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Abstract. Schistosomiasis is a parasitic disease with significant global health and 

socio-economic implications. Drug discovery for schistosomiasis typically in-

volves high-content whole-organism screening. In this approach, parasites are 

exposed to various chemical compounds and their systemic, whole-organism-

level responses are captured via microscopy and analyzed to obtain a quantitative 

assessment of chemical effect. These effects are multidimensional and time-var-

ying, impacting shape, appearance, and behavior. Accurate identification of ob-

ject boundaries is essential for preparing images for subsequent analysis in high-

content studies. Object segmentation is one of the most deeply studied problems 

in computer vision where recent efforts have incorporated deep learning. Emerg-

ing results indicate that acquiring robust features in spectral domain using Fast 

Fourier Transform (FFT) within Deep Neural Networks (DNNs) can enhance 

segmentation accuracy. In this paper, we explore this direction further and pro-

pose a latent space Phase-Gating (PG) method that builds upon FFT and lever-

ages phase information to efficiently identify globally significant features. While 

the importance of phase in analyzing signals has long been known, technical dif-

ficulties in calculating phase in manners that are invariant to imaging parameters 

has limited its use. A key result of this paper is to show how phase information 

can be incorporated in neural architectures that are compact. Experiments con-

ducted on complex HCS datasets demonstrate how this idea leads to improved 

segmentation accuracy, while maintaining robustness against commonly encoun-

tered noise (blurring) in HCS. The compactness of the proposed method also 

makes it well-suited for application specific architectures (ASIC) designed for 

high-content screening. 

Keywords: Fast Fourier Transform, Deep Neural Networks, biological imag-

ing, parasitic diseases, whole-organism screening, drug discovery. 

1 Introduction 

1.1 Background 

Schistosomiasis is a parasitic disease with global health and socio-economic impacts. 

Current estimates suggest that more than 200 million individuals are presently infected, 

with over 700 million people at risk across 78 countries. The primary method of 
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treatment revolves around the administration of the drug praziquantel (PZQ). However, 

its efficacy is mainly targeted at the adult stage of the worm's life cycle [1], and in-

stances of drug resistance have been documented [2]. Consequently, both the World 

Health Organization (WHO) and the National Institutes of Health (NIH) have classified 

schistosomiasis as a condition urgently necessitating new treatment modalities. 

Drug discovery for schistosomiasis (and other helminthic diseases) typically in-

volves conducting whole organism phenotypic screening. Unlike target-based screen-

ing, which uses a purified protein target to identify drug candidates, phenotypic screen-

ing involves the entire disease system. This method entails exposing live parasites to 

various compounds and then recording and analyzing the resulting multidimensional 

and systemic phenotypic changes to assess the efficacy of the compounds and identify 

potential new drugs. Phenotypic screenings are inherently holistic and have been shown 

to be more effective than target-based screening [3]. The development of phenotype-

analysis methods in this field has garnered considerable attention, particularly since the 

pioneering work in [4].  

Developing automated, high content phenotypic screening techniques for schistoso-

miasis require segmentation to separate individual parasites. Subsequently, their ap-

pearance, shape, and motion can be characterized at any desired time point while being 

tracked across the video. A significant technical obstacle lies in devising image seg-

mentation methods that precisely delineate each parasite and accurately identify their 

boundaries. The lack of accurate segmentation can increase downstream measurement 

errors of the parasite phenotypes. 

In recent years, deep learning based segmentation approaches [5] have garnered 

widespread attention and demonstrated exceptional performance. However, the appli-

cation of such methods to real-time segmentation often necessitates a trade-off between 

speed and accuracy, posing challenges for use in HCS.  Furthermore, HCS can operate 

at a broad frame rate ranging between 10 to 100 frames per second (FPS). Compared 

to the standard 24 FPS videos, HCS recordings can be particularly intricate. The devel-

opment of segmentation methods that fulfill these multifaceted requirements is imper-

ative within the domain of HCS. 

