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Abstract. Schistosomiasis is a parasitic disease with significant global health and
socio-economic implications. Drug discovery for schistosomiasis typically in-
volves high-content whole-organism screening. In this approach, parasites are
exposed to various chemical compounds and their systemic, whole-organism-
level responses are captured via microscopy and analyzed to obtain a quantitative
assessment of chemical effect. These effects are multidimensional and time-var-
ying, impacting shape, appearance, and behavior. Accurate identification of ob-
ject boundaries is essential for preparing images for subsequent analysis in high-
content studies. Object segmentation is one of the most deeply studied problems
in computer vision where recent efforts have incorporated deep learning. Emerg-
ing results indicate that acquiring robust features in spectral domain using Fast
Fourier Transform (FFT) within Deep Neural Networks (DNNs) can enhance
segmentation accuracy. In this paper, we explore this direction further and pro-
pose a latent space Phase-Gating (PG) method that builds upon FFT and lever-
ages phase information to efficiently identify globally significant features. While
the importance of phase in analyzing signals has long been known, technical dif-
ficulties in calculating phase in manners that are invariant to imaging parameters
has limited its use. A key result of this paper is to show how phase information
can be incorporated in neural architectures that are compact. Experiments con-
ducted on complex HCS datasets demonstrate how this idea leads to improved
segmentation accuracy, while maintaining robustness against commonly encoun-
tered noise (blurring) in HCS. The compactness of the proposed method also
makes it well-suited for application specific architectures (ASIC) designed for
high-content screening.
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1 Introduction

1.1  Background

Schistosomiasis is a parasitic disease with global health and socio-economic impacts.
Current estimates suggest that more than 200 million individuals are presently infected,
with over 700 million people at risk across 78 countries. The primary method of



treatment revolves around the administration of the drug praziquantel (PZQ). However,
its efficacy is mainly targeted at the adult stage of the worm's life cycle [1], and in-
stances of drug resistance have been documented [2]. Consequently, both the World
Health Organization (WHO) and the National Institutes of Health (NIH) have classified
schistosomiasis as a condition urgently necessitating new treatment modalities.

Drug discovery for schistosomiasis (and other helminthic diseases) typically in-
volves conducting whole organism phenotypic screening. Unlike target-based screen-
ing, which uses a purified protein target to identify drug candidates, phenotypic screen-
ing involves the entire disease system. This method entails exposing live parasites to
various compounds and then recording and analyzing the resulting multidimensional
and systemic phenotypic changes to assess the efficacy of the compounds and identify
potential new drugs. Phenotypic screenings are inherently holistic and have been shown
to be more effective than target-based screening [3]. The development of phenotype-
analysis methods in this field has garnered considerable attention, particularly since the
pioneering work in [4].

Developing automated, high content phenotypic screening techniques for schistoso-
miasis require segmentation to separate individual parasites. Subsequently, their ap-
pearance, shape, and motion can be characterized at any desired time point while being
tracked across the video. A significant technical obstacle lies in devising image seg-
mentation methods that precisely delineate each parasite and accurately identify their
boundaries. The lack of accurate segmentation can increase downstream measurement
errors of the parasite phenotypes.

In recent years, deep learning based segmentation approaches [5] have garnered
widespread attention and demonstrated exceptional performance. However, the appli-
cation of such methods to real-time segmentation often necessitates a trade-off between
speed and accuracy, posing challenges for use in HCS. Furthermore, HCS can operate
at a broad frame rate ranging between 10 to 100 frames per second (FPS). Compared
to the standard 24 FPS videos, HCS recordings can be particularly intricate. The devel-
opment of segmentation methods that fulfill these multifaceted requirements is imper-
ative within the domain of HCS.

1.2 Problem formulation

For making precise measurements of complex parasite phenotypes, the initial
segmentation process must possess certain characteristics. Firstly, it should be
insensitive to image artifacts introduced by the culture medium. Secondly, it must
accurately identify boundaries, particularly those touching or overlapping parasites.
Lastly, the segmentation process should demonstrate real-world robustness,
particularly against blurry images. Additionally, consideration needs to be given to
computation speed, as slower methods take significantly longer to produce results, thus
potentially limiting the number of compounds that can be analyzed. Readers are
directed to the figure in the Results section illustrating the aforementioned
segmentation challenges.



2 Related work

The first novel algorithm for segmenting somules — the juvenile stage of the parasite
causing schistosomiasis was proposed by Asarnow and Singh [6]. This method em-
ployed phase congruency (PC) [7] — the fact that at edge pixels, all Fourier components
of the image signal tend to be in-phase, to accurately identify touching or overlapping
edges, achieving excellent accuracy compared to extant segmentation methods. Here-
after, we refer to this method as the ASA method. Due to their reliance on capturing
certain fundamental edge characteristics, methods such as ASA may struggle when the
positioning of multiple objects in an image, render it difficult to determine the funda-
mental edge characteristics being determined. On the other hand, deep neural network
(DNN) based segmentation methods take a different approach by taking advantage of
the supervised step in learning the patterns that need to be found and thus circumventing
the challenge more fundamentally oriented methods like ASA have to deal with. One
such example is Mask R-CNN [5], which has demonstrated high segmentation accuracy
in many computer vision tasks. These deep learning methods, however, require large
training datasets to perform well and can suffer from underfitting and overfitting with
limited training data.

A related problem of cell segmentation, has been an active research area for some
time. Cellpose [8], which employed a convolutional neural network (CNN) and adopted
the network architecture from U-net [9], incorporated a “style” representation in the
smallest convolutional maps to obtain “style” vectors and aimed to learn intrinsic fea-
tures. It demonstrated higher segmentation accuracy than Mask R-CNN using 70,000
objects for training. Nevertheless, CNNs tend to focus on local receptive fields and are
thus sensitive to image noise. In domain generalization, Deep Frequency Filtering
(DFF) was purposed to learn robust features through Fast Fourier Transforms (FFT). It
extended the use of Fast Fourier Convolution (FFC) [10] and added a spatial attention
module (SAM) [11], demonstrating the ability to learn domain-generalizable fea-
tures. In this paper, we focus not on domain generalization but on utilizing the robust
features learned through FFT to improve segmentation accuracy. While both FFC and
DFF utilized real and imaginary components directly in FFT, we have found that uti-
lizing phase directly results in improved segmentation. Our research shows how deep
learning can be used to take advantage of an old idea in image and signal analysis — the
importance of phase in signals [12].

3 Methods

3.1 Core Idea

The image signal in the spatial domain can be transformed into the spectral domain
using the Fast Fourier Transform (FFT), and subsequently decomposed into its real and
imaginary components. Studies [10, 13] have demonstrated that concatenating these
components, followed by CNN, Batch Normalization (BN), and ReL U activation, can
utilize global receptive fields in the spectral domain by learning the intercorrelation.



However, it is important to leverage relationships such as the amplitude and phase spec-
tra derive directly from the real and imaginary components rather than relying solely
on learned features. This motivates us, as the amplitude spectrum conveys image inten-
sity information, while the phase spectrum reflects highly informative structural details
[7], which correlates with human perception of visual information.

3.2  Latent Spectrum Representations

Given an image X € R€*H#*W where C, H,W represents the channel, height, and width

of the image, respectively. We apply a 2D FFT independently to each channel and get
the corresponding spectrum representation F,.. We denote the FFT and the inverse FFT
operations as F, F~1, respectively, and formulate this transform F, = F(x) as fol-
lows:

H-1W-1 uh vw
Fuv)= ) 3 e HW - x(h,w) )
h=0
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where x(h, w), E,.(u, v) denotes the value in the spatial and spectral domain at the
coordinates (h,w) and (u,v), respectively. Additionally, we use ¢,, 4, to represent
the phase spectrum and amplitude spectrum, which are defined as:

¢, (u, v) = arctan [% @

A, = JRe(F,(u,v)? + Im(F, (u, v)? 3)

In Egs.(2)-(3), Re and Im represents the real and imaginary parts of F,. The image or
features x can be recovered directly from F, via F~! or more intuitive through

E, = F(x) = A,e/?™¢x 4)
x =F UE) = Fl(a,e/2mx) (5)

For the phase and amplitude spectrum ¢,, A,, there are two notable properties: 1) ¢,
itself captures structural information, enabling consistent enhancement of global recep-
tive fields. 2) A, captures magnitude of informative features, which can be utilized with
a simple attention module to regulate the flow.

3.3  Latent space Phase-Gating

Our goal is to adaptively modulate phase and amplitude during training. To achieve
this, we propose a latent space Phase-Gating (PG) operation to enhance the global fea-
tures. Given phase ¢, and amplitude A,., the proposed PG operation is formulated as
follows:
Ay = G(4y) (6)
¢x = Convyyq(¢y) (7)



F| = Al e/?mx (8)

where G refers to a component that regulate the flow of globally important features. In
Eq. 7, a simple convolution layer with kernel size 1 x 1 and BN is used to magnify the
phase. For operation G, we adopt a lightweight attention module designed for features
learning in the latent space [11].

To clarify the use of this module, we expand Eq. 3. An aggregation of A, is per-
formed to obtain AT%* and A% ¢ using max-pooling and average-pooling operations
over all channels. These serve as compressed representation of A,. We then concatenate
them and apply a convolution layer with kernel size 7 X 7 to access its relative im-
portance with respect to its neighbors. This convolution layer, despite its large kernel
size, remains computationally efficient as it only applies to two channels in prac-
tice. The result is then passed to a sigmoid function and multiplied back with A,,.. Thus,
we can rewrite Eq. 6 as:

av,

Ay = A, ® g(Convyy, ([ATY, A9 1)) ©9)
where o is the sigmoid function, [,] denotes concatenation, and  is element-wise
multiplication.
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Fig. 1. Illustration of the proposed Phase-Gating (PG) component and the overall network archi-
tecture. The PG adaptively modulates phase and amplitude during training to capture globally
important features. It involves four key operations: a 2D FFT to covert the input into phase ¢
and amplitude A, a gating operation to regulate the flow, a simple convolution layer with kernel
size 1 x 1 and BN to enhance phases, and a 2D inverse FFT to transform back to the original
latent space.



3.4 Network architecture with dual-branch features aggregation

The features captured using PG are generally global. Therefore, we use a dual-branch
features aggregation method from [10] to ensemble both local and global features. This
architecture has been proven effective in [10, 13]. It uses a split-and-merge concept to
capture complementary features with different receptive fields and intentionally ex-
change information between them. Given features X € REH*W it is first split along
the features channels into local and global part, denoted as X!, X9, respectively, where
X = [X4, X9] with X! € RAOCXHXW anq X9 € R¥HXW  Qimilarly, output features
Y € ROH*W can be split into Y, Y9, where Y = [V}, Y9] with Y! € RA-AICHXW apq
Y9 € RECHXW Both @, f are in range between 0 and 1, controlling the degree of com-
plementarity. This dual-branch features aggregation can be formulated as:

i = £ (X)) + £ (X9) (10)
Y9 = £,(X9) + fing (X') (11)

where f denote four different transformation functions. f; corresponds to spectral
transform implemented in [10] while other three are regular convolutions. We evaluate
the proposed PG by integrating it into the spectral transform branch.

For the overall network architecture, we build upon the Cellpose architecture [8],
which extends from U-net [9]. U-net is compact and efficient for producing binary mask
and separating foreground/background pixels. However, it was not initially designed to
separate different instances of the same category. Cellpose adds two additional layers
along the mask prediction process to compute the horizontal and vertical gradients.
These three components are then combined to produce the final results. Additionally,
Cellpose utilizes a “style” vector, defined as the average pooling at the smallest feature
map with normalization. This vector is subsequently used until the last convolutional
layer, except during the upsampling operation.

4 Experiments

4.1 Data

The proposed method was evaluated with a comprehensive chemical-phenotype dataset
described in [14]. The data included 5779 parasites from the training and validation set,
and the test set, referred to as the ASA set, was the same as used in [6], and contained
7015 parasites. A summary of the dataset is provided in Table 1. The datasets were
obtained by hand-labeling on a high-resolution touch-screen device. On an average, it
took about 20 minutes to label one image, although some images required significantly
longer labeling time due to the number of parasites present in it.

Additionally, evaluating deep learning-based segmentation methods on images cor-
rupted by different types of noise allows us to gain an understanding of real-world per-
formance. A number of noise models have been considered in the literature [15], in-
cluding: blur, noise, digital, and weather corruptions, each with five severity levels con-
trolling the corruption intensities. In this paper, we focus on blurring, such as motion



blur, defocus blur, and Gaussian blur. This is due to the wells in which the parasites
were located during screening imaged have depth, not all parasites were co-planar. Con-
sequently, some parasites appear blurred and testing the segmentation accuracy on
blurred images provides an indication of real-world robustness.

Table 1. Summary of the data

Training and Validation ASA
Total parasites 5779 7015
Image size 1040 x 1388 1040 x 1388
Parasites in each image 14 - 68 23 -56
The size of parasites 1494 - 7383 942 - 6672
Perimeter of parasites 144 - 400 118 -410
Proportion of o o o o
the bbox filled 21% - 86% 20% - 83%
Grayscale mean intensity 94 - 205 79 -211
Exposure time in days 1,2,3,4 1,3,7
Concentrations in uM 0.01,0.1, 1, 10 0,0.01,0.1, 1
Acepromazine, Alime- . Aceprgmazme,
. . Alimemazine, Chlo-
mazine, Chlorophenothia- L
. . rophenothiazine,
zine, Hycanthone, Methio- .
. . K777, Pravastatin
Compound thepin Mesylate, Mevastatin, .
: . Praziquantel
Pravastatin, Praziquantel .
. (PZQ), Promazine,
(PZQ), Promazine, Rosuvas- .
. . . Rosuvastatin,
tatin, Triflupromazine . .
Simvastatin, Control

4.2

Evaluation Metrics

Following [6], we use the following measures to assess segmentation accuracy.

1.
2.
3.

Precision, Recall, and F1 values for the foreground pixels.

Precision, Recall, and F1 values for the edge pixels.

Object-count agreement. Defined as the fractional object count discrepancy O =
[Ns — N,|/N,, where O is the discrepancy, N, is the true number of objects and
N is the number of objects in each trial segmentation.

Mean deviation of object boundaries. Estimated by calculating the average ab-
solute difference between the Euclidean distance transform of the ground truth
object boundaries and the boundaries of the objects from the trial segmentation.
Degradation. Defined as the fraction between the performance of one method
relative to a reference.

Each metric is computed as the average value across all images in the test set, and this
value is weighted by the number of objects present in each ground truth image. This
approach ensures a comprehensive and nuanced evaluation, taking into consideration
the varying complexities of the ground truth images.



4.3 Implementation

We implemented the ASA methods using Matlab and the PG method using Python with
PyTorch. We utilized the codebases provided by the authors of Cellpose [8] and FFC
[10]. Additionally, we implemented the DFF [13] based on the description in the paper,
as no codebase was provided. We also used the implementations of Mask R-CNN [5]
from MMDetection frameworks [16].
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Fig. 2. Segmentation results for parasites subjected to Praziquantel (PZQ) with 1 and 7
days of exposure. Each column displays results obtained from the original image, the
ground truth labels, and the segmentation methods, respectively. The rows represent
clean image and image with defocused blur at severity level 3.



4.4  Training parameters

We trained two versions of Mask R-CNN: one using pretrained weights and the other
trained from scratch. Both versions were trained using the AdamW optimizer with a
learning rate of 0.001, a weight decay of 0.01, and a batch size of 2. The learning rate
was reduced by a factor of 10 at 8§, 15, and 20 epochs, for a total of 24 epochs. Both
versions employed multi-scaling training methods based on the size of the objects in
the image.

The Cellpose architecture, along with regular convolution, FFC, DFF and PG, were
trained with SGD optimizer with a learning rate of 0.01, a momentum of 0.9, a weight
decay of 0.0001, a batch size of 8, and a total of 200 epochs. The learning rate started
at zero and was linearly increased to 0.01 over the first ten epochs. At epoch 160, the
learning rate was reduced by a factor of 2 every ten epochs. For FFC, DFF, and PG, an
a, B value of 0.5 was used to evenly split the local and global channels.

4.5 Results

We initially tested the effectiveness of our proposed latent space Phase-Gating (PG) on
the ASA set. The results can be found in Table 2. It was observed that Mask R-CNN
with pretraining yielded the best performance, while Mask R-CNN trained from scratch
showed the worst performance. Our proposed PG method outperformed all other vari-
ations of the Cellpose architecture. However, it's worth noting that Mask R-CNN is
almost 20 times larger than the Cellpose architecture, making it significantly slower.
An illustration of the segmentation outcomes is depicted in Figure 2.

Table 2. Evaluation measures on the ASA set

Model Precision Recall F1 Edge. Pre- Edge Edge OCA | MBD
Name cision Recall Fl1
Style* 0.969 0.932 0.950 0.304 0.296 0.300 | 0.018 | 2.282
NoStyle* 0.968 0.935 0.951 0.302 0.294 0.298 | 0.020 | 2.294
FFC* 0.961 0.939 0.950 0.291 0.289 0.290 | 0.021 | 2.147
DFF* 0.964 0.936 0.949 0.293 0.289 0.291 0.019 | 2.165
PG* 0.966 0.938 0.951 0.297 0.293 0.295 | 0.016 | 2.049
ASA 0.898 0.967 0.930 0.169 0.172 0.170 | 0.049 | 2918
Mask 0.951 0.955 0.953 0.276 0.278 0.277 | 0.015 | 1.656
Mask 0.934 0.879 0.905 0.197 0.214 0.205 | 0.119 | 5.082
Scratch
* indicates Cellpose architecture, Mask means Mask R-CNN with ResNet 50

All the deep learning-based segmentation methods attained good F1 scores for edge
pixels, with the Cellpose architectures being the most effective. On the other hand, the
ASA methods achieved the lowest F1 scores for edge pixels due to their tendency to
segment the outer boundaries of the parasites instead of the center. This could be an
issue as it could alter the segmented shape, particularly when dealing with parasites that
are in contact with image artifacts introduced by the culture medium.

We also evaluated these methods against the ASA set with blurring. The Cellpose
architecture with regular convolution and “style” representation was used as a reference
method. We calculated the average degradation of all methods across all five severity
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levels in comparison to the reference method. The results can be found in Table 3. DFF
appears to be excessively sensitive and therefore performed poorly compared to FFC
and PG. Cellpose with no style representation performed slightly worse across all the
blur types. Mask R-CNN with pretraining produced the best degradation results, while
Mask R-CNN trained from scratch showed results similar to FFC and PG. On the other
hand, ASA methods performed slightly worse than FFC and PG.

Table 3. Evaluation degradation on the ASA set with image blur

Motion Blur Defocus Blur Gaussian Blur
Model Edge Edge Edge
Name MBD F1 F1 MBD F1 F1 MBD F1 Fl
Style* 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
NoStyle* 1.010 1.008 0.997 1.045 1.065 1.009 1.071 1.067 1.008
FFC* 0.730 1.009 1.007 0.490 0.834 0.996 0.615 0.887 1.002
DFF* 0.851 1.036 1.005 0.735 0.973 1.009 0.739 0.980 1.012
PG* 0.752 0.996 0.998 0.562 0.928 1.027 0.662 0.932 1.017
ASA 0.817 1.072 1.009 0.671 1.080 1.072 0.819 1.179 1.129
Mask 0.551 0.725 0.942 0.481 0.855 0.992 0.574 0.904 1.023
Mask 0.734 1.033 1.007 0.519 0.861 0.965 0.842 1.137 1.008
Scratch

5 Conclusion

This paper describes latent space Phase-Gating (PG), which leverages phase infor-
mation and gates the amplitude flow in the spectral domain, thereby improving the en-
hancement of globally significant features. In the context of specific spectral domain
component, PG, while being half the size, delivers higher segmentation accuracy com-
pared to FFC and DFF applied to phenotypic drug screening data. Furthermore, robust-
ness analysis against blurring, using average degradation as a metric, reveals that PG
delivers results comparable to FFC and surpasses other Cellpose architectures. The
findings presented in this paper underscore the potential of the proposed methods. Its
compact design and fast inference capabilities make it particularly desirable for high-
content screening applications and ASIC hardware implementations.
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