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Abstract. Schistosomiasis is a parasitic disease with global health and socio-

economic impacts. The World Health Organization (WHO) and National Insti-

tutes of Health (NIH) list it among diseases for which new treatments are ur-

gently required. Drug discovery for Schistosomiasis typically involves whole-

organism phenotypic screening. In such an approach, the parasites are exposed 

to different chemical compounds, and systemic phenotypic effects captured via 

microscopy (video or still images) are analyzed to identify promising mole-

cules. Changes in parasite phenotypes tend to be multidimensional, involving 

changes in shape, appearance and behavior, and time-varying. In many image 

representation frameworks, shape and appearance are measured independently 

and their inter-correlation can be lost. In this paper, we propose an integrated 

shape-texture descriptor called the skeleton-constrained shortest band (SCSB) 

that extends the family of shape context descriptors well known in computer vi-

sion. We examine how SCSB can be used to measure temporally varying shape 

and appearance changes occurring as a consequence of chemical action and 

compare its performance with other members of the shape context family. 

Keywords: Shape Context, biological imaging, microscopy, parasitic diseases, 

whole-organism screening, drug discovery. 

1 Introduction 

1.1 Background 

Schistosomiasis is a parasitic disease with global health and socio-economic impacts. 

It is estimated that over 200 million people are currently infected and more than 700 

million are at risk across 78 countries. Treatment is largely based on the drug pra-

ziquantel (PZQ). However, it is primarily effective during the adult stage of the worm 

life cycle [1] and resistance to the drug has been observed [2]. Thus, the World Health 

Organization (WHO) and National Institutes of Health (NIH) list schistosomiasis 

among diseases for which new treatments are urgently required.  

Drug discovery for Schistosomiasis (and other helminthic diseases) typically in-

volves whole organism phenotypic screening. In this process, parasite(s) are exposed 

to different compounds and the resultant multidimensional and systemic phenotypic 
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changes are recorded and analyzed to determine the efficacy of the compounds and 

identify putative novel drugs. Starting with the pioneering work in [3], the develop-

ment of phenotype-analysis methods for this area has attracted significant interest. 

Within this context, one of the key technical challenges lies in the development of 

image representation-comparison frameworks that can capture the wide variety of 

correlated shape-appearance changes exhibited by the parasites causing schistosomia-

sis. 

 

1.2 Problem formulation 

In order to precisely measure complex parasite phenotypes, the representation must be 

accurate, robust, and invariant to the following characteristics: (1) Euclidean and scale 

invariance, (2) significant deformations that occur as the parasites move, and (3) a 

range of imaging conditions. Furthermore, shape and appearance changes are not only 

two of the most important aspects of parasite phenotypic responses, but they can also 

be correlated. For example, as the shape of the parasite deforms during motion, its 

body texture changes in a coupled manner. Consequently, integrated shape-texture 

descriptors are required since measuring these attributes independently may fail to 

capture their interrelationship. 

The example in Figure 1 illustrates these characteristics. In it, a group of parasites 

exposed to the antipsychotic drug acepromazine are followed across 10 non-

consecutive frames. It is easy to note that the illumination changes over the recording 

time. More importantly, we can observe that the parasite at the bottom left of the top 

row underwent significant changes in both shape and texture due to its movements. 

The reader may also note the temporally evolving systemic degradation suffered by 

the parasites (bottom row) when compared with the top row, as a result of chemical 

action. 

 

Fig. 1. Depiction of shape and appearance changes over time: top-row due to parasite motion 

and across top-and bottom row due to chemical action. The top row shows 6 parasites in 5 

frames exposed to acepromazine (10 μM and one day of exposure to the compound). The bot-

tom row shows 5 frames with the parasites also exposed to acepromazine (10 μM, four days 

after exposure to the compound). 