1.2 Problem formulation 

For making precise measurements of complex parasite phenotypes, the initial 

segmentation process must possess certain characteristics. Firstly, it should be 

insensitive to image artifacts introduced by the culture medium. Secondly, it must 

accurately identify boundaries, particularly those touching or overlapping parasites. 

Lastly, the segmentation process should demonstrate real-world robustness, 

particularly against blurry images. Additionally, consideration needs to be given to 

computation speed, as slower methods take significantly longer to produce results, thus 

potentially limiting the number of compounds that can be analyzed. Readers are 

directed to the figure in the Results section illustrating the aforementioned 

segmentation challenges. 



2 Related work 

The first novel algorithm for segmenting somules – the juvenile stage of the parasite 

causing schistosomiasis was proposed by Asarnow and Singh [6]. This method em-

ployed phase congruency (PC) [7] – the fact that at edge pixels, all Fourier components 

of the image signal tend to be in-phase, to accurately identify touching or overlapping 

edges, achieving excellent accuracy compared to extant segmentation methods. Here-

after, we refer to this method as the ASA method.  Due to their reliance on capturing 

certain fundamental edge characteristics, methods such as ASA may struggle when the 

positioning of multiple objects in an image, render it difficult to determine the funda-

mental edge characteristics being determined. On the other hand, deep neural network 

(DNN) based segmentation methods take a different approach by taking advantage of 

the supervised step in learning the patterns that need to be found and thus circumventing 

the challenge more fundamentally oriented methods like ASA have to deal with. One 

such example is Mask R-CNN [5], which has demonstrated high segmentation accuracy 

in many computer vision tasks. These deep learning methods, however, require large 

training datasets to perform well and can suffer from underfitting and overfitting with 

limited training data.  

A related problem of cell segmentation, has been an active research area for some 

time. Cellpose [8], which employed a convolutional neural network (CNN) and adopted 

the network architecture from U-net [9],  incorporated a “style” representation in the 

smallest convolutional maps to obtain “style” vectors and aimed to learn intrinsic fea-

tures. It demonstrated higher segmentation accuracy than Mask R-CNN using 70,000 

objects for training. Nevertheless, CNNs tend to focus on local receptive fields and are 

thus sensitive to image noise. In domain generalization, Deep Frequency Filtering 

(DFF) was purposed to learn robust features through Fast Fourier Transforms (FFT). It 

extended the use of Fast Fourier Convolution (FFC) [10] and added a spatial attention 

module (SAM) [11], demonstrating the ability to learn domain-generalizable fea-

tures.  In this paper, we focus not on domain generalization but on utilizing the robust 

features learned through FFT to improve segmentation accuracy. While both FFC and 

DFF utilized real and imaginary components directly in FFT, we have found that uti-

lizing phase directly results in improved segmentation. Our research shows how deep 

learning can be used to take advantage of an old idea in image and signal analysis – the 

importance of phase in signals [12]. 

3 Methods 

3.1 Core Idea 

The image signal in the spatial domain can be transformed into the spectral domain 

using the Fast Fourier Transform (FFT), and subsequently decomposed into its real and 

imaginary components. Studies [10, 13] have demonstrated that concatenating these 

components, followed by CNN, Batch Normalization (BN), and ReLU activation, can 

utilize global receptive fields in the spectral domain by learning the intercorrelation. 
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However, it is important to leverage relationships such as the amplitude and phase spec-

tra derive directly from the real and imaginary components rather than relying solely 

on learned features. This motivates us, as the amplitude spectrum conveys image inten-

sity information, while the phase spectrum reflects highly informative structural details 

[7], which correlates with human perception of visual information.  

