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Figure 1: Given a one-shot demonstration of a dexterous grasp, we want to generalize to novel
scene variations with relevant semantics. To better model the complex semantic feature distributions
in hand-object interactions, we propose the neural attention field, which represents a semantic-
aware dense feature field by modeling inter-point relevance instead of individual point features. It
encourages the end-effector to focus on scene regions with higher task relevance instead of spatial
proximity, resulting in robust and semantic-aware transfer of dexterous grasps across scenes.

Abstract: One-shot transfer of dexterous grasps to novel scenes with object
and context variations has been a challenging problem. While distilled feature
fields from large vision models have enabled semantic correspondences across
3D scenes, their features are point-based and restricted to object surfaces, limit-
ing their capability of modeling complex semantic feature distributions for hand-
object interactions. In this work, we propose the neural attention field for rep-
resenting semantic-aware dense feature fields in the 3D space by modeling inter-
point relevance instead of individual point features. Core to it is a transformer
decoder that computes the cross-attention between any 3D query point with all the
scene points, and provides the query point feature with an attention-based aggrega-
tion. We further propose a self-supervised framework for training the transformer
decoder from only a few 3D pointclouds without hand demonstrations. Post-
training, the attention field can be applied to novel scenes for semantics-aware
dexterous grasping from one-shot demonstration. Experiments show that our
method provides better optimization landscapes by encouraging the end-effector
to focus on task-relevant scene regions, resulting in significant improvements in
success rates on real robots compared with the feature-field-based methods.

Keywords: Dexterous Grasping, One-Shot Manipulation, Distilled Feature Field,
Neural Implicit Field, Self-Supervised Learning

1 Introduction

Generalization has been a long-studied problem in robot learning from demonstrations, with one-
shot generalization being one of the most challenging settings. Great progress has been made with
recent advances in large vision models which provide visual features with cross-scene semantic
correspondences [1, 2]. Given a pre-trained vision model on 2D images, a common strategy is to
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distill its features into 3D and match the end-effector position in the target scene to the demonstration
by minimizing their feature differences [3, 4, 5, 6].

However, the distilled feature fields can only model point correspondences on the object surfaces.
While this is sufficient for simple manipulations with a parallel gripper whose interactions with
objects are primarily based on individual contact points, this is insufficient for more complex end-
effectors. For example, the hand-object interactions required for dexterous grasping are no longer
point-based or limited to the object surface, but instead spatially distributed or even possibly off the
object surface. Prior dexterous grasping method with feature fields [6] computes query features in
the free space as a sum of closeby scene-point features weighted by distances (Fig. 1 top). While
it achieves reliable results in single-object scenes, it is prone to failure when there are distractors in
the vicinity of the target object due to its naive feature aggregation based on spatial proximity.

To design a better feature representation, we start with the intuition that, when humans interact
with a scene, an intention is formed even before their hands reach the target object. Driven by
this intention, they have their attention focused on certain scene regions with higher task relevance
instead of looking into the details of every part of the scene. Following this intuition, we propose
the neural attention field for representing semantic-aware dense feature fields in the 3D space by
modeling inter-point relevance instead of individual point features (Fig. 1). More concretely, we
replace the distance-weighted feature interpolation in [6] with a transformer decoder that computes
the cross-attention between any 3D query point with all the scene points, and aggregates the scene
features to the query point based on the attention rather than spatial proximity (Fig. 1 bottom).

We further propose a self-supervised framework for training the transformer decoder from only a few
3D scenes without hand demonstrations (for example, the 4 pointclouds in Fig. 2 left). Here we take
the scene points as queries and learn a self-attention on the scene pointcloud. Each scene point itself
carries a raw feature, which is updated through the transformer aggregation within each scene. Our
key intuition is that, point correspondences can be computed across scenes via feature similarities,
and they should stay identical for both features before and after applying the transformer. This leads
to a contrastive feature loss for optimizing the transformer decoder parameters.

Post-training, the transformer decoder can be directly applied to novel scenes for querying the fea-
ture of any 3D point in the near-object space. We can then use it to transfer one-shot demonstration
of dexterous grasps from a source scene to a target scene following the same strategy as neural
feature fields [7, 6], where we sample query points on the hand surface and minimize their feature
differences between the two scenes.

