Wireless-Powered Multi-Channel Backscatter Communications
Under Jamming: A Cooperative Reinforcement Learning
Approach

Dara Ron
Wireless Cyber Center
George Mason University
Fairfax, Virginia, USA
dron@gmu.edu

ABSTRACT

Wireless-Powered Backscatter Communication (WPBC) is emerg-
ing as a promising technology for battery-less solutions to many
Internet-of-Things (IoT) applications. In this paper, we study the
channel selection and operation mode control problem in a multi-
channel WPBC system that turns jamming signal into energy har-
vesting opportunities. We propose a cooperative reinforcement
learning (RL) approach that enables multiple agents, namely the
access point (AP) and backscatter device (BD), to exploit unknown
jamming pattern present. The learning of jamming channels and
patterns not only enables the AP to communicate with the BD with
interference-free but also empowers the BD to harvest energy from
the jamming signals. Additionally, we address the limitation of BDs,
which cannot decode information and harvest energy simultane-
ously, by incorporating this constraint into our design of a cooper-
ative RL approach. This innovative strategy empowers the BD to
make intelligent decisions regarding its operational mode—whether
to prioritize communication or energy harvesting. Our aim is to
optimize the trade-off between throughput and energy harvest-
ing efficiency, ensuring that data reception requirements are met
while adhering to constraint on the energy level stored in the bat-
tery. Unlike traditional approaches that only consider paired states
and actions, our proposed cooperative RL algorithm incorporates
channel state, jamming state, and action. These elements represent
channel operation, jamming experience, and channel selection, re-
spectively. The awareness of jamming experience derived from the
jamming state enables the AP agent to select an action that can
evade jamming. The proposed scheme experienced low computa-
tion and storage overhead as an inherent feature of the algorithm.
Remarkably, the results show that the proposed method achieves
optimal performance under static and round-robin jamming, and
even in scenarios of random jamming.

CCS CONCEPTS

« Computer systems organization — Embedded systems; Re-
dundancy; Robotics; « Networks — Network reliability.

WiseML 24, May 31, 2024, Seoul, Republic of Korea
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0602-8/24/05.
https://doi.org/10.1145/3649403.3656489

This work is licensed under a Creative Commons Attribution
International 4.0 License.

26

Kai Zeng
Wireless Cyber Center
George Mason University
Fairfax, Virginia, USA
kzeng2@gmu.edu

KEYWORDS

Reinforcement Learning, energy harvesting, Backscatter communi-
cation, jamming detection, and wireless power transfer.

ACM Reference Format:

Dara Ron and Kai Zeng. 2024. Wireless-Powered Multi-Channel Backscatter
Communications Under Jamming: A Cooperative Reinforcement Learning
Approach. In Proceedings of the 2024 ACM Workshop on Wireless Security
and Machine Learning (WiseML °24), May 31, 2024, Seoul, Republic of Korea.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3649403.3656489

1 INTRODUCTION

Wireless-Powered Backscatter Communication (WPBC) has emerged
as a promising technology that offers a unique solution for “battery-
less” communication. It empowers Internet-of-Things (IoT) backscat-
ter devices (BDs) to transmit data by reflecting and modulating
incident RF signals, thus eliminating the need for costly and power-
hungry RF transmitters [8]. Furthermore, BDs can harvest energy
from ambient radio frequency (RF) signals, including information
signals and unwanted/jamming signals. With these key features,
WPBC stands as a technology capable of supporting long-term,
cost-effective, and simplified communications and networking for
IoT devices [14]. Anti-jamming and jamming exploration for en-
ergy harvesting have been studied independently in [16] and [1],
respectively. Another work considers both sides, i.e., BD and jam-
mer, to be strategic and formulate the problem in game-theoretic
frameworks [10]. However, that frameworks assume that the BD
and jammer know each other’s action spaces or beliefs. Such as-
sumptions may not always hold in real-life application scenarios.
Furthermore, existing methods usually incur significant computa-
tional overhead to find an optimal solution. Additionally, in the
game-theoretic approaches, stationary or heuristic behavior of one
side is assumed while countermeasures of the other side are in-
vestigated. This family of methods is heuristic or empirical, and
the theoretical performance guarantees of their solutions are not
readily available.

