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Abstract. The global COVID-19 pandemic continues to have a devastating im-
pact on human population health. In an effort to fully characterize the virus, a
significant volume of SARS-CoV-2 genomes have been collected from infected
individuals and sequenced. Comprehensive application of this molecular data
toward epidemiological analysis in large parts has employed methods arising
from phylogenetics. While undeniably valuable, phylogenetic methods have
their limitations. For instance, due to their rooted structure, outgroup samples
are often needed to contextualize genetic relationships inferred by branching. In
this paper we describe an alternative: global and local topological characteriza-
tion of neighborhood graphs relating viral genomes collected from samples in
longitudinal studies. The applicability of our approach is demonstrated by con-
structing and analyzing such graphs using two distinct datasets from Israel and
France, respectively.
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1 Introduction

The rapid dissemination of Coronavirus-Diesase-19 (COVID-19) since its first rec-
orded outbreak in December 2019 has led to a worldwide pandemic with devastating
consequences. According to the World Health Organization (WHO), currently over
300 million cases have been confirmed globally, including over 5 million deaths [1].
Consequently, the global research community has taken tremendous efforts to study
the etiological agent, SARS-CoV-2, of COVID-19. The unprecedented volume of
whole genomes sequenced and made publicly available has led to rapid advancements
in areas such as drug development, diagnostics, and understanding of the pathogenici-
ty and epidemiology of the virus [2-6]. To date, the GISAID (Global Initiative on
Sharing Avian Influenza Data) database, a popular publicly available repository for
SARS-CoV-2 sequence data, contains over 11 million genomes [7].

In molecular epidemiology, genomes sampled from infected individuals are re-
lated to one another based on sequence similarity, typically within a phylogenetic



framework. Inferences are then made regarding the spread and prevalence of a virus
within a population. Although originally intended to determine the relatedness of
different taxa, phylogenetics has been co-opted and modified for analysis of pathogen
transmission [8—10]. Phylodynamic analysis, which studies the interaction and influ-
ence of epidemiological, immunological, and evolutionary processes on viral evolu-
tion and genetic variation, similarly infers viral population levels over time based on a
phylogenetic tree [11]. Regarding SARS-CoV-2, phylogenetic and phylodynamic
studies have been used to estimate the source and date of origin of infection, the tem-
poral reproductive number, geographical spread, and the role of super spreaders [5, 6,
9].
Although demonstrably valuable, phylogenetics has its limitations when analyzing
disease spread. Phylogenetics methods, particularly those employing Bayesian mod-
els, have many parameters that can be challenging to estimate (e.g., the substitution
model, molecular clock, and priors). Often, the phylogenetic tree has to be re-
computed if a new sequence is added [12] — a significant overhead in large epidemio-
logical settings. Additionally, the constraint of a tree structure limits the topology of
the patterns that can be hypothesized and studies. Indeed, the topology of infection
spread generally does not conform to the constraints of a single source and prede-
fined branching tree structure [13]. By contrast, a different view of the information
arises when it is modeled as a network (graph). Network representations of data have
allowed for increased understanding of several biological phenomena (e.g., gene and
protein functions, human neural networks, and epidemiological contact tracing) [13—
17]. Network properties derived from such representations can be divided into “glob-
al” and “local”. Global network properties include degree distribution, diameter, path
length, and centrality and characterize the connectivity of the entire dataset. Local
properties on the other hand, characterize a network in terms of the connectivity of its
node to nodes in a local neighborhood. Small, induced subgraphs, called graphlets, of
the larger network, are one such local topological property. In practice, graphlets are
typically defined to consist of graphs containing 3 to 5 nodes. This yields 29 unique
graphlet structures whose presence can be used to characterize the local structure of a
network. The relative graphlet frequency (RGF) distance between two networks can
be used as a network comparison measure by comparing the frequency of all 29
graphlets in both networks [14]. Local connectivity can also be investigated with the
graph Laplacian, which partitions the graph based on an optimal cut, and can reveal
communities of nodes within the graph [18].

