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Abstract

We introduce and study the problem of detecting whether an agent is updating
their prior beliefs given new evidence in an optimal way that is Bayesian, or
whether they are biased towards their own prior. In our model, biased agents form
posterior beliefs that are a convex combination of their prior and the Bayesian
posterior, where the more biased an agent is, the closer their posterior is to the
prior. Since we often cannot observe the agent’s beliefs directly, we take an ap-
proach inspired by information design. Specifically, we measure an agent’s bias
by designing a signaling scheme and observing the actions the agent takes in re-
sponse to different signals, assuming that the agent maximizes their own expected
utility. Our goal is to detect bias with a minimum number of signals. Our main
results include a characterization of scenarios where a single signal suffices and a
computationally efficient algorithm to compute optimal signaling schemes.

1 Introduction

A bag contains two coins that look and feel identical, but one is a fair coin that, on a flip, comes up
heads with probability 0.5, and the other is an unfair coin with probability 0.9 of heads. You reach
into the bag, grab one of the coins and flip it once; it lands on heads. Since you are (hopefully)
familiar with Bayes’ rule, you conclude that the probability you are holding the fair coin is ≈ 0.36.
Now suppose you are offered the following deal: if you pay $1, you get to flip the same coin again,
and if it comes up heads, you will receive $1.4. Since you now believe that the probability of heads
is 0.76, you take the deal (assuming you are risk neutral) and earn 6 cents in expectation.

If, by contrast, another risk-neutral person in the same situation decides to decline the same deal,
they must believe that the probability they are holding the fair coin is greater than 0.47. That is, their
belief is still very close to the prior of 0.5. We think of such a person as being biased, in the sense
that they are unwilling to significantly update their beliefs, despite evidence to the contrary.

Of course, failing to update one’s beliefs about coin flips is not the end of the world. But this example
serves to illustrate a broader phenomenon that, in our view, is both important and ubiquitous. In
particular, the “stickiness” of prior beliefs in the face of evidence plays a role in politics — think
of the controversy over Russian collusion in the 2016 US presidential election or the existence of
weapons of mass destruction in Iraq in 2003. It is also prevalent in science, as exemplified by the
polarized debate over the origins of the Covid pandemic [3].

Our goal in this paper is to develop algorithms that are able to detect bias in the form of non-Bayesian
updating of beliefs. To our knowledge, we are the first to formalize and analytically address this
problem, and we aim to build an initial framework that future work would build on. In the long
term, we believe such algorithms could have many applications, including understanding to what
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degree the foregoing type of bias contributes to disagreement and polarization, and discounting the
opinions of biased agents to improve collective decision making.

Our approach. The first question we need to answer is how to quantify bias. In this first investiga-
tion, we adopt a linear model of bias that was proposed and used as a general belief updating model
in economics [8, 10, 5, 18]. If the prior is µ0 and the correct Bayesian posterior upon receiving a
signal (or evidence) s is denoted µs, we posit that an agent with bias w ∈ [0, 1] adopts the belief
wµ0 + (1 − w)µs. At the extremes, an agent with bias w = 0 performs perfect Bayesian updating
and an agent with bias w = 1 cannot be convinced to budge from the prior.

The bigger conceptual question is how we can infer an agent’s bias. To address it, we take an
approach that is inspired by the literature on information design [13]. In our context, suppose that we
(the principal) and the agent have asymmetric information: while both share a common (say public)
prior about the state of the world, the principal knows the true (realized) state of the world, but the
agent does not. The principal publicly commits to a (randomized) signaling scheme that specifies
the probability of sending each possible signal given each possible realized state of the world. Given
their knowledge of the latter, the principal draws a signal from the specified distribution and sends it
to the agent. Upon receiving such a signal, the agent updates their beliefs about the state of the world
(from the common prior) and then takes an action that maximizes their expected utility according to
a given utility function. Similarly to the example we started with, it is the action taken by the agent
that can (indirectly) reveal their degree of bias.

Note that the problem of estimating the exact level of bias reduces to the problem of detecting
whether the agent’s bias is above or below some threshold. Indeed, to estimate the level of bias to an
accuracy of ϵ, log(1/ϵ) such threshold queries suffice by using binary search. The challenge, then,
is to design signaling schemes that test whether bias is above or below a given threshold in the most
efficient way, that is, using a minimum number of signals in expectation.

Our results. We design a polynomial-time algorithm that computes optimal signaling schemes, in
Section 4. We first show that constant algorithms, which repeatedly use the same signaling scheme,
are as powerful as adaptive algorithms, which can vary the scheme over time based on historical
data (Lemma 4.1); we can therefore restrict our attention to constant algorithms. In Lemma 4.5,
we establish a version of the revelation principle for the bias detection problem, which asserts that
optimal signaling schemes need only use signals that can be interpreted as action recommendations.
Finally, building on these insights, we show that the optimal solution to our problem is obtained by
solving a “small” linear program (Algorithm 1 and Theorem 4.6).

In Section 5, we present a geometric characterization of optimal signaling schemes (Theorem 5.2),
which sheds additional light on the performance of the algorithm. In particular, the characterization
provides sufficient and necessary conditions for the testability of bias, and also identifies cases where
only a single sample is needed for this task.

Related work. There is a significant body of experimental work in the social sciences aiming to
explain the failure of partisans to reach similar beliefs on factual questions where there is a large
amount of publicly available evidence. The fact that biased belief updating occurs is undisputed
(to our knowledge), and the focus is on understanding the factors that play a role. In particular, a
prominent line of work supports the (perhaps counterintuitive) hypothesis that the more cognitively
sophisticated a partisan is, the more politically biased is their belief update process [16, 17, 12, 11].
These results are challenged by more recent work by Tappin et al. [19], who found that greater
analytical thinking is associated with belief updates that are less biased, using an experimental de-
sign that explicitly measures the proximity of belief updates to a correct Bayesian posterior. While
these studies provide empirical underpinnings for our theoretical model, their research questions are
orthogonal to ours: we aim to measure the magnitude of bias regardless of its source.

Classical work in information design [4, 13] studies how a principal can strategically provide infor-
mation to induce an agent to take actions that are beneficial for the principal, assuming a perfectly
Bayesian agent. Various relaxations of the perfectly Bayesian assumption have been investigated
[1, 10, 7, 5, 9, 21, 14]. The work by de Clippel and Zhang [5] is close to us, which studies biased
belief update models including the linear model. However, their goal is to maximize the principal’s
utility with the agent’s bias fully known. In our problem the agent’s bias level is unknown, and the
principal’s goal is to infer the agent’s bias level instead of maximizing their own utility. Tang and
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Ho [18] present real-world experiments showing that human belief updates are close to a linear bias
model, which supports our theoretical assumption.

2 Model

Biased agent. Consider a standard Bayesian setting: the relevant state of the world is θ ∈ Θ,
distributed according to some known prior distribution µ0. If an agent were perfectly Bayesian,
when receiving some new information (“signal”) s and with the knowledge of the conditional dis-
tributions P (s|θ) for all θ, they would update their belief about the state of the world according to
Bayes’ Rule: µs(θ) = P (θ|s) = µ0(θ)P (s|θ)

P (s) . We refer to µs as the true posterior belief induced by
s. Being biased, the agent’s belief after seeing s, denoted νs, is a convex combination of µs and µ0:

νs = wµ0 + (1− w)µs,

where w ∈ [0, 1] is the unknown bias level, capturing the agent’s inclination to retain their prior
belief in the presence of new information. This linear model was proposed and adopted in economics
for non-Bayesian belief updating [8, 10], in order to capture people’s conservatism in processing new
information and their tendency to protect their beliefs [20].

