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Abstract
Previous work on fairness in federated learning
introduced the notion of core stability, which pro-
vides utility-based fairness guarantees to any sub-
set of participating agents. However, these guaran-
tees require strong assumptions on agent utilities
that render them impractical. To address this short-
coming, we measure the quality of output mod-
els in terms of their ordinal rank instead of their
cardinal utility, and use this insight to adapt the
classical notion of proportional veto core (PVC)
from social choice theory to the federated learn-
ing setting. We prove that models that are PVC-
stable exist in very general learning paradigms,
even allowing non-convex model sets, as well as
non-convex and non-concave loss functions. We
also design Rank-Core-Fed, a distributed fed-
erated learning algorithm, to train a PVC-stable
model. Finally, we demonstrate that Rank-Core-

Fed outperforms baselines in terms of fairness on
different datasets.

1. Introduction
Federated learning (FL) provides an effective distributed
learning paradigm whereby a group of agents holding local
data samples can train a joint model without sharing their
private data. The paradigm has been widely used for differ-
ent applications such as autonomous vehicles (Elbir et al.,
2020) and digital healthcare (Dayan et al., 2021; Xu et al.,
2021).

Due to the heterogeneity in their data distributions, the ben-
efit derived by the agents from the final model vary. Thus, a
fast-growing line of work (Mohri et al., 2019; Huang et al.,
2021; Li et al., 2020b; Zhang et al., 2023; Chaudhury et al.,
2022) focuses on good intent fairness in FL, where the goal
is to prevent the final model from over-fitting to particular
agents at the expense of other agents.

A particularly compelling approach to fairness in FL was
introduced by Chaudhury et al. (2022).1 Their FL algorithm,
CoreFed, guarantees outcomes that are core stable; this

1See Section 1.1 for a more detailed comparison of fair feder-
ated learning algorithms

intuitively means that every possible coalition of agents
receives utility guarantees that are stronger the larger the
coalition is. In particular, core-stable outcomes are propor-
tional — for each of the n agents, their utility for the out-
put model is at least 1/n of their maximum utility for any
model — and Pareto optimal — it is impossible to improve
the utility of some agents without harming others. In addi-
tion, core-stable outcomes are robust to noisy outliers, as
the coalition of non-noisy agents, which consists of most
agents, has very strong guarantees.

However, the guarantees provided by CoreFed rely on the
assumption that the utility functions of agents are concave.
In fact, as we show in Example 1, this is unavoidable: even
weaker guarantees that relax proportionality — specifically,
giving each participating agent any fraction of their best
possible utility — are unattainable for non-concave utilities.
This is a major obstacle to applying the approach for more
general machine learning models that are used in practice,
such as deep neural networks.

Our approach. To overcome this obstacle, we seek fairness
guarantees that are not functions of utilities, yet still reflect
the quality of the model for the agent. Our key insight is to
focus on the rank of models. Intuitively, we say that a model
θ has rank r ∈ [0, 1] for agent i if i weakly prefers (based
on utility) θ to an r-fraction of all possible models (so more
preferred models have higher rank).

This idea of rank allows us to adapt a notion of core from
social choice theory that is tailored to ordinal preferences:
the proportional veto core (PVC). In our FL setting, we
say that a model θ is PVC-stable if the fraction of models
the coalition unanimously ranks higher than θ is at most
1− |T |/n; informally, each coalition can veto a fraction of
models proportional to its size, hence the name of this notion.
The PVC provides “rankwise” analogues of the guarantees
given by the (“original”) core. In particular, setting T = {i}
implies an ordinal notion of proportionality, whereby agent
i ranks θ in the top (1 − 1/n) fraction of their models;
we call this property rankwise proportionality. Similarly,
setting T = {n} implies Pareto optimality. Finally, the PVC
ensures that similarity in the preferences of a large subset
of agents would imply high utility for these agents. As an
extreme example, if 70% of agents have the same utility
function, then a PVC-stable model is guaranteed to be in the
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top 30% of models for these agents — , and this guarantee
smoothly extends to the case of similarity instead of identity
between agents (Lemma 1). Once again, the implication is
that a relatively small contingent of outlier agents cannot
significantly affect the guarantees of a cohesive majority.

Having introduced and justified the proportional veto core
in the context of FL, our technical challenge is now obvious:
Determine under what conditions PVC-stable models are
guaranteed to exist and design a practical FL algorithm
that outputs PVC-stable models.

Our results. Our main theoretical result is that PVC-
stable models always exist under the essentially unrestric-
tive assumption that the utility functions of the agents are
Lebesgue-measurable. Note that this assumption is much
milder than the concavity assumption required for core-
stability (Chaudhury et al., 2022), which means that by
moving from a cardinal to ordinal notion of core, we are
indeed able to significantly relax the assumptions and obtain
guarantees that hold in practical machine learning settings,
including deep neural networks.2

Next, we design an algorithm, Rank-Core-Fed, which out-
puts core-stable models that also achieve high utilitarian
social welfare (sum of utilities). A challenge is that it is
intractable to compute the PVC with respect to all possible
models without imposing strong assumptions. Instead of op-
timizing over the “full” PVC, therefore, Rank-Core-Fed

starts by identifying a promising model, computes a set of
representative models P around the initial model, and then
computes the proportional veto core with respect to P .

Finally, we conduct comprehensive experiments on different
datasets with around 100 agents. Compared to baselines
such as FedAvg and CoreFed, we find that Rank-Core-

Fed has similar utilitarian social welfare and significantly
better fairness guarantees.