3.2 Latent Spectrum Representations 

Given an image 𝑋 ∈ 𝑹𝐶×𝐻×𝑊, where 𝐶, 𝐻, 𝑊 represents the channel, height, and width 

of the image, respectively.  We apply a 2D FFT independently to each channel and get 

the corresponding spectrum representation 𝐹𝑥. We denote the FFT and the inverse FFT 

operations as ℱ, ℱ−1, respectively, and formulate this transform 𝐹𝑥 = ℱ(𝑥) as fol-
lows: 

𝐹𝑥(𝑢, 𝑣) = ∑ ∑ 𝑒
−𝑗2𝜋(

𝑢ℎ
𝐻 +

𝑣𝑤
𝑊 )

∙ 𝑥(ℎ, 𝑤)

𝑊−1

𝑤=0

𝐻−1

ℎ=0

 (1) 

 
where 𝑥(ℎ, 𝑤), 𝐹𝑥(𝑢, 𝑣) denotes the value in the spatial and spectral domain at the 
coordinates (h,w) and (u,v), respectively. Additionally, we use 𝜙𝑥, 𝐴𝑥 to represent 
the phase spectrum and amplitude spectrum, which are defined as:  
 

𝜙𝑥(𝑢, 𝑣) = arctan [
Im(𝐹𝑥(𝑢, 𝑣)

Re(𝐹𝑥(𝑢, 𝑣)
] 

(2) 

𝐴𝑥 = √Re(𝐹𝑥(𝑢, 𝑣)2 + Im(𝐹𝑥(𝑢, 𝑣)2 (3) 

 

In Eqs.(2)-(3), Re and Im represents the real and imaginary parts of 𝐹𝑥. The image or 

features 𝑥 can be recovered directly from  𝐹𝑥 via ℱ−1 or more intuitive through 

 

𝐹𝑥 = ℱ(𝑥) = 𝐴𝑥𝑒𝑗2𝜋𝜙𝑥   (4) 

𝑥 = ℱ−1(𝐹𝑥) = ℱ−1
(𝐴𝑥𝑒𝑗2𝜋𝜙𝑥)  (5) 

 

For the phase and amplitude spectrum 𝜙𝑥, 𝐴𝑥, there are two notable properties: 1) 𝜙𝑥 

itself captures structural information, enabling consistent enhancement of global recep-

tive fields. 2) 𝐴𝑥 captures magnitude of informative features, which can be utilized with 

a simple attention module to regulate the flow.  

 

3.3 Latent space Phase-Gating 

Our goal is to adaptively modulate phase and amplitude during training. To achieve 

this, we propose a latent space Phase-Gating (PG) operation to enhance the global fea-

tures. Given phase 𝜙𝑥 and amplitude 𝐴𝑥, the proposed PG operation is formulated as 

follows: 

𝐴𝑥
′ = G(𝐴𝑥) (6) 

𝜙𝑥
′ = Conv1×1(𝜙𝑥) (7) 



𝐹𝑥
′ = 𝐴𝑥

′ 𝑒𝑗2𝜋𝜙𝑥
′
 (8) 

 

where G refers to a component that regulate the flow of globally important features. In 

Eq. 7, a simple convolution layer with kernel size 1 × 1 and BN is used to magnify the 

phase. For operation G, we adopt a lightweight attention module designed for features 

learning in the latent space [11].  

To clarify the use of this module, we expand Eq. 3. An aggregation of 𝐴𝑥 is per-

formed to obtain 𝐴𝑥
𝑚𝑎𝑥  and 𝐴𝑥

𝑎𝑣𝑔
 using max-pooling and average-pooling operations 

over all channels. These serve as compressed representation of 𝐴𝑥. We then concatenate 

them and apply a convolution layer with kernel size 7 × 7 to access its relative im-

portance with respect to its neighbors. This convolution layer, despite its large kernel 

size, remains computationally efficient as it only applies to two channels in prac-

tice. The result is then passed to a sigmoid function and multiplied back with 𝐴𝑥. Thus, 

we can rewrite Eq. 6 as: 

𝐴𝑥
′ = 𝐴𝑥 ⊗ 𝜎(Conv7×7([𝐴𝑥

𝑚𝑎𝑥, 𝐴𝑥
𝑎𝑣𝑔

 ])) (9) 

 

where 𝜎  is the sigmoid function, [, ] denotes concatenation, and ⊗  is element-wise 

multiplication.  