Molecular genetic networks have been computed for Human Immunodeficiency
virus (HIV) and Hepatitis C virus (HCV) for contact tracing purposes [16, 19-21]. In
these networks, viral genetic samples taken from infected individuals are represented
as nodes. Edges are added between two nodes if the genetic distance between the pair
of samples is below a certain distance threshold. HIV and HCV are blood-borne vi-
ruses, and their transmission is often associated with high-risk behaviors [22, 23]. In
contrast, SARS-CoV-2 is a highly transmissible airborne virus. The resulting large
volume of un-sampled hosts makes it virtually impossible to accurately perform con-
tact tracing from sampled sequences alone [23]. However, analysis of changes in
topological properties of a SARS-CoV-2 genetic network can provide insight about



the accumulation (or lack thereof) in variation of the virus within a population over
time. Here, temporal genetic networks were built for two datasets separately based on
a genetic distance threshold of 2x10*. Global and local properties of the graphs were
analyzed to characterize the dataset and relate to underlying biological changes, in-
cluding the use of graph cuts to identify emerging viral subtypes within the datasets.

2 Data and Methods

2.1 Data and Preprocessing

Analysis of SARS-CoV-2 molecular evolution within a population was performed
on two distinct datasets described previously [5, 6]. Samples in each dataset originat-
ed from France and Israel, respectively, and were collected during the first wave of
the pandemic in the early months of 2020. For each sequence, the collection date was
known. SARS-CoV-2 genomes were downloaded from the GISAID database (https://
www.gisaid.org). Accession numbers for the Israel dataset (IDS) (n=212) are
EPI ISL 447258 - EPI ISL 447469; and for French dataset (FDS) (n=186) are
EPI ISL 414624-7,29-38, EPI _ISL 415649-54, EPI ISL 416493-502,504-506, 508-
513, EPI ISL 416745-52, 54, 56-58, EPI ISL 417333-4, 36-40, EPI ISL 418218-
40, EPI ISL 418412-31, EPI ISL 419168-88, EPI ISL 420038-64,
EPI ISL 420604-25, and EPI ISL 421500-1. A reference sequence (originating
from the first recorded outbreak in Wuhan, China) was downloaded from GenBank
(https://www.ncbi.nlm.nih.gov/genbank/, accession number MN908947). Separately,
the genomes for each dataset were aligned to the reference sequence with MAFFT
[24]. Non-coding regions were removed from all genomes according to the reference
sequence annotation. Additionally, samples were removed from further downstream
analysis if the coding region contained more than 1% ambiguous nucleotides or gaps.
Insertions and deletions (indels) were ignored due to lack of clarity between indels
and ambiguous nucleotides. The final size consisted of 171 and 181 samples for IDS
and FDS, respectively. After removal of non-coding regions, sequences had a nucleo-
tide length of 29,132.

2.2 Construction of Temporal Networks

Each dataset was represented as a set of temporally evolving networks,

G() = (N0, E(1) (M

where t = {t,, ...t,} are the set of time points corresponding to the sample collection
times. Consequently, AG = G(#;) — G(¢.1) defines the incremental change in the net-
work between the times ¢ and ¢ and V(¢) = {v,, ..., v,} represents the samples collect-
ed on or before 7. The edge, e; € E(f) connects v; and v; € V(¢) if the genetic distance
between v; and v; is below a threshold and indicates the respective samples to be ge-
netically close within the time spanned by ¢. The reader may note that no constraints
are placed on the specific time-points at which the data is gathered.


http://www.gisaid.org/
https://www.ncbi.nlm.nih.gov/genbank/

Pairwise genetic distances are calculated as the number of sites where the two se-
quences differed divided by the total length of the sequence (hamming distance). For
each pairwise comparison, positions with ambiguous nucleotides or gaps are ignored.
A genetic distance threshold of 2x10* was empirically chosen to connect sample
nodes in the network. This threshold ensured that the majority of pairwise distances
were below the cutoff value in both datasets: 53.8% (7,813/14,535) for IDS and
70.8% (11,532/16,290) for FDS (Figure 1). Nevertheless, the threshold was high
enough to prevent formation of highly connected networks that lacked any meaning-
ful topology. IDS produced 27 graphs from March 17% to April 22", 2020. FDS pro-
duced 26 graphs dated from February 26™ to March 24,
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Fig. 1. Genetic distance distribution for (A) IDS and (B) FDS. Genetic distances are on the x-
axis and number of pairwise comparisons are on the y-axis. ”* indicates the bin containing the
cut-off threshold in both plots.