In this study, we develop a cooperative RL algorithm for two
tasks: 1) channel selection at AP for anti-jamming WPBC in multi-
channel networks, and 2) intelligent decision-making regarding
operational modes at BDs, determining whether to prioritize com-
munication or energy harvesting. Unlike existing solutions, our
proposed scheme operates without the need for prior knowledge of
the underlying environment or the statistical features of the chan-
nel states. Moreover, RL features low storage and computational
overhead while dynamically selecting optimal actions to evade or
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Figure 1: A cooperative RL-based jamming approach.

exploit jamming based on its operation mode without explicit as-
sumptions about attacking policies. Thus, it proves highly suitable
for resource-constrained BD. The jamming is generated based on
three common strategies encountered in real-life application sce-
narios: static, round-robin, and random. To effectively address the
jamming challenge, our proposed algorithm not only leverages a
state-action pair to compute 2D Q-values but also introduces a new
jamming state to obtain 3D Q-values. This enables the agent to
consider previous experiences of channel jamming before making
a decision to select a channel, thereby enhancing decision-making
efficacy. Beyond merely learning to evade or exploit jamming, our
approach empowers the BD to make decisions regarding its oper-
ational mode to optimize the trade-off between throughput and
energy harvesting efficiency.

2 WPBC SYSTEM MODEL

We consider a scenario where both an AP and BD can operate across
K channels, while a jammer also operates on the same K channels
with the objective of disrupting communication between the AP
and the BD, as illustrated in Figure 1. The AP has the ability to
detect jamming signals, but the BD does not possess this capability.
With this lacking channel detection ability, the BD must choose
between harvesting energy or backscattering incident signals in-
band. Additionally, communication between the AP and BD is prone
to failure if the jammer operates on the same channel as the AP.
The AP is equipped with self-interference cancellation capabilities,
enabling it to mitigate interference that arises when simultaneously
transmitting and receiving signals within the same frequency band.
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Jamming is generated based on three distinct strategies: static,
round-robin, and random. In the static strategy, the jamming signal
remains fixed on a specific channel. Contrastingly, in the round-
robin strategy, the jamming signal shifts sequentially across consec-
utive channels at each time step, looping back to the first channel
once it reaches the last one. Finally, in the random strategy, the
jamming signal randomly appears on a channel with uniform dis-
tribution.

At each time slot ¢, the AP endeavors to select a jamming-
free channel with high-quality communication to achieve optimal
throughput and ensure reliability, while the BD intelligently decides
whether to operate in communication mode or energy harvesting
mode, aiming to maximize the tradeoff between throughput and
energy harvesting. Furthermore, if the BD’s battery is running low,
it will operate in the energy harvesting mode.

AP sends the following incident signal in channel k:

xi(t) = 2Py cos (27 fit), (1)

where P4 is the incident signal power, and f; is the carrier frequency
of the k-th channel expressed as fi. = fo+kAf, where Af represents
the channel spacing. Through the k-th channel, the received signal
at the BD can be written as

ysk(t) = R {hiy2Ps exp(j2fit) | + (1)

= |h[V2P4 cos(27fict + 6)) + np(1) @

where hy = |hy| exp(j6y). Here, hy represents the channel coeffi-
cient between the AP and BD.

The attacker generates noise across the entire band in the i-th
channel. With the presence of jamming, the received signal power
is:

yp i (t) = |hg|y2P4 cos(2m fict + O)

+1(f==f;.0)|h7i[Unam cos(2rfyit + ¢5) +np (1), (3)

where Un apr represents the noise amplitude modulation with an
amplitude power of%|UNAM| = Py, and 1(fk = f ;) is an indicator
function that evaluates to 1 when the statement (fi = f7;) is true
[2, 11]. Assuming BD uses phase-shift keying (PSK) to modulate
the incident signal, the signal reflected by the BD received at AP
can be expressed as:

yak(t)
= \/&'hB’kthZPA cos(2mfit + 20 + dp) + Lif==, ﬁ],i}UNAM

cos(2fy it + @y ) + Blhsi|\2ZPa cos () + a(r), ()

