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Abstract. The global COVID-19 pandemic continues to have a devastating im-

pact on human population health. In an effort to fully characterize the virus, a 

significant volume of SARS-CoV-2 genomes have been collected from infected 

individuals and sequenced. Comprehensive application of this molecular data 

toward epidemiological analysis in large parts has employed methods arising 

from phylogenetics. While undeniably valuable, phylogenetic methods have 

their limitations. For instance, due to their rooted structure, outgroup samples 

are often needed to contextualize genetic relationships inferred by branching. In 

this paper we describe an alternative: global and local topological characteriza-

tion of neighborhood graphs relating viral genomes collected from samples in 

longitudinal studies. The applicability of our approach is demonstrated by con-

structing and analyzing such graphs using two distinct datasets from Israel and 

France, respectively.  
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1 Introduction 

The rapid dissemination of Coronavirus-Diesase-19 (COVID-19) since its first rec-

orded outbreak in December 2019 has led to a worldwide pandemic with devastating 

consequences. According to the World Health Organization (WHO), currently over 

300 million cases have been confirmed globally, including over 5 million deaths [1]. 

Consequently, the global research community has taken tremendous efforts to study 

the etiological agent, SARS-CoV-2, of COVID-19. The unprecedented volume of 

whole genomes sequenced and made publicly available has led to rapid advancements 

in areas such as drug development, diagnostics, and understanding of the pathogenici-

ty and epidemiology of the virus [2–6]. To date, the GISAID (Global Initiative on 

Sharing Avian Influenza Data) database, a popular publicly available repository for 

SARS-CoV-2 sequence data, contains over 11 million genomes [7]. 

   In molecular epidemiology, genomes sampled from infected individuals are re-

lated to one another based on sequence similarity, typically within a phylogenetic 



2 

framework. Inferences are then made regarding the spread and prevalence of a virus 

within a population. Although originally intended to determine the relatedness of 

different taxa, phylogenetics has been co-opted and modified for analysis of pathogen 

transmission [8–10]. Phylodynamic analysis, which studies the interaction and influ-

ence of epidemiological, immunological, and evolutionary processes on viral evolu-

tion and genetic variation, similarly infers viral population levels over time based on a 

phylogenetic tree [11]. Regarding SARS-CoV-2, phylogenetic and phylodynamic 

studies have been used to estimate the source and date of origin of infection, the tem-

poral reproductive number, geographical spread, and the role of super spreaders [5, 6, 

9].  

   Although demonstrably valuable, phylogenetics has its limitations when analyzing 

disease spread. Phylogenetics methods, particularly those employing Bayesian mod-

els, have many parameters that can be challenging to estimate (e.g., the substitution 

model, molecular clock, and priors). Often, the phylogenetic tree has to be re-

computed if a new sequence is added [12] – a significant overhead in large epidemio-

logical settings. Additionally, the constraint of a tree structure limits the topology of 

the patterns that can be hypothesized and studies. Indeed, the topology of infection 

spread  generally does not conform to the constraints of a single source and prede-

fined branching tree structure [13]. By contrast, a different view of the information 

arises when it is modeled as a network (graph). Network representations of data have 

allowed for increased understanding of several biological phenomena (e.g., gene and 

protein functions, human neural networks, and epidemiological contact tracing) [13–

17]. Network properties derived from such representations can be divided into “glob-

al” and “local”.  Global network properties include degree distribution, diameter, path 

length, and centrality and characterize the connectivity of the entire dataset. Local 

properties on the other hand, characterize a network in terms of the connectivity of its 

node to nodes in a local neighborhood. Small, induced subgraphs, called graphlets, of 

the larger network, are one such local topological property. In practice, graphlets are 

typically defined to consist of graphs containing 3 to 5 nodes. This yields 29 unique 

graphlet structures whose presence can be used to characterize the local structure of a 

network. The relative graphlet frequency (RGF) distance between two networks can 

be used as a network comparison measure by comparing the frequency of all 29 

graphlets in both networks [14]. Local connectivity can also be investigated with the 

graph Laplacian, which partitions the graph based on an optimal cut, and can reveal 

communities of nodes within the graph [18].  

   Molecular genetic networks have been computed for Human Immunodeficiency 

virus (HIV) and Hepatitis C virus (HCV) for contact tracing purposes [16, 19–21]. In 

these networks, viral genetic samples taken from infected individuals are represented 

as nodes. Edges are added between two nodes if the genetic distance between the pair 

of samples is below a certain distance threshold. HIV and HCV are blood-borne vi-

ruses, and their transmission is often associated with high-risk behaviors [22, 23]. In 

contrast, SARS-CoV-2 is a highly transmissible airborne virus. The resulting large 

volume of un-sampled hosts makes it virtually impossible to accurately perform con-

tact tracing from sampled sequences alone [23]. However, analysis of changes in 

topological properties of a SARS-CoV-2 genetic network can provide insight about 
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the accumulation (or lack thereof) in variation of the virus within a population over 

time. Here, temporal genetic networks were built for two datasets separately based on 

a genetic distance threshold of 2x10-4. Global and local properties of the graphs were 

analyzed to characterize the dataset and relate to underlying biological changes, in-

cluding the use of graph cuts to identify emerging viral subtypes within the datasets.  

2 Data and Methods 

2.1 Data and Preprocessing 

   Analysis of SARS-CoV-2 molecular evolution within a population was performed 

on two distinct datasets described previously [5, 6].  Samples in each dataset originat-

ed from France and Israel, respectively, and were collected during the first wave of 

the pandemic in the early months of 2020. For each sequence, the collection date was 

known. SARS-CoV-2 genomes were downloaded from the GISAID database (https:// 

www.gisaid.org). Accession numbers for the Israel dataset (IDS) (n=212) are 

EPI_ISL_447258 - EPI_ISL_447469; and for French dataset (FDS) (n=186) are 

EPI_ISL_414624-7,29-38, EPI_ISL_415649-54, EPI_ISL_416493-502,504-506, 508-

513, EPI_ISL_416745-52, 54, 56-58, EPI_ISL_417333-4, 36-40, EPI_ISL_418218-

40, EPI_ISL_418412-31, EPI_ISL_419168-88, EPI_ISL_420038-64, 

EPI_ISL_420604-25, and EPI_ISL_421500-1. A reference sequence (originating 

from the first recorded outbreak in Wuhan, China) was downloaded from GenBank 

(https://www.ncbi.nlm.nih.gov/genbank/, accession number MN908947). Separately, 

the genomes for each dataset were aligned to the reference sequence with MAFFT 

[24]. Non-coding regions were removed from all genomes according to the reference 

sequence annotation. Additionally, samples were removed from further downstream 

analysis if the coding region contained more than 1% ambiguous nucleotides or gaps. 

Insertions and deletions (indels) were ignored due to lack of clarity between indels 

and ambiguous nucleotides. The final size consisted of 171 and 181 samples for IDS 

and FDS, respectively. After removal of non-coding regions, sequences had a nucleo-

tide length of 29,132.  

2.2 Construction of Temporal Networks 

Each dataset was represented as a set of temporally evolving networks,  

 G(t) = (V(t), E(t)) (1) 

where t = {t1, …tn} are the set of time points corresponding to the sample collection 

times. Consequently, ΔG = G(ti) – G(ti-1) defines the incremental change in the net-

work between the times ti and tj and V(t) = {v1, …, vn} represents the samples collect-

ed on or before t. The edge, eij ∈ E(t) connects vi and vj ∈ V(t) if the genetic distance 

between vi and vj is below a threshold and indicates the respective samples to be ge-

netically close within the time spanned by t. The reader may note that no constraints 

are placed on the specific time-points at which the data is gathered.  

http://www.gisaid.org/
https://www.ncbi.nlm.nih.gov/genbank/
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Pairwise genetic distances are calculated as the number of sites where the two se-

quences differed divided by the total length of the sequence (hamming distance). For 

each pairwise comparison, positions with ambiguous nucleotides or gaps are ignored. 

A genetic distance threshold of 2x10-4 was empirically chosen to connect sample 

nodes in the network. This threshold ensured that the majority of pairwise distances 

were below the cutoff value in both datasets: 53.8% (7,813/14,535) for IDS and 

70.8% (11,532/16,290) for FDS (Figure 1). Nevertheless, the threshold was high 

enough to prevent formation of highly connected networks that lacked any meaning-

ful topology. IDS produced 27 graphs from March 17th to April 22nd, 2020. FDS pro-

duced 26 graphs dated from February 26th to March 24th.  

 

Fig. 1. Genetic distance distribution for (A) IDS and (B) FDS. Genetic distances are on the x-

axis and number of pairwise comparisons are on the y-axis. ^ indicates the bin containing the 

cut-off threshold in both plots. 

2.3 Global Network Analysis 

To assess how nucleotide changes in the viral population are reflected in a network, 

the following global properties were calculated: degree distribution, average cluster-

ing coefficient, average path length, and diameter. Centrality measures including de-

gree, closeness, and betweenness centrality were also calculated to identify those 

nodes most central to the network and relate to the nucleotide constitution of the re-

spective datasets.  
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2.4 Local Topological Analysis 

To ensure that small inconsequential connected components do not impact compari-

sons of networks, only the largest subnetwork, si(G(t)), for G = (G1, …, Gn) was used 

for local connectivity analysis. This was done as the largest subnetwork contained 

over 98% of total samples in the majority of graphs. Henceforth, the major subnet-

works will be referred to as G1, …, Gn. That is, for notational simplicity, we are simp-

ly using the notation Gi to denote the largest subnetwork of Gi. We employed the 

notion of graphlets to conduct the local connectivity analysis using Graph Crunch 2 

[14]. To identify topological changes between sampling periods, the relative graphlet 

frequency distance (RGF distance) was calculated between consecutive graphs, G(ti) 

and G(ti+1). The RGF distance (D) is defined as follows [25]: 

 𝐷(∆, Ω) =  ∑ |𝐹𝑖(∆) − 𝐹𝑖(Ω)|29
𝑖=1  (2) 

 

where  ∆ and Ω represent G(ti) and G(ti+1), and  𝑖 ∈ {1, … , 29} in (2) are the num-

ber of distinct graphlets. Further,  

 

 𝐹𝑖(Φ) =  
−log (𝑁𝑖(Φ))

∑ 𝑁𝑖(Φ)29
𝑖=1

⁄  (3) 

The function Fi divides the log of the frequency of a graphlet by the sum of the fre-

quencies of all graphlets to ensure the difference in node size between ∆ and Ω is 

accounted for (3).  

2.5 Quantification of Nucleotide Variation 

The consensus sequences for each G = (G1, …, Gn) were calculated. Single nucleotide 

variants (SNVs) were identified for each sample by pairwise comparison to the refer-

ence sequence. For any single SNV, if its frequency within the population was above 

0.1 it was deemed a mutation of interest. To quantify change over time, nucleotide 

diversity of Gt and the difference in diversity between Gt and samples added at Gt+1 

(∆𝑡+1) were calculated. Nucleotide diversity was characterized according to the defi-

nition by Nei and Li [26].  

2.6 Spectral Network Partitioning 

The connected components in each of G1, …, Gn were split using spectral partitioning. 

Let the Laplacian matrix of a network G, L(G), be defined as follows: 

 L(G) = D(G) – A(G) (4) 

Where A(G) is the adjacency matrix and D(G) is diagonal matrix of the graph (4). 

Partitioning of the graph into connected components was accomplished through 

eigendecomposition of L(G). Nodes (samples) are split based on whether their values 
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in the eigenvector associated with the second smallest eigenvalue is above or below a 

defined threshold. Five thresholds were tested for the initial splitting of the graph (-

0.008, -0.0075, -0.007, -0.005, and 0). The quality of a partition was quantified using 

the normalized cut value induced by that partition. A threshold of -0.007 was chosen 

as it consistently gave the lowest normalized cut value for all graphs in both datasets. 

The connected components were recursively partitioned into connected components 

of at least two nodes to investigate further groupings of samples when applicable.  

2.7 Phylogenetic Analysis.  

As a comparison to the spectral partitioning of the graph into clusters, phylogenetic 

analysis was performed on the genome sequences. A maximum likelihood phyloge-

netic tree was constructed using RAxML (Randomized Accelerated Maximum Like-

lihood) v1.0.0 [27] with a GTR substitution model and 100 bootstrap replicates.  

 

3 Results and Analysis 

3.1 Genetic Characterization of the Viral Population 

IDS. The initial consensus sequence had 4 SNVs compared to the reference sequence. 

These were C3037T, C14408T, A23403G, and G25563T. On March 21st, the nucleo-

tide at position 1059 in the consensus changed from C to T. The proportion of sam-

ples containing a C at this position decreased from 60% (6/10) to 42.86% (6/14) (-

28.57%). There were 11 mutations of interest that were not part of the consensus se-

quence. These included C2416T (overall frequency, 0.11), C11916T (0.17), C18998T 

(0.15), G28881A (0.11), G28882A (0.11), and G28883C (0.12). The nucleotide diver-

sity between consecutive graphs remained consistent (median, 1.99 × 10−4, inter-

quartile range (IQR), 1.83 × 10−4 - 2.06 × 10−4). Similarly, the absolute difference 

in diversity between samples within Gt and ∆𝑡+1 was also very small (median, 

5.15 × 10−5, IQR, 2.41 × 10−5 - 7.21 × 10−5).  

FDS. Compared to the reference sequence, the consensus sequence had 4 SNVs 

(C3037T, C14408T, A23403G, and G25563T). The nucleotide at position 1059 of the 

consensus changed from T to C on March 4th, the opposite of IDS. The frequency of 

C in this position increased from 26.67% (4/15) to 51.61% (16/31) (+93.51%). This 

nucleotide is in the open reading frame (ORF) 1a region of the SARS-CoV-2 genome 

and encodes the gene Nsp2. The reference sequence contains C and the mutation to T 

is non-synonymous. However, the full functionality of Nsp2 has yet to be fully under-

stood and so the effect of this mutation on viral fitness is unknown [28, 29].Two 

SNVs, C2416T (0.13) and C15324T (0.34), were deemed of interest. Like IDS, there 

was little variation in nucleotide diversity between consecutive graphs (median, 

1.28 × 10−4, IQR, 1.22 × 10−4 -1. 47 × 10−4). The absolute difference in diversity 

between Gt and ∆𝑡+1 was also minimal (median, 2.46 × 10−5, IQR, 1. 27 × 10−5 - 

4.51 × 10−5). 
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3.2 Changes in Global Properties 

IDS. We found that most global network properties experienced little change. The 

diameter gradually increased over time, shifting from 2 to 3 then growing to 5 as new 

samples were added. The median clustering coefficient was 0.88 (IQR, 0.86 – 0.89) 

and the median average path length was 1.58 (IQR, 1.55-1.61). There was some 

change in the most central nodes according to degree and closeness centrality. How-

ever, the most central nodes were not vastly different in their genomic constitution. 

They differed from the consensus sequence by 0-3 nucleotides (EPI_ISL_447408, 

EPI_ISL_447310, EPI_ISL_447305, EPI_ISL_447277, EPI_ISL_447284). The join-

ing of a smaller subnetwork to the major subnetwork on March 30th did not influence 

degree or closeness centrality, but the node with the highest betweenness centrality 

did shift from EPI_ISL_447277 to EPI_ISL_447447. EPI_ISL_447277 had 3 nucleo-

tide differences from the consensus sequence, while EPI_ISL_447447 had 6. This 

change is most likely due to the difference in the measures of centrality. Both the 

degree and closeness centrality measure the relation of a node to all other nodes in the 

graph, by node degree or length of shortest paths, respectively. Whereas betweenness 

centrality measures the impact of a node on the shortest paths between all other pairs 

of nodes in the graph. A divergence in a small proportion of the samples from the 

consensus sequence would, therefore, naturally have a larger effect on betweenness 

than closeness or degree. There were no significant findings in the changes in the 

degree distribution. 

 FDS. there was little change in the FDS diameter (1-4), average clustering coefficient 

(median, 0.91, IQR, 0.89-0.92) and average path length (median, 1.17, IQR, 1.15-

1.28) over time. Initially, between February 26th and March 2nd, the graph was fully 

connected and so all samples were equally central. As the graph progressed through 

time, the nodes with the highest degree, closeness, and betweenness centrality over-

lapped substantially. These samples differed by 0-3 mutations from the consensus 

sequence. By the end of the period, the nodes with the highest betweenness centrality 

were identical to the consensus sequence except at position 25563 (EPI_ISL_414631, 

EPI_ISL_416494, EPI_ISL_420047). This mutation was present in the population at a 

frequency of 0.42. Four additional nodes shared the highest degree and closeness 

centrality. These nodes were an exact match to the consensus sequence 

(EPI_ISL_418219, EPI_ISL_417336, EPI_ISL_418425, EPI_ISL_419168). Again, 

the degree distribution did not provide significant insight.   

 

3.3 Association between RGF Distance and Genetic Variation 

The RGF distance between consecutive IDS graphs ranged from 0 to 5.57. Most dis-

tances were below 1 (77%, 20/26). However, there were two periods where the RGF 

distance sharply increased. The first was between March 20th and March 25th, reach-

ing a maximum distance of 5.57, and the second between April 19th and 20th, with a 

distance of 2.01 (figure 2). For FDS, the RGF distance between consecutive graphs 

ranged from 0.02 to 8.58. Similar to IDS, most distances were below 1 (88%, 22/25). 
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Again, there were two peaks where large distances were recorded: that being 8.58 

between March 2nd and 4th, and 1.98 between March 21st and 22nd (Figure 2). Graphs 

pertaining to the first peak in RGF distances for IDS and FDS are illustrated in Fig-

ures 3 and 4, respectively.  

 

 

 

Fig. 2. RGF distance (y-axis) between consecutive graphs (x-axis) in FDS (solid) and IDS 

(dashed). 

 

Fig. 3. Change in IDS graphs across time, including March (A) 19th, (B) 20th, (C) 21st, (D) 22nd, 

(E) 23rd, and (F) 24th. Nodes within the largest subnetwork are in blue. 

 

Fig. 4. Progression of the FDS connected component across February (A) 28th and (B) 29th, and 

March (C) 2nd, (D) 3rd, (E) 4th, and (F) 5th. Nodes of largest subnetwork are in blue. 
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  Interestingly, change in the consensus sequence (described in section 3.1) corre-

sponded with the highest RGF distance for both IDS and FDS. While the connection 

between RGF distance and a change in the consensus sequence is intriguing, no sig-

nificant genetic variation could be found in either dataset to explain the second peak. 

From the data studied here, the RGF distance may simply reflect the gradual accumu-

lation of variation. Further longitudinal data with significant heterogeneity in variants 

is needed to study how local topological changes can be characterized using measures 

such as the RGF distance.   

3.4 Laplacian Network Partitioning versus Phylogenetic Analysis  

Initially, as new samples were added, the partitioning of IDS differed from graph to 

graph. The median normalized cut value between this time was 0.88 (IQR, 0.58-1.02). 

From March 30th through the remainder of the studied period, the partition in the 

graph remained the same. The partition consisted of two connected components with 

164 and 5 samples, respectively, and the median normalized cut value decreased to 

0.09 (IQR, 0.09-0.09). Samples in the latter component (EPI_ISL_447324, 

EPI_ISL_447322, EPI_ISL_447319, EPI_ISL_447271, and EPI_ISL_447265) shared 

7 SNVs that were uncommon in the entire dataset. Those were G11083T (overall 

frequency, 0.06), C14805T (0.04), T17247C (0.04), C17676T (0.03), G26144T 

(0.04), G26660T (0.03), and C29627T (0.04). C17676T and G26660T were present 

only in this component and not in any sample in the larger component. None of the 

samples contained the 11 SNVs of interest. The samples that connected the small and 

large partitions were EPI_ISL_447271 and EPI_ISL_447447, respectively. 

EPI_ISL_447447 also had the highest betweenness centrality in the graph, as de-

scribed in 3.2. The normalized cut value for the French dataset remained relatively 

consistent throughout the studied period (median=1.18; IQR, 1-1.23). Additionally, 

until the last 3 days, the partitioning changed between graphs of different time peri-

ods. During these last three days, the cut, or the number of edges required to be re-

moved to partition the graph, was 7.71% (638/8273), 6.72% (740/11011), and 6.6% 

(761/11532), respectively. The smaller partition consisted of 9 nodes 

(EPI_ISL_416746, EPI_ISL_414631, EPI_ISL_416494, EPI_ISL_418235, 

EPI_ISL_418426, EPI_ISL_418428, EPI_ISL_420047, EPI_ISL_420043, 

EPI_ISL_419178). 6 out of 9 samples shared mutations in the nucleocapsid phospho-

protein at positions G28881A, G28882A, G28883C. These mutations were not found 

in any sample in the larger connected component. In both IDS and FDS, the larger 

connected components had the C3037T, C14408T, A23403G mutations in over 95% 

and 100% of the samples, respectively. These mutations have been acknowledged as 

marker mutations of major clades and transmission clusters by GISAID and others [7, 

30, 31], while the shared SNVS in the smaller IDS and FDS connected components 

have also been identified as markers of SARS-CoV-2 subtypes [32]. Partitioning of 

the last tracked graph, Gn, was compared to a phylogenetic tree representation of the 

data. As can be seen in figure 5, the importance of samples grouped together by spec-

tral partitioning are less obvious when illustrated as a clade grouping on a phylogenet-

ic tree and are even not necessarily within the same clade (figure 5B). 
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Fig. 5. Phylogenetic tree for (A) IDS and (B) FDS. Colors indicate samples grouped together 

by spectral partitioning (darkest and second darkest grey, respectively) and samples not part of 

the major subnetwork (light grey). Numberings refer to the GISAID sample accession numbers.  

A 

B 
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4 Conclusions 

Here, we add a temporal dimension to a network representation to elucidate a connec-

tion between change in topological properties and viral molecular evolution within a 

population. Temporal dynamic networks, or time-varying graphs, can be represented 

as multiple networks acting as “snapshots” of the overall network changing in time.  

   In the two datasets studied by us, tracking of changes in the network reflected the 

evolution in the underlying viral genetic population. Small changes in global proper-

ties such as diameter and average path length were congruent with the low level of 

change in the overall nucleotide diversity of the population. Spectral partitioning of 

the graph was able to highlight communities of samples with shared SNVs not obvi-

ous from a phylogenetic construction of the data. The implication of graphlet-based 

analyses local topological analysis is less clear. Although preliminary results present-

ed here found that the largest RGF distance between two temporally adjacent net-

works coincided with a shift in the consensus sequence of the population, this finding 

was not consistent in other temporally adjacent networks with a relatively large RGF 

distance.  
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EPI_ISL_415651-2, EPI_ISL_415649).  

The second submitting laboratory was CNR Virus des Infections Respiratoires - 

France SUD. Samples were collected by CNR Virus des Infections Respiratoires – 

France SUD (EPI_ISL_416745-6); Institut des Agents Infectieux (IAI) Hospices 

Civils de Lyon (EPI_ISL_416747-8, EPI_ISL_416750, EPI_ISL_416754, 

EPI_ISL_416756, EPI_ISL_416758); Centre Hospitalier de Valence 

(EPI_ISL_416749, EPI_ISL_418414-5, EPI_ISL_418417, EPI_ISL_419168); CHU 

Gabriel Montpied (EPI_ISL_416751-2); Centre Hospitalier de Bourg en Bresse 

(EPI_ISL_416757, EPI_ISL_417340, EPI_ISL_418426, EPI_ISL_419183, 

EPI_ISL_419185-6, EPI_ISL_420620); Institut des Agents Infectieux (IAI), Hospices 

Civils de Lyon (EPI_ISL_417333-4, EPI_ISL_417336-7, EPI_ISL_417339, 

EPI_ISL_418420-5, EPI_ISL_418429-31, EPI_ISL_419169-73, EPI_ISL_419177-82, 

EPI_ISL_419184, EPI_ISL_420604-11, EPI_ISL_420615-6, EPI_ISL_420618-9, 

EPI_ISL_420621-5); Centre Hospitalier de Macon (EPI_ISL_417338, 

EPI_ISL_418413, EPI_ISL_419174-6, EPI_ISL_419187-8, EPI_ISL_420612-4); 

Centre Hospitalier des Vals d'Ardeche (EPI_ISL_418412); GH Les Portes du Sud 

(EPI_ISL_418416); Centre Hospitalier Saint Joseph Saint Luc (EPI_ISL_418418-9, 

EPI_ISL_420617); Hopital Privé de l’Est Lyonnais (EPI_ISL_418418-9, 

EPI_ISL_420617); and Centre Hospitalier Lucien Hussel (EPI_ISL_418428). 
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