2.3 Global Network Analysis

To assess how nucleotide changes in the viral population are reflected in a network,
the following global properties were calculated: degree distribution, average cluster-
ing coefficient, average path length, and diameter. Centrality measures including de-
gree, closeness, and betweenness centrality were also calculated to identify those
nodes most central to the network and relate to the nucleotide constitution of the re-
spective datasets.



2.4  Local Topological Analysis

To ensure that small inconsequential connected components do not impact compari-
sons of networks, only the largest subnetwork, s/ G(?)), for G = (G, ..., G,) was used
for local connectivity analysis. This was done as the largest subnetwork contained
over 98% of total samples in the majority of graphs. Henceforth, the major subnet-
works will be referred to as Gy, ..., G,. That is, for notational simplicity, we are simp-
ly using the notation G; to denote the largest subnetwork of G;. We employed the
notion of graphlets to conduct the local connectivity analysis using Graph Crunch 2
[14]. To identify topological changes between sampling periods, the relative graphlet
frequency distance (RGF distance) was calculated between consecutive graphs, G(#;)
and G(#+;). The RGF distance (D) is defined as follows [25]:

D(A Q) = XEIFA) - F(Q)| 2

where A and Q represent G(#;) and G(t;+;), and i € {1,...,29} in (2) are the num-
ber of distinct graphlets. Further,

Fi(Cb) _ —log (Nl(q)))/zlzzl Ni(CD) (3)

The function F; divides the log of the frequency of a graphlet by the sum of the fre-
quencies of all graphlets to ensure the difference in node size between A and Q is
accounted for (3).

2.5 Quantification of Nucleotide Variation

The consensus sequences for each G = (Gy, ..., G,) were calculated. Single nucleotide
variants (SNVs) were identified for each sample by pairwise comparison to the refer-
ence sequence. For any single SNV, if its frequency within the population was above
0.1 it was deemed a mutation of interest. To quantify change over time, nucleotide
diversity of G, and the difference in diversity between G; and samples added at G;+;
(A;41) were calculated. Nucleotide diversity was characterized according to the defi-
nition by Nei and Li [26].

2.6  Spectral Network Partitioning

The connected components in each of Gy, ..., G, were split using spectral partitioning.
Let the Laplacian matrix of a network G, L(G), be defined as follows:

L(G) = D(G) - A(G) “)

Where 4(G) is the adjacency matrix and D(G) is diagonal matrix of the graph (4).
Partitioning of the graph into connected components was accomplished through
eigendecomposition of L(G). Nodes (samples) are split based on whether their values



in the eigenvector associated with the second smallest eigenvalue is above or below a
defined threshold. Five thresholds were tested for the initial splitting of the graph (-
0.008, -0.0075, -0.007, -0.005, and 0). The quality of a partition was quantified using
the normalized cut value induced by that partition. A threshold of -0.007 was chosen
as it consistently gave the lowest normalized cut value for all graphs in both datasets.
The connected components were recursively partitioned into connected components
of at least two nodes to investigate further groupings of samples when applicable.

2.7  Phylogenetic Analysis.

As a comparison to the spectral partitioning of the graph into clusters, phylogenetic
analysis was performed on the genome sequences. A maximum likelihood phyloge-
netic tree was constructed using RAXML (Randomized Accelerated Maximum Like-
lihood) v1.0.0 [27] with a GTR substitution model and 100 bootstrap replicates.

3 Results and Analysis

3.1  Genetic Characterization of the Viral Population

IDS. The initial consensus sequence had 4 SNVs compared to the reference sequence.
These were C3037T, C14408T, A23403G, and G25563T. On March 21%, the nucleo-
tide at position 1059 in the consensus changed from C to T. The proportion of sam-
ples containing a C at this position decreased from 60% (6/10) to 42.86% (6/14) (-
28.57%). There were 11 mutations of interest that were not part of the consensus se-
quence. These included C2416T (overall frequency, 0.11), C11916T (0.17), C18998T
(0.15), G28881A (0.11), G28882A (0.11), and G28883C (0.12). The nucleotide diver-
sity between consecutive graphs remained consistent (median, 1.99 X 10™*, inter-
quartile range (IQR), 1.83 X 10™* - 2.06 X 10™*). Similarly, the absolute difference
in diversity between samples within G, and A,,; was also very small (median,
5.15 X 1075, IQR, 2.41 x 1075 - 7.21 x 107%),