where a € [0, 1] denotes the signal reflection coefficient and ¢
represents the phase modulation. f (0 < f < 1) represents the
Self-Interference Cancellation (SIC) ability of the AP. A value of
B = 0 indicates complete nullification of the self-interference sig-
nal. Furthermore, hg and hg; represent the reflected and self-
interference channels, respectively [7]. The noise term 7n(t) =
{nB(1),n7(t),na(t)}, following a complex Gaussian distribution
CN(0,?), represents Additive White Gaussian Noise (AWGN).
For simplicity, we assume that the noise powers are equal across
all channels since they are significantly lower than the power of
the carrier signal.
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3 OPTIMIZATION PROBLEM FORMULATION

The proposed cooperative learning algorithm empowers the AP to
select an anti-channel that maximizes network throughput, while
enabling the BD to choose an operational mode that optimizes the
trade-off between communication and energy harvesting.

3.1 Problem Formulation for AP

The objective function of the AP is the network throughput, which
is given by:

Cak(t) =log(1+Ta (1)), (5

where T4 (t) represents the signal-to-jamming-plus-self-interference
and noise ratio (SJSNR). From (4), it can be expressed as:

2a|h3’khk|2PA

Tar(t) = 5 - (6)
21 gipy ] Py + 2BlhstPa+ 02
The optimization problem for AP can be formulated as
1
P1: n(ilrll?,);f«.) tli)ngo N TZ:; log(1+T4(7)
s.t. T(AlJ,S4) € [0,1],
™

where N; is the number of time slots consumed at time ¢, and
7(A|],S) is the learning policy that guides the AP to select a channel
A that maximizes the long-term average throughput.

3.2 Problem Formulation for BD

We assume that the AP generates a downlink frame for transmission
at every time slot. Frame transmission will fail if the BD decides
to operate in energy harvesting mode or if the transmission sig-
nal is jammed. Unsuccessful frame transmissions are stored in a
queue and concatenated with the next frame for transmission in
the following time slot. The frame transmission at the AP follows
a first-come-first-serve (FCFS) policy, meaning that the upcoming
frame will be transmitted only after the frame in the queue has
been completely transmitted. With each transmission, information
regarding the total number of frames in the queue and the next
upcoming frame is included in the frame header and transmitted to
the BD. Being aware of this information enables the BD to decide
which mode to operate in that effectively nullifies the frames in
the AP’s queue and maximizes its energy harvesting potential. Let
W (t) represent the frame sizes (in bits) stored in the AP’s queue at
time ¢. Based on queueing theory in [4], the queue length model is
given by:

W (t +1) = max(Wg(t) + Dnext (t) — p(£) D1 (1),0),  (8)
where Dpex:(t) is the upcoming frame generated at time ¢ for
transmission in the next time slot, and D, (t) is the total data that
has been completely transmitted during a time slot. D7 (¢) can be
expressed as:

2|y |*Pa
21(fk = f]!i)|h]’i|2P] +a2 )’
where T denotes the time slot duration. One of BD’s goals is to
nullify the frames stored in the AP’s queue. Thus, Wy (¢ + 1) = 0 if

Dry(t) = TABlog |1+

©
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it satisfies the following constraint:

Wq(t) + Dnext (t) — p(t)Drx(t) < 0. (10)

The objective of the BD is not only to nullify the frames in the
queue but also to maximize its battery lifetime through harvesting
energy. This highlights the importance of formulating both the
energy harvesting process and the associated energy constraints.
Similar to (8), the battery model is described by:

B(t+1) = max(B(t) + (1= p(1)) Ep k(1) = Ecom(t), BLow), (11)

where By, is the low battery level, Ep i (¢) denotes the energy
harvesting, and Ecy, (¢) represents the energy consumption. Let

X(t) = min(B(t) + (1 = p(t)) Ep e (t) = Ecom (), BLow)-  (12)

Consequently, the battery level can be simplified as

B(t+1)+X(t) = B(1) + (1= p(t)) Ep e (t) = Ecom (1) + BLow- (13)