Experimentally, we show that our neural attention field induces better optimization landscapes by
encouraging the end-effector to focus on task-related scene regions and omitting distractions, en-
abling robust one-shot dexterous grasping in various challenging scenarios such as grasping objects
in complex scene contexts, grasp transfer between objects of varying shapes but similar semantics, or
functional grasping of tools. Real-robot results demonstrate our significant improvements in success
rates compared with the feature-field-based methods.

To summarize, our key contributions are: (i) We propose the neural attention field for representing
semantic-aware dense feature fields in the 3D space by modeling inter-point relevance instead of
individual point features. (ii) We propose a self-supervised framework for training the attention
field with a few scenes. (iii) Our attention field enables semantics-aware dexterous grasping from
one-shot demonstration and encourages the end-effector to focus on task-related scene regions. (iv)
Real-robot experiments show our strong generalization under different scene variations.

2 Related Work

Neural field for manipulation Point correspondences induced by features facilitate the transfer of
manipulation policies across diverse objects. In contrast to methods based on key points [8, 9, 10],
recent efforts focus on developing dense feature fields around 3D scenes through implicit represen-
tations [7, 11, 12, 13, 14, 15, 16, 17, 18, 19]. The integration of large vision models have propelled
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research towards leveraging distilled features fields for enabling few-shot or one-shot learning of
6-DOF grasps [3], sequential actions [4], and language-guided manipulations [5]. These efforts
predominantly focus on simple manipulations using parallel grippers. Closest to us is [6] which
uses distilled feature fields to transfer dexterous grasps across objects. However, as mentioned, it
computes query features in the free space as a sum of closeby scene-point features weighted by
distances, making it unstable to distractors near the target object.

Distilled feature field With the recent advances of large vision models on 2D images, an effective
way of acquiring semantics-aware feature fields for 3D scenes is to first obtain 2D image features and
then distill them to 3D. [20, 21, 22] lifts of semantic information from 2D segmentation networks
to 3D, enabling 3D segmentations with language embeddings. [23, 24] delve into integrating pixel-
aligned image features from models like LSeg or DINO [1] into 3D NeRFs, highlighting their impact
on manipulating 3D geometry. Further, [25] and [26] explore distilling non-pixel-aligned image
features, such as those from CLIP [27], into 3D scenes without the need for fine-tuning.

Dexterous grasping Dexterous manipulation, central to advanced robotic applications, necessi-
tates nuanced understanding and control, akin to human-like grasping capabilities [28, 29, 30, 31,
32, 33, 34]. Analytical approaches [35, 29, 30] focus on direct modeling of hand and object dy-
namics. Recent learning-based methods have introduced state [36, 37, 38, 39, 40] and vision-based
strategies [41, 42, 43, 44, 45, 46], targeting realistic scene comprehensions. However, most of these
methods depend on large demonstration datasets for training. Notably, [47] proposes a grasp synthe-
sis algorithm focusing on geometric and physical constraints for functional grasping that generalizes
within similar object shapes using minimal demonstrations,

3 Method

3.1 Preliminaries

Demonstration transfer with feature field Given a 3D scene pointcloud X, a feature field around
the scene is a function f(·,X) : R3 → RC that maps every query point q ↑ R3 in the 3D space to
a C-dimension feature f ↑ RC . For an end-effector placed in the feature field with pose parameters
ω, one can sample a set of query points Q|ω ↑ RQ→3 on the end-effector surface conditioned on its
parameters and obtain their features f(Q|ω,X) ↑ RQ→C , which can be viewed as the feature for
the entire end-effector w.r.t.ω. Given a demonstration with a source pointcloud X̂ and end-effector
parameters ω̂, one can transfer it to a target scene X by minimizing an energy function induced by
the two feature fields

argmin
ω

E(ω) = argmin
ω

↓f(Q|ω̂, X̂)↔ f(Q|ω,X)↓1. (1)

Intuitively, this minimizes the feature differences of the end-effector positions in the scene, indicat-
ing that the end-effector should be applied to the locations with similar semantic meanings. More
elaborations can be found in [7, 6].