1.1. Related work.

There is a significant body of work on fairness in FL. For
instance, Huang et al. (2021) and Yang et al. (2021) impose
fairness at the agent selection phase, where the server re-
quests local model updates from the agents, while Wang
et al. (2021) mitigate large differences in the magnitudes
of the gradients sent to the server by each agent. Mohri
et al. (2019) achieve fairness by reducing the final model’s
worst performance on any client (a.k.a. egalitarian fairness).
Donahue & Kleinberg (2021) discuss the impacts of egalitar-
ian fairness and also introduce the concept of proportional
fairness, where the error rates of the agents are propor-

2Standard applications of deep neural networks result in con-
tinuous utility functions (Sze et al., 2017; Zhang & Sabuncu,
2018), which are Lebesgue-measurable (see Proposition 2 in Ap-
pendix A).

tional to the size of their local data.3 This notion is more
appealing than egalitarian fairness in scenarios where all
agents have equal opportunity to collect and contribute data
and therefore rewarding agents with larger contributions
(larger datasets) seems fair. Following fairness objectives
used in telecommunications (Mo & Walrand, 2000), Li et al.
(2020b) use the q-mean welfare (the weighted average of
the qth power of the utilities) to quantify the overall perfor-
mance and fairness of a model and determine the final model
by maximizing this objective. Li et al. (2020a) introduce a
novel framework through a subtle modification of the ERM
paradigm that helps establish fairness, robustness, reduction
in the influence of outliers, and a few other desirable prop-
erties. For a detailed overview of all these notions, we refer
the reader to the survey by Shi et al. (2021).

Note that a significant part of the literature chooses the
final model by optimizing an objective that reflects the fair-
ness and efficiency of the model (Mohri et al., 2019; Li
et al., 2020b;a). However, little is known about the fairness
guarantees for individual agents; in other words, those algo-
rithms do not make any promises to the agents about their
benefit from the final model. Such guarantees provided by
the solution are often desirable as they help explain the fair-
ness of the final model to the agents (Procaccia, 2019). In
FL, such guarantees can also incentivize participation.

Methods that do provide explainable fairness guarantees
to the agents include those of Chaudhury et al. (2022) and
Zhang et al. (2023). Zhang et al. (2023) guarantee propor-
tionality with respect to the utilities, and, as discussed ear-
lier, Chaudhury et al. (2022) ensure that the final model is
core-stable. However, both papers require very strong as-
sumptions (like concavity of the utility functions) for their
guarantees. In this paper, we achieve similar guarantees
through the proportional veto core in far more general set-
tings.

2. Theoretical Guarantees
We start by formally presenting our setting. A federated
learning (FL) instance has n participating agents, denoted
by [n] = {1, . . . , n}, who want to jointly training a model
θ ∈ P ⊆ RN .

To be consistent with the standard literature in social choice
theory as well as prior work on fairness in FL (Chaudhury
et al., 2022), we denote the utility of agent i for model θ
by ui(θ). The utility ui(θ) measures the accuracy of θ on
the data distribution of agent i. For convenience, we assume
that the utility functions are normalized, i.e., for each agent
i, we have ui(θ) ∈ [0, 1]; this assumption is without loss of

3Note that this notion of proportionality is very different from
the notion of proportionality used in our paper, which is inspired
by the exact same notion in social choice theory
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generality as our fairness guarantees are scale invariant.

2.1. Inapproximability of Proportionality

As discussed in Section 1, our approach is motivated by the
observation that core-stability, in the sense of Chaudhury
et al. (2022), is inapproximable when agent utility functions
are non-concave, e.g., in deep neural networks. In fact, even
approximate proportionality is infeasible, in the sense that
it is impossible to guarantee agents any fraction of their
maximum utility for models in P . This is true even for
smooth utility functions, as demonstrated by the following
example.

Example 1. Let P = [0, 1] and n = 2. We define the utility
functions of the two agents as follows:

u1(θ) =

{
L · (θ − 1√

L
)2 θ ≤ 1√

L

0 θ > 1√
L

u2(θ) = u1(1− θ)

We first note that both utility functions are 2L-smooth:
Consider u1(·) and two points θ1 and θ2 ∈ [0, 1]. If both
θ1, θ2 ∈ [0, 1/

√
L], then

||∇u1(θ1)−∇u1(θ2)||2 = 2L||θ2 − θ1||2.

If θ1, θ2 > 1/
√
L, then

||∇u1(θ1)−∇u1(θ2)||2 = 0.

Lastly, if θ1 ≤ 1/
√
L, and θ2 > 1/

√
L, then

∇u1(θ2) = ∇u1(1/
√
L) = 0,

and therefore

||∇u1(θ1)−∇u1(θ2)||2 = ||∇u1(θ1)−∇u1(1/
√
L)||2

= 2L||θ1 − 1/
√
L||2

≤ 2L||θ1 − θ2||2.

The highest possible utility for both agents is 1: for agent
1, it is realized when θ = 0, and for agent 2, it is realized
when θ = 1. However, for any θ, one of the agents will
have a utility of 0: if θ ≥ 1/

√
L then the utility of agent

1 is 0, while if θ < 1/
√
L then the the utility of agent 2

is 0. Thus, at least one of the agents will have a utility of
zero and cannot be guaranteed any approximation of the
proportionality.

2.2. Definition of the Proportional Veto Core

The above example motivates us to define a fairness notion
that is feasible much more broadly. With the aim of achiev-
ing core-stability like guarantees akin to those of Chaudhury

et al. (2022) in general settings, we build on the notion of
proportional veto core (Moulin, 1981).

In the classical social choice setting, n voters each express
their preferences as a ranking of the m alternatives. The pro-
portional veto core principle requires that if a is a winning
alternative, then for any coalition T of voters, the number
of alternatives unanimously preferred by agents in T over
a should be at most m(1 − |T |/n). In other words, if any
coalition T prefers a sufficiently large number of candidates
(≥ (1− |T |/n) fraction) over a specific alternative a then c
is “vetoed” by the coalition.

To adapt this notion to our FL setting, we rely on ideas
from measure theory. For a set D ⊆ RN , the Lebesgue
measure λ(D) measures the high-dimensional volume of
D. We make the assumption that the set of models P is
Lebesgue-measurable; this is a very mild assumption as, for
example, any closed set is measurable. We also assume that
the agent utility functions ui(·) are Lebesgue-measurable 4.
This assumption is weaker than continuity: for completeness,
we show in Proposition 2 in Appendix A that any piece-wise
continuous function is Lebesgue-measurable.

Definition 1 (ε-Proportional Veto Core). For ε ∈ (0, 1/n),
let v(T ) := |T |

n − ε be the ε-proportional veto function.
A model θ ∈ P is said to be blocked by a coalition ∅ ̸=
T ⊆ [n] of agents if there exists a Lebesgue-measurable set
B ⊆ P such that for all i ∈ T and θ′ ∈ B, ui(θ

′) ≥ ui(θ)
with at least one inequality strict, and

v(T ) ≥ 1− λ(B)

λ(P )
.

