Using L2 distance and K=20). We refer to appendix
?? for an ablation study of Section 5.4 containing plots with various distance metrics and K
levels but in practice, DPI is fairly stable in its results regardless of K and we observed no
extreme changes in behavior based on these hyperparameters.

5.2 Data-Copying in Tabular Data Generators

We first wish to confirm that there is a privacy risk to data copying in common tabular
generators. Here, we benchmark a wide range of tabular generator strategies including:
CTGAN and TVAE [45], Normalizing Flows (NFlow) [12], Bayesian Network (BN) [4], Ad-
versarial Random Forests (ARF) [44], Tab-DDPM [23], PATEGAN [49], and Ads-GAN [48].

10
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Figure 4: Classifier AUCROC, Maximum Mean Discrepancy, and Wasserstein Distance plot-
ted with corresponding DPT MIA AUCROC for various common architectures. Interestingly,
Bayesian Network, Adversarial Random Forest, and Tab-DDPM outperform other models
in these performance metrics but have higher privacy risk. See Sec. 5.2 for full details.

We evaluate these models on several metrics of synthetic data quality: the Maximum Mean
Discrepancy between the training and generated data (lower is better), the Wasserstein dis-
tance between the marginals of the training and generated data (lower is better), and finally
the AUCROC of an XGBoost [9] classifier trained on the synthetic set and tasked to predict
on a holdout set (higher is better). We deploy the DPI MIA attack as described in Section
4.2 and report its AUCROC.

We visualize the mean values of utility metrics plotted against the AUCROC of DPI
MIA in Figure 4. Very interestingly, we observe that there is a clear trend between model
performance and privacy risk. This suggests that data-copying could be a reason for why
these models perform better, but additional research would need to be conducted to see if
this is a causal or correlative relationship.

5.3 Properties of Training Data with High DPI Scores

We also investigated the training data egregiously copied according to DPI. Here, we iden-
tified the top 1% highest scored training data based on synthetic data generated by Tab-
DDPM [23] as it is widely used as a benchmark in the current tabular generation literature
(39, 22, 50]. We visualize these data in Figure 1 as a t-SNE plot [42] with the top 1%
highly scored indexes by DPI in red. Worryingly, DPI identifies an outlier region of the
distribution as being subject to this extreme top percentile data-copying (the bottom right
of the plot). When analyzing these observation themselves, we found that an extreme ma-
jority were all examples of married, white, middle aged, high capital gains, private industry,
respondents making ;50k in income. In the algorithmic fairness literature that often uses
Adult in benchmarking, this is considered to be a minority but very privileged class [30].
This suggests that not only is there a technical and privacy concern with data-copying, but
it could also exacerbate unfairness.

11
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Figure 5: MIA AUCROC Benchmarks by Training Set Size on Tab-DDPM. This shows that
DPI MIA is more effective than other existing MIAs described at Sec. 2.3. See Sec. 5.4 for
full details.
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Figure 6: Distance Based Metrics/ MIAs of Overfitting vs DPI. DCR and GAN Leaks Cali-
brated evaluate overfitting based on a difference in relative distances whereas DPI evaluates
data-copying based on the larger local neighborhood. This means that DPI evaluates data-
copying differently than competing methods, explaining why predictions scores are not highly
correlated (See Table 1). See Sec. 6.2 for full details.
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Table 1: AUCROC for DPI and GAN Leaks Calibrated with Corresponding Pearson Corre-
lations for the Predicted Scores. This tables shows that the proposed DPI identifies different
types of data-copying than the one identified by the existing MIA attack. See Sec. 5.4 for

whole details.

Model ‘ Metric
‘ DPI MIA GAN Leaks CAL r

Tab-DPDM | 0.510£0.004 0.50740.003 0.404+0.012
BN 0.53240.005 0.62340.000 0.268+0.020
ARF 0.52040.000 0.524+0.001 0.33940.006
AdsGAN 0.503£0.003 0.501£0.003 0.46740.039
CTGAN 0.50440.003 0.501£0.005 0.44440.063
NFlow 0.501+0.006 0.500£0.000 0.482+0.023
PATEGAN | 0.503+0.003 0.50240.003 0.516+0.018
TVAE 0.50540.005 0.50240.003 0.466+0.023

5.4 Benchmarking the Privacy Risk of DPI

Lastly, we evaluate DPI in relation to other MIAs in order to understand its efficacy as
an MIA strategy. We evaluate the black box attacks of MC [18], and GAN Leaks [8] as
well as the calibrated attacks of LOGAN [17], GAN Leaks Calibrated [8] and DPI. We also
benchmarked DOMIAS [41], but we found that its density estimation failed to converge and
its results were always the equivalent of random guess and therefore we do not formally
report it. Again, we evaluate these methods on Tab-DDPM [23]. In Figure 5, we display
the results for each of these methods across various Dyygin/ Dyer/ Dsyn sizes. For simplicity,
each dataset is equal in size to its other.