 

Fig. 1. Illustration of the proposed Phase-Gating (PG) component and the overall network archi-

tecture. The PG adaptively modulates phase and amplitude during training to capture globally 

important features. It involves four key operations: a 2D FFT to covert the input into phase 𝜙 

and amplitude 𝐴, a gating operation to regulate the flow, a simple convolution layer with kernel 

size 1 × 1 and BN to enhance phases, and a 2D inverse FFT to transform back to the original 

latent space. 
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3.4 Network architecture with dual-branch features aggregation  

The features captured using PG are generally global. Therefore, we use a dual-branch 

features aggregation method from [10] to ensemble both local and global features. This 

architecture has been proven effective in [10, 13]. It uses a split-and-merge concept to 

capture complementary features with different receptive fields and intentionally ex-

change information between them. Given features  𝑋 ∈ 𝑹𝐶×𝐻×𝑊, it is first split along 

the features channels into local and global part, denoted as 𝑋𝑙 , 𝑋𝑔, respectively, where 

𝑋 = [𝑋𝑙, 𝑋𝑔] with 𝑋𝑙 ∈ 𝑹(1−𝛼)𝐶×𝐻×𝑊  and 𝑋𝑔 ∈ 𝑹𝛼𝐶×𝐻×𝑊 . Similarly, output features 

𝑌 ∈ 𝑹𝐶×𝐻×𝑊 can be split into 𝑌𝑙 , 𝑌𝑔, where 𝑌 = [𝑌𝑙 , 𝑌𝑔] with 𝑌𝑙 ∈ 𝑹(1−𝛽)𝐶×𝐻×𝑊 and 

𝑌𝑔 ∈ 𝑹𝛽𝐶×𝐻×𝑊. Both 𝛼, 𝛽 are in range between 0 and 1, controlling the degree of com-

plementarity. This dual-branch features aggregation can be formulated as: 

 

𝑌𝑙
= 𝑓𝑙 (𝑋𝑙

) + 𝑓𝑔→𝑙(𝑋𝑔
) (10) 

𝑌𝑔
= 𝑓𝑔(𝑋𝑔

) + 𝑓𝑙→𝑔 (𝑋𝑙
) (11) 

 

where 𝑓  denote four different transformation functions. 𝑓𝑔  corresponds to spectral 

transform implemented in [10] while other three are regular convolutions. We evaluate 

the proposed PG by integrating it into the spectral transform branch. 

For the overall network architecture, we build upon the Cellpose architecture [8], 

which extends from U-net [9]. U-net is compact and efficient for producing binary mask 

and separating foreground/background pixels. However, it was not initially designed to 

separate different instances of the same category. Cellpose adds two additional layers 

along the mask prediction process to compute the horizontal and vertical gradients. 

These three components are then combined to produce the final results. Additionally, 

Cellpose utilizes a “style” vector, defined as the average pooling at the smallest feature 

map with normalization. This vector is subsequently used until the last convolutional 

layer, except during the upsampling operation.  

4 Experiments 

4.1 Data 

The proposed method was evaluated with a comprehensive chemical-phenotype dataset 

described in [14]. The data included 5779 parasites from the training and validation set, 

and the test set, referred to as the ASA set, was the same as used in [6], and contained 

7015 parasites. A summary of the dataset is provided in Table 1. The datasets were 

obtained by hand-labeling on a high-resolution touch-screen device. On an average, it 

took about 20 minutes to label one image, although some images required significantly 

longer labeling time due to the number of parasites present in it.  

Additionally, evaluating deep learning-based segmentation methods on images cor-

rupted by different types of noise allows us to gain an understanding of real-world per-

formance. A number of noise models have been considered in the literature [15], in-

cluding: blur, noise, digital, and weather corruptions, each with five severity levels con-

trolling the corruption intensities. In this paper, we focus on blurring, such as motion 



blur, defocus blur, and Gaussian blur. This is due to the wells in which the parasites 

were located during screening imaged have depth, not all parasites were co-planar. Con-

sequently, some parasites appear blurred and testing the segmentation accuracy on 

blurred images provides an indication of real-world robustness. 