2 Prior work 

The first attempt to describe the complex phenotypes of Schistosomiasis using algo-

rithmic image analysis was made by Singh et al.  [3]. In this work the problems of 

segmentation, appearance encoding, and phenotype classifications were addressed by 

analyzing parasites exposed to a select set of compounds. The description of the shape 

and appearance relied on measurements of eccentricity, entropy, and local pixel 

range. Nevertheless, eccentricity alone is insufficient to fully encompass all of the 

intricate deformation-driven alterations in the parasite shape. In a significant ad-

vancement thereafter, a public webserver called QDREC [4] for automatically deter-

mining dose-response characteristics and IC50 values from microscopy images was 

developed. In QDREC, 71 image-based features were used to describe the shape and 

appearance. As mentioned above, many these features were calculated independently 

for shape-appearance changes that are coupled and any interrelationships were, at 

best, reflected implicitly in QDREC. Method development reported by us in this pa-

per is motivated by the shape-context family of representations. The progenitor of this 

family of methods, the shape context (SC) representation [5], is known to be a robust 

shape descriptor that is invariant to translation, rotation, and scale. Its generalization, 

called the inner distance shape context (IDSC), and a combined descriptor using 

IDSC and intensity gradient directions called the shortest path texture context (SPTC) 

were proposed later [6]. However, we have found (and demonstrate in this paper) that 

IDSC can be sensitive to inconsequential shape variations. Furthermore, intensity 

gradient directions may be too simplistic to describe complex texture changes. 

3 Methods 

3.1 Integrated Representation of parasite morphology and appearance.  

In this section, we start by summarizing the shape context (SC) representation. Given 

the contours of a parasite P| 𝑃 ∈ 𝑹2, the shape context descriptor SC(P) is defined as 

the relative distribution of each of the contour points of P to the other contour points. 

That is, for the contour 𝑃 = {𝑐1, … , 𝑐𝑛}, SC(P)= {d1, d2, …, dn}, where dm is a log-

polar histogram capturing the distribution of the contour points {cj≠cm} relative to cm 

as defined in Eq. (1), where 𝑘 indexes the bins of the histogram (See Figure 2a).   

 

𝑑𝑚(𝑘) = #{(𝑐𝑗 − 𝑐𝑚) ∈ 𝑏𝑖𝑛(𝑘), 𝑚 ≠ 𝑗} (1) 

 

Each histogram dm can be rotated and positioned based on the tangent line at cm to 

obtain rotation invariance. SC is also invariant to Euclidean transformations and is 

known to be highly noise tolerant. Scale-invariance can be obtained if the radius of 

the log-polar histogram is calculated using the mean distance between all the points 

pairs.  
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In the IDSC, the geodesic distance i.e., the shortest path between a pair of points 

that is completely contained inside the shape is used to construct the log-polar histo-

gram (Figure 2b). Due to its use of inter-point geodesics, IDSC is invariant to shape 

articulations. The reader is referred to the original SC and IDSC papers for a detailed 

technical explanation underlying the characteristics of SC and IDSC methods. How-

ever, the geodesic distance uses other points as bridge points if the Euclidean distance 

between a pair of points doesn’t entirely lie within the shape, and as we have found, it 

is particularly sensitive to small changes on the contour under these conditions. 

 

 

Fig. 2. A figure caption is always placed below the illustration. Short captions are centered, 

while long ones are justified. The macro button chooses the correct format automatically. 

Such sensitivity is of course highly undesirable, since in such cases, the geodesic 

distance may fluctuate unpredictably for small local changes in the contour. As an 

alternative we propose a descriptor which constrains the geodesic distances between 

an arbitrary pair of contour points to pass through the shape skeleton (Figure 2c). The 

incorporation of the shape skeleton leads to more robust descriptor that is also sensi-

tive to shape articulations when compared to SC and IDSC.  