When the battery is low, the BD will alert the sensor to cease
any further tasks, such as computing or communication, focusing
solely on energy harvesting. Consequently, X (t) = B(t) + E ;. (¢)
if B(t) < Brow and X(t) = Bro.y otherwise. Let ep4x represent
the maximum energy allowed to be consumed during a time slot.
Hence, the energy constraint can be formulated as:

tMax = E[B(t) = B(t +1)] = E[Ecom ()] = (1 = p(1)E[Ep 1 (1)]

_BL0W+E[X(t)]' (14)
The expected value of z(t) is determined by:
Bla] =2 = (1- - |2t - D+ 20, (19)
z(H)] =z = N, z Ntz ,

If the BD considers operating in energy harvesting mode, the energy
consumption is given by Ecom(t) = Ecomput + EAwake- Otherwise,
Ecom(t) = Ecomput + EAwake + EBack> where both Ecomput and
E Avvake represent the energy consumed for computing the learning
algorithm and waking up the circuit to decode information or har-
vest energy, and Eg, is the energy used for backscattering infor-
mation signals. The energy consumed for computing the algorithm
can be calculated using the equation Ecompur = g(fclock)zDComp:
where £ represents the effective capacitance coefficient of the com-
puting chipset, f.;,cx denotes the computing speed of the CPU, and
Dcomyp stands for the data required for computation. Similar to [3],
the maximization of energy harvesting is equivalent to maximizing
the DC current, which can be expressed as:

zpc(t) = ApRantE{y . (D)} + AsRGn, E{yp (D)}
2
hylpy)

3
+A4Rzzmt (glhk|4FA + 41(fk::f],i) (|h],i|4pj + 6|hk|2|h],ii2PAP])) s
(16)

= 2A2Rant (|hk|2PA +1(fi==f.)

2
3P

where Fy = 32 and Ap,, m = {2,4}, denotes the reverse bias
saturation current, and Ryp; represents the impedance. If the BD
decides to operate in harvesting mode, the energy harvesting is
given by Ep . (t) = yzpc ()T, where y represents the RF-to-DC
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conversion efficiency. From (10) and (14), the optimization problem
for DB can be formulated as
1 &
P2: max lim — » Egi(7)
s 5 2,

s.t. C1: Wy () + Dpext (t) = p(t)Drx(t) <0,

C2: eMax 2 E[Ecom(t)] = (1 = p()E[Ep k()] = BLow + E[X(1)].

17)

The proposed learning algorithm aims to optimize the policy 7(-),
which guides the BD in selecting an operational mode p* to maxi-
mize long-term average energy harvesting, while adhering to con-
straints C1 and C2.

4 COOPERATIVE RL-BASED ANTI-JAMMING
IN MULTI-CHANNEL WPBC NETWORKS

The cooperative RL algorithm is one of federated learning ap-
proaches, which allows both agents, namely the AP and BD, to
interact within WPBC networks to learn about the jammer’s be-
havior and optimize the operational mode in a distributed manner.

4.1 AP Agent

The fundamental concept of the proposed RL algorithm revolves
around comprehending the behavior of the jammer across multiple
channels and translating this comprehension into a learning policy.
This policy guides the agent to select the optimal action based on
its state and knowledge of the jammer’s behavior that maximizes
the reward function. With highlighting this concept, the learning
parameters encompass the state, jamming knowledge, action, policy,
and reward. Let S4 € {CHilk = 1,...,K} and A € {CHilk =
1,...,K} represent the state and action, respectively. These are
defined as the channels selected at two consecutive time slots. K is
the total number of channels. For example, if the action selected
at the current time slot is the k-th channel, the state transitions to
this channel at the next time slot, and the action selection pertains
to a new channel. Let ] represent the jamming knowledge, defined
as:

If jammed

1
- {0 otherwise

The AP selects an action A based on the policy 7(A|],S) to maxi-
mize the reward, which is determined by:

(18)

Ca
U+
U™  if jammed

if a backscatter signal is received

Ra = if not jammed but no backscatter signal is received ,

19
where Cy4 represents the objective function of problem P1. Ba(sed)
on the ergodic MDP property, the long-term average throughput is
given by:

Ni
Ca = lim " log(1+Tax(r))/Ne = Ellog(1+Ta(1)]  (20)
=1

Maximizing the reward is equivalent to maximizing the achiev-
able rate at the AP, thereby solving problem P1. With full-duplex
capability, the AP is able to simultaneously transmit and receive
backscatter (or jamming) signals in-band. If the AP does not receive
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any signal (backscatter or jamming), it assumes that it can evade the
jammer. Consequently, it sets its reward to a positive constant (U™).
However, once it receives the jamming signal, the agent imposes a
penalty by setting the reward to a negative constant (U™). By intro-
ducing new jamming knowledge, the Q-values are not confined to a
2D space but instead extend into a 3D space that incorporates infor-
mation about channel transition and selection, as well as jamming
knowledge. The AP assumes that channels with low Q-values are
indicative of jamming channels, whereas those with high Q-values
signify anti-jamming channels. Consequently, the AP prioritizes
the selection of channels with higher Q-values. This distinction
allows us to categorize the Q-values into two groups: the jamming
group (or low Q group) and the anti-jamming group (or high Q
group). Using TD error, the 3D Q-value can be expressed as

Q3D(SA5]9A)
= Q?)D(SA’ ]’ A) +a (RA + YQ?:D (51,4’ ]”A,) - QSD(S/L]:A)) >
(21)

where 51’4, J’, and A’ represent the next state, jamming knowledge,
and action, respectively. The learning policy to select an action
from action space is given by

l+e— £ A" =argmax (Q3p(Sa,J.2)

B % Ae ANKIDIPA

(AlJ. Sa) = {i otherwise ,
K

(22)
where A = {CH |k = 1,...,K} is the action space. The updating
rule for e-greedy is defined as follows:

€ = €min + (€max — €min) exp(—At), (23)

where A represents the decay rate, and epin and emax are the mini-
mum and maximum exploration rates, respectively. A low decay
rate corresponds to more exploration, while a higher decay rate
corresponds to more exploitation.

4.2 BD Agent

The BD lacks the capability to occupy two channels simultaneously,
one for information decoding and another for jamming detection.
It is aware of channel jamming only when it cannot decode infor-
mation from the AP, thus switching to energy harvesting mode
halfway through the time slot duration. This limitation prevents
us from designing a learning algorithm for the BD to perform both
tasks: information reception and jamming detection simultaneously.
Nevertheless, it remains feasible to apply RL for the BD to deter-
mine when to harvest and when to communicate within the AP’s
channel based on the constraints outlined in problem P2. The BD
agent tackles the optimization problem (P2) by transforming it
into an Markov Decision Process (MDP) problem, which is defined
by a tuple comprising states, actions, policies, and rewards. Here,
the state and action correspond to the mode selection across two
consecutive time slots. Let Sg € {0,1} and p € {0, 1} be the state
and action, respectively. For example, suppose the BD selects an
action to operate in energy harvesting mode at time slot , denoted
as zero (p = 0). In the next time slot, it considers operating in com-
munication mode, resulting in the next action being one (p’ = 1),
with the state transitioning to the previous selection, which is zero
(Sp = 0). This selection is based on the learning policy 7(Sg, p).
In the MDP formulation, the objective function and constraints of
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Table 1: Network Parameters

Parameter Settings Values
Clock rate f.jock 22MHz [13]
Capacitance coefficient £ 10726 [15]
Wake-up power Wa,,qke 2.8uW [12]
Backscatter power Wy, ok 28uW [12]
RF-to-DC harvesting efficiency y 0.46 [9]

SIC ability f 1077 [7]
Frame size Dpext 100 kbps [8]
Lithium battery Bpqx 3v and 120 mAh [5]
Expected lifetime T7,; 10-year [5]
Modulation QPSK

problem (P2) are transformed into a reward function, defined as
follows:

Rg = C1C20,

where O denotes the objective function and C1 and C2 represent the
constraints C1 and C2 in problem P2. According to the ergodic prop-