The agent can choose an action from a finite set A and has a state-dependent utility function U :
A × Θ → R. They receive utility U(a, θ) when taking action a in state θ. The agent will act
according to their (biased) belief νs and choose an action a that maximizes their expected utility:

a ∈ argmax
a∈A

Eθ∼νs [U(a, θ)] = argmax
a∈A

∑
θ∈Θ

νs(θ)U(a, θ).

In the absence of any additional information, the agent operates based on the prior belief µ0 and will
select an action deemed optimal with respect to µ0. We introduce the following mild assumption to
ensure the uniqueness of this action:
Assumption 2.1. There is a unique action that maximizes the expected utility based on the prior
belief µ0: | argmaxa∈A{

∑
θ∈Θ µ0(θ)U(a, θ)}| = 1.

This assumption will be made throughout the paper. We denote the unique optimal action on the
prior belief as a0 = argmaxa∈A{

∑
θ∈Θ µ0(θ)U(a, θ)}, and call it the default action.

Bias detection. The principal, who knows the prior µ0 and the agent’s utility function U , seeks
to infer the agent’s bias level from their action as efficiently as possible. The principal has an
informational advantage — they observe the independent realizations of the state of the world at each
time step. In other words, the principal knows θt, an independent sample drawn according to µ0 at
time t. The principal wants to design signaling schemes to strategically reveal information about θt
to the agent, hoping to influence the agent’s biased belief in a way that the agent’s chosen actions
reveal information about their bias level. Specifically, with a finite signal space S, the principal can
commit to a signaling scheme πt : Θ → ∆(S) at time t, where πt(s|θ) specifies the probability of
sending signal s in state θ at time t. After seeing a signal st, drawn according to πt(s|θt) at time t,
the agent takes action at that is optimal for their biased belief νst . The principal infers information
about bias w from the history of signaling schemes, realized states, realized signals, and agent
actions Ht = {(π1, θ1, s1, a1), . . . , (πt, θt, st, at)}. We denote by Π an adaptive algorithm that the
principal uses to decide on the signaling scheme at time t+ 1 based on history Ht.

Given a threshold τ ∈ (0, 1), the principal wants to design Π to answer the following question:

Is the agent’s bias level w greater than or equal to τ or less than or equal to τ?1

As noted earlier, by answering the above threshold question, one can also estimate the bias level
w within accuracy ϵ by performing log(1/ϵ) iterations of binary search. This effectively reduces
the broader task of estimating w to a sequence of targeted threshold checks. By employing an
adaptive signaling scheme, this approach lets us approximate w to any desired precision, providing
an efficient solution to the bias estimation problem.

1One may want to test w ≥ τ or w < τ instead. But this requires assumptions on tie-breaking when the
agent has multiple optimal actions. Indifference at w = τ allows us to avoid such assumptions.
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An algorithm Π for the above question terminates as soon as it can output a deterministic answer.
The number of time steps for Π to terminate, denoted by Tτ (Π, w), is a random variable. The sample
complexity of Π is defined to be the expected termination time in the worst case over w ∈ [0, 1]:
Definition 2.1 (sample complexity). The (worst-case) sample complexity of Π is defined as2

Tτ (Π) = max
w∈[0,1]

E[Tτ (Π, w)].

Our objective is to develop an algorithm Π that can determine whether w ≥ τ or w ≤ τ with
minimal sample complexity. Specifically, we want to solve the following minimax problem:

min
Π

max
w∈[0,1]

E[Tτ (Π, w)].

We say that an algorithm Π is constant if it keeps using the same signaling scheme repeatedly until
termination. Constant algorithms are a special case of non-adaptive algorithms, which may vary the
signaling schemes over time but remain independent of historical data.

Preliminaries. We now introduce the well-known splitting lemma from the information design
literature [2, 13, 15]. It relates a signaling scheme with a set of induced true posteriors for a Bayesian
agent and a distribution over the set of true posteriors.
Lemma 2.1 (Splitting Lemma, e.g., [13]). Let π be a signaling scheme where each signal s ∈
S is sent with unconditional probability π(s) =

∑
θ∈Θ µ0(θ)π(s|θ) and induces true posterior

µs. Then, the prior µ0 equals the convex combination of {µs}s∈S with weights {π(s)}s∈S: µ0 =∑
s∈S π(s)µs. Conversely, if the prior can be expressed as a convex combination of distributions

µ′
s ∈ ∆(Θ): µ0 =

∑
s∈S psµ

′
s, where ps ≥ 0,

∑
s∈S ps = 1, then there exists a signaling scheme

π where each signal s is sent with unconditional probability π(s) = ps and induces posterior µ′
s.

The splitting lemma is also referred as the Bayesian consistency condition. It allows one to think
about choosing a signaling scheme as choosing a set of true posteriors, {µs}s∈S , and a distribution
over the set, {π(s)}s∈S , in a Bayesian consistent way.

3 Warm-Up: A Two-State, Two-Action Example

How can the principal design a signaling scheme to learn the agent’s bias level? We use a simple
two-state, two-action example to demonstrate how inducing a specific true posterior belief will allow
the principal to determine whether w ≥ τ or w ≤ τ .

The two states of the world are represented as {Good, Bad}. The agent has two possible actions:
Active and Passive. Taking the Passive action always yields a utility of 0, independently of the
state. For the Active action, the utility is a if the state is Good and −b otherwise; a, b > 0. We use
the probability of the Good state to represent a belief, so the prior is a number µ0 ∈ [0, 1], which
is only a slight abuse of notation. With belief µ ∈ [0, 1] for the Good state (and 1 − µ for the Bad
state), the agent’s expected utility for choosing the Active action is aµ− b(1− µ) = (a+ b)µ− b.
Thus, the Active action is better than the Passive action (so the agent will take Active) if

(a+ b)µ− b > 0 ⇐⇒ µ > b
a+b =: µ∗. (1)

Conversely, the Passive action is better if µ < µ∗. Here, µ∗ = b
a+b is an indifference belief where

the agent is indifferent between the two actions. We assume that the prior µ0 satisfies 0 < µ0 < µ∗,
so the agent chooses the Passive action by default.

Consider the following constant signaling scheme πτ with two signals {G,B}:

• If the state is Good, send signal G with probability one.

• If the state is Bad, send signal B with probability µ∗−µ0

(µ∗−τµ0)(1−µ0)
and signal G with the com-

plement probability.
2Taking the worst case over w ∈ [0, 1] is not overly pessimistic. As we will show in the proofs, the worst

case in fact happens at w ∈ [τ − ε, τ + ε] for some ε > 0, which makes intuitive sense. Therefore, the sample
complexity can be equivalently defined as Tτ (Π) = maxw∈[τ−ε,τ+ε] E[Tτ (Π, w)].
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We will show that, by repeatedly using πτ , we can test whether the agent’s bias w is ≤ τ or ≥ τ .
By Bayes’ Rule, the true posterior beliefs (for the Good state) associated with the two signals are
µB = 0 (i.e., on receiving B, the agent knows the state is Bad for sure) and

µG = P (Good|G) = µ0·πτ (G|Good)
µ0·πτ (G|Good)+(1−µ0)·πτ (G|Bad) =

µ∗−τµ0

1−τ .

Notably, the posterior µG satisfies the following property: if the agent’s bias level w is exactly equal
to τ , then the agent’s biased belief is equal to the indifference belief:

when w = τ , νG = τµ0 + (1− τ)µG = µ∗.