We define the skeleton-constrained inner distance (SCID) for object 𝑂 with con-

tour 𝑃 and skeleton 𝑆 = {𝑠1, … , 𝑠𝑡} as follows:  

 

𝛼(𝑐𝑖 , 𝑐𝑗; 𝑂) = 𝛼(𝑐𝑖 , 𝑠𝑖 ; 𝑂) + 𝛼(𝑠𝑖 , 𝑠𝑗; 𝑆) + 𝛼(𝑠𝑗 , 𝑐𝑗; 𝑂) (2) 

𝛼(𝑐𝑖 , 𝑠𝑖; 𝑂) = 𝑚𝑖𝑛{𝛼(𝑐𝑖 , 𝑠𝑗; 𝑂), 𝑐𝑖 ∈ 𝑃 𝑎𝑛𝑑 ∀𝑠𝑗 ∈ 𝑆} (3) 

 

In Eq. (2) and (3), 𝛼(𝑐𝑖 , 𝑐𝑗; 𝑂) is the skeleton-constraint inner distance from 𝑐𝑖 ∈ 𝑃 to 

𝑐𝑗 ∈ 𝑃, 𝛼(𝑐𝑖 , 𝑠𝑖; 𝑂) is the shortest (in the least square) sense path from the contour 

point 𝑐𝑖 to the 𝑠𝑖 ∈ 𝑆 which contained inside the object 𝑂, 𝛼(𝑠𝑗 , 𝑐𝑗; 𝑂) is the shortest 

(in the least square) sense path between 𝑠𝑗 ∈ 𝑆  and 𝑐𝑗 ∈ 𝑃, and 𝛼(𝑠𝑖 , 𝑠𝑗; 𝑆) is the path 

from 𝑠𝑖 to 𝑠𝑗 along the skeleton 𝑆. Typically, the skeleton is computed using the me-

dia axis transformation and can be sensitive to contour variations leading to unneces-

sary branching of the skeleton. To improve the robustness, a pruning step is applied to 

the skeleton. Specifically, the skeleton 𝑆 is first divided into the main branch 𝑆𝑎 and 

side branches 𝑆𝑖 such that: 

𝑆 = 𝑆𝑎 ∪ {⋃ 𝑆𝑖

𝑖

} 𝑎𝑛𝑑 𝑆𝑎 ∩ 𝑆𝑖 = ∅, ∀𝑖 (4) 



 

 

Fig. 3. Skeleton and their skeleton-constrained shortest paths before and after the pruning step.  

The left two images represent the unpruned version, and the right two images represent the 

pruned version with only the main branch left. 

Subsequently, a proportion of 𝑆𝑖 can be pruned based on its characteristics (Figure 3). 

The pruning is done as the following: (1) The main branch and side branches are iden-

tified by measuring the distance along the skeleton between all its endpoints, (2) side 

branches are ordered by their distance, and (3) the shortest side branches are pruned 

based on a pruning ratio which can either be user-specified or determined automati-

cally. 

To explain our approach to the joint modeling of shape and texture, we begin by 

noting that in the SPTC by the shape information captured by the IDSC is supple-

mented by measuring the distributions of (weighted) relative orientation through the 

shortest paths. The relative orientation is obtained by measuring the angles between 

intensity gradient directions and shortest path direction, and the weight is gradient 

magnitudes. The SPTC is a 3-D histogram where the inner-distance and the inner-

angle used as the first two dimensions are the same as IDSC. The third dimension is 

binned normalized histogram of weighted relative orientation. 

Our approach combines shape and appearance through similarly but uses a differ-

ent texture descriptor called dominant rotated local binary pattern (DRLBP) [7]. 

DRLBP is a rotation invariant texture descriptor that builds on top of the local binary 

pattern (LBP), where the central pixel of a local circular region is compared with its 

neighbors. 