Overall, DPI is competitive with other Membership Inference Attacks compatible with
these data, dominating at most testing sizes. Interestingly, GAN Leaks Calibrated performs
similarly or better than DPI. However, GAN Leaks Calibrated scores test data very differ-
ently than DPI, being based on a difference in the relative distances of the closest synthetic
and reference points. In Table 1 we show that for various models, while the performance of
GAN Leaks Calibrated and DPI can differ, the Pearson Correlation between their scores is
relatively low. This implies that while these measures are correlated, DPI is picking up on its
specific data-copying definition. Indeed, the motivation of this work is not to create a State
of the Art Membership Inference Attack for all architectures, but rather to characterize the
unique risk DPI implies.

13



6 Discussions

6.1 Implications for Privacy and Fairness in Synthetic Data

Data Plagiarism Index provides evidence that popular tabular generative models can exhibit
risky data-copying behavior. This includes leaking information and favoring specific sub-
class outliers in the distribution of the training data. Thus, DPI can be used as a tool to
audit and study model behavior. It should be noted however, that while DPI can show
synthetic data are not private, it cannot prove the opposite: that particular synthetic data
are private. For example, different MIAs may have various levels of success if their method
targets different attributes of the synthetic data. This is proved by Table 1 where DPI and
GAN Leaks Calibrated predicted scores, while correlated, were not perfectly aligned.

On top of model auditing, DPI can be connected to Differential Privacy applications [13].
Here, DPI can be used to evaluate the practical lower bound of the privacy parameter e.
For example, one approach is to select a pair of neighboring training datasets D; and D,
and produce corresponding synthetic datasets D; and D, with a generative model. With
DPI, we can then create corresponding data copying score distributions to find a decision
rule that, given an unknown synthetic dataset D, identifies whether its source was D; or
D,. If the decision rule’s true positive rate is « and the false negative rate is 3, based on
the remark after Theorem 1 in [19], the privacy budget’s lower bound can be expressed as

_a B
-8’ I-a

that the generative model upholds.

e > log max{ This approach quantifies the minimum differential privacy level

6.2 Methodological Differences in DPI

DPI provides a new geometric definition for data-copying in the context of an available
reference set and uniquely attacks this attribute relative to other MIAs. In Figure 6, we show
a variety of scenarios in which hypothetical test data points are plotted with their closest
synthetic and reference set neighbors. We show that under the Distance to Closest Record
(DCR) metric and GAN Leaks Calibrated MIA [8] (which in many respects is the MIA version
of DCR) understanding of data-copying, certain scenarios would be classified differently
where they would label a positive instance of overfitting based on extreme differences in the
distances of the nearest synthetic and reference points whereas DPI labels it based off of
extreme differences in proportions. Thus, DPI evaluates data-copying in a fundamentally
different way than DCR/ GAN Leaks Calibrated and provides additional insight into how
the training and synthetic data are distributed.

6.3 Challenges in Tabular Data (Generation

A key challenge of generative modelling with tabular data is the unstructured, high dimen-
sional, mixed type nature of most datasets [45]. This poses a challenge for newer results on
model data-copying and Membership Inference attacks that focus on density estimation. [6]
for example proposes a scheme of comparing local densities of training data and synthetic
data but does not frame their work from an MIA perspective. Similarly, they provide a
proof that their method is not effective on non-smooth distributions that are characteristic
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in the tabular domain. DOMIAS [41] evaluates overfitting as an MIA by comparing a test
point to the probability densities of the synthetic and reference distributions. They propose
two options for estimating these densities in using a Gaussian Kernel Density Estimator and
a deep learning method called Block Neural Autoregressive Flow (BNAF) [11]. We found
however that these methods have difficulty converging with high dimensional, mixed type
datasets. Indeed, the highest dimensional tabular dataset that was benchmarked in DO-
MIAS was a private healthcare dataset that when one-hot-encoded was 35 columns. Adult
when similarly pre-processed is 109 columns. All of our experiments with DOMIAS failed
to converge, leaving its results as being the equivalent of random guess. Indeed the authors
note a limitation of the work is its reliance on BNAF in that it can take several hours to
train. This motivates this paper to consider a computationally easier paradigm of analyzing
local neighborhoods around test points.