We also note the inequality µ0 < µ∗ < µG. As a result, if the agent’s bias level w is greater than τ ,
then the biased belief will be smaller than µ∗, and otherwise the opposite is true:

for w > τ , wµ0 + (1− w)µG < µ∗; for w < τ , wµ0 + (1− w)µG > µ∗.

By Equation (1), this means that the agent will take the Passive action if w > τ , and the Active
action if w < τ (on receiving G). Therefore, by observing which action is taken by the agent when
signal G is sent, we can immediately tell whether w ≤ τ or w ≥ τ . This leads to the following:

Theorem 3.1. In the two-state, two-action example, for any threshold τ ∈ [0, 1−µ∗

1−µ0
], the above

constant signaling scheme πτ can test whether the agent’s bias w satisfies w ≤ τ or w ≥ τ :
specifically, whenever the signal G is sent,

• if the agent takes action Active, then w ≤ τ ,
• if the agent takes action Passive, then w ≥ τ .

The sample complexity of this scheme is µ∗−µ0

µ0(1−τ) + 1, which increases with τ .

Proof. The range τ ∈ [0, 1−µ∗

1−µ0
] ensures that the probability πτ (B|Bad) = µ∗−µ0

(µ∗−τµ0)(1−µ0)
is in

[0, 1]. The two items in the theorem follow from the argument before the theorem statement.
The sample complexity is equal to the expected number of time steps until a G signal is sent,
which is a geometric random variable with success probability P (G) = µ0πτ (G|Good) + (1 −
µ0)πτ (G|Bad) = µ0(1−τ)

µ∗−τµ0
. So the sample complexity is equal to the mean 1

P (G) =
µ∗−µ0

µ0(1−τ)+1.

The main intuition behind this result is that in order to test whether w ≥ τ or w ≤ τ , we design a
signaling scheme where certain signals induce posteriors that make the agent indifferent between two
actions if the agent’s bias level is exactly τ . Then, the action actually taken by the agent will directly
reveal whether w ≥ τ or w ≤ τ . Such signals are useful signals, but not all signals are necessarily
useful. The sample complexity is then determined by the total probability of useful signals. This
intuition will carry over to computing the optimal signaling scheme for the general case in Section 4.

Finally, we remark that using the constant signaling scheme πτ constructed above to test w ≥ τ or
w ≤ τ is in fact the optimal adaptive algorithm, according to the results we will present in Section 4.
So, the minimal sample complexity to test whether w ≥ τ or w ≤ τ in this two-state, two-action
example is exactly µ∗−µ0

µ0(1−τ) + 1 as shown in Theorem 3.1.

4 Computing the Optimal Signaling Scheme in the General Case

In this section, we generalize the initial observations from the previous section to the case with any
number of actions and states and general utility function U . We will show how to compute the
optimal algorithm (signaling scheme) to test the agent’s bias level. There are three key ingredients.
First, we prove that we can use a constant signaling scheme. Second, we develop a “revelation
principle” to further simplify the space of signaling schemes. Building on these two steps, we show
that the optimal signaling scheme can be computed by a linear program.

4.1 Optimality of Constant Signaling Schemes

In this subsection, we show that adaptive algorithms are no better than constant algorithms for the
problem of testing whether w ≥ τ or w ≤ τ . Therefore, to find the algorithm with minimal sample
complexity, we only need to consider constant algorithms/signaling schemes.
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Lemma 4.1. Fix τ ∈ (0, 1). For the problem of testing whether w ≥ τ or w ≤ τ , the sample
complexity of any adaptive algorithm is at least that of the optimal constant algorithm (i.e., using a
fixed signaling scheme repeatedly).

To prove this lemma, we introduce some notations. For any action a ∈ A \ {a0}, define vector

ca = (ca,θ)θ∈Θ =
(
U(a0, θ)− U(a, θ)

)
θ∈Θ

∈ R|Θ|, (2)

whose components are the utility differences between the default action a0 and any other action a
at different states θ ∈ Θ. Let Ra0 ⊆ ∆(Θ) be the region of beliefs under which the agent strictly
prefers a0 over any other action:

Ra0
=

{
µ ∈ ∆(Θ) | ∀a ∈ A \ {a0}, c⊤a µ > 0

}
.

It is the intersection of |A| − 1 open halfspaces with the probability simplex ∆(Θ). As the agent
strictly prefers a0 at the prior µ0, we have µ0 ∈ Ra0

. The boundary of this region, ∂Ra0
, is the set

of beliefs where the agent is indifferent between a0 and at least one other action a ∈ A \ {a0} and
a0 and a are both (weakly) better than any other action:

∂Ra0 =
{
µ ∈ ∆(Θ) | ∃a ∈ A \ {a0}, c⊤a µ = 0 and ∀a′ ∈ A \ {a0}, c⊤a′µ ≥ 0

}
. (3)

Lastly, the exterior of Ra0
, denoted as extRa0

, comprises the set of beliefs where the agent strictly
prefers not to choose a0:

extRa0
= ∆(Θ) \ (Ra0

∪ ∂Ra0
) =

{
µ ∈ ∆(Θ) | ∃a ∈ A \ {a0}, c⊤a µ < 0

}
.

Given a signaling scheme π, we classify its signals into three types based on the location of the
biased belief associated with the signal with respect to the region Ra0

.
Definition 4.1. Let τ ∈ (0, 1) be a parameter. Let s ∈ S be a signal from a signaling scheme π,
with associated true posterior µs and τ -biased posterior µτ

s = τµ0 + (1− τ)µs. We say s is

• an internal signal if µτ
s ∈ Ra0

;
• a boundary signal if µτ

s ∈ ∂Ra0 ;
• an external signal if µτ

s ∈ extRa0
.

The above classification helps to formalize the idea of whether a signal is “useful” for bias detection.
A boundary signal is useful because the action taken by the agent after receiving a boundary signal
immediately tells whether w ≥ τ or w ≤ τ :
Lemma 4.2. When a boundary signal is realized, the agent’s action immediately reveals whether
w ≥ τ or w ≤ τ . Specifically, if the agent chooses action a0, then w ≥ τ ; otherwise, w ≤ τ .

Proof. If the agent’s bias level satisfies w < τ , then the biased belief νs = wµ0 + (1− w)µs must
be inside Ra0

(because µτ
s = τµ0 + (1 − τ)µs is on the boundary of Ra0

and µ0 ∈ Ra0
), so the

agent strictly prefers the default action a0. If w > τ , then the biased belief νs is outside of Ra0
, so

the agent will not take action a0.

An external signal might also be useful in revealing whether w ≥ τ or w ≤ τ if the agent is indif-
ferent between some actions a1, a2 other than a0 at the τ -biased belief µτ

s . However, the following
lemma shows that, in such cases, we can always modify the signaling scheme to turn the external
signal into a boundary signal. This modification will increase the total probability of useful signals
and hence reduce the sample complexity. The proof of this lemma is in Appendix A.1.
Lemma 4.3. Suppose Π is an adaptive algorithm that uses signaling schemes with internal, bound-
ary, and external signals. Then, there exists another adaptive algorithm Π′ with equal or lower
sample complexity that employs only signaling schemes with internal and boundary signals.