A model θ is said to be in the ε-proportional veto core
(PVC) of P — or equivalently, θ is ε-PVC-stable — if it is
not blocked by any coalition of agents.

Put another way, a model θ is in the proportional veto core
of P if for any subset T of agents, the fraction of models
that are a Pareto-improvement over θ for agents in T is
strictly smaller than than 1− |T |/n+ ε.

2.3. Properties of PVC-Stable Models

We now show that an ε-PVC-stable model satisfies the fol-
lowing desirable properties.

(i) (Fairness) An ε-PVC-stable model θ is ε-rankwise
proportional. This means every agent prefers θ to a
(1/n− ε) fraction of all models.

(ii) (Efficiency) An ε-PVC-stable model is ε-Pareto-
optimal. This means that the set of models which are

4A function is measurable iff its lower level sets are measurable;
see Appendix A
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weakly-preferred over θ by all agents and strictly pre-
ferred by some is at most an ε fraction of all models.

(iii) (Improved guarantees under aligned preferences) In
instances where a large set T of α · n agents have well-
aligned preferences, an ε-PVC-stable model is in the
top (α− 2ε) fraction of models for each agent in T .

Below we formally define these properties and prove that
an ε-PVC-stable model satisfies them.

PVC-stable models are rankwise proportional. We de-
fine the rank of a model θ for an agent i as follows. Let
Pi(θ) = {θ′ | ui(θ) ≥ ui(θ

′)}.5 We define

ranki(θ) = λ(Pi(θ))/λ(P ).

Since the Lebesgue-measure of the set D is the high-
dimensional volume of D, ranki(θ) intuitively measures
the fraction of models that agent i prefers at most as much
as the model θ.

We now define our fairness metric. Given any FL instance,
we say that θ is rankwise proportional if for every agent,
θ is at least as good as a 1/n fraction of the entire set of
models. Formally, for ε > 0:

Definition 2 (ε-rankwise proportionality). A model θ is
said to be ε-rankwise proportional if ranki(θ) ≥ 1/n − ε
for all agents i.

To see why an ε-PVC-stable model θ is ε-rankwise propor-
tional, consider T = {i} for any fixed agent i. By Defini-
tion 1, i strictly prefers at most a (1− |{i}|/n+ ε) fraction
of models over θ. Equivalently, we have ranki(θ) ≥ 1/n−ε,
implying that θ is ε-rankwise proportional.

Finally, we remark that this guarantee is nearly tight, as seen
from the following example.

Example 2. Let P = [0, 1]. Consider two agents with
u1(θ) = θ, and u2(θ) = 1− θ. Then

rank1(θ) =
λ([0, θ])

λ([0, 1])
= θ,

and

rank2(θ) =
λ([θ, 1])

λ([0, 1])
= 1− θ.

Note that θ∗ = 1/2 is a PVC-stable model such that
rank1(θ

∗) = rank2(θ
∗) = 1/n, since n = 2. However

there is no model θ ∈ P such that rank1(θ) > 1/2 and
rank2(θ) > 1/2.

5We show that the sets Pi(θ) are Lebesgue measurable in Ap-
pendix A.

PVC-stable models are Pareto-optimal. To measure the
economic efficiency of a model, we use the standard notion
of Pareto-optimality (PO).
Definition 3. (Pareto optimality) A model θ ∈ P Pareto-
dominates a model θ′ ∈ P if all agents prefer θ at least as
much as θ′, and at least one agent prefers θ strictly more
than θ′. Thus, ∀i ∈ [n] : ui(θ) ≥ ui(θ

′), with at least one
inequality strict. A model θ is said to be Pareto optimal
(PO) if no model θ′ Pareto-dominates θ. A model θ is ε-PO
if the set B of models which Pareto-dominate θ satisfies
λ(B) ≤ ε · λ(P ).6

To see why an ε-PVC-stable model θ is ε-PO, consider
T = [n] in Definition 1. Then the fraction of models θ′ ∈ P
that Pareto-dominate θ is strictly smaller than ε, implying
ε-Pareto optimality.

PVC-stable models give improved guarantees under
aligned preferences. Here we show how a PVC-stable
model gives better guarantees to large groups of agents
that have aligned preferences. This is particularly useful
in instances that contain noisy agents (agents with vastly
different preferences from the majority), as such a property
ensures that a small group of noisy agents would not be able
to significantly impact the fairness guarantees of a large
group of non-noisy agents.

We first remark that this property is not always satisfied by
some of the existing fairness notions in FL. The following
example supports this claim.
Example 3. Consider n agents and the set of models P =
[1,m], where n divides m. Let ui(θ) = 1− (θ − 1)/m for
all i ∈ [n− 1]. Let un(θ) =

θ
m(n−1) for θ ≤ m(1− 1/n),

and

un(θ) =
1

n
+ (n− 1) ·

(
θ

m
−
(
1− 1

n

))
for all θ > m(1− 1/n).

Note that the maximum utility that any agent can achieve
is 1, and all agents have the same utility of 1/n for θ =
m(1− 1/n). Also observe that a federated learning algo-
rithm that incorporates egalitarian fairness, weighted equity-
based fairness, proportionality, or core-stability will choose
the final model θ = m(1− 1/n), giving every agent a utility
of 1/n. However, the same algorithm, if run in the absence
of agent n, will choose θ = 1 as the final model, giving
every agent in [n − 1] a utility of 1. Thus, under all the
foregoing fairness notions, a single agent can drastically
change the best achievable utility for all other agents.

By contrast, notice that an ϵ-PVC-stable model θ requires
that the agents in [n − 1] unanimously prefer at most a

6Note that Lemma 2 in Appendix A shows that B is a Lebesgue-
measurable set.
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1− (n− 1)/n+ ε = 1/n+ ε fraction of models in P over
θ. This will ensure that θ ≤ m(1/n+ ε), guaranteeing each
agent in [n− 1] a model in their top (1− 1/n− ε) percent
and a utility of (1− 1/n− ε) of their best achievable utility.