 

Table 1. Summary of the data 

 Training and Validation ASA 

Total parasites 5779 7015 

Image size 1040 x 1388 1040 x 1388 

Parasites in each image 14 - 68 23 - 56 

The size of parasites 1494 - 7383 942 - 6672 

Perimeter of parasites 144 - 400 118 - 410 

Proportion of  

the bbox filled 
21% - 86% 20% - 83% 

Grayscale mean intensity 94 - 205 79 - 211 

Exposure time in days 1, 2, 3, 4 1, 3, 7 

Concentrations in 𝜇𝑀 0.01, 0.1, 1, 10 0, 0.01, 0.1, 1 

Compound 

Acepromazine, Alime-

mazine, Chlorophenothia-

zine, Hycanthone, Methio-

thepin Mesylate, Mevastatin, 

Pravastatin, Praziquantel 

(PZQ), Promazine, Rosuvas-

tatin, Triflupromazine 

Acepromazine, 

Alimemazine, Chlo-

rophenothiazine, 

K777, Pravastatin 

Praziquantel 

(PZQ), Promazine, 

Rosuvastatin, 

Simvastatin, Control 

4.2 Evaluation Metrics 

Following [6], we use the following measures to assess segmentation accuracy. 

1. Precision, Recall, and F1 values for the foreground pixels. 

2. Precision, Recall, and F1 values for the edge pixels. 

3. Object-count agreement. Defined as the fractional object count discrepancy 𝑂 =
|𝑁𝑠 − 𝑁𝑜|/𝑁𝑜, where 𝑂 is the discrepancy, 𝑁𝑜 is the true number of objects and 

𝑁𝑠 is the number of objects in each trial segmentation. 

4. Mean deviation of object boundaries. Estimated by calculating the average ab-

solute difference between the Euclidean distance transform of the ground truth 

object boundaries and the boundaries of the objects from the trial segmentation. 

5. Degradation. Defined as the fraction between the performance of one method 

relative to a reference.  

Each metric is computed as the average value across all images in the test set, and this 

value is weighted by the number of objects present in each ground truth image. This 

approach ensures a comprehensive and nuanced evaluation, taking into consideration 

the varying complexities of the ground truth images. 
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4.3 Implementation 

We implemented the ASA methods using Matlab and the PG method using Python with 

PyTorch. We utilized the codebases provided by the authors of Cellpose [8] and FFC 

[10]. Additionally, we implemented the DFF [13] based on the description in the paper, 

as no codebase was provided. We also used the implementations of Mask R-CNN [5] 

from MMDetection frameworks [16].  

 

 
 

Fig. 2. Segmentation results for parasites subjected to Praziquantel (PZQ) with 1 and 7 

days of exposure. Each column displays results obtained from the original image, the 

ground truth labels, and the segmentation methods, respectively. The rows represent 

clean image and image with defocused blur at severity level 3. 
 



4.4 Training parameters 

We trained two versions of Mask R-CNN: one using pretrained weights and the other 

trained from scratch. Both versions were trained using the AdamW optimizer with a 

learning rate of 0.001, a weight decay of 0.01, and a batch size of 2. The learning rate 

was reduced by a factor of 10 at 8, 15, and 20 epochs, for a total of 24 epochs. Both 

versions employed multi-scaling training methods based on the size of the objects in 

the image. 

The Cellpose architecture, along with regular convolution, FFC, DFF and PG, were 

trained with SGD optimizer with a learning rate of 0.01, a momentum of 0.9, a weight 

decay of 0.0001, a batch size of 8, and a total of 200 epochs. The learning rate started 

at zero and was linearly increased to 0.01 over the first ten epochs. At epoch 160, the 

learning rate was reduced by a factor of 2 every ten epochs. For FFC, DFF, and PG, an 

𝛼, 𝛽 value of 0.5 was used to evenly split the local and global channels. 

4.5 Results 

We initially tested the effectiveness of our proposed latent space Phase-Gating (PG) on 

the ASA set. The results can be found in Table 2. It was observed that Mask R-CNN 

with pretraining yielded the best performance, while Mask R-CNN trained from scratch 

showed the worst performance. Our proposed PG method outperformed all other vari-

ations of the Cellpose architecture. However, it's worth noting that Mask R-CNN is 

almost 20 times larger than the Cellpose architecture, making it significantly slower. 
An illustration of the segmentation outcomes is depicted in Figure 2.  