7 Conclusion and Future Work

In this paper, we propose a novel measure of data-copying and connect it to the Membership
Inference Attack literature for tabular generative models. This allows the unique study of
how local data-copying contributes to risks in the trustworthiness of these generators. Models
that perform well in generating data with high measures of utility tend to copy training data
more than models of a lower quality and thus have higher privacy risk profiles. Similarly,
we have shown that Tab-DDPM, a highly cited and studied architecture egregiously copies
outlier training data of privileged sub-classes in a widely used fairness benchmarking dataset.
This indicates that data-copying can effect a variety of concepts, such as fairness, used to
evaluate the trustworthiness of generative models.

Data Plagiarism Index motivates a variety of directions for future work. The disparate
nature of the data-copying literature necessitates a broader theoretical framework in which to
connect data-copying to privacy. Similarly, this work has shown that data-copying can affect
different axis’ in which to evaluate the trustworthiness of models. It would be interesting
to further explore if it also effects other aspects of Trustworthy AI such as robustness,
interpretability, and reliability. Lastly, DPI can be applied to Differential Privacy Auditing
where it can be used to evaluate sharper privacy lower bounds.
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A Ablation study

DPI requires a practitioner to specify a distance metric and K number of nearest neighbors in
order to be deployed. This presents a hyperparameter tuning problem as to what measure of
distance should be used and how large the neighbors should be. We replicate the experiment
from Section 5.4 but this time with common distance metrics (L1 and L2) as well as a variety
of K sizes (5, 10, 20, 30). We plot the means and standard deviations of the corresponding
DPI MIA attacks in Figure 7. While the success of the attacks vary with lower sample
sizes, each attack follows a clear trend with each, eventually seeing smaller deviations at the
maximum sample sizes.
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Figure 7: Ablation Results for Various Distance Measures and K Size Choices.

B Model Descriptions

In all experiments, we use the implementations of these models from the Python package
Synthcity [35]. For benchmarking purposes we use the default hyperparameters for each
model. A brief description for each model is as follows:

CTGAN [45]: (Conditional Tabular Generative Adversarial Network) uses a GAN
framework with conditional generator and discriminator to capture multi-modal distribu-
tions. It uses mode normalization to better learn mixed-type distributions.

TVAE [45]: (Tabular Variational Auto-Encoder) is very similiar to CTGAN in its use of
mode normalizing techniques, but rather than using a GAN architecture, instead employees
A VAE.

20



Normalizing Flows (NFlow) [12]: Normalizing flows transform a simple base distri-
bution (e.g. Gaussian) into a more complex one matching the data by applying a sequence
of invertible, differentiable mappings.

Bayesian Network (BN) [4],; Bayesian Networks use a Directed Acyclic Graph to
represent the joint probability distribution over variables as a product of marginal and con-
ditional distributions. It then samples the empiric distributions estimated from the training
dataset.

Adversarial Random Forests (ARF) [44]: ARF's extend the random forest model by
adding an adversarial stage. Random forests generate synthetic samples which are scored
against the real data by a discriminator network. This score is used to re-train the forests
iteratively.

Tab-DDPM [23]: Tabular Denoising Diffusion Probabilistic Model adapts the DDPM
framework from image synthesis. It iteratively refines random noise into synthetic data by
learning the data distribution through gradients of a classifier on partially corrupted samples
with gaussian noise.

PATEGAN [49]: The PATEGAN model uses a neural encoder to map discrete tabular
data into a continuous latent representation which is sampled from during generation by the
GAN discriminator and generator pair.

Ads-GAN [47]: Ads-GAN uses a GAN architecture for tabular synthesis but also adds
an identifiability metric to increase its ability to not mimic training data.

C Membership Inference Attack Descriptions

A description of each of the Membership Inference Attacks referenced in the paper are as
follows:

LOGAN [17]: LOGAN proposes a variety of MIA strategies. A black box version of
their attack involves training a Generative Adversarial Network (GAN) on the synthetic
dataset and using the discriminator to score test data. A calibrated version improves upon
this by training a binary classifier to distinguish between the synthetic and reference dataset.
In this paper we only benchmark the calibrated version.

GAN Leaks/ GAN Leaks Calibrated [8]: GAN Leaks is a black box attack that
scores test data based on a sigmoid score of the distance to the nearest neighbor in the
synthetic dataset. GAN Leaks Calibrated improves on this with the inclusion of a reference
set in which this distance is subtracted from the distance to the closest record in the reference
set.

MC [18]: MC is based on counting the amount of observations in the synthetic dataset
that fall into the neighborhood of a test point (Monte Carlo Integration). However, they do
not consider a reference dataset and the choice of distance for what to consider a neighbor-
hood is a non-trivial hyperparameter to tune.

DOMIAS [41]: DOMIAS is a calibrated attack which scores test data by performing
density estimation on the synthetic and reference datasets to then calculate the probability
ratio of the test data being from the synthetic vs reference distributions.
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