𝐿𝐵𝑃𝑅,𝐵 = ∑ 𝑠(𝑝𝑏 − 𝑝𝑐) ∙ 2𝑏

𝐵−1

𝑏=0

 (5) 

In Eq. (5),  𝑝𝑐 and 𝑝𝑏  denote the gray level intensity of the central pixel and its neigh-

bors, 𝑅 is the radius of the circular neighborhood, 𝐵 the number of neighbors, and 𝑠 is 

an indicator function where its value is 0 if the neighbor pixel is less than the central 

pixel, 1 otherwise. A dominant direction is then defined (Eq. (6)), which can be used 

to rotate the LBP and thereby achieve rotational invariance (Eq. (7)). 

 

𝐷𝐼𝑅 = arg max𝑏∈(0,1,…,𝐵−1) | 𝑝𝑏 − 𝑝𝑐| (6) 

𝐷𝑅𝐿𝐵𝑃𝑅,𝐵 = ∑ 𝑠(𝑝𝑏 − 𝑝𝑐) ∙ 2𝑚𝑜𝑑(𝑏−𝐷𝐼𝑅,𝐵)

𝐵−1

𝑏=0

 (7) 
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Fig. 4. Appearance and texture of a parasite using relative orientation and DRLBP. (a) Original 

parasite, (b) Weighted relative orientation. (c)(d)(e) Weighted Rotated Local Binary Pattern 

(WRLBP) with radii 1, 2, 3, respectively. 

DRLBP is invariant to illumination due to the indicator function. It is also a more 

flexible and informative texture descriptor as a broader range of neighborhood pixels 

can be considered with the radius parameter (Figure 4). To distinguish darker para-

sites from lighter ones, even when they are similarly textured, we can weigh the 

RLBP as the following: 

𝑊𝑅𝐿𝐵𝑃𝑅,𝐵 = 𝐷𝑅𝐿𝐵𝑃𝑅,𝐵 ∙
𝑝𝑐

2𝐵
 (8) 

Finally, to obtain the integrated shape-appearance description of an object 𝑂  with 

contour P, which we shall call the skeleton-constrained shortest band (SCSB), 

𝛼(𝑐𝑚, 𝑐𝑗; 𝑂) is the shortest path between the contour point 𝑐𝑚 and 𝑐𝑗 of 𝑃 as defined 

above. The new 𝑘th bins of the 3D-histogram can be formulated as the following: 

𝑑𝑚(𝑘) = #{𝑝𝑖 ∈ 𝑏𝑖𝑛(𝑘), 𝑝𝑖 ∈ 𝛼(𝑐𝑚, 𝑐𝑗; 𝑊𝑅𝐿𝐵𝑃𝑅,𝐵(𝑂))} (9) 

where 𝑊𝑅𝐿𝐵𝑃𝑅,𝐵(𝑂) is the appearance of object 𝑂 and 𝑝𝑖  are the pixels along the 

SCID inside 𝑊𝑅𝐿𝐵𝑃𝑅,𝐵(𝑂).  

To match two objects with their histograms, we must find the point correspondenc-

es and compute the dissimilarity score between them. The dissimilarity between the 

contour points from one object to another is calculated as the 𝜒2 distance between 

their corresponding histograms: 

𝑐𝑜𝑠𝑡(𝑐𝑖
𝑃 , 𝑐𝑗

𝑄) = 𝜒2(𝑑𝑖
𝑃 , 𝑑𝑗

𝑄) =  
1

2
∑

[𝑑𝑖
𝑃(𝑘) − 𝑑𝑗

𝑄(𝑘)]2

𝑑𝑖
𝑃(𝑘) + 𝑑𝑗

𝑄(𝑘) + 𝜀

𝐾

𝑘=1

 (10) 

In Eq. (10),  𝑑𝑖
𝑃 represents the histogram computed at point 𝑐𝑖 of an object with con-

tour 𝑃 and  𝑐𝑜𝑠𝑡(𝑐𝑖
𝑃 , 𝑐𝑗

𝑄) represents the dissimilarity in terms of 𝜒2 distance between 

histograms 𝑑𝑖
𝑃 and 𝑑𝑗

𝑄
. 