 

Table 2. Evaluation measures on the ASA set 
Model 

Name 
Precision Recall F1 

Edge Pre-

cision 

Edge 

Recall 

Edge 

F1 
OCA MBD 

Style* 0.969 0.932 0.950 0.304 0.296 0.300 0.018 2.282 

NoStyle* 0.968 0.935 0.951 0.302 0.294 0.298 0.020 2.294 

FFC* 0.961 0.939 0.950 0.291 0.289 0.290 0.021 2.147 

DFF* 0.964 0.936 0.949 0.293 0.289 0.291 0.019 2.165 

PG* 0.966 0.938 0.951 0.297 0.293 0.295 0.016 2.049 

ASA 0.898 0.967 0.930 0.169 0.172 0.170 0.049 2.918 

Mask 0.951 0.955 0.953 0.276 0.278 0.277 0.015 1.656 

Mask 
Scratch 

0.934 0.879 0.905 0.197 0.214 0.205 0.119 5.082 

* indicates Cellpose architecture, Mask means Mask R-CNN with ResNet 50 

 

All the deep learning-based segmentation methods attained good F1 scores for edge 

pixels, with the Cellpose architectures being the most effective. On the other hand, the 

ASA methods achieved the lowest F1 scores for edge pixels due to their tendency to 

segment the outer boundaries of the parasites instead of the center. This could be an 

issue as it could alter the segmented shape, particularly when dealing with parasites that 

are in contact with image artifacts introduced by the culture medium. 

We also evaluated these methods against the ASA set with blurring. The Cellpose 

architecture with regular convolution and “style” representation was used as a reference 

method. We calculated the average degradation of all methods across all five severity 
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levels in comparison to the reference method. The results can be found in Table 3. DFF 

appears to be excessively sensitive and therefore performed poorly compared to FFC 

and PG. Cellpose with no style representation performed slightly worse across all the 

blur types. Mask R-CNN with pretraining produced the best degradation results, while 

Mask R-CNN trained from scratch showed results similar to FFC and PG. On the other 

hand, ASA methods performed slightly worse than FFC and PG. 

 

Table 3. Evaluation degradation on the ASA set with image blur 

Model 

Name 

Motion Blur Defocus Blur Gaussian Blur 

MBD F1 
Edge 

F1 
MBD F1 

Edge 

F1 
MBD F1 

Edge 

F1 

Style* 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

NoStyle* 1.010 1.008 0.997 1.045 1.065 1.009 1.071 1.067 1.008 

FFC* 0.730 1.009 1.007 0.490 0.834 0.996 0.615 0.887 1.002 

DFF* 0.851 1.036 1.005 0.735 0.973 1.009 0.739 0.980 1.012 

PG* 0.752 0.996 0.998 0.562 0.928 1.027 0.662 0.932 1.017 

ASA 0.817 1.072 1.009 0.671 1.080 1.072 0.819 1.179 1.129 

Mask 0.551 0.725 0.942 0.481 0.855 0.992 0.574 0.904 1.023 

Mask 

Scratch 
0.734 1.033 1.007 0.519 0.861 0.965 0.842 1.137 1.008 

5 Conclusion  

This paper describes latent space Phase-Gating (PG), which leverages phase infor-

mation and gates the amplitude flow in the spectral domain, thereby improving the en-

hancement of globally significant features. In the context of specific spectral domain 

component, PG, while being half the size, delivers higher segmentation accuracy com-

pared to FFC and DFF applied to phenotypic drug screening data. Furthermore, robust-

ness analysis against blurring, using average degradation as a metric, reveals that PG 

delivers results comparable to FFC and surpasses other Cellpose architectures. The 

findings presented in this paper underscore the potential of the proposed methods. Its 

compact design and fast inference capabilities make it particularly desirable for high-

content screening applications and ASIC hardware implementations. 
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