Distilled feature field An effective approach for acquiring a semantic-aware 3D feature field is
to first extract semantic features on 2D images with large vision models [1, 2] and then distill them
to 3D. A line of works [26, 5, 19] directly reconstruct continuous implicit feature fields alongside
NeRF representations. If given a 3D pointcloud and its point correspondences to the 2D image
pixels derived from RGBD sensor inputs, one can also directly back project and aggregate the image
features on each pixel to the 3D points. The discrete pointcloud features can be further propagated
into the surrounding space via spatial interpolation [6]. For a pointcloud X = {xi} with per-point
features F = {fi}, the feature z at a query point q ↑ R3 is interpolated from the pointcloud features
with inverse distance weighting:

f =
N∑

i=1

wifi, where wi =
1/↓q↔ xi↓2∑N
j=1 1/↓q↔ xj↓2

. (2)
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Figure 2: Self-supervised training for the transformer decoder. Left: Given a few scenes, we first
select the corresponding keypoints computing cyclic mutual nearest neighbors (MNN) based on their
feature similarities. Right: We take the selected keypoints as queries for each scene and enforce the
features before and after the Dε-aggregation to induce the same keypoint correspondences across
scenes. Specifically, we apply an InfoNCE loss to preserve the orders of the keypoints given the
permutation equivariance of transformers.

While this spatial interpolation propagates the features from the discrete surface points to the near-
surface space smoothly, this operation lacks semantic awareness and blurs the inter-scene feature
correspondences as the query point goes off the object surfaces, making it unstable to transfer end-
effector poses from the source scene to the target. For example, when transferring a grasp from a
source scene containing only a toy animal to a target scene in which the toy animal is surrounded by
several irrelevant objects, we aim to ensure that the features focus primarily on the toy animal itself
and are less affected by the other objects despite their spatial adjacency (Fig. 1 top).

3.2 Neural Attention Field

To better represent dense and semantic-aware features in the near-object space, we introduce the
neural attention field (Fig. 1) that predicts a cross-attention between the query point q and the scene
points X to replace the inverse distance weighting wi in Eq. 2. More concretely, it is realized with
a lightweight transformer decoder network Dε(key, query, value) with its keys, query, and value
being the scene points X, the query point q, and the scene-point features F respectively:

fD = Dε(X,q,F), (3)

which provides an aggregated feature fD ↑ RC for any query point q ↑ R3 according to the learned
attention maps. As the 3D point coordinates X and q carry limited information, we also append the
per-point features F to X and the spatially aggregated feature f in Eq. 2 to q, resulting in keys [X,F]
and query [q, f ]. Detailed architecture of the transformer decoder can be found in the appendix.

3.3 Few-Shot Self-Supervised Training

As there is no straightforward way to annotate ground-truth features or attention maps, we propose
a self-supervised framework for training the transformer decoder Dε in Eq. 3 on a few 3D scenes
related to the task. In most of our experiments, we use 4 scene pointclouds to train Dε and then
apply it to a set of tasks on transferring dexterous hand poses. We also experiment with different
training and inference setups including different numbers of training scenes and different content
similarities between the training and inference scenes (Sec. 4.2).

We consider directly using the scene points xi ↑ X as queries and compute their Dε-aggregated
features via a self-attention:

fD,i = Dε(X,xi,F). (4)
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We denote FD = {fD,i}i the collections of aggregated features for all points in X. Conceptually,
this can also be viewed as placing a virtual query at each point in the scene pointclouds.

Given a few different scene pointclouds X(1), · · · ,X(I) with raw point features F(1), · · · ,F(I), we
can compute their aggregated point features F(1)

D , · · · ,F(I)
D respectively. Both F and FD induce

point correspondences across scenes via nearest neighbor retrieval w.r.t.feature similarities. Based
on this, we introduce a self-supervised loss for training Dε by enforcing that the induced correspon-
dences from F and FD should be identical between any pair of scenes (Fig. 2).

More concretely, we first compute a set of keypoints K(1), · · · ,K(I) ↑ RK→3 for each scene based
on the raw point features F(i), with each keypoint indicating a correspondence across all scenes
(e.g.the point on the monkey’s left hand in all scenes). We then update the features of these key-
points via Eq. 4, acquiring their Dε-aggregated features F(i)

D . Finally, as transformer networks are
permutation equivariant, we enforce the keypoint orders to stay consistent before and after applying
Dε with a contrastive loss on F(i)

D .