FDS. Compared to the reference sequence, the consensus sequence had 4 SNVs
(C3037T, C14408T, A23403G, and G25563T). The nucleotide at position 1059 of the
consensus changed from T to C on March 4%, the opposite of IDS. The frequency of
C in this position increased from 26.67% (4/15) to 51.61% (16/31) (+93.51%). This
nucleotide is in the open reading frame (ORF) la region of the SARS-CoV-2 genome
and encodes the gene Nsp2. The reference sequence contains C and the mutation to T
is non-synonymous. However, the full functionality of Nsp2 has yet to be fully under-
stood and so the effect of this mutation on viral fitness is unknown [28, 29].Two
SNVs, C2416T (0.13) and C15324T (0.34), were deemed of interest. Like IDS, there
was little variation in nucleotide diversity between consecutive graphs (median,
1.28 x 107*, IQR, 1.22 X 10™* -1.47 x 10~%). The absolute difference in diversity
between G; and A,,, was also minimal (median, 2.46 x 1075 IQR, 1.27 x 1075 -
451 x 107°).



3.2 Changes in Global Properties

IDS. We found that most global network properties experienced little change. The
diameter gradually increased over time, shifting from 2 to 3 then growing to 5 as new
samples were added. The median clustering coefficient was 0.88 (IQR, 0.86 — 0.89)
and the median average path length was 1.58 (IQR, 1.55-1.61). There was some
change in the most central nodes according to degree and closeness centrality. How-
ever, the most central nodes were not vastly different in their genomic constitution.
They differed from the consensus sequence by 0-3 nucleotides (EPI ISL 447408,
EPI ISL 447310, EPI ISL 447305, EPI ISL 447277, EPI ISL 447284). The join-
ing of a smaller subnetwork to the major subnetwork on March 30" did not influence
degree or closeness centrality, but the node with the highest betweenness centrality
did shift from EPI ISL 447277 to EP1 ISL 447447. EPI ISL 447277 had 3 nucleo-
tide differences from the consensus sequence, while EPI ISL 447447 had 6. This
change is most likely due to the difference in the measures of centrality. Both the
degree and closeness centrality measure the relation of a node to all other nodes in the
graph, by node degree or length of shortest paths, respectively. Whereas betweenness
centrality measures the impact of a node on the shortest paths between all other pairs
of nodes in the graph. A divergence in a small proportion of the samples from the
consensus sequence would, therefore, naturally have a larger effect on betweenness
than closeness or degree. There were no significant findings in the changes in the
degree distribution.

FDS. there was little change in the FDS diameter (1-4), average clustering coefficient
(median, 0.91, IQR, 0.89-0.92) and average path length (median, 1.17, IQR, 1.15-
1.28) over time. Initially, between February 26" and March 2™, the graph was fully
connected and so all samples were equally central. As the graph progressed through
time, the nodes with the highest degree, closeness, and betweenness centrality over-
lapped substantially. These samples differed by 0-3 mutations from the consensus
sequence. By the end of the period, the nodes with the highest betweenness centrality
were identical to the consensus sequence except at position 25563 (EPI_ISL 414631,
EPI ISL 416494, EPI ISL 420047). This mutation was present in the population at a
frequency of 0.42. Four additional nodes shared the highest degree and closeness
centrality. These nodes were an exact match to the consensus sequence
(EPI ISL 418219, EPI ISL 417336, EPI ISL 418425, EPI ISL 419168). Again,
the degree distribution did not provide significant insight.

3.3 Association between RGF Distance and Genetic Variation

The RGF distance between consecutive IDS graphs ranged from 0 to 5.57. Most dis-
tances were below 1 (77%, 20/26). However, there were two periods where the RGF
distance sharply increased. The first was between March 20" and March 25", reach-
ing a maximum distance of 5.57, and the second between April 19% and 20%, with a
distance of 2.01 (figure 2). For FDS, the RGF distance between consecutive graphs
ranged from 0.02 to 8.58. Similar to IDS, most distances were below 1 (88%, 22/25).



