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Abstract 

Accurately predicting commuting flows is crucial for sustainable urban planning and preventing disease spread due 
to human mobility. While recent advancements have produced effective models for predicting these recurrent flows, 
the existing methods rely on datasets exclusive to a few study areas, limiting the transferability to other locations. This 
research broadens the utility of state-of-the-art commuting flow prediction models with globally available Open-
StreetMap data while achieving prediction accuracy comparable to location-specific and proprietary data. We show 
that the types of buildings, residential and non-residential, are a strong indicator for predicting commuting flows. 
Consistent with theoretical and analytical models, our experiments indicate that building types, distance, and popu-
lation are the determining characteristics for mobility related to commuting. Our experiments show that predicted 
flows closely match ground truth flows. Our work enables accurate flow prediction using building types to support 
applications such as urban planning and epidemiology.
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1  Introduction
Understanding how individuals commute between places 
is as challenging as it is significant (Gonzalez et al. 2008; 
Alessandretti et  al. 2020). Commuting flow prediction 
estimates the number of people moving between regions 
in a geographic area based on descriptive features, such 
as population (Rong et al. 2021), distance to other loca-
tions  (Levinson 1998), and land use type  (Layman and 
Horner 2010). Commuting flow prediction is helpful 
in many applications, such as understanding migration 
patterns  (Jiang et  al. 2021), urban planning  (Rodrigue 
2020), and epidemiology (Balcan et al. 2009). Considering 
that commuting flows vary little from workday to work-
day  (Yang et  al. 2014), the goal is typically to predict a 
set of static flows where each flow represents the average 

number of daily commuters between origin-destination 
pairs, i.e., home and work locations (Masucci et al. 2013). 
Therefore, similar to other approaches  (Liu et  al. 2020; 
Yin et al. 2023), we define the term flow prediction as the 
task of predicting repetitive static flows rather than fore-
casting flows along a series of points in time using his-
torical data, which is a time series problem.

Analytical flow prediction approaches include spa-
tial interaction models such as the gravity model (Zipf 
1946) and its extensions, including the radiation model 
(Alonso 1971; Ren et al. 2014), the intervening opportu-
nities model (Stouffer 1940; Kotsubo and Nakaya 2021), 
and the competing migrants model (Stouffer 1960). Each 
model proposes different characteristics to predict accu-
rate flows. For example, the gravity model assumes that 
the flow between locations is a function of two main 
characteristics: (i) the population at both locations and 
(ii) the distance between them. In another example, the 
intervening opportunities model replaces distance with 
the number of opportunities at the destination location 
that satisfy the trip objective (Schneider 1959). Thus, 
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when predicting commuter flows, the “opportunity” in 
question might be the number of commercial businesses.

More recently, machine learning models for commut-
ing flow prediction far outperform the traditional math-
ematical approaches when comparing the predicted flows 
with ground truth  (Morton et  al. 2018; Yao et  al. 2020; 
Yin et  al. 2023). These models leverage machine learn-
ing approaches that can more flexibly incorporate dif-
ferent features of the origin-destination and can capture 
complex and non-linear relationships in the data  (Koca 
et  al. 2021; Rong et  al. 2023). Many studies use spati-
otemporal characteristics to address the flow prediction 
problem using neural networks (Zhang et al. 2017; Liang 
et al. 2021; Robinson and Dilkina 2018), which can also 
be combined with ordinary differential equations  (Zhou 
et al. 2021). A state-of-the-art model, the Geo-contextual 
Multitask Embedding Learner (GMEL)  (Liu et  al. 2020) 
predicts commuting flows based on origin-destination 
features and their spatial contexts. GMEL uses 65 fea-
tures derived from the 2015 NYC Primary Land Use Tax 
Lot Output (PLUTO) (NYC 2015) dataset, which is only 
available for NYC. In another example, the ConvGCN-RF 
model  (Yin et al. 2023) uses a convolutional neural net-
work, graph convolutional network, and a random forest 
regressor to predict the commuting flow based on origin-
destination features related to land use, as well as the res-
idential and working population for homogeneous spatial 
units in the region of Beijing, China. Spadon et al. (2019) 
derive 22 urban features from datasets provided by the 
Brazilian Institute of Geography and Statistics (IBGE) to 
predict intercity commuting in Brazil. Despite the ability 
of such models to accurately predict flows, these high-
performing models use a large number of input features 
derived from location-specific data sets that are not avail-
able outside of the study area. This makes the use of the 
models in other data-poor study regions challenging. 
Another model, Deep Gravity  (Simini et  al. 2021) over-
comes this limitation by leveraging features obtained 
from a globally crowdsourced and available dataset called 
OpenStreetMap (OSM) (2024). As described by the mod-
el’s name, the selected features are inspired by the clas-
sic gravity model, considering population, distance, and 
other OSM features to predict flows.