Cyclic MNN keypoint selection (Fig. 2 left) We compute the keypoints K(1), · · · ,K(I) such that
each K(i) is a subset of the points in X(i) and any pair of K(i),K(j) are corresponding points across
the two scenes according to the similarity of their raw features F(i),F(j). We introduce a cyclic
mutual nearest neighbor (MNN) strategy for this corresponding keypoints selection, as illustrated
in Fig. 2 left. Specifically, we randomly assign an order 1, · · · , I to the scenes. For each adjacent
scene pair X(i) and X(i+1) (or X(I) and X(0)), any keypoint in K(i) must fall into the k-nearest
neighbor of the corresponding keypoint in K(i+1) according to their feature differences. We reject
any point that violates this constraint for any i.

Self-consistency feature loss (Fig. 2 right) The keypoint features are updated with Dε via:

F(i)
D = Dε(X

(i),K(i),F(i)
), i = 1, · · · , I. (5)

We then enforce that, after this Dε update, the feature-induced keypoint correspondences stay un-
changed. Specifically, we employ an InfoNCE [48] loss as illustrated in Fig. 2 right:

L =

∑

i,j↑[I]

Lij , Lij =

K∑

k=1

↔ log
exp(sim((f (i)D,k, f

(j)
D,k)/ε))

∑
k→ ↓=k exp(sim(f (i)D,k, f

(j)
D,k→)/ε)

, (6)

where f (i)D,k is the k-th entry of F(i)
D , namely the output feature of Dε of the k-th keypoint in scene

i, and ε is a temperature parameter. This loss minimizes the updated feature differences of matched
keypoints and maximizes that of unmatched keypoints. We optimize for the network parameters ϑ
in Dε w.r.t. this loss.

3.4 End-Effector Optimization

Following [6], we consider the dexterous hand parameters ω of the hand pose and joint rotations.
Given a demonstration of hand parameters ω̂ in the source scene X̂ (with F̂), we optimize for ω in
the target scene X (with F) using the neural attention field. We start by sampling Q points on the
hand surfaces in both the source and target hands, generating query point sets Q|ω̂,Q|ω ↑ RQ→3

conditioned on the hand parameters. The sampling is done in the canonical hand pose and is identical
between the source and target hand surfaces. We follow the sampling strategy in [6] which has a
higher sampling density on the fingers than on the palm.

We then obtain the features for the end-effector query points by passing them into the trained trans-
former decoder Dε and acquire their features Dε(Q|ω̂, X̂, F̂), Dε(Q|ω,X,F) ↑ RQ→C . With
these features, we optimize for the end-effector pose ω in the target scene while keeping all net-
work parameters in Dε frozen. The objective is to minimize the feature differences between the
demonstration and target hand poses via an l1 loss, formulated as an energy function E(ω) w.r.t. ω:

E(ω) = ↓Dε(Q|ω̂, X̂, F̂)↔Dε(Q|ω,X,F)↓1. (7)
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Figure 3: End-effector optimization in the neural attention field. Left: We sample query points on
both the demonstration hand and the target hand to be optimized and obtain their features through the
transformer decoder Dε. Middle: The feature differences induce an energy field. Yellow indicates
lower energy values and thus higher feature similarities. Right: Minimizing the energy function
w.r.t.the hand parameters gives the final grasping pose. Both hand positions and joint parameters are
optimized. The optimization trajectory is shown in green and a few hand poses sampled along the
trajectory are shown in blue (optimization steps indicated with colors from shallow to dark).

We also integrate the physical viability functions from [49, 6], including the inter-penetration and
self-penetration energy functions:

Epen(ω|X) =

∑

x↑X

1[x↑Q]dist(x, ϖQ), Espen(ω) =
∑

p,q↑Q|ω

1p ↓=q max(ϱ ↔ ↓p↔ q↓2, 0), (8)

where ϱ is a threshold parameter, and a pose constraint Epose(ω) that penalizes out-of-limit hand
pose as in [49]. The overall optimization combines these terms:

E(ω) + ςpenEpen(ω|X) + ςspenEspen(ω) + ςposeEpose(ω). (9)
The weighting between feature energy loss and the physical constraints are set to be ςpen =

10
↔1,ςspen = 10

↔2,ςpose = 10
↔2, which is the same as [6]. In all our experiments, we randomly

initialize the hand position and joint parameters and optimize for via gradient descent.