An internal signal, on the other hand, is not useful for testing w ≥ τ or w ≤ τ , for the following
reason. For an internal signal, the biased belief with bias level τ , µτ

s , lies inside Ra0
. Since Ra0

is an open region, there must exist a small number ε > 0 such that when the agent has bias level
w = τ + ε or τ − ε, the biased belief with bias level w, wµ0 + (1− w)µs, is also inside the region
Ra0 , so the agent will take action a0. As the agent takes a0 under both w = τ + ε and τ − ε, we
cannot distinguish these two cases, so this signal is not helpful in determining w ≥ τ or w ≤ τ . The
following lemma formalizes the idea that internal signals are not useful:
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Lemma 4.4. To test whether w ≥ τ or w ≤ τ , any adaptive algorithm that uses signaling schemes
with boundary and internal signals cannot terminate until a boundary signal is sent.

Proof of Lemma 4.1. By Lemma 4.3, the optimal adaptive algorithm only uses signaling schemes
with boundary and internal signals. By Lemma 4.4, the algorithm cannot terminate until a boundary
signal is sent. By Lemma 4.2, the algorithm terminates when a boundary signal is sent. We conclude
that the termination time of any adaptive algorithm cannot be better than the constant algorithm that
keeps using the signaling scheme that maximizes the total probability of boundary signals.

4.2 Revelation Principle

To compute the optimal constant signaling scheme, we need another technique that is similar to
the revelation principle in the information design literature [13, 6]. The revelation principle says
that, in some information design problems, it is without loss of generality to consider only “direct”
signaling schemes where signals are recommendations of actions for the agent, that is, the signal
space is S = A, and when the principal sends signal a, it should be optimal for the agent to take
action a given the posterior belief induced by signal a.

Unlike classical information design problems where the agent is unbiased, our problem involves a
biased agent, so we need a different revelation principle: the signals are still action recommenda-
tions, but when the principal sends signal a, action a is optimal for an agent with bias level exactly
τ ; moreover, if a ̸= a0, then an agent with bias level τ will be indifferent between a and a0. This
insight is formalized in the following lemma:
Lemma 4.5 (revelation principle for bias detection). Let π be an arbitrary signaling scheme that
can test w ≥ τ or w ≤ τ . Then, there exists another signaling scheme π′ that can do so with signal
space S = A such that:

(1) Given signal a ∈ A, action a is an optimal action for any agent with bias level w = τ .
(2) Given signal a ∈ A \ {a0}, actions a and a0 are both optimal for any agent with bias level

w = τ . As a corollary, if the agent’s bias level w < τ , then the agent strictly prefers a over a0;
and if w > τ , then the agent strictly prefers a0 over any other actions.

(3) The sample complexity satisfies Tτ (π
′) ≤ Tτ (π).

In the above signaling scheme π′, every a ∈ A \ {a0} is a boundary signal (Definition 4.1), which
is useful for testing bias: given signal a ∈ A \ {a0}, if the agent takes action a0, then it must be
w ≥ τ ; otherwise w ≤ τ . The signal a0 is internal and not useful for determining w ≥ τ or w ≤ τ .
So, the sample complexity of π′ is equal to the expected time steps until a signal in A \ {a0} is sent.

The idea behind Lemma 4.5 is combination of signals. Suppose there is a signaling scheme that can
determine whether w ≥ τ or w ≤ τ with a signal space larger than A. There must exist two signals
s and s′ under which the agent is indifferent between a0 and some action a ̸= a0 if the agent’s bias
level is exactly τ . We can then combine the two signals into a single signal s′′ under which the agent
remains indifferent between a0 and a, yielding a new signaling scheme with a smaller signal space.
Repeating this can reduce the signal space to size |A|. See Appendix A.3 for the full proof.

4.3 Algorithm for Computing the Optimal Signaling Scheme

Finally, we present an algorithm to compute the optimal (minimal sample complexity) signaling
scheme to test whether w ≥ τ or w ≤ τ . The revelation principle in the previous subsection ensures
that we only need a direct signaling scheme where signals are action recommendations. The optimal
direct signaling scheme turns out to be solvable by a linear program, detailed in Algorithm 1. In
the linear program, the constraint in Equation (5) ensures that whenever the principal recommends
action a ∈ A, it is optimal for an agent with bias level τ to take action a; this satisfies condition
(1) in the revelation principle (Lemma 4.5). The indifference constraint (Equation (5)) ensures that
when the recommended action a is not a0, an agent with bias level τ is indifferent between a and a0;
this satisfies condition (2) in the revelation principle. The objective (Equation (4)) is to maximize
the probability of useful signals (those in A \ {a0}), hence minimize the sample complexity.
Theorem 4.6. Algorithm 1 finds a constant signaling scheme for testing w ≥ τ or ≤ τ that is
optimal among all adaptive signaling schemes. The sample complexity of the optimal signaling
scheme is 1/p∗, where p∗ is the optimal objective value in Equation (4).
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Algorithm 1: Linear program to compute the optimal signaling scheme
Input : prior µ0, utility function U , and the parameter τ ∈ (0, 1)
Variable: signaling scheme π, consisting of conditional probabilities π(a|θ) for a ∈ A, θ ∈ Θ

Denote ∆U(a, a′, θ) = U(a, θ)− U(a′, θ). Solve the following linear program:

Maximize
∑

a∈A\{a0}

∑
θ∈Θ

π(a|θ)µ0(θ) (4)

subject to:

Optimality of a over other actions: ∀a ∈ A, ∀a′ ∈ A \ {a}∑
θ∈Θ

π(a|θ) · µ0(θ)
[
(1− τ)∆U(a, a′, θ) + τ

∑
θ′∈Θ

µ0(θ
′)∆U(a, a′, θ′)

]
≥ 0; (5)

Indifference between a and a0: ∀a ∈ A \ {a0},∑
θ∈Θ

π(a|θ) · µ0(θ)
[
(1− τ)∆U(a, a0, θ) + τ

∑
θ′∈Θ

µ0(θ
′)∆U(a, a0, θ

′)
]
= 0; (6)

Probability distribution constraints: ∀θ ∈ Θ,∑
a∈A

π(a|θ) = 1 and ∀a ∈ A, π(a|θ) ≥ 0.

Using the above optimal signaling scheme, whenever the principal recommends an action a other
than a0, the agent’s action immediately reveals whether w ≥ τ or w ≤ τ : if the agent indeed follows
the recommendation or takes any other action than a0, then the bias must be small (w ≤ τ ); if the
agent takes a0 instead, the bias must be large (w ≥ τ ). Thus, the expected sample complexity is
equal to the expected number of iterations until a signal in A \ {a0} is sent, which is 1/p∗3.

The linear program in Algorithm 1 has a polynomial size in |A| (the number of actions) and |Θ| (the
number of states), so it is a polynomial-time algorithm. The solution p∗ depends on the geometry of
the problem instance and does not seem to have a closed-form expression.

The remainder of this section proves Theorem 4.6. The proof requires an additional lemma:
Lemma 4.7. Given a signaling scheme π = (π(a|θ))a∈A,θ∈Θ and an agent’s bias level w, after
signal a is sent, the agent strictly prefers action a1 over a2 under the biased belief if and only if:∑

θ∈Θ

π(a|θ) · µ0(θ)
[
(1− w)∆U(a1, a2, θ) + w

∑
θ′∈Θ

µ0(θ
′)∆U(a1, a2, θ

′)
]
> 0.