Given the variety of input features used across the 
various models, it is difficult to compare and select the 
best-performing model for flow prediction. Therefore, in 
this study, we start with a benchmark of the two state-of-
the-art models GMEL  (Liu et  al. 2020) and Deep Grav-
ity (Simini et  al. 2021), and two out-of-the-box models 
including eXtreme Gradient Boosting (XGBoost) and 
random forests (RF)  (Morton et  al. 2018; Spadon et  al. 
2019) against the same set of features derived from OSM. 
Our case study focuses on New York City (NYC), USA, 

at the census tract granularity. We first evaluate the flow 
prediction models against the 39 OSM features proposed 
by Deep Gravity, comparing the predictions against the 
Longitudinal Employer-Household Dynamics (LEHD) 
Origin-Destination Employment Statistics (LODES) data 
(Census Bureau 2015) as a ground truth. Moreover, since 
models are typically assessed using high-level metrics, 
such as Root Mean Square Error (RMSE), Coefficient of 
Determination ( R2 ), and Common Part of Commuters 
(CPC), which provide limited insight into the model’s 
ability to replicate authentic patterns intrinsic to com-
muting flows, we investigate the degree to which these 
models prove valuable in predicting significant mobility 
flows at different scales.

The lack of semantic information in OSM data lim-
its the features that can be used for prediction (Vargas-
Munoz et  al. 2020; Liu and Long 2016). While Deep 
Gravity improves transferability to other study areas by 
using features that are directly available from OSM, there 
are opportunities to use feature engineering to improve 
the accuracy and applicability of flow prediction models. 
As such, we propose to improve flow predictions by addi-
tionally incorporating building type as an indicator, a key 
factor identified in the intervening opportunities model. 
Specifically, we extract nine input features from open 
data, as follows:

•	 The number (count), density, and area of residential 
and non-residential buildings, respectively (six fea-
tures),

•	 Region population and population density (two fea-
tures), and

•	 Distance between census tracts (one feature)

It is hard to obtain building types from authorita-
tive or open data sources, including OSM (Fonte et  al. 
2018). Therefore, our feature generation approach lever-
ages existing work using a machine learning approach 
to classify building footprints by building type (residen-
tial/non-residential) using only OSM data (Atwal et  al. 
2022). Additionally, as used in GMEL, we employ Open 
Source Routing Machine (OSRM), an OSM-based rout-
ing API (Luxen and Vetter 2011), to generate trip dura-
tion between all pairs of regions representing distance.

Based on the benchmark results, we find that GMEL 
is consistently the best model for predicting commut-
ing flows. Additionally, we show that the majority of 
models improve flow prediction accuracy when using 
building-type features derived from OSM versus the 
OSM features leveraged by Deep Gravity. Finally, we 
show that GMEL coupled with OSM building-type fea-
tures produces comparable prediction accuracy to the 
original GMEL model trained on location-specific data. 
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Therefore, we couple the GMEL model with building-
type features derived from OSM to predict commuting 
flows for Fairfax County, USA, for which the original 
features leveraged by GMEL are not available. Results 
from both case studies show that we can get accurate 
flow predictions between census tracts using features 
derived from open data without relying on location-
specific features. Figure  1 shows the map of the study 
areas.

We note that OSM lacks complete building footprint 
data (Zhou et al. 2022), and coverage is uneven in dif-
ferent regions globally (Herfort et al. 2023). Therefore, 
our approach is applicable in urbanized areas where 
building footprint data can be obtained. As explained 
in Sect.  2.3 on the data, both case studies have more 
than 75% building coverage compared to authoritative 
sources. Additionally, the footprint data with building 
types is publicly available in the United States (F. de 
Arruda et al. 2024).

2 � Methods
Before presenting our findings, we briefly define the 
commuting flow prediction problem.

2.1 � Problem definition
The commuting flow prediction problem can be defined 
as follows. Table 1 summarizes the used notations.

Definition 1  (Commuting Flow Prediction). Let A 
denote a study region partitioned into n smaller sub-
regions (a1, ..., an) , such as census tracts in the United 
States. For each subregion ai , let fi denote a correspond-
ing set of features, and for each pair of subregions ai, aj , 
let dij denote a distance measure between regions. Given 
these features and distance, the task is to predict the 
commuting flow Tij for each pair of subregions ai, aj ∈ A.