We now argue that one can expect similar guarantees more
generally. Consider a group of T of agents (|T | = nα) such
that for all θ ∈ P , we have |ranki(θ) − ranki′(θ)| ≤ δ
for all i, i′ ∈ T , i.e., the preferences of agents in T are δ-
aligned. For simplicity, we assume that the level sets of the
utility functions of the agents have zero measure (instance is
non-degenerate). Intuitively, this means that the fraction of
models with rank at least β is equal to 1− β, for β ∈ [0, 1].
We then prove:

Proposition 1. Let T be a group of agents of size |T | = nα
with δ-aligned preferences. If θ ∈ P is ε-PVC-stable then
for all i ∈ T , ranki(θ) ≥ α− 2ε− 3δ.

Proof. Assume otherwise. Let i ∈ T , and ranki(θ) < α−
2ε− 3δ. Then ranki′(θ) < α− 2ε− 2δ for all i′ ∈ T .

Next, define B = {θ′ ∈ P | ranki(θ′) ≥ α − 2ε}. Since
our instance is non-degenerate, we have λ(B)/λ(P ) =
1 − α + 2ε. Furthermore, note that for all θ′ ∈ B and all
i′ ∈ T , we have

ranki′(θ
′) ≥ α− 2ε− δ ≥ α− 2ε− 2δ > ranki′(θ).

Therefore, models in B Pareto-dominate θ for agents in T .
Now, observe that

λ(B)/λ(P ) = 1− α+ 2ε > 1− |T |/n+ ε,

which contradicts that θ is ε-PVC-stable.

Concretely, if 90% of agents have δ-aligned preferences,
then the above claim shows that all agents in T have a rank
of at least 0.9− 2ε− 3δ for an ε-PVC-stable model θ. By
contrast, the individual fairness guarantee of Theorem 1
is rank at least 1/n − ε. This shows that under aligned
preferences, a significant improvement in the individual
fairness guarantee is possible.

2.4. Existence of PVC-Stable Models

Having shown that a model in the proportional veto core
satisfies desirable core-like fairness and efficiency proper-
ties, we now turn to feasibility. We show that under mild
assumptions, the PVC is always non-empty. The following
theorem is our main theoretical result.

Theorem 1. In any FL instance where the set P of fea-
sible models is non-empty and Lebesgue-measurable and
agents have Lebesgue-measurable utility functions, the ε-
proportional veto core is non-empty for any ε ∈ (0, 1/n).

As mentioned earlier, the assumption that P is Lebesgue-
measurable is very mild. Similarly, the assumption that the
functions ui(·) are Lebesgue-measurable is also very mild.
In particular, it is weaker than continuity: for completeness,
we show in Proposition 2 in Appendix A that any piece-wise
continuous function is Lebesgue-measurable. Note that this
includes standard applications of deep neural networks (Sze
et al., 2017; Zhang & Sabuncu, 2018).

To prove the theorem, we require a technical lemma. The
lemma asserts that for an agent with a measurable utility
function u over a measurable set B, one can find for any
given α ∈ (0, 1) a set A ⊆ B of volume α times of that of
B such that the agent prefers every model in B \A over A
according to u.

Lemma 1. Let B be a measurable set with λ(B) > 0, and
let u : B → R be a measurable function. Then for any
α ∈ (0, 1) there exists a set A ⊆ B s.t. λ(A) = α · λ(B),
and for all θ1 ∈ B \A and θ2 ∈ A, u(θ1) ≥ u(θ2).

Proof. For sets C,D ⊆ B, let C ≥u D (resp. C >u D)
denote the statement that for all θ1 ∈ C, θ2 ∈ D, u(θ1) ≥
u(θ2) (resp. u(θ1) > u(θ2)).

Let Aℓ = {θ ∈ B|u(θ) ≤ ℓ} be the lower-level set of u(·)
for ℓ ∈ R. If there exists an ℓ ∈ R s.t. λ(Aℓ) = αλ(B) then
we are done, as B \Aℓ ≥u Aℓ by definition of Aℓ.

Therefore suppose λ(Aℓ) ̸= αλ(B) for every ℓ ∈ R. Let
ℓ1 = sup{ℓ | λ(Aℓ) < αλ(B)} and ℓ2 = inf{ℓ | λ(Aℓ) >
αλ(B)}. Let α1 = λ(Aℓ1)/λ(B) and α2 = λ(Aℓ2)/λ(B).
We clearly have ℓ1 < ℓ2 and α1 < α < α2. Note that
Aℓ1 ⊆ Aℓ2 .

Define the set C := Aℓ2 \Aℓ1 . Since Aℓ1 and Aℓ2 are mea-
surable by standard properties (see Def. 4 in Appendix A),
it follows that C = Aℓ2 \ Aℓ1 is measurable as well. By
definition of ℓ1 and ℓ2, for every θ ∈ C, u(θ) = ℓ2. We
have

λ(C) = λ(Aℓ2)− λ(Aℓ1) = (α2 − α1)λ(B) > 0.

Now we find7 a set D ⊆ C s.t. λ(D) =
(

α−α1

α2−α1

)
· λ(C).

Let A := Aℓ1 ∪D. Note that Aℓ1 ∩D = ∅, hence

λ(A) = λ(Aℓ1) + λ(D) = α1λ(B) +
( α− α1

α2 − α1

)
λ(B)

= αλ(B).

Moreover, we have B \ A ≥u A. To see why, consider
θ1 ∈ B \ A and θ2 ∈ A. Then θ1 /∈ Aℓ1 and θ1 /∈ D,
implying that u(θ1) ≥ ℓ2. Moreover θ2 ∈ Aℓ1 or θ2 ∈ D,
implying that u(θ2) ≤ ℓ2. Thus u(θ1) ≥ u(θ2).

7See https://math.stackexchange.com/questions/
2986033/find-a-subset-with-a-specific-lebesgue-measure
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We conclude that A is the required set, as λ(A) = α · λ(B)
and B \A ≥u A.

With the lemma in hand, we can now prove the theorem.

Proof of Theorem 1. For sets A,B ⊆ P and an agent i, let
A ≥i B (resp. A >i B) denote the statement that for all
θ1 ∈ A, θ2 ∈ B, ui(θ1) ≥ ui(θ2) (resp. ui(θ1) > ui(θ2)).

We perform the following iterative procedure for n iterations.
Let r = 1

n −
ε

n+1 . Let Q0 = P . In iteration i, we choose
a set a Pi ⊆ Qi−1 := P \ (P1 ∪ · · · ∪ Pi−1) such that
Qi := Qi−1 \ Pi ≥i Pi and λ(Pi) = r · λ(P ). Below we
argue why such a set Pi can be computed.