 

Fig. 5. Matching of two pairs of parasites using the Hungarian methods, DP method with a 

threshold parameter 0.3, and circular matching: (a), (c) Matching using DP method with a 

threshold parameter 0.3. (b), (d) Matching using circular matching. 



Given a set of 𝑐𝑜𝑠𝑡(𝑐𝑖
𝑃, 𝑐𝑗

𝑄) of all the points between two objects, the final dissimilari-

ty score and correspondences can be computed by obtaining correspondences between 

pairs of contour points. Such a correspondence can be obtained either by using the 

Hungarian algorithm with additional “dummy” points used by Belongie et al. [5] or 

by dynamic programming (DP), as proposed by Ling et al [6]. However, both ap-

proaches are problematic. The Hungarian algorithm computes the optimal cost be-

tween two objects but doesn’t consider the connectivity constraints between contour 

points leading to non-monotonic matching of point pairs. The “dummy” points intro-

duce a constant cost and can be treated as a threshold parameter to filter out the pairs 

of points with high-cost scores. However, this doesn’t consider the non-monotonic 

matching with low-cost scores. In our case, this parameter is hard to choose as large 

deformation can result in a higher cost score while small deformation can result in a 

lower cost score and the final dissimilarity score could be inconsistent due to the 

choice of the threshold parameter. See Figure 5a and 5c, the correspondences for the 

same threshold 0.3 works very differently when large and medium deformation ap-

pears. Therefore, we use a similar approach to the DP method but enforce all match-

ing without the threshold parameter as this is better at presenting dissimilarity score 

involving large deformation, and we call this circular matching (CM) (Figure 5b and 

5d).  

Table 1. Statistical summary of the dataset 

 

 Dataset 

Total parasites 175 

The size of parasites 2314 - 6668 

Perimeter of parasites 166 - 390 

Proportion of the bbox filled 19% - 79% 

Grayscale mean intensity 108 - 196 

Exposure time in days 1, 2, 3, 4, 7 

Concentration in 𝜇𝑀 0*, 0.01, 0.1, 1, 10 

Compounds 

Acepromazine, Alimemazine, Amitripty-

line, Chlorophenothiazine, Clomipramine, 

Cyclobenzaprine, Desipramine, Hycantho-

ne, Imipramine, K777, Methiothepin Me-

sylate, Mevastatin, Niclosamide, Pravas-

tatin, Praziquantel (PZQ), Promazine, Pro-

methazine, Rosuvastatin, Simvastatin, Tri-

flupromazine, Control* 
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4 Experiments 

 Fig. 6. The comprehensive datasets. Left are examples from the 50 paired parasites. Right are 

examples from the 75 unique parasites. 

The proposed methods are evaluated with a comprehensive chemical-phenotype da-

taset that was reported in [8]. It contains 50 paired parasites from consecutive frames 

of the same video include small, medium and large deformations, and 75 parasites 

with unique phenotypes (Figure 6). A summary of the dataset is provided in Table 1.  

Now we describe the parameter used through all the experiments. We use 𝑛 to denote 

the number of sample points on the outer contour of the shapes. As 𝑛 gets large, is the 

contour representation becomes more accurate but less efficient. For the size of histo-

grams, 𝑛𝑟, 𝑛𝑡, and 𝑛𝑖 are used for the number of bins for log-distance on the radius, 

the number of bins for the angles, and the number of bins for the intensity levels, 

respectively. For the pruning fraction used to prune branches of the skeleton, 𝑓is used. 

In our work, a typical setting for these parameters was 𝑛𝑟 = 5 , 𝑛𝑡 = 12, 𝑛𝑖 =
16, 𝑓 = 0.25 and are used through all the experiments in this paper.  

 

4.1 Shape Retrieval in terms of deformation 

 

Fig. 7. Two case studies on shape retrieval in terms of deformation. (a) Case study one with 

100 parasites. (b) Case study two with 175 parasites. 