2.2 � Models
We aim to predict commuting flows from three char-
acteristics operationalized using publicly available data 
such as OSM. Therefore, we examine four models includ-
ing GMEL, Deep Gravity, XGBoost, and random forest 
(RF), comparing their performance using the same set of 
features derived from OSM. GMEL employs graph rep-
resentation learning by using the graph attention net-
work (GAT) framework for capturing the geographic 

Fig. 1  The map of NYC and Fairfax study areas

Table 1  Notations used in the study

Notation Meaning

A = {a1, ..., an} The study region

ai A subregion of the study region

n The number of subregions

Tij The ground truth commuter flow from subregion ai to subregion aj

Tij The estimated commuter flow from subregion ai to subregion aj

dij Spatial distance between two subregions

Oi =
∑

j Tij The total outflow of subregion ai (to any other subregion)

Ii =
∑

j Tji The total inflow of subregion ai (from any other subregion)

Ôi =
∑

j T̂ij
The estimated outflow of subregion ai (to any other subregion)

Îi =
∑

j T̂ji
The estimated inflow of subregion ai (from any other subregion)
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contextual information from the nearby regions for com-
muting flow predictions. Given the potentially unique 
characteristics of the regions, it uses two GATs separately 
for origin and destination locations. As described in the 
proposed model (Liu et  al. 2020), we used one hidden 
layer and an embedding size of 128 as hyperparameters 
for GMEL. Deep Gravity utilizes deep neural networks 
to generate mobility flows using features retrieved from 
OSM and census data (Simini et al. 2021). The main fea-
tures include road network, points of interest, land use, 
and the population of the study region. XGBoost is a 
regression tree gradient boosting model, a highly scal-
able learning system capable of efficiently handling 
sparse data and supporting multicore parallel computing 
for quick model exploration (Chen and Guestrin 2016). 
XGBoost has been shown to outperform traditional 
mathematical gravity and radiation models for commut-
ing flow prediction using U.S. Census data (Morton et al. 
2018). Random forests are the ensemble of individual tree 
predictions averaged for regression problems and the 
prediction with maximum votes selected for classifica-
tion problems (Breiman 2001). Compared to the gravity 
model and artificial neural networks, the accuracy for the 
random forest is higher for predicting commuting flows 
in NYC in previous work (Pourebrahim et  al. 2019). As 
described in Sect. 3 on results, we evaluate the compara-
tive performance of these models for our approach using 
the parameters and configurations prescribed in the pro-
posed studies.

GMEL uses 65 features as urban indicators of NYC to 
predict commuting flows. The features, such as the num-
ber of buildings in each built year interval, the number of 
tax lots, and floor area ratio statistics, are region-specific 
indicators available only for NYC. Similarly, Deep Grav-
ity employs 39 features obtained from OSM, such as road 
network, count of education and food points of interests, 
etc. As explained in Sect.  2.4 on features, our approach 
utilizes building types as the main indicator to derive 
nine features for predicting commuting flows.

To evaluate model performance, we use the root mean 
square error (RMSE)  (Hancock and Freeman 2001), the 
Coefficient of Determination (Chicco et al. 2021) R2 , and 
the Common Part of Commuters (CPC) metric  (Lenor-
mand et al. 2012).

The RMSE is defined as follows:

where A = {a1, ..., an} is the study region with subregions, 
Tij is the ground truth flow between subregions ai and 
aj (obtained for NYC using LODES data) as defined in 

(1)RMSE(A) =

√∑
ai ,aj

(T̂ij − Tij)
2

n2

Definition 1, T̂ij
 is the predicted commuting flow, and n is 

the number of subregions (census tracts for NYC).
RMSE values are notoriously difficult to interpret. For 

example, it is not clear to what degree a prediction with 
an RMSE of 2.393 is accurate. As such, we also provide 
the Coefficient of Determination R2 and Common Part 
of Commuters (CPC) to provide an additional evaluation 
of model accuracy. Although the R2 is well known and 
measures the fraction of variance explained by the model, 
the Common Part of Commuters (CPC) is less known. 
Thus, we define CPC, as follows:

The CPC ranges from 0 (no overlap between prediction 
and ground truth) to 1 (identical prediction and ground 
truth).

2.3 � Data
We use real-world commuting flows obtained from the 
Longitudinal Employer-Household Dynamics (LEHD) 
Origin-Destination Employment Statistics (LODES) 2015 
dataset (Census Bureau 2015; Credit and Arnao 2023) as 
ground truth for training and testing the models. LODES 
data captures the raw number of commuters between 
two regions at the census block level, and we aggregated 
it at the census tract level.