(24)

erty, the objective function is defined as O = lim;—,o 211\21 Eni(1)/Ny =

E[Eg k(t)]. Both constraints are defined as follows:
C1 = exp (—ReLu(Y7)) and C; = exp (—ReLu(Y2)),  (25)

where Y1 = Dry(t) — Wy(t) — Dnext(t) and Y2 = epgae + (1 —
PE[Eg k()] +Elep k()] + Brow — E[Ecom ()] — E[X(#)]. With
this design, C; = 1and C; = 1if both constraints are met; otherwise,
C1 < 1and C2 < 1. Thus, maximizing the reward function is
equivalent to maximizing energy harvesting while adhering to the
communication and energy constraints. The expected long-term
reward, also known as the Q-value, can be updated based on the
TD error as follows:

Q20 (SB. p) = Q2p(SB. p) + @ (R + yQ2p (Sp. p) — Q2p(SB. p)) »

(26)
where « and y are the learning rate and discount factor, respectively.
Lastly, the BD updates its learning policy 7(Sg|p) using the e-
greedy strategy, as outlined in Equation (22).

5 PERFORMANCE EVALUATION

From [6], the communication, jamming, and backscatter chan-
nels are modeled as H = %PLosﬁ, where H = {hy, hy ., fz]’k, hpk}
h~CN (0, 1) represents the quasi-static Rayleigh fading, and Py o
denotes the free-space path loss. The reference frequency fj is set
to 900 MHz, and the distances from the BD to the AP, and from
the jammer to the BD and AP are dga = 3m, djg = dja = 3.1m,
respectively [15]. With perfect channel reciprocity, the correla-
tion between the communication and backscatter channels is one.
According to [7], the self-interference channel is represented as

_ |1 _LoS K _NLoS - LoS||2 —
hst = \| 57 952° + | 257 957-°%, where K = 0.dB, [|g52%||” = 1, and
gé\gLos ~ CN (0,1). Other simulation parameters are summarized

in Table 1.

The performance of the proposed learning algorithm is evaluated
under three jamming strategies: static, round-robin, and random.
Subsequently, it is compared to the baseline, which is randomly
selecting actions. Perfectly evading jamming is achieved when the
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Figure 2: Communication and energy constraints.

jammer strategically generates jamming signals using static and
round-robin methods. With static jamming, the AP can easily learn
the jamming behavior because the jamming signal is present only in
one channel. The proposed algorithm can also handle dynamic jam-
ming, such as round-robin, perfectly. This is thanks to the periodic
channel jamming, which enables the algorithm to learn about its
behavior and understand when the channel will be jammed again.
It also helps determine if the channel is jammed at the current
time slot, and predicts which channel will be jammed in the next
slot. Thus, it results in achieving the same perfect performance
as with static jamming. Network throughput is maximized, and
communication and energy constraints are adhered to, as depicted
in Figure 2. Surprisingly, the proposed learning algorithm not only
handles static and round-robin jamming but also has the capability
to evade jamming under uniform random jamming. This indicates
the power of introducing a jamming state that can classify the
Q-values into two groups during the exploration phase: the low
Q group and the high Q group. This classification is based on the
jamming knowledge and the achievable reward when transitioning
from one channel to another at two consecutive time slots. During
the exploitation phase, the learning policy of the algorithm guides it
to focus solely on selecting channels within the high Q group, thus
resulting in superior performance compared to random channel
selection, as illustrated in Figures 2, 3, and 4. The decay rate for
exploration and exploitation is set to A = 0.001. Lastly, the reason
behind the degradation of network throughput of the AP in Figure
4 compared to that of the BD in Figure 3 is the reflection coefficient
dropping below 1.

6 CONCLUSION

Inspired by the potential of backscatter technology as a battery-less
solution, our study introduces a cooperative RL approach, empow-
ered both the AP and BD to effectively navigate and exploit jamming
in multi-channel environments. Anti-jamming capabilities equip
the AP to strategically select channels for communications with
BD without interference, thus maximizing throughput. Conversely,
jamming exploitation enables the BD to identify channels occupied
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by jamming signals for its energy harvesting operation. This ap-
proach further empowers the BD agent to make decisions regarding
its operational mode—whether to prioritize communication or en-
ergy harvesting—to optimize the trade-off between throughput and
energy harvesting efficiency. Additionally, rather than attempting
to extract information from a jammed RF signal, the BD capitalizes
on this opportunity for energy harvesting, thereby transforming
jamming signal into a valuable energy harvesting source.
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