4 Experiments

Training and inference In all our experiments, we pre-train the transformer decoder network
Dε with a few scene pointclouds (2-4 scenes without demonstrations). We then provide a 1-shot
demonstration with a dexterous hand pose in a 3D scene and directly transfer it to different scenes.
This demonstration scene pointcloud doesn’t have to be included in the pre-training scenes. We
experiment with different pre-training and demonstration scene setups as listed in the tables. Each
evaluation is done 10 times with scene variations in the object poses (for both single-object and
multi-object scenes).

Real-robot setup We conduct all our experiments in the real world with a Shadow Dexterous
Hand of 24 DoF. We restrict the 2 DoF at the wrist, focusing the optimization on the remaining 22
DoF. The hand is mounted on a UR10e arm, introducing 6 additional DoF. Precautions are taken
to prevent the dexterous hand from contacting the table surface directly, and the range of motion
is limited by the arm’s elbow. For RGBD scans, we use four pre-calibrated Femto Bolt sensors at
each corner of the table. Post-processing is applied to the captured scans to remove background
elements: In single-object experiments, the object’s pointcloud is segmented using SAM [50]. For
multi-object scenarios, we apply physical constraints to limit the experimental area to the tabletop
and employ RANSAC [51] to exclude the table surface from the analysis.

Baselines We mainly compare our method to the feature-field-based methods, including a vanilla
DFF with the feature acquisition strategy in [25], and SparseDFF [6] which introduces an additional
multiview feature refinement mechanism for better feature qualities.
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Figure 4: Visualizations of the energy fields and end-effector optimization. In each group from
left to right are: the source scene with demonstration (hand shown in blue); the target scene and our
results (optimization trajectory shown in green and final resulting hand shown blue); the feature-
induced energy fields for our method and SparseDFF [6]. We only visualize the 2D sections of the
3D energy fields and yellow indicates lower energy values and thus higher feature similarities. Our
method shows more concentrated low-energy regions around the target grasping positions.

Figure 5: Real-robot results. From left to right, we show our results of grasping objects in scene
contexts with distraction, grasp transfer between objects with similar semantics but shape variations,
and functional grasping of tools.

4.1 Real-Robot Results

Object in scene contexts A major advantage of our neural attention field is that the cross-attention
mechanism between end-effector queries and the scene points encourages the focus on the scene
points of higher relevance to the task indicated by the demonstration. This is particularly beneficial
when there are task-irrelevant objects in the scene and we want to accurately locate specific regions
on the target object and avoid distractions. Tab. 1 shows our results for grasping the target objects
from multi-object scene contexts with only a one-shot grasping demonstration on a single object.
Our method has consistently higher success rates than the previous feature-field-based methods.
Real-robot executions are shown in Fig. 5 left.

Fig. 4 visualizes the energy fields of our method and a vanilla distilled feature field method
SparseDFF [6]. We can see that our attention field induces energy functions with more concen-
trated minimas centered around the target grasping positions (such as the monkey arm in the top
left example), while the distilled feature field induces more irregular energy functions in the space,
resulting worse optimization landscapes.

Cross-object grasp transfer Tab. 2 shows our results on dexterous grasp transfer between objects
of varying shapes but similar semantics. In addition to filtering out the irrelevant content in multi-
object scenes, our attention field also brings benefits even in single-object scenes by encouraging
the transformer queries to focus on task-related object regions. For example, the necks of the horse
and the giraffe are of very different shapes and are close to the back where the grasp is applied,
but semantically they are irrelevant to the task. Simply computing the features according to spatial
relations as in the feature fields can be misleading, while our attention field overcomes this issue.
Real-robot executions are shown in Fig. 5 middle.
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Table 1: Object in scene contexts.
Dε pre-train Demo scene Test scene Ours SparseDFF DFF

4 monkey monkey right arm monkey in context 10/10 6/10 4/10
4 monkey monkey back monkey in context 10/10 8/10 5/10
4 monkey monkey back horse in context 9/10 3/10 0/10

Table 2: Cross-object grasp transfer.
Dε pre-train Demo scene Test scene Ours SparseDFF DFF

1 horse, 1 rhino horse back giraffe 9/10 5/10 0/10
1 horse, 1 giraffe giraffe back rhino 10/10 2/10 0/10
1 rhino, 1 giraffe rhino back horse 10/10 7/10 0/10
1 rhino, 1 dinosaur horse back giraffe 7/10 5/10 0/10
4 monkey horse back giraffe 9/10 5/10 0/10