Although SCID does not explicitly factor-in deformation, it is relatively robust for 

deformable shape retrieval when compared to SC and IDSC. The 50 pairs of parasites 

from consecutive frames show a variety of cases when small, medium, and large de-

formations are observed to occur in the Dataset (see Figure 6). We designed two case 

studies to compare SCID, IDSC, and SC. Both the case studies go through the same 

step. For each of the 100 parasites (50 pairs), if the desired shape (the other parasite in 

the pair) appears in the top K retrievals, it is considered a hit (the parameter K is var-



ied as part of the study). A percentage can be calculated based on the number of hits 

for all the 100 parasites.  

The first case study query uses only the 50 pairs of the parasites (total of 100), 

while the second case study query uses all the 175 parasites in the Dataset. See Figure 

7. SCID shows better shape retrieval compared to IDSC and SC. Both case studies 

lead to similar conclusions, i.e., SCID is better at shape retrieval when deformation 

are presents, especially when 𝐾 ≤ 10 corresponding to the requirement of high preci-

sion in the retrievals.   

 

4.2 Robustness and Sensitivity 

In this section, we compare the sensitivity of SCID and IDSC. We have noted that 

IDSC may be sensitive to small changes on the contour while SCID is not. An exam-

ple is shown in Figure 8. 

 
Fig. 8. Fluctuations in the IDSC (top row, showing the shortest paths) and SCID between the 

same two points of the same parasite taken from 11 consecutive frames.  

We can observe that the shape changes between these 11 consecutive frames are 

small. However, the shortest path inner distance fluctuates between the two points 

across the frames resulting in inconsistent dissimilarity scores. In Figure 9, these dis-

similarity scores are shown for both IDSC and SCID. Clearly, SCID is more robust 

and less sensitive than IDSC for this example with small contour variations. 

 

 
Fig. 9. Dissimilarity scores between 11 parasites in successive frames using both SCID and 

IDSC. Unlike the SCID curve, the IDSC curve shows large fluctuation even when parasite 

shapes show small changes. 
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For significant deformations, the fluctuations in the geodesic distance used in IDSC 

are greater as compared to the SCID. To demonstrate this, consider the following five 

parasites across 11 consecutive frames (Figure 10).  

 

 

Fig. 10. 5 parasite contours across 11 consecutive frames exhibiting significant shape defor-

mations. 

Instead of determining the shortest path using IDSC and SCID between two specific 

points of these parasites as in the previous experiment, we compute a more holistic 

statistic obtained by determining the variances of the shortest path distances between 

all paired points across the 11 frames for these two methods. For each of the five par-

asites, a pair of boxplots is used to present a side-by-side comparison of the variances 

in Figure 11. 

 

 

Fig. 11. The boxplots from left to right correspond to the parasites (and their deformations) 

shown from top to bottom in Figure 10. The label 1 in each boxplot denotes the variance of 

IDSC while the label 2 denotes the variances of SCID. 

The reader may note that both IDSC and SCID show large variances for large shape 

deformations. However, the variances in SCID measurements are always less than the 

corresponding variances in the IDSC measurements. These two experiments demon-

strate the robustness of the SCID representation.  



4.3 Phenotype Retrieval 

 

Fig. 12. Two case studies on shape retrieval in terms of deformation: (left) Case study with 100 

parasites. (right) Case study with the set of 175 parasites. 

In the previous section, we showed how SCID compared with SC and IDSC. Using 

the same experimental settings we compare the SPTC with the SCSB (using radii of 

1, 2, and 3). In Figure 12, the retrieval performances are shown for the top-K hits 

(𝐾 ≤ 10). SCSB is found to consistently perform better than SPTC across all the 

values of K with the best results obtained with the radius value of 3.  

5 Conclusion 

This paper describes a novel shape-texture descriptor based on a new inner-distance 

formulation called skeleton-constraint inner distance and compares it to prior shape 

context formulations. Preliminary results on phenotypic screening data underline the 

robustness and promise of the proposed approach for shape and appearance matching.  
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