Observe by induction that:

λ(Qi) = λ(P \ (P1 ∪ · · · ∪ Pi)) = λ(P ) · (1− i · r).

Since r < 1/n, we have for i ≤ n − 1 that λ(Qi−1) >
r · λ(P ). Thus the existence of a set Pi ⊆ Qi−1 such that
Qi−1 \ Pi ≥i Pi is guaranteed due to Lemma 1 above.

We therefore have that Qn = P \ (P1 ∪ · · · ∪ Pn) satisfies
λ(Qn) > 0, and therefore Qn ̸= ∅. We claim that any
model θ ∈ Qn lies in the proportional veto core.

For the sake of contradiction, suppose this is not the case.
Let T ⊆ [n] be a blocking coalition for θ and let B ⊆ P be
a set of models s.t. λ(B) = λ(P ) · (1− v(T )) and models
in B Pareto-dominate θ for all i ∈ T . Define S = [k] for
k = argmaxi∈T i. Observe that:

λ(Qk) = λ(P \
⋃
i∈S

Pi) = λ(P ) · (1− |S| · r). (1)

Consider any c ∈ B. Since c Pareto-dominates θ for agents
in T , there must an agent i ∈ T s.t. c >i θ. However since
{θ} ≥i Pi, we have that c /∈ Pi. Hence, B ∩

⋃
i∈T Pi = ∅.

We use this to show that:

λ(Qk ∩B) = λ((P \
⋃
i∈S

Pi) ∩B)

= λ(B \
⋃
i∈S

(Pi ∩B))

= λ(B \
⋃

i∈S\T

(Pi ∩B))

= λ(B)−
∑

i∈S\T

λ(Pi ∩B)

≥ λ(B)−
∑

i∈S\T

λ(Pi)

= λ(P ) ·
(
(1− v(T ))− |S \ T | · r

)

(2)

Since λ(Qk) ≥ λ(Qk ∩ B), equations 1 and 2 together
imply that:

λ(P ) · (1− |S| · r) = λ(Qk)

≥ λ(Qk ∩B)

≥ λ(P ) ·
(
(1− v(T ))− |S \ T | · r

)
,

which implies v(T ) ≥ r|T |. However this is a contradiction
since r|T | = |T |

n −
ε|T |
n+1 > |T |

n − ε = v(T ).

3. Rank-Core-Fed: A PVC-Stable Algorithm
In this section, we introduce our distributed learning al-
gorithm Rank-Core-Fed that trains a model that is PVC-
stable and achieves high utilitarian social welfare — sum of
agent utilities.

Ideally, this can be achieved by an algorithm mimicking the
proof of existence in Section 2: Given a set P of feasible
models such that λ(P ) = λ∗, we iteratively consider the
agents; each agent removes a set B ⊆ P from P such that
λ(B) = (1− δ) · λ∗ and this agent prefers every remaining
model in P to every model in B. When this loop terminates,
we choose the model with the highest welfare from the
models remaining in P .

However, such an approach is often infeasible, as computing
the set B in every iteration is intractable unless we impose
more structure on the utility functions of the agents and the
set of feasible models P . For instance, when P is a polytope
and agents have linear utilities, the set B is always a poly-
tope and the set P \B is also a polytope with polynomial
description complexity (see Appendix B for more details).

Therefore, it is more practical to select a representative
subset P of models from P that are (i) guaranteed to be good
for many agents and (ii) the ranks of the models in P can
be estimated through computationally efficient subroutines.
Our algorithm for computing the representative set P builds
on this idea; it is described below and in Algorithm 1.

Initial Selection. Algorithm 1 starts by the group of
agents jointly training a model θ0 by using a standard al-
gorithm such as FedAvg. Note that no fairness guarantees
have been imposed yet.

Choosing the Representative Set. We initially define our
feasible set of models as P = {θ0}. Subsequently, each
agent samples J models, uniformly at random, along the
direction of the gradient of their utility function at θ0, i.e.,
for all j ∈ [J ], let ξj ∼ U(0, 1),

θi,j = θ0 + ξj · pi ·
∇θui(θ0)

∥∇θui(θ0)∥2
,
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Algorithm 1 Computes a representative set of P
1: Parameter: Number of models to sample per iteration

J , norm bound of sampled gradients p
2: Output: Set of models P ⊆ P
3: θ0 ← Output of FedAvg

4: Determine pi approximately through binary search.
5: for j = 1, 2, . . . , J do
6: ξj ∼ U(0, 1); {sample ξ uniformly}
7: for i = 1, 2, . . . , n do
8: θi,j ← θ0 + ξj · pi · ∇θui(θ0)

∥∇θui(θ0)∥2
;

9: P ← P ∪ {θi,j}
10: end for
11: end for

where pi is defined as the largest p such that

θ0 + p · ∇θui(θ0)

||∇θui(θ0)||2
∈ P,

and U(0, 1) denotes a uniform distribution on the interval
[0, 1]. Note that each pi can be estimated up to an additive
approximation of ε in O(log(1/ε)) time through binary
search.

Intuitively, for each agent i, the models Ri = {θi,j : j ∈
[J ]} constitute the representative set of models, as these are
the models near θ0 that can improve the utility of agent i.
We define P to be the union of the representative models
of all agents around θ0, i.e., P = ∪i∈[n]Ri. Now, we have
a finite set of models around θ0 (a model with high utili-
tarian welfare), and our goal is to choose a model in the
proportional veto core of P .

Selecting a Proportional Veto Core Model. We now
outline our algorithm, Rank-Core-Fed, which selects a
model in the proportional veto core of P . This is done
through iterative elimination. In iteration i, agent i sends
their set of least preferred |P|/n− 1 models in P , denoted
Ci, to the server. The server updates P ← P \ Ci. At the
end of the iteration, P is still non-empty, and the model θ∗

with the highest utilitarian welfare is chosen from P . The
algorithm is formally presented as Algorithm 2.

Next, we prove that θ∗ indeed lies in the (n/m)-PVC of P ,
where m = |P|; note that for any ϵ > 0, we can choose a
large enough m such that n/m < ϵ.

Theorem 2. Let P = ∪i∈[n]Ri and |P| = m. Then
the output model θ∗ of Rank-Core-Fed is in the (n/m)-
proportional veto core of P .

Proof. We show that for any coalition T of agents, the total
number of models that all agents in T unanimously prefer
over θ∗ is at most m(1 − |T |/n + |T |/m). The theorem
then follows by using λ(P ) = |P | in Definition 1.

Algorithm 2 Rank-Core-Fed: Finds a θ that belongs to
the proportional veto core of P

1: Input: Server models P = {θ1, θ2, · · · , θm}
2: Output: Model weights θ
3: for i = 1, . . . , n do
4: Server sends P to agent i
5: Agent i identifies Ci ⊆ P ,by choosing the least pre-

ferred m/n− 1 models from P
6: Agent i sends Ci to server
7: Server sets P ← P \ Ci

8: end for
9: Server chooses θ∗ ∈ P such that

∑
i∈[n] ui(θ

∗) is max-
imum

The proof of this claim follows the same structure as the
proof of Theorem 1. Assume otherwise. Let T be a coalition,
and let all agents in T prefer all models in B over θ∗, and
|B| > m(1 − |T |/n + |T |/m). Let S = {1, 2, . . . , k},
where k = argmaxi∈T i.

Consider the time when the last agent in S, i.e., agent k,
removes their share of models from P . Observe that none of
the agents in T remove any model from B as they all prefer
all models in B over θ∗, and θ∗ remains unremoved until
the end of the algorithm. Thus, the number of models in B
that are still unremoved is at least

≥ |B| − |S \ T | · (m/n− 1)

> m ·
(
1− |T |

n
− |S \ T |

n

)
+ |S \ T |+ |T |

= m ·
(
1− |S|

n

)
+ |S|

= m ·
(
1− |S|

n
+
|S|
m

)
This leads to a contradiction as the total number of models
that have been removed is at most |S|(mn − 1), implying
that the total number of remaining models is at most m ·
(1− |S|

n + |S|
m ).

4. Empirical Evaluation
We evaluate our algorithm Rank-Core-Fed on rotated
MNIST (LeCun et al., 2010) and CIFAR-10 (Krizhevsky
et al., 2009) datasets. We compare our approach with
three baseline algorithms: FedAvg (McMahan et al., 2017),
CoreFed (Chaudhury et al., 2022) and q-FFL (Li et al.,
2020b). We show that models trained with Rank-Core-

Fed achieve better rankwise proportionality guarantees for
fairness than the state-of-the-art baselines and comparable
utilitarian social welfare.
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Table 1. FL instances with different heterogeneity levels for
MNIST (10 agents). For CIFAR-10 (100 agents), we repeat the
rotation list of MNIST 10 times for each setting so that the number
of clusters remains the same.

FL Instance Degree of Rotation for 10 Agents

Ihigh 0, 0, 20, 20, 40, 60, 100, 120, 180, 200 (8 clusters)
Imid 0, 0, 0, 0, 0, 20, 20, 20, 40, 60 (4 clusters)
Ilow 0, 0, 0, 0, 0, 0, 20, 20, 20, 20 (2 clusters)

4.1. Experiment Setup

FL Setting. We consider FL with 10 agents for MNIST
and 100 agents for CIFAR-10. We introduce heterogeneity
among agents by rotating images at different degrees, follow-
ing the literature (Ghosh et al., 2020). We introduce 3 FL set-
tings with different heterogeneity levels (Ihigh, Imid, Ilow)
by controlling the number of clusters, where the agents with
the same rotation degree belong to the same cluster.

Table 1 shows the rotation list of agents for different FL
Instances. For all baselines and our algorithm, we set the
number of iterations of the global model update to 50.

Models. For MNIST, we use a CNN, which has two 5× 5
convolution layers followed by two fully connected layers
with ReLU activation. For CIFAR-10, we evaluate with a
more complex network, VGG11 (Simonyan & Zisserman,
2014). In all our experiments, we define agent utility as
M −Lce, where Lce refers to the average cross entropy loss
on the agent’s local test data. We set M to be 1.0 in our
experiments.

Comparison. Let θFA, θCF , θqF be the final models re-
turned by FedAvg, CoreFed, and q-FFL respectively. Let
P denote the representative set computed by Rank-Core-

Fed prior to choosing the PVC-stable model θ∗ ∈ P . In
Table 2, we compare the ranks of θFA, θCF , θqF and θ∗ in
the finite set P ∪ {θFA, θCF , θqF}.

4.2. Experiment Results

We demonstrate that our distributed algorithm Rank-Core-

Fed achieves better fairness and similar utilitarian social
welfare (sum of utilities of the agents) compared with base-
lines, where fairness refers to the minimum over all agents
of the rank of the final model with respect to the agent; we
call this β.

We show the results in Table 2. We can see that Rank-Core-

Fed achieves a higher β in all settings. In some cases, the
differences are striking; for example, for CIFAR-10 and
Ilow, Rank-Core-Fed finds a model that each and every
agent prefers to all but at most 5% of possible models,
whereas for FedAvg and CoreFed this value is 12% and
11%, respectively.

Table 2. Comparison of fairness (β-rankwise proportionality) and
utilitiarian social welfare (

∑
i∈[n] ui(θ)) on Rank-Core-Fed and

baselines.

FL Instance Method
MNIST CIFAR-10

β
∑

i∈[n] ui(θ) β
∑

i∈[n] ui(θ)

Ihigh

FedAvg 0.86 9.21 0.79 36.73
CoreFed 0.87 9.23 0.81 36.69
q-FFL 0.87 9.26 0.80 36.75

Rank-Core-Fed 0.89 9.23 0.85 36.81

Imid

FedAvg 0.88 9.52 0.83 37.21
CoreFed 0.89 9.56 0.85 37.23
q-FFL 0.88 9.52 0.89 37.21

Rank-Core-Fed 0.92 9.63 0.91 37.19

Ilow

FedAvg 0.91 9.62 0.88 37.29
CoreFed 0.93 9.59 0.89 37.34
q-FFL 0.93 9.65 0.91 37.32

Rank-Core-Fed 0.97 9.70 0.95 37.41

5. Discussion
We believe our work is a step forward in understanding
and realizing fairness in federated learning. Naturally, many
questions remain open.

One interesting theoretical challenge is to investigate the
design of provably efficient methods to compute PVC-stable
models. Previous work (Ianovski & Kondratev, 2021) has
addressed this question when the feasible set of models is
discrete. However, existing algorithms do not extend to the
setting with a continuous set of models as far as we know.
To develop an initial intuition for this question, we present a
case study in linear utility functions in Appendix B. Specifi-
cally, we design a fully polynomial time randomized scheme
(FPRAS) to find a welfare-optimal, PVC-stable model when
the utility functions are linear and the feasible set of mod-
els is defined by a polyhedron. We hope this will instigate
further study of richer utility functions.

Another question is whether there exists an objective func-
tion that naturally captures PVC guarantees. In the context
of concave utility functions, Chaudhury et al. (2022) show
that the Nash product of the utilities organically implies
core-stability. One could seek analogous functions in terms
of the ranks of the agents that can directly imply the guar-
antees that we prove in the paper. We believe that such ob-
jective functions can also lead to better distributed learning
algorithms that guarantee PVC-stability.

Impact Statement
The goal of this paper is to advance fairness in the field
of machine learning. Potential societal consequences of
our work include the design of fairer federated learning
protocols. As with any notion of fairness, it is conceivable
that PVC-stability is at odds with other criteria and therefore
can sometimes lead to outcomes that are undesirable.

8



Fair Federated Learning via the Proportional Veto Core

References
Chaudhury, B. R., Li, L., Kang, M., Li, B., and Mehta,

R. Fairness in federated learning via core-stability. In
Thirty-sixth Conference on Neural Information Process-
ing Systems, 2022.

Dayan, I., Roth, H. R., Zhong, A., Harouni, A., Gentili, A.,
Abidin, A. Z., Liu, A., Costa, A. B., Wood, B. J., Tsai,
C.-S., et al. Federated learning for predicting clinical
outcomes in patients with COVID-19. Nature medicine,
27(10):1735–1743, 2021.

Donahue, K. and Kleinberg, J. M. Models of fairness in
federated learning. CoRR, abs/2112.00818, 2021.

Dyer, M. E., Frieze, A. M., and Kannan, R. A random
polynomial time algorithm for approximating the volume
of convex bodies. In STOC, pp. 375–381. ACM, 1989.

Elbir, A. M., Soner, B., and Coleri, S. Federated learning
in vehicular networks. arXiv preprint arXiv:2006.01412,
2020.

Ghosh, A., Chung, J., Yin, D., and Ramchandran, K. An
efficient framework for clustered federated learning. Ad-
vances in Neural Information Processing Systems, 33:
19586–19597, 2020.

Huang, T., Lin, W., Wu, W., He, L., Li, K., and Zomaya,
A. Y. An efficiency-boosting client selection scheme for
federated learning with fairness guarantee. IEEE Trans.
Parallel Distributed Syst., 32(7):1552–1564, 2021.

Ianovski, E. and Kondratev, A. Y. Computing the propor-
tional veto core. In AAAI, pp. 5489–5496, 2021.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

LeCun, Y., Cortes, C., and Burges, C. MNIST hand-
written digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2, 2010.

Li, T., Beirami, A., Sanjabi, M., and Smith, V. Tilted empir-
ical risk minimization. CoRR, abs/2007.01162, 2020a.

Li, T., Sanjabi, M., Beirami, A., and Smith, V. Fair resource
allocation in federated learning. In ICLR, 2020b.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In AISTATS, pp. 1273–
1282, 2017.

Mo, J. and Walrand, J. Fair end-to-end window-based con-
gestion control. IEEE/ACM Transactions on Networking,
8(5):556–567, 2000.

Mohri, M., Sivek, G., and Suresh, A. T. Agnostic feder-
ated learning. In International Conference on Machine
Learning, pp. 4615–4625. PMLR, 2019.

Moulin, H. The proportional veto principle. The Review of
Economic Studies, 48(3):407–416, 1981.

Procaccia, A. D. Axioms should explain solutions. The Fu-
ture of Economic Design: The Continuing Development
of a Field as Envisioned by Its Researchers, pp. 195–199,
2019.

Shi, Y., Yu, H., and Leung, C. A survey of fairness-aware
federated learning. CoRR, abs/2111.01872, 2021.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Sze, V., Chen, Y.-H., Yang, T.-J., and Emer, J. S. Efficient
processing of deep neural networks: A tutorial and survey.
Proceedings of the IEEE, 105(12):2295–2329, 2017.

Tao, T. An Introduction to Measure Theory. American
Mathematical Society, 2021.

Wang, Z., Fan, X., Qi, J., Wen, C., Wang, C., and Yu, R.
Federated learning with fair averaging. In IJCAI, pp.
1615–1623, 2021.

Xu, J., Glicksberg, B. S., Su, C., Walker, P., Bian, J., and
Wang, F. Federated learning for healthcare informatics.
Journal of Healthcare Informatics Research, 5(1):1–19,
2021.

Yang, M., Wang, X., Zhu, H., Wang, H., and Qian, H.
Federated learning with class imbalance reduction. In
2021 29th European Signal Processing Conference (EU-
SIPCO), pp. 2174–2178. IEEE, 2021.

Zhang, G., Malekmohammadi, S., Chen, X., and Yu, Y.
Proportional fairness in federated learning. Trans. Mach.
Learn. Res., 2023, 2023.

Zhang, Z. and Sabuncu, M. Generalized cross entropy
loss for training deep neural networks with noisy labels.
Advances in neural information processing systems, 31,
2018.

9



Fair Federated Learning via the Proportional Veto Core

A. Additional Background on Measurability
We refer the reader to standard texts on measure theory (Tao, 2021) for the definition of a Lebesgue-measurable set. We
show below that all sets and functions defined in the current work are Lebesgue-measurable (measurable for short).

Let us first state the definition of a measurable function.

Definition 4. Let f : D → R be a function defined on a measurable set D. Then f is measurable if and only if any of the
following statements hold.

(i) For every r ∈ R the set {x ∈ D : f(x) ≥ r} is measurable.

(ii) For every r ∈ R the set {x ∈ D : f(x) > r} is measurable.

(iii) For every r ∈ R the set {x ∈ D : f(x) ≤ r} is measurable.

(iv) For every r ∈ R the set {x ∈ D : f(x) < r} is measurable.

In our work, the only assumption we make on the utility functions {ui(·)}i∈[n] is that they are Lebesgue-measurable. With
Definition 4, it is easy to see that the lower-level sets Li(ℓ) = {θ : ui(θ) ≥ ℓ} are measurable when the utility function ui is
measurable. In particular, the sets Pi(θ) = {θ′ : ui(θ

′) ≤ ui(θ)} = Li(ui(θ)) are also measurable.

Measurability of the utility functions is a very mild assumption. In particular, any piece-wise continuous function is
measurable, as we show below.

Proposition 2. Let f : D → R be a piece-wise continuous function defined on a measurable set D. Then f is Lebesgue-
measurable.

Proof. Define f−1(U) = {x ∈ D : f(x) ∈ U} to be the inverse image of U under f . One can show using Definition 4 that
f is measurable iff f−1(U) is measurable for every open set U of R.

We first prove the theorem for a continuous function f . Consider any open set U of R, and take any x ∈ f−1(U). Since U is
open, there is a small-enough neighborhood of f(x) contained in U , i.e., B(f(x), ε) ⊆ U for some ε > 08. By continuity of
f , there is a neighborhood B(x, ε′) s.t. f(x′) ∈ B(f(x), ε) for all x′ ∈ B(x, ε′). implying that B(x, ε′) ⊆ f−1(U). Thus
for every x ∈ f−1(U), there is a small neighborhood of x contained in f−1(U), showing that f−1(U) is an open set, and
hence is measurable. Thus, f is a measurable function.

Now suppose that f is piece-wise continuous. Then there is a partition of R into countably many intervals X1, X2, . . . s.t. f
is continuous on each Ai. Let Yi = f(Xi). Then for any open set U , we have

f−1(U) = f−1(∪i(U ∩ Yi)) = ∪if−1(U ∩ Yi).

Since f is continuous, f−1(U ∩ Yi) is measurable. Since countable union of measurable sets is measurable, f−1(U) is also
measurable for any open set U , thus showing f is measurable.

We also require the following lemma for the definition of Pareto optimality in Section 2.3.

Lemma 2. Let {ui(·)}i∈[n] be Lebesgue-measurable utility functions let P be a non-empty Lebesgue-measurable set of
feasible models. For a model θ and a subset ∅ ̸= T ⊆ [n] of agents, let B = {θ′ ∈ P : ∀i ∈ T, ui(θ

′) ≥ ui(θ) and ∃h ∈
T, uh(θ

′) > uh(θ)} be the set of models that Pareto-dominate θ for agents in T . Then B is Lebesgue-measurable.

Proof. Let Bi = {θ′ ∈ P : ui(θ
′) ≥ ui(θ)}, let B′

i = {θ′ ∈ P : ui(θ
′) > ui(θ)}, and Ci = {θ′ ∈ P : ui(θ

′) = ui(θ)}.
Note that by Definition 4, Bi and B′

i are measurable. Since Ci = Bi \ B′
i is the set difference of measurable sets where

B′
i ⊆ Bi, Ci is also measurable. Now notice that B =

⋂
i∈T Bi\

⋂
i∈T Ci. Since the intersection of finitely many measurable

sets is measurable,
⋂

i∈T Bi and
⋂

i∈T Ci are measurable. Thus it follows that B is measurable since
⋂

i∈T Ci ⊆
⋂

i∈T Bi

and both sets are measurable.
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Algorithm 3 Algorithm to compute a PVC-stable model for linear utilities
1: Input: P = {θ : Aθ ≤ b}, linear utilities ui(·)
2: Output: Model θ∗ in the proportional veto core
3: Set r = 1

n −
ε

n+1
4: for i = 1, . . . , n do
5: ℓ0 ← 0, ℓ1 ← 1, ℓ← 0
6: while ℓ0 ≤ ℓ1 do
7: ℓ← (ℓ0 + ℓ1)/2
8: if λ({θ ∈ Q : ui(θ) ≤ ℓ}) < (r − ε)λ(P ) then
9: ℓ0 = ℓ

10: else if λ({θ ∈ Q : ui(θ) ≤ ℓ}) > (r + ε)λ(P ) then
11: ℓ1 = ℓ
12: else
13: Break
14: end if
15: end while
16: Pi ← {θ ∈ Q : ui(θ) ≤ ℓ}
17: Q← Q \ Pi

18: end for
19: Return θ∗ ∈ Q

B. Case Study in Linear Utilities
In this section we design an algorithm to compute a model in the proportional veto core when agents have linear utility
functions and the space of models is a bounded polyhedron. Let P = {θ ∈ Rd|Aθ ≤ b} be the polyhedral feasible space of
models. Let ui(θ) =

∑
j∈[d] uij · θj be the linear utility function of agent i ∈ [n].

Description of the Algorithm. Algorithm 3 iteratively computes the sets P1, . . . , Pn described in the proof of Theorem 1.
The variable Q maintains the set of remaining models after each iteration. That is, Q = P initially, and after iteration
i, Q = P \ (

⋃
k≤i Pk). Recall that for each i ∈ [n], we have P \ (

⋃
k≤i Pk) ≥i Pi. For linear utilities, each level set

{θ : ui(θ) = ℓ} is a hyperplane in Rd−1, and hence has measure zero in Rd. Hence the sets Pi can be found using lower
level sets of the form {θ : ui(θ) ≤ ℓ}. For each i ∈ [n], Algorithm 3 performs binary search on ℓ to find the appropriate
value of ℓ such that the Lebesgue measure of the lower level set of ui at ℓ is r · λ(P ). This lower level set is assigned to be
Pi. Algorithm 3 then updates the space of remaining models Q by deleting Pi. Note that since P is a polyhedron and all Pi

are described by lower-level sets of linear functions, Q is also a polyhedron. Thus Q can simply be described by a list of
linear inequalities. We note that the Lebesgue measure of polyhedrons encountered in Algorithm 3 is computable by using
the algorithm of Dyer et al. (1989), which is a fully polynomial randomized approximation scheme (FPRAS). As the proof
of Theorem 3 shows, the final set Q = P \ (

⋃
i≤n Pi) is non-empty, and any model θ∗ ∈ Q is in the proportional veto core.

8B(x, ε) is the open ball of radius ε centered at x.
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