Table 3: Functional grasping.
Dε pre-train Demo scene Test scene Ours SparseDFF DFF

1 nail hmmr., 1 rubber mallet nail hmmr. Thor hmmr. 9/10 8/10 8/10
1 nail hmmr., 1 Thor hmmr. Thor hmmr. rubber mallet 8/10 4/10 0/10
1 Thor hmmr., 1 rubber mallet rubber mallet nail hmmr. 9/10 5/10 0/10

Functional grasping The semantic awareness in our neural attention also facilitates functional
grasping. Tab. 3 shows our results for functional grasping of tools where the demonstrations and
executions are on tools with varying shapes but similar functionalities. Real-robot executions are
shown in Fig. 5 right.

4.2 Ablation Studies

Figure 6: Dε pre-training with different setups.

Now we conduct ablation studies for the Dε

pre-training setups on the number of pre-
training scenes and whether the demonstration
scene is included. All ablation experiments
are done with the monkey toy. Fig. 6 plots
the results of our method under different num-
bers of Dε pre-training scenes. Our method
shows consistent performances over these dif-
ferent pre-training setups. Qualitative results
can be found in the appendix.

5 Conclusions

To better model hand-object interactions, we propose the neural attention field, which represents
semantic features in the 3D space via modeling inter-point relevance instead of individual point
features. It enables robust and semantic-aware transfer of dexterous grasps across scenes by encour-
aging the end-effector to focus on scene regions with higher task relevance.

Limitations and future work While we focus on dexterous grasps in this work, the neural atten-
tion field and its subsequent feature-based end-effector optimization can be applied to other dexter-
ous manipulations beyond grasping. Extension to other manipulations with action sequences would
be an interesting and useful future direction.
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A Network Details

Transformer decoder architecture Fig. 7 illustrates the network architecture of our transformer
decoder. We compute the pairwise distances between the hand points and scene points and apply
them as weights to the keys and queries for more stable convergence during training.

Figure 7: Network architecture of the transformer decoder.

Network training The transformer decoder network is only trained at the feature pre-training
stage with the self-consistency losses, and all network weights are frozen afterward in the end-
effector optimization stage. All networks are trained on a single GeForce RTX 3090 with an Adam
optimizer for 100 iterations.

B Real-Robot Setup Details

Figure 8: Real-robot setup.

Fig. 8 shows our real-robot setup. Four Femto Bolt
sensors are mounted at the four corners 100cm above
the table, with each edge 100cm. The objects are
placed near the center of the table. The dexterous
hand is mounted on a UR10e arm, reaching the ob-
jects from the left.

Shadow hand parameterization As mentioned in
the paper, we conduct all our experiments in the real
world with a Shadow Dexterous Hand of 24 DoF.
We restrict the 2 DoF at the wrist, focusing the opti-
mization on the remaining 22 DoF. The UR10e arm
also introduces 6 additional DoFs. Each hand joint is
parameterized as a scaler for its rotation angle. The
shadow hand has 4 under-actuated joints. But in our method, we just regard it as a normal actuated
joint, which is a common practice and the default API from the shadow hand takes these four joints
as normal joints. We use “rotate6D” to represent the 3-DoF hand base rotation, which is the first
two columns of the rotation matrix.

Scene setup and randomization In the real-robot experiments, for single-object scenes with toy
animals, we randomize its pose with arbitrary z-axis rotations so that the dexterous hand can grasp
it from the top without hitting the table. For functional grasping with 3D-printed tools, we put them
on boxes so that the robot can reach its handle without hitting the table. For multi-object scenes, we
randomize the poses of all objects with full SO(3) rotations.

C Ablation Study Details

Evaluation metrics (Fig. 6) The ablation studies are done virtually on pre-captured 3D scene
pointclouds to eliminate the variances caused by scene randomization, and thus the 10 evaluation
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scenes in all the ablation settings are identical. In Fig. 6, we evaluate the average distance between
the hand-surface query points and the target region (monkey arm) in the scene, as a rough metric
indicating how close the hand reaches the target post-optimization. The target region is manually
annotated with MeshLab.

Quantitative results Fig. 9 shows the qualitative results on grasping the monkey arm with the
same demonstration but different pre-training setups for the transformer decoder. The hand opti-
mization trajectories are shown in green.

Figure 9: Qualitative results for the ablation study on different pre-training setups.
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