Proof. The agent’s biased belief under signal a and bias level w is given by (1 −
w) µ0(θ)π(a|θ)∑

θ′∈Θ µ0(θ′)π(a|θ′) + wµ0(θ), ∀θ ∈ Θ. The condition for the agent to strictly prefer a1 over
a2 is that the expected utility under the biased belief when choosing a1 is greater than that of a2:∑

θ∈Θ

(
(1− w)

µ0(θ)π(a|θ)∑
θ′∈Θ µ0(θ′)π(a|θ′)

+ wµ0(θ)

)
∆U(a1, a2, θ) > 0,

where ∆U(a1, a2, θ) = U(a1, θ)− U(a2, θ). Multiplying by
∑

θ′∈Θ µ0(θ
′)π(a|θ′), we obtain:

(1− w)
∑
θ∈Θ

µ0(θ)π(a|θ)∆U(a1, a2, θ) + w
∑
θ∈Θ

µ0(θ)
∑
θ′∈Θ

µ0(θ
′)π(a|θ′)∆U(a1, a2, θ) > 0.

Factoring out the terms, this can be rewritten as:∑
θ∈Θ

π(a|θ)µ0(θ)

(
(1− w)∆U(a1, a2, θ) + w

∑
θ′∈Θ

µ0(θ
′)∆U(a1, a2, θ

′)

)
> 0.

3While our focus is the expected sample complexity, we can also derive a high-probability guarantee: with
t ≥ 1

p∗ log 1
δ

iterations, we can determine whether w ≥ τ or w ≤ τ with probability at least 1 − δ. This is
because the probability that no useful signal is sent after t iterations is at most (1−p∗)t ≤ δ when t ≥ 1

p∗ log 1
δ

.
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(a) A single sample

(0, 0, 1)
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z
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Ia,τ

(b) Finite sample complexity

(0, 0, 1)

(1, 0, 0) (0, 1, 0)

x y

z

µ0

Ia
Ia,τ = ∅

(c) Cannot be solved

Figure 1: The three qualitatively different cases for detecting the level of bias, each illustrated within
a simplex over three states where µ0 is the prior belief. Each point in the simplex corresponds to an
optimal action for the agent. Green curves indicate indifference between the default action a0 and
another action under an unbiased belief. Orange curves are translated versions of these indifference
curves; a posterior on these curves means the agent’s biased belief (at bias level τ ) aligns with the
green curves. From (a) to (c), τ increases, translating the orange curves further. In Figure 1a, µ0

can be represented as a convex combination of points on the translated curves, allowing bias level
detection with a single sample. In Figure 1b, only some signals are useful, requiring more than one
sample in the worst case. In Figure 1c, the bias level cannot be tested against τ .

This final expression is positive if and only if the agent to strictly prefer a1 over a2.

Proof of Theorem 4.6. According to Lemma 4.1 (constant algorithms are optimal) and Lemma 4.5
(revelation principle), to find an optimal adaptive algorithm we only need to find the optimal constant
signaling scheme that satisfies the conditions in Lemma 4.5. We verify that the signaling scheme
computed from the linear program in Algorithm 1 satisfies the conditions in Lemma 4.5:

• The optimality constraint (Equation (5)) in the linear program, together with Lemma 4.7, en-
sures that: whenever signal a ∈ A is sent, action a is weakly better than any other action for an
agent with bias level w = τ . This satisfies the first condition in Lemma 4.5.

• The indifference constraint (Equation (5)), together with Lemma 4.7, ensures that: whenever
a ∈ A \ {a0} is sent, the agent is indifferent between action a and a0 if the bias level w = τ .
Then, by the optimality constraint (Equation (5)), we have both a and a0 being optimal actions.
This satisfies the second condition in Lemma 4.5.

We then argue that the solution of the linear program is the optimal signaling scheme that satisfies
the conditions of Lemma 4.5. According to our argument after Lemma 4.5, only the signals in
A \ {a0} are useful signals, so the sample complexity is equal to the expected number of time steps
until a signal in A \ {a0} is sent. The probability that a signal in A \ {a0} is sent at each time step is∑

a∈A\{a0}

π(a) =
∑

a∈A\{a0}

∑
θ∈Θ

µ0(θ)π(a|θ).

The expected number of time steps is the inverse 1∑
a∈A\{a0}

∑
θ∈Θ µ0(θ)π(a|θ) (because the num-

ber of time steps is a geometric random variable). The linear program maximizes the probability∑
a∈A\{a0}

∑
θ∈Θ µ0(θ)π(a|θ), so it minimizes the sample complexity.

5 Geometric Characterization of the Testability of Bias

To complement the algorithmic solution presented in the previous section, this section provides a
geometric characterization of the bias detection problem. We identify the conditions under which
testing whether w ≥ τ or w ≤ τ can be done in only one sample, in finite number of samples, or
cannot be done at all (which is the scenario where the linear program in Algorithm 1 is infeasible).

By Assumption 2.1 (a0 is strictly better than other actions at prior µ0), we have:

c⊤a µ0 =
∑
θ∈Θ

µ0(θ)
(
U(a0, θ)− U(a, θ)

)
> 0, ∀a ∈ A \ {a0},

9



where ca is as defined in Equation (2). Define Ia as the set of indifference beliefs between action a
and a0, which is the intersection of the hyperplane {x|c⊤a x = 0} and the probability simplex ∆(Θ):

Ia := {µ ∈ ∆(Θ) | c⊤a µ = 0}.

Given a parameter τ ∈ (0, 1), for which we want to test whether w ≥ τ or w ≤ τ , let

Ia,τ = {µ ∈ ∆(Θ) | (1− τ)µ+ τµ0 ∈ Ia}

be the set of posterior beliefs for which, if the agent’s bias level is exactly τ , then the agent’s biased
belief will fall within the indifference set Ia.
Lemma 5.1. Ia,τ is equal to the intersection of the probability simplex ∆(Θ) and a translation of
the hyperplane {x | c⊤a x = 0}: Ia,τ =

{
µ ∈ ∆(Θ) | c⊤a µ = − τ

1−τ c
⊤
a µ0

}
.

The proof of this lemma is in Appendix B.1. With this representation of Ia,τ in hand, we can now
present a geometric characterization of the testability of bias.
Theorem 5.2 (geometric characterization). Fix τ ∈ (0, 1). The problem of testing w ≥ τ or w ≤ τ

• Can be solved with a single sample (the sample complexity is 1) if and only if the prior µ0 is in
the convex hull formed by the translated sets Ia,τ for all non-default actions a ∈ A \ {a0}: i.e.,
µ0 ∈ ConvexHull

( ⋃
a∈A\{a0} Ia,τ

)
.

• Can be solved (with finite sample complexity) if and only if Ia,τ ̸= ∅ for at least one a ∈ A\{a0}.
• Cannot be solved if Ia,τ = ∅ for all a ∈ A \ {a0}.

Figure 1 illustrates the three cases of Theorem 5.2. In the first case, the solution of the linear program
in Algorithm 1 satisfies

∑
a∈A\{a0}

∑
θ∈Θ π(a|θ)µ0(θ) = 1, meaning that useful signals are sent

with probability 1, which allows us to tell whether w ≥ τ or w ≤ τ immediately. In the second case,
the total probability of useful signals satisfies

∑
a∈A\{a0}

∑
θ∈Θ π(a|θ)µ0(θ) < 1, so the sample

complexity is more than 1. In the third case, the linear program in Algorithm 1 is not feasible,
so w ≥ τ or w ≤ τ cannot be determined; importantly, this is not a limitation of our particular
algorithm, but a general impossibility in our model. The proof of Theorem 5.2 is in Appendix B.2.

6 Discussion

Our approach has some limitations; here we discuss the two that we view as most significant.

First, we have assumed a linear model of bias. While the linear model is common in the literature
[8, 10, 5, 18], we also consider a more general model of bias (in Appendix C): as the bias level w
increases from 0 to 1, the agent’s belief changes from the true posterior µs to the prior µ0 according
to some general continuous function ϕ(µ0, µs, w). We show that, as long as the function ϕ satisfies a
certain single-crossing property (as w increases, once the agent starts to prefer the default action a0,
they will not change the preferred action anymore), our results regarding the optimality of constant
signaling schemes and the geometric characterization still hold, while the revelation principle and
the linear program algorithm no longer work because ϕ is not linear. We consider it an interesting
challenge to come up with more general models of bias that are still tractable, in the sense that one
can efficiently design good signaling schemes with reasonable sample complexity bounds.

Second, we have assumed that the agent’s prior is the same as the real prior from which states of the
world are drawn. But what if the agent’s prior is different? Our results directly extend to the case
where the agent has a wrong, known prior. If the agent’s prior is unknown, then our problem becomes
significantly more challenging. More generally, the agent may have a private type that determines
both their prior and utility and is unknown to the principal. We conjecture that testing the agent’s
bias in this case becomes impossible, because if different types consistently take “opposite” actions,
then the actions provide no information about the agent’s bias.

Despite these limitations, we view our paper as making significant progress on a novel problem that
seems fundamental. Our results suggest that practical algorithms for detecting bias in belief update
are within reach and, in the long term, may lead to new insights on issues of societal importance. In
particular, we anticipate future research in more complex situations such as combining decisions of
many experts (human or AI) after measuring and accounting for their individual biases.
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A Missing Proofs from Section 4

A.1 Proof of Lemma 4.3

Proof. Suppose that, during its operation, Π selects a signaling scheme π that includes an external
signal s ∈ S. By definition, for an external signal, the τ -biased belief µτ

s = τµ0 + (1 − τ)µs is
in extRa0

. This implies that the true posterior µs, derived from the signaling scheme π and the
prior µ0, also lies in extRa0

. Consequently, the line segment connecting µs and µ0, represented
as {(1 − t)µs + tµ0 | t ∈ [0, 1]}, must intersect the boundary ∂Ra0

at some point. Denote this
intersection by µ∗ = (1− t∗)µs + t∗µ0 ∈ ∂Ra0

.

We will adjust the original signaling scheme π. To do so, define µ̃s as the belief whose τ -biased
version equals µ∗:

τµ0 + (1− τ)µ̃s = µ∗ ⇐⇒ µ̃s =
(t∗ − τ)µ0 + (1− t∗)µs

1− τ
.

Under the original signaling scheme π, according to the splitting lemma (Lemma 2.1), the prior µ0

can be represented as a convex combination of µs and the posteriors associated with other signals
s′ ∈ S \ {s}:

µ0 = psµs +
∑

s′∈S\{s}

ps′µs′ .

If we change µs to µ̃s, then we obtain a new convex combination (this is valid because µ̃s is on the
line segment from µs to µ0):

µ0 = p̃sµ̃s +
∑

s′∈S\{s}

p̃s′µs′ ,

where
p̃s =

ps
1− t∗ + t∗ps

and ∀s′ ∈ S \ {s}, p̃s′ =
1− t∗

1− t∗ + t∗ps
ps′ .

Then, by the splitting lemma (Lemma 2.1), there exists a signaling scheme π′ with |S| signals where
signal s induces posterior µ̃s and other signals s′ induces µs′ . Note that the τ -biased version of µ̃s

satisfies τµ0 + (1− τ)µ̃s = µ∗ ∈ ∂Ra0
, so s is a boundary signal under signaling scheme π′.

Since s is a boundary signal, we can immediately tell whether w ≥ τ or w ≤ τ according to
Lemma 4.2 when s is sent and end the algorithm. If any signal s′ other than s is sent, the induced
posterior µs is the same as the posterior in the original signaling scheme π, so the agent will take
the same action, and we can just follow the rest of the original algorithm Π. But we note that the
probability of signal s being sent under the new signaling scheme π′ is larger than or equal to the
probability under the original signaling scheme π:

p̃s =
ps

1− t∗ + t∗ps
≥ ps.

So, in expectation, we can end the algorithm faster by using π̃ than using π. Hence, by repeating the
above procedure to replace all the signaling schemes in the original algorithm Π that use external
signals, we obtain a new algorithm Π′ that only uses boundary and internal signals with smaller or
equal sample complexity.

A.2 Proof of Lemma 4.4

Proof. Let Π be any adaptive algorithm using signaling schemes with boundary and internal signals.
Let Ht = {(π1, θ1, s1, a1), . . . , (πt, θt, st, at)} be any history that can happen during the execution
of Π. If no boundary signal has been sent, then every realized signal sk is an internal signal in the
respective signaling scheme πk, with the τ -biased posterior satisfying µτ

sk
= τµ0 + (1 − τ)µsk ∈

Ra0
. Because Ra0

=
{
µ ∈ ∆(Θ) | ∀a ∈ A \ {a0}, c⊤a µ > 0

}
is an open region, there must

exist some εk > 0 such that the ℓ1-norm ball Bεk(µ
τ
sk
) = {µ ∈ ∆(Θ) : ∥µ − µτ

sk
∥1 ≤ εk} is a

subset of Ra0
. Let ε = mintk=1 εk > 0. Then Bε(µ

τ
sk
) ⊆ Ra0

for every k = 1, . . . , t. Suppose the
agent’s bias level w is in the range [τ − ε

2 , τ +
ε
2 ]. Then, for every signal sk, the agent’s biased belief

νsk = wµ0 + (1− w)µsk satisfies:

∥νsk − µτ
sk
∥1 = ∥(w − τ)(µ0 − µsk)∥1 ≤ |w − τ | · ∥µ0 − µsk∥1 ≤ ε.
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This means
νsk ∈ Bε(µ

τ
sk
) ⊆ Ra0 .

So, the agent should take action a0 given signal sk. Note that this holds for every k = 1, . . . , t and
any w ∈ [τ − ε

2 , τ + ε
2 ]. So we cannot determine whether w ≥ τ or w ≤ τ so far. We have to run

the algorithm until a boundary signal is sent.

A.3 Proof of Lemma 4.5

Proof. Let π be a signaling scheme that can test whether w ≥ τ or w ≤ τ . According to Lemma 4.3,
π can be assumed to only use boundary and internal signals. Recall that a signal s is boundary if the
τ -biased belief µτ

s = τµ0 + (1− τ)µs lies on the boundary set ∂Ra0
. For a ∈ A \ {a0}, let Ba be

the set of beliefs under which the agent is indifferent between a and a0 and a and a0 are both better
than other actions:

Ba = {µ ∈ ∆(Θ) | c⊤a µ = 0 and ∀a′ ∈ A, c⊤a′µ ≥ 0}.
The boundary set ∂Ra0

can be written as the union of Ba for a ∈ A \ {a0}:

∂Ra0 =
⋃

a∈A\{a0}

Ba.

Then, we classify the boundary signals into |A| − 1 sets {Sa}a∈A\{a0} according to which Ba sets
their τ -biased beliefs belong to: namely, the set Sa contains boundary signals s under which

τµ0 + (1− τ)µs ∈ Ba.

We then combine the signals in Sa. Specifically, consider the normalized weighted average of the
true posterior beliefs associated with the signals in Sa, denoted by µa:

µa =
∑
s∈Sa

π(s)∑
s′∈Sa

π(s′)
µs.

Note that the τ -biased version of µa is also in the set Ba because Ba is a convex set:

τµ0 + (1− τ)µa =
∑
s∈Sa

π(s)∑
s′∈Sa

π(s′)

(
τµ0 + (1− τ)µs

)
∈ Ba.

This means that if a signal a induces true posterior µa, then this signal is a boundary signal.

After defining µa as above for every a ∈ A \ {a0}, let’s consider the set of internal signals of the
signaling scheme π, which we denote by SI . For each internal signal s ∈ SI , the τ -biased belief
satisfies

τµ0 + (1− τ)µs ∈ Ra0
.

Similar to above, we combine all the signals in SI : define µa0
to be the normalized weighted average

of the posteriors associated with all internal signals:

µa0
=

∑
s∈SI

π(s)∑
s′∈SI

π(s′)
µs.

Then, the τ -biased version of µa0
must be in Ra0

because Ra0
is a convex set:

τµ0 + (1− τ)µa0
=

∑
s∈SI

π(s)∑
s′∈SI

π(s′)

(
τµ0 + (1− τ)µs

)
∈ Ra0

.

This means that, if a signal induces posterior µa0
, then this signal is internal.

From the splitting lemma (Lemma 2.1), we know that the convex combination of the original pos-
teriors

∑
s∈S π(s)µs is equal to the prior µ0. This means that the following convex combination of

the new posteriors {µa}a∈A\a0
and µa0 is also equal to the prior:∑

a∈A\a0

∑
s′∈Sa

π(s′)µa +
∑
s′∈SI

π(s′)µa0 =
∑

a∈A\a0

∑
s∈Sa

π(s)µs +
∑
s∈SI

π(s)µs =
∑
s∈S

π(s)µs = µ0

where the convex combination weight of µa is
∑

s′∈Sa
π(s′) for every a ∈ A \ {a} and the convex

combination weight of µa0
is
∑

s′∈SI
π(s′). One can easily verify that the weights sum to 1. Then,

by the splitting lemma (Lemma 2.1), there exists a signaling scheme π′ with signal space of size |A|
(so we simply denote the signal space by A) where each signal a ∈ A induces posterior µa. We
show that this new signaling scheme π′ satisfies the properties in Lemma 4.5:
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• Signal a0 induces posterior µa0 whose τ -biased version satisfies τµ0 + (1− τ)µa0 ∈ Ra0 .
So, given signal a0, action a0 is the optimal action for an agent with bias level τ .

• For each signal a ∈ A \ {a0}, the induced posterior µa satisfies τµ0 + (1 − τ)µa ∈
Ba ⊆ ∂Ra0 . So, by the definition of Ba, an agent with bias level τ is indifferent between
actions a and a0 and these two actions are better than other actions. Also, this signal is a
boundary signal by Definition 4.1, which satisfies the following according to Lemma 4.2:
if the agent’s bias level w < τ , then the agent strictly prefers a over a0; if w > τ , then the
agent strictly prefers a0 over a.

• The sample complexity of π′ is the same as π because: (1) the sample complexity is equal
to the inverse of the total probability of boundary signals (as a corollary of Lemma 4.4),
and (2) the total probability of boundary signals of the two signaling schemes are the same:∑

a∈A\{a0}

π′(a) =
∑

a∈A\{a0}

∑
s′∈Sa

π(s′) =
∑

s∈∪a∈A\{a0}Sa

π(s).

So, Tτ (π
′) = Tτ (π).

B Missing Proofs from Section 5

B.1 Proof of Lemma 5.1

Proof. For µ ∈ ∆(Θ), by convexity of ∆(Θ), we have (1− τ)µ+ τµ0 ∈ ∆(Θ). Then,

µ ∈ Ia,τ ⇐⇒ (1− τ)µ+ τµ0 ∈ Ia ⇐⇒ c⊤a ((1− τ)µ+ τµ0) = 0

⇐⇒ (1− τ)c⊤a µ+ τc⊤a µ0 = 0

⇐⇒ c⊤a µ = − τ

1− τ
c⊤a µ0.

B.2 Proof of Theorem 5.2

We first prove the first part of Theorem 5.2, then prove the the second and third parts.

B.2.1 Proof of Part 1 of Theorem 5.2

We want to prove that w ≥ τ or w ≤ τ can be tested with a single sample if and only if the prior
µ0 is in the convex hull formed by the translated sets Ia,τ for all non-default actions a ∈ A \ {a0}:
µ0 ∈ ConvexHull

(
∪a∈A\{a0} Ia,τ

)
.

The “if” part. Suppose µ0 ∈ ConvexHull
(
∪a∈A\{a0} Ia,τ

)
, namely, there exist a set of positive

weights {ps}s∈S and a set of posterior beliefs {µs}s∈S such that

µ0 =
∑
s∈S

psµs,

where each µs ∈ Ia,τ for some a ∈ A \ {a0}. By definition, the τ -biased belief τµ0 + (1 − τ)µs

is in the indifference set Ia. Recall the definition of the boundary set ∂Ra0
(Equation (3)), which is

the set of beliefs under which the agent is indifferent between a0 and some other action and these
two actions are better any other actions. The τ -biased belief τµ0 + (1− τ)µs ∈ Ia may or may not
belong to ∂Ra0

, depending on whether a and a0 are better than any other actions:

• If τµ0 + (1 − τ)µs ∈ ∂Ra0
, then s is a boundary signal (by Definition 4.1) and hence

useful for testing whether w ≥ τ or w ≤ τ (Lemma 4.2). Denote µ′
s = µs in this case.
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• If τµ0 + (1− τ)µs /∈ ∂Ra0 , then there must exist some action a′ that is strictly better than
a and a0 for the agent at the τ -biased belief, hence τµ0 + (1− τ)µs ∈ extRa0 (so s is an
external signal). Then, according to the argument in Lemma 4.3, we can find another belief
µ′
s on the line segment between µs and µ0 such that the τ -biased version of µ′

s lies exactly
on the boundary set ∂Ra0

:

τµ0 + (1− τ)µ′
s ∈ ∂Ra0

, µ′
s = tµs + (1− t)µ0 for some t ∈ [0, 1].

After the above discussion, we have found a µ′
s that is either equal to µs or on the line segment

between µs and µ0, for every s ∈ S. So, µ0 can be written as a convex combination of {µ′
s}s∈S :

µ0 =
∑
s∈S

p′sµ
′
s.

Moreover, the µ′
s defined above satisfies τµ0 + (1 − τ)µ′

s ∈ ∂Ra0
. So, a signal inducing true

posterior µ′
s will be a boundary signal and useful for testing w ≥ τ or w ≤ τ (Lemma 4.2). Finally,

by the splitting lemma (Lemma 2.1), we know that there must exist a signaling scheme π′ with
signal space S where each signal s ∈ S indeed induces posterior µ′

s. Such a signaling scheme sends
useful (boundary) signals with probability 1. Hence, the sample complexity of it is 1.

The “only if” part. Suppose whether w ≥ τ or w ≤ τ can be tested with a single sample. This
means that the optimal signaling scheme obtained from the linear program in Algorithm 1 must
satisfy

∑
a∈A\{a0} π(a) =

∑
a∈A\{a0}

∑
θ∈Θ π(a|θ)µ0(θ) = 1, namely, the total probability of

useful signals (signals in A \ {a0}) is 1. Then, by the splitting lemma, the prior µ0 can be expressed
as the convex combination

µ0 =
∑

a∈A\{a0}

π(a)µa

where π(a) =
∑

θ∈Θ µ0(θ)π(a|θ) is the unconditional probability of signal a and µa is the true
posterior induced by signal a. Moreover, the indifference constraint (6) in the linear program ensures
that the agent is indifferent between a and a0 upon receiving signal a if the agent has bias level τ :
mathematically, τµ0 + (1− τ)µa ∈ Ia. This means µa ∈ Ia,τ by definition. So, we obtain

µ0 ∈ ConvexHull

( ⋃
a∈A\{a0}

Ia,τ

)
.

B.2.2 Proof of Parts 2 and 3 of Theorem 5.2

We first prove that, if whether w ≥ τ or w ≤ τ can be tested with finite sample complexity, then
Ia,τ ̸= ∅ for at least one a ∈ A \ {a0}.

According to Lemma 4.1, if we can test whether w ≥ τ or w ≤ τ with finite sample complexity
using adaptive algorithms, then we can do this using a constant signaling scheme. Lemma 4.3 further
ensures that we can do this using a constant signaling scheme π with only boundary and internal
signals. But according to Lemma 4.4, internal signals are not useful for testing w ≥ τ or w ≤ τ .
So, the signaling scheme π must send some boundary signal s with positive probability. Let µs be
the true posterior induced by s. By the definition of boundary signal, τµ0 + (1 − τ)µs ∈ ∂Ra0

,
implying that the agent is indifferent between a0 and some action a ∈ A \ {a0} if their belief is
τµ0+(1− τ)µs (and a0 and a are better than any other actions). This means τµ0+(1− τ)µs ∈ Ia,
so µs ∈ Ia,τ by definition. Hence, Ia,τ ̸= ∅.

We then prove the opposite direction: if Ia,τ ̸= ∅ for at least one a ∈ A \ {a0}, then whether w ≥ τ
or w ≤ τ can be tested with finite sample complexity.

Let a1 ∈ A \ {a0} be an action for which Ia1,τ ̸= ∅. We claim that:
Claim B.1. There exists a state θ1 ∈ Θ for which the agent weakly prefers action a1 over action
a0 if the true posterior is state θ1 with probability 1 and the agent has bias level τ . In notation,
let eθ1 ∈ ∆(Θ) be the vector whose θ1th component is 1 and other components are 0. The agent
weakly prefers action a1 over action a0 under belief τµ0 + (1− τ)eθ1 .

Proof. Suppose on the contrary that no such state θ1 exists. Then the agent strictly prefers a0 over
a1 under belief τµ0 + (1− τ)eθ for every state θ ∈ Θ. This implies that, for any belief µ ∈ ∆(Θ),
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the agent should also strictly prefer a0 over a1 under the belief τµ0 + (1 − τ)µ, due to linearity
of the agent’s utility with respect to the belief. The agent strictly preferring a0 over a1 implies
τµ0 + (1 − τ)µ /∈ Ia, so µ cannot be in Ia,τ by definition. This holds for any µ ∈ ∆(Θ), so
Ia,τ = ∅, a contradiction.

Let θ1 be the state in the above claim. The prior µ0 can be trivially written as the convex combination
of eθ1 and eθ for other states θ:

µ0 = µ0(θ1)eθ1 +
∑

θ∈Θ\{θ1}

µ0(θ)eθ.

Since the agent does not prefer a0 under belief τµ0+(1− τ)eθ1 , the belief τµ0+(1− τ)eθ1 cannot
be in the region Ra0 . The prior µ0 is in the region Ra0 . Consider the line segment connecting eθ1
and the prior µ0. There must exist a point µ′ = teθ1 + (1 − t)µ0 on the line segment such that the
τ -biased belief τµ0 + (1 − τ)µ′ lies exactly on the boundary of Ra0

. Clearly, the prior can also be
written as a convex combination of µ′ and eθ for θ ∈ Θ \ {θ1}:

µ0 = p′µ′ +
∑

θ∈Θ\{θ1}

p′θeθ.

Then by the splitting lemma (Lemma 2.1), there exists a signaling scheme with |Θ| signals where
one signal induces posterior µ′ and the other signals induce posteriors {eθ}θ∈Θ\{θ1}. In particular,
the signal inducing µ′ is a boundary signal since τµ0 + (1 − τ)µ′ ∈ ∂Ra0

by construction. By
Lemma 4.2, that signal is useful for testing w ≥ τ or w ≤ τ . When that signal is sent (which
happens with positive probability p′ > 0 at each time step), we can tell w ≥ τ or w ≤ τ . This
finishes the proof.

The two directions proved above together prove the parts 2 and 3 of Theorem 5.2.

C A More General Bias Model

We define a more general model of biased belief than the linear model. The agent’s bias is captured
by some function ϕ : ∆(Θ) × ∆(Θ) × [0, 1] → ∆(Θ). Given prior µ0 ∈ ∆(Θ), true posterior
µs ∈ ∆(Θ), and bias level w ∈ [0, 1], the agent has biased belief ϕ(µ0, µs, w). The linear model is
the special case where ϕ(µ0, µs, w) = wµ0+(1−w)µs. We make the following natural assumptions
on ϕ:

Assumption C.1.

• ϕ(µ0, µs, 0) = µs (no bias), ϕ(µ0, µs, 1) = µ0 (full bias).

• ϕ(µ0, µs, w) is continuous in µ0, µs, w.

We then make some joint assumptions on the bias model ϕ and the agent’s utility function U . Recall
that the notation Ra0

=
{
µ ∈ ∆(Θ) | ∀a ∈ A \ {a0}, c⊤a µ > 0

}
is the region of beliefs under

which the agent strictly prefers action a0, ∂Ra0 is the boundary of Ra0 , and extRa0 is the exterior
of Ra0 where the agent strictly not prefers a0.

Assumption C.2. When receiving no information, the agent will take the default action: ∀µ0 ∈
∆(Θ), ∀w ∈ [0, 1], ϕ(µ0, µ0, w) ∈ Ra0 .

Definition C.1. We say that a posterior belief µ ∈ ∆(Θ) satisfies single-crossing if the curve
{ϕ(µ0, µ, w) : w ∈ [0, 1]} passes the boundary ∂Ra0 only once: namely, there exists w ∈ [0, 1]
such that 

∀w ∈ [0, w), ϕ(µ0, µ, w) ∈ extRa0
;

ϕ(µ0, µ, w) ∈ ∂Ra0
;

∀w ∈ (w, 1], ϕ(µ0, µ, w) ∈ Ra0
.

We assume that all posteriors outside Ra0
satisfy single-crossing, and all posteriors inside Ra0

do
not cross the boundary when the bias level varies in [0, 1]:

Assumption C.3.
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• Any µ /∈ Ra0 satisfies single-crossing.

• For any µ ∈ Ra0 , any w ∈ [0, 1], ϕ(µ0, µ, w) ∈ Ra0 .

Under the above general bias model with the stated assumptions, our results regarding the optimality
of constant signaling schemes (Lemma 4.1) still holds. The geometric characterization of testability
of bias (Theorem 5.2) holds after redefining some notations. Let Ia = {µ ∈ ∆(Θ) | c⊤a µ = 0} still
be the set of beliefs where the agent is indifferent between actions a and a0. Let Ia,τ still be the set
of posterior beliefs for which an agent with bias level τ will be indifferent between a and a0, but
with a more general expression than the linear model:

Ia,τ := {µ ∈ ∆(Θ) | ϕ(µ0, µ, τ) ∈ Ia}.

With the above definition of Ia,τ , Theorem 5.2 still holds. We omit the proofs because they are
almost identical to the proofs for the linear model.

The revelation principle (Lemma 4.5) and the linear program algorithm for computing the optimal
signaling scheme (Algorithm 1 and Theorem 4.6) do not apply to the general bias model because ϕ
is not linear. Designing an efficient algorithm to compute a good signaling scheme to test bias in a
more general model is an interesting future direction.
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