Across the 2,168 NYC census tracts, there are 
21682 = 4, 700, 224 pair-wise flows, of which 905,837 
are non-zero with a total of 3,031,641 commuters. Simi-
larly, across the 263 Fairfax County census tracts, there 
are a possible 69,169 flows out of which 34,366 are non-
zero flows, capturing 259,792 commuters. Unlike prior 
work  (Liu et  al. 2020; Yang et  al. 2014; Pourebrahim 
et al. 2019), we include flows that are zero in the ground 
truth LODES data. While LODES data does not explic-
itly include zero flows in their data, the omitted flows 
between a pair of census tracts are implicitly assumed to 
be zero values, which are missing from the evaluation of 
prior work (Liu et al. 2020; Yang et al. 2014; Pourebrahim 
et al. 2019). However, omitting such flows creates biased 
models that learn that any pair of origin-destination cen-
sus tracts must always have at least a flow count of one 
commuter. Our experiments include all pairs of census 
tracts, including zero flows, eliminating the bias. In other 
words, we add zero flows to training and test sets of all 
evaluated models to allow a fair evaluation. We note that 
due to this difference, the quantitative results we report 
in the aggregated metrics in the Results Section (such 
as Table  5) are generally lower than reported in prior 
work, as our results include cases of flows where models 

(2)CPC(A) =
2
∑

aij
min(T̂ij ,Tij)

∑
aij

T̂ij +
∑

aij
Tij
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predict a non-zero flow instead of a zero flow count in 
the ground truth. For training and testing, we split the 
flows into a 60% training set, a 20% validation set, and a 
20% test set.

Table 2 presents the descriptive statistics for the NYC 
and Fairfax County LODES outflows Oi and inflows Ii 
aggregated at the tract level. We notice a much higher 
standard deviation of the inflow of commuters in both 
study regions. The maximum count of commuters for 
the inflows also highlights the significant difference in 
variance. Furthermore, the 3rd quantile values in both 
cases show the skewness in the distribution of commut-
ers. These results demonstrate the concentrated nature 
of inflows in comparison to outflows, where the majority 
of commuters move to a small set of destination census 
tracts. Therefore, as our results suggest, it is much harder 
to predict the commuters’ count for inflows.

OSM is an open-source collaborative project that pro-
vides free access to geographic data collected by volun-
teers at the global level (OSM 2024). The OSM data is 
structured as a set of elements such as nodes, ways, and 
relations that represent points of interest, polylines or 
polygons, and more complex shapes consisting of rela-
tionships between simple elements. Tags of key and value 
pairs can describe all the elements. For instance, a poly-
gon can be tagged with the key as building and value as 
a residential, describing a residential building. This way, 
OSM data provides extensive coverage of points, build-
ings, roads, parking lots, and many other types of geo-
graphic information via editable maps. However, the lack 
of semantic information is a challenge (Liu and Long 

2016). The OSM data we used for this work consists of 
1,090,752 NYC and 204,671 Fairfax building footprints, 
which cover 99% and 76% of buildings respectively for 
both study areas compared to authoritative sources 
(N.Y.C 2024; Fairfax County 2024). Figure  2 shows the 
workflow of our approach.

2.4 � Features
The features used in the models for predicting the flows 
are derived from OSM and the 2010 U.S. Census data 
(Census Bureau 2010). Previous work shows that build-
ing types are missing from a vast majority of OSM data, 
and the spatial and non-spatial features of the data can be 
used to categorize buildings into residential or non-resi-
dential types (Atwal et al. 2022). We use this classification 
method to label the OSM buildings data and derive six 
input features for our study. In the first step of data prep-
aration, we classify buildings for NYC and Fairfax. And in 
the second step, we calculate the count, area, and density 
of two building types for each census tract, resulting in 
six features.

We use population and the population density for each 
tract as two more input features. Although population 
estimates can be derived from OSM features in the same 
way (Bast et al. 2015; Bakillah et al. 2014), we use census 
data as a proxy for this approach. Finally, we obtain the 
trip duration between the centroids of census tracts using 
Open Source Routing Machine (OSRM) (Luxen and Vet-
ter 2011) and use it as the edge feature for the geo-adja-
cency network of GMEL. OSRM also relies on the maps 

Table 2  Descriptive statistics of ground truth data

Study Flow Mean Standard Min 25% Median 75% