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Abstract. Schistosomiasis is a parasitic disease with global health and socio-
economic impacts. The World Health Organization (WHO) and National Insti-
tutes of Health (NIH) list it among diseases for which new treatments are ur-
gently required. Drug discovery for Schistosomiasis typically involves whole-
organism phenotypic screening. In such an approach, the parasites are exposed
to different chemical compounds, and systemic phenotypic effects captured via
microscopy (video or still images) are analyzed to identify promising mole-
cules. Changes in parasite phenotypes tend to be multidimensional, involving
changes in shape, appearance and behavior, and time-varying. In many image
representation frameworks, shape and appearance are measured independently
and their inter-correlation can be lost. In this paper, we propose an integrated
shape-texture descriptor called the skeleton-constrained shortest band (SCSB)
that extends the family of shape context descriptors well known in computer vi-
sion. We examine how SCSB can be used to measure temporally varying shape
and appearance changes occurring as a consequence of chemical action and
compare its performance with other members of the shape context family.

Keywords: Shape Context, biological imaging, microscopy, parasitic diseases,
whole-organism screening, drug discovery.

1 Introduction

1.1  Background

Schistosomiasis is a parasitic disease with global health and socio-economic impacts.
It is estimated that over 200 million people are currently infected and more than 700
million are at risk across 78 countries. Treatment is largely based on the drug pra-
ziquantel (PZQ). However, it is primarily effective during the adult stage of the worm
life cycle [1] and resistance to the drug has been observed [2]. Thus, the World Health
Organization (WHO) and National Institutes of Health (NIH) list schistosomiasis
among diseases for which new treatments are urgently required.

Drug discovery for Schistosomiasis (and other helminthic diseases) typically in-
volves whole organism phenotypic screening. In this process, parasite(s) are exposed
to different compounds and the resultant multidimensional and systemic phenotypic



changes are recorded and analyzed to determine the efficacy of the compounds and
identify putative novel drugs. Starting with the pioneering work in [3], the develop-
ment of phenotype-analysis methods for this area has attracted significant interest.
Within this context, one of the key technical challenges lies in the development of
image representation-comparison frameworks that can capture the wide variety of
correlated shape-appearance changes exhibited by the parasites causing schistosomia-
sis.

1.2 Problem formulation

In order to precisely measure complex parasite phenotypes, the representation must be
accurate, robust, and invariant to the following characteristics: (1) Euclidean and scale
invariance, (2) significant deformations that occur as the parasites move, and (3) a
range of imaging conditions. Furthermore, shape and appearance changes are not only
two of the most important aspects of parasite phenotypic responses, but they can also
be correlated. For example, as the shape of the parasite deforms during motion, its
body texture changes in a coupled manner. Consequently, integrated shape-texture
descriptors are required since measuring these attributes independently may fail to
capture their interrelationship.

The example in Figure 1 illustrates these characteristics. In it, a group of parasites
exposed to the antipsychotic drug acepromazine are followed across 10 non-
consecutive frames. It is easy to note that the illumination changes over the recording
time. More importantly, we can observe that the parasite at the bottom left of the top
row underwent significant changes in both shape and texture due to its movements.
The reader may also note the temporally evolving systemic degradation suffered by
the parasites (bottom row) when compared with the top row, as a result of chemical
action.
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Fig. 1. Depiction of shape and appearance changes over time: top-row due to parasite motion
and across top-and bottom row due to chemical action. The top row shows 6 parasites in 5
frames exposed to acepromazine (10 pM and one day of exposure to the compound). The bot-
tom row shows 5 frames with the parasites also exposed to acepromazine (10 pM, four days
after exposure to the compound).



2 Prior work

The first attempt to describe the complex phenotypes of Schistosomiasis using algo-
rithmic image analysis was made by Singh ef al. [3]. In this work the problems of
segmentation, appearance encoding, and phenotype classifications were addressed by
analyzing parasites exposed to a select set of compounds. The description of the shape
and appearance relied on measurements of eccentricity, entropy, and local pixel
range. Nevertheless, eccentricity alone is insufficient to fully encompass all of the
intricate deformation-driven alterations in the parasite shape. In a significant ad-
vancement thereafter, a public webserver called QDREC [4] for automatically deter-
mining dose-response characteristics and ICso values from microscopy images was
developed. In QDREC, 71 image-based features were used to describe the shape and
appearance. As mentioned above, many these features were calculated independently
for shape-appearance changes that are coupled and any interrelationships were, at
best, reflected implicitly in QDREC. Method development reported by us in this pa-
per is motivated by the shape-context family of representations. The progenitor of this
family of methods, the shape context (SC) representation [5], is known to be a robust
shape descriptor that is invariant to translation, rotation, and scale. Its generalization,
called the inner distance shape context (IDSC), and a combined descriptor using
IDSC and intensity gradient directions called the shortest path texture context (SPTC)
were proposed later [6]. However, we have found (and demonstrate in this paper) that
IDSC can be sensitive to inconsequential shape variations. Furthermore, intensity
gradient directions may be too simplistic to describe complex texture changes.

3 Methods

3.1 Integrated Representation of parasite morphology and appearance.

In this section, we start by summarizing the shape context (SC) representation. Given
the contours of a parasite P| P € R?, the shape context descriptor SC(P) is defined as
the relative distribution of each of the contour points of P to the other contour points.
That is, for the contour P = {cy, ..., ¢,}, SC(P)= {di, d, ..., d,}, where d, is a log-
polar histogram capturing the distribution of the contour points {c#cn} relative to cu
as defined in Eq. (1), where k indexes the bins of the histogram (See Figure 2a).

dpm (k) = #{(c; — cp) € bin(k),m # j} €))

Each histogram d,, can be rotated and positioned based on the tangent line at ¢, to
obtain rotation invariance. SC is also invariant to Euclidean transformations and is
known to be highly noise tolerant. Scale-invariance can be obtained if the radius of
the log-polar histogram is calculated using the mean distance between all the points
pairs.



In the IDSC, the geodesic distance i.e., the shortest path between a pair of points
that is completely contained inside the shape is used to construct the log-polar histo-
gram (Figure 2b). Due to its use of inter-point geodesics, IDSC is invariant to shape
articulations. The reader is referred to the original SC and IDSC papers for a detailed
technical explanation underlying the characteristics of SC and IDSC methods. How-
ever, the geodesic distance uses other points as bridge points if the Euclidean distance
between a pair of points doesn’t entirely lie within the shape, and as we have found, it
is particularly sensitive to small changes on the contour under these conditions.
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Fig. 2. A figure caption is always placed below the illustration. Short captions are centered,
while long ones are justified. The macro button chooses the correct format automatically.

Such sensitivity is of course highly undesirable, since in such cases, the geodesic
distance may fluctuate unpredictably for small local changes in the contour. As an
alternative we propose a descriptor which constrains the geodesic distances between
an arbitrary pair of contour points to pass through the shape skeleton (Figure 2¢). The
incorporation of the shape skeleton leads to more robust descriptor that is also sensi-
tive to shape articulations when compared to SC and IDSC.

We define the skeleton-constrained inner distance (SCID) for object O with con-
tour P and skeleton S = {s, ..., 5.} as follows:

a(c;, ¢j; 0) = a(c, s;; 0) + a(sy, s;; S) + a(s;, ¢; 0) 2)

a(c;, s;;0) = min{a(c;, s;; 0),c; € P and Vs; € S} 3)

In Eq. (2) and (3), a(c;, ¢j; O) is the skeleton-constraint inner distance from ¢; € P to
¢j € P, a(c, 545 0) is the shortest (in the least square) sense path from the contour
point ¢; to the s; € S which contained inside the object 0, a(s;, ¢;; 0) is the shortest
(in the least square) sense path between s; € S and ¢; € P, and a(s;, s;; S) is the path
from s; to s; along the skeleton S. Typically, the skeleton is computed using the me-
dia axis transformation and can be sensitive to contour variations leading to unneces-
sary branching of the skeleton. To improve the robustness, a pruning step is applied to
the skeleton. Specifically, the skeleton S is first divided into the main branch S, and
side branches S; such that:

s=sau{Usi} and S, N S; = @, Vi @
i



Fig. 3. Skeleton and their skeleton-constrained shortest paths before and after the pruning step.
The left two images represent the unpruned version, and the right two images represent the
pruned version with only the main branch left.

Subsequently, a proportion of S; can be pruned based on its characteristics (Figure 3).
The pruning is done as the following: (1) The main branch and side branches are iden-
tified by measuring the distance along the skeleton between all its endpoints, (2) side
branches are ordered by their distance, and (3) the shortest side branches are pruned
based on a pruning ratio which can either be user-specified or determined automati-
cally.

To explain our approach to the joint modeling of shape and texture, we begin by
noting that in the SPTC by the shape information captured by the IDSC is supple-
mented by measuring the distributions of (weighted) relative orientation through the
shortest paths. The relative orientation is obtained by measuring the angles between
intensity gradient directions and shortest path direction, and the weight is gradient
magnitudes. The SPTC is a 3-D histogram where the inner-distance and the inner-
angle used as the first two dimensions are the same as IDSC. The third dimension is
binned normalized histogram of weighted relative orientation.

Our approach combines shape and appearance through similarly but uses a differ-
ent texture descriptor called dominant rotated local binary pattern (DRLBP) [7].
DRLBP is a rotation invariant texture descriptor that builds on top of the local binary
pattern (LBP), where the central pixel of a local circular region is compared with its
neighbors.

B-1
LBPys = ) sy — o) -2" 5)
b=0

In Eq. (5), p. and p;, denote the gray level intensity of the central pixel and its neigh-
bors, R is the radius of the circular neighborhood, B the number of neighbors, and s is
an indicator function where its value is 0 if the neighbor pixel is less than the central
pixel, 1 otherwise. A dominant direction is then defined (Eq. (6)), which can be used
to rotate the LBP and thereby achieve rotational invariance (Eq. (7)).

DIR = arg maxpe(o1,..5-1) | Db — Pl (6)
B-1
DRLBPrp = Z s(pp —Pe) - gmod(b—DIR,B) %

b=0
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Fig. 4. Appearance and texture of a parasite using relative orientation and DRLBP. (a) Original
parasite, (b) Weighted relative orientation. (c)(d)(e) Weighted Rotated Local Binary Pattern
(WRLBP) with radii 1, 2, 3, respectively.

DRLBP is invariant to illumination due to the indicator function. It is also a more
flexible and informative texture descriptor as a broader range of neighborhood pixels
can be considered with the radius parameter (Figure 4). To distinguish darker para-
sites from lighter ones, even when they are similarly textured, we can weigh the
RLBP as the following:

WRLBPg 5 = DRLBP, 5 -5—; (8)

Finally, to obtain the integrated shape-appearance description of an object O with
contour P, which we shall call the skeleton-constrained shortest band (SCSB),

a(cm, ¢j; 0) is the shortest path between the contour point ¢, and ¢; of P as defined
above. The new k™ bins of the 3D-histogram can be formulated as the following:

d (k) = #{p; € bin(k), p; € a(cp, ¢;; WRLBPg (0))} ©

where WRLBP; (0) is the appearance of object O and p; are the pixels along the
SCID inside WRLBPg 5(0).

To match two objects with their histograms, we must find the point correspondenc-
es and compute the dissimilarity score between them. The dissimilarity between the
contour points from one object to another is calculated as the y? distance between
their corresponding histograms:

[af (k) = d? ()]

K
1

cost(cip,ch) = )(Z(df,de - _Z . .
24 df (k) +d? (k) + ¢

In Eq. (10), df represents the histogram computed at point ¢; of an object with con-

(10)

tour P and cost(cf , ch) represents the dissimilarity in terms of y? distance between

histograms d! and de.

(e} R ch T

Fig. 5. Matching of two pairs of parasites using the Hungarian methods, DP method with a
threshold parameter 0.3, and circular matching: (a), (c) Matching using DP method with a
threshold parameter 0.3. (b), (d) Matching using circular matching.



Given a set of cost(cip , ch) of all the points between two objects, the final dissimilari-

ty score and correspondences can be computed by obtaining correspondences between
pairs of contour points. Such a correspondence can be obtained either by using the
Hungarian algorithm with additional “dummy” points used by Belongie et al. [5] or
by dynamic programming (DP), as proposed by Ling et al [6]. However, both ap-
proaches are problematic. The Hungarian algorithm computes the optimal cost be-
tween two objects but doesn’t consider the connectivity constraints between contour
points leading to non-monotonic matching of point pairs. The “dummy” points intro-
duce a constant cost and can be treated as a threshold parameter to filter out the pairs
of points with high-cost scores. However, this doesn’t consider the non-monotonic
matching with low-cost scores. In our case, this parameter is hard to choose as large
deformation can result in a higher cost score while small deformation can result in a
lower cost score and the final dissimilarity score could be inconsistent due to the
choice of the threshold parameter. See Figure 5a and 5c, the correspondences for the
same threshold 0.3 works very differently when large and medium deformation ap-
pears. Therefore, we use a similar approach to the DP method but enforce all match-
ing without the threshold parameter as this is better at presenting dissimilarity score
involving large deformation, and we call this circular matching (CM) (Figure 5b and
5d).
Table 1. Statistical summary of the dataset

Dataset
Total parasites 175

The size of parasites 2314 - 6668

Perimeter of parasites 166 - 390
Proportion of the bbox filled 19% - 79%

Grayscale mean intensity 108 - 196
Exposure time in days 1,2,3,4,7

Concentration in uM 0%,0.01,0.1, 1, 10

Acepromazine, Alimemazine, Amitripty-
line, Chlorophenothiazine, Clomipramine,
Cyclobenzaprine, Desipramine, Hycantho-
ne, Imipramine, K777, Methiothepin Me-
sylate, Mevastatin, Niclosamide, Pravas-
tatin, Praziquantel (PZQ), Promazine, Pro-
methazine, Rosuvastatin, Simvastatin, Tri-
flupromazine, Control*

Compounds




4 Experiments
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Fig. 6. The comprehensive datasets. Left are examples from the 50 paired parasites. Right are
examples from the 75 unique parasites.

The proposed methods are evaluated with a comprehensive chemical-phenotype da-
taset that was reported in [8]. It contains 50 paired parasites from consecutive frames
of the same video include small, medium and large deformations, and 75 parasites
with unique phenotypes (Figure 6). A summary of the dataset is provided in Table 1.
Now we describe the parameter used through all the experiments. We use n to denote
the number of sample points on the outer contour of the shapes. As n gets large, is the
contour representation becomes more accurate but less efficient. For the size of histo-
grams, n,., n;, and n; are used for the number of bins for log-distance on the radius,
the number of bins for the angles, and the number of bins for the intensity levels,
respectively. For the pruning fraction used to prune branches of the skeleton, fis used.
In our work, a typical setting for these parameters was n, =5, n, =12, n; =
16, f = 0.25 and are used through all the experiments in this paper.

4.1 Shape Retrieval in terms of deformation
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Fig. 7. Two case studies on shape retrieval in terms of deformation. (a) Case study one with
100 parasites. (b) Case study two with 175 parasites.

Although SCID does not explicitly factor-in deformation, it is relatively robust for
deformable shape retrieval when compared to SC and IDSC. The 50 pairs of parasites
from consecutive frames show a variety of cases when small, medium, and large de-
formations are observed to occur in the Dataset (see Figure 6). We designed two case
studies to compare SCID, IDSC, and SC. Both the case studies go through the same
step. For each of the 100 parasites (50 pairs), if the desired shape (the other parasite in
the pair) appears in the top K retrievals, it is considered a hit (the parameter K is var-



ied as part of the study). A percentage can be calculated based on the number of hits
for all the 100 parasites.

The first case study query uses only the 50 pairs of the parasites (total of 100),
while the second case study query uses all the 175 parasites in the Dataset. See Figure
7. SCID shows better shape retrieval compared to IDSC and SC. Both case studies
lead to similar conclusions, i.e., SCID is better at shape retrieval when deformation

are presents, especially when K < 10 corresponding to the requirement of high preci-
sion in the retrievals.

4.2  Robustness and Sensitivity

In this section, we compare the sensitivity of SCID and IDSC. We have noted that
IDSC may be sensitive to small changes on the contour while SCID is not. An exam-
ple is shown in Figure 8.
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Fig. 8. Fluctuations in the IDSC (top row, showing the shortest paths) and SCID between the
same two points of the same parasite taken from 11 consecutive frames.

We can observe that the shape changes between these 11 consecutive frames are
small. However, the shortest path inner distance fluctuates between the two points
across the frames resulting in inconsistent dissimilarity scores. In Figure 9, these dis-
similarity scores are shown for both IDSC and SCID. Clearly, SCID is more robust
and less sensitive than IDSC for this example with small contour variations.
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Fig. 9. Dissimilarity scores between 11 parasites in successive frames using both SCID and
IDSC. Unlike the SCID curve, the IDSC curve shows large fluctuation even when parasite
shapes show small changes.
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For significant deformations, the fluctuations in the geodesic distance used in IDSC
are greater as compared to the SCID. To demonstrate this, consider the following five
parasites across 11 consecutive frames (Figure 10).

Fig. 10. 5 parasite contours across 11 consecutive frames exhibiting significant shape defor-
mations.

Instead of determining the shortest path using IDSC and SCID between two specific
points of these parasites as in the previous experiment, we compute a more holistic
statistic obtained by determining the variances of the shortest path distances between
all paired points across the 11 frames for these two methods. For each of the five par-
asites, a pair of boxplots is used to present a side-by-side comparison of the variances
in Figure 11.
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Fig. 11. The boxplots from left to right correspond to the parasites (and their deformations)
shown from top to bottom in Figure 10. The label 1 in each boxplot denotes the variance of
IDSC while the label 2 denotes the variances of SCID.

The reader may note that both IDSC and SCID show large variances for large shape
deformations. However, the variances in SCID measurements are always less than the
corresponding variances in the IDSC measurements. These two experiments demon-
strate the robustness of the SCID representation.



4.3  Phenotype Retrieval
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Fig. 12. Two case studies on shape retrieval in terms of deformation: (left) Case study with 100
parasites. (right) Case study with the set of 175 parasites.

In the previous section, we showed how SCID compared with SC and IDSC. Using
the same experimental settings we compare the SPTC with the SCSB (using radii of
1, 2, and 3). In Figure 12, the retrieval performances are shown for the top-K hits
(K £10). SCSB is found to consistently perform better than SPTC across all the
values of K with the best results obtained with the radius value of 3.

5 Conclusion

This paper describes a novel shape-texture descriptor based on a new inner-distance
formulation called skeleton-constraint inner distance and compares it to prior shape
context formulations. Preliminary results on phenotypic screening data underline the
robustness and promise of the proposed approach for shape and appearance matching.
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