Again, there were two peaks where large distances were recorded: that being 8.58
between March 2™ and 4%, and 1.98 between March 21% and 22" (Figure 2). Graphs
pertaining to the first peak in RGF distances for IDS and FDS are illustrated in Fig-
ures 3 and 4, respectively.
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Fig. 2. RGF distance (y-axis) between consecutive graphs (x-axis) in FDS (solid) and IDS
(dashed).
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Fig. 3. Change in IDS graphs across time, including March (A) 19%, (B) 20, (C) 21%, (D) 22",
(E) 234, and (F) 24™. Nodes within the largest subnetwork are in blue.
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Interestingly, change in the consensus sequence (described in section 3.1) corre-
sponded with the highest RGF distance for both IDS and FDS. While the connection
between RGF distance and a change in the consensus sequence is intriguing, no sig-
nificant genetic variation could be found in either dataset to explain the second peak.
From the data studied here, the RGF distance may simply reflect the gradual accumu-
lation of variation. Further longitudinal data with significant heterogeneity in variants
is needed to study how local topological changes can be characterized using measures
such as the RGF distance.

3.4  Laplacian Network Partitioning versus Phylogenetic Analysis

Initially, as new samples were added, the partitioning of IDS differed from graph to
graph. The median normalized cut value between this time was 0.88 (IQR, 0.58-1.02).
From March 30% through the remainder of the studied period, the partition in the
graph remained the same. The partition consisted of two connected components with
164 and 5 samples, respectively, and the median normalized cut value decreased to
0.09 (IQR, 0.09-0.09). Samples in the latter component (EPI ISL 447324,
EPI_ISL 447322, EPI_ISL 447319, EPI_ISL 447271, and EPI_ISL _447265) shared
7 SNVs that were uncommon in the entire dataset. Those were G11083T (overall
frequency, 0.06), C14805T (0.04), T17247C (0.04), C17676T (0.03), G26144T
(0.04), G26660T (0.03), and C29627T (0.04). C17676T and G26660T were present
only in this component and not in any sample in the larger component. None of the
samples contained the 11 SNVs of interest. The samples that connected the small and
large partitions were EPI ISL 447271 and EPI ISL 447447, respectively.
EPI ISL 447447 also had the highest betweenness centrality in the graph, as de-
scribed in 3.2. The normalized cut value for the French dataset remained relatively
consistent throughout the studied period (median=1.18; IQR, 1-1.23). Additionally,
until the last 3 days, the partitioning changed between graphs of different time peri-
ods. During these last three days, the cut, or the number of edges required to be re-
moved to partition the graph, was 7.71% (638/8273), 6.72% (740/11011), and 6.6%
(761/11532), respectively. The smaller partition consisted of 9 nodes
(EPI_ISL 416746,  EPI ISL 414631, EPI ISL 416494, EPI ISL 418235,
EPI_ISL 418426, EPI _ISL 418428, EPI_ISL 420047, EPI_ISL 420043,
EPI_ISL 419178). 6 out of 9 samples shared mutations in the nucleocapsid phospho-
protein at positions G28881A, G28882A, G28883C. These mutations were not found
in any sample in the larger connected component. In both IDS and FDS, the larger
connected components had the C3037T, C14408T, A23403G mutations in over 95%
and 100% of the samples, respectively. These mutations have been acknowledged as
marker mutations of major clades and transmission clusters by GISAID and others [7,
30, 31], while the shared SNVS in the smaller IDS and FDS connected components
have also been identified as markers of SARS-CoV-2 subtypes [32]. Partitioning of
the last tracked graph, G,, was compared to a phylogenetic tree representation of the
data. As can be seen in figure 5, the importance of samples grouped together by spec-
tral partitioning are less obvious when illustrated as a clade grouping on a phylogenet-
ic tree and are even not necessarily within the same clade (figure 5B).
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4 Conclusions

Here, we add a temporal dimension to a network representation to elucidate a connec-
tion between change in topological properties and viral molecular evolution within a
population. Temporal dynamic networks, or time-varying graphs, can be represented
as multiple networks acting as “snapshots” of the overall network changing in time.

In the two datasets studied by us, tracking of changes in the network reflected the
evolution in the underlying viral genetic population. Small changes in global proper-
ties such as diameter and average path length were congruent with the low level of
change in the overall nucleotide diversity of the population. Spectral partitioning of
the graph was able to highlight communities of samples with shared SNVs not obvi-
ous from a phylogenetic construction of the data. The implication of graphlet-based
analyses local topological analysis is less clear. Although preliminary results present-
ed here found that the largest RGF distance between two temporally adjacent net-
works coincided with a shift in the consensus sequence of the population, this finding
was not consistent in other temporally adjacent networks with a relatively large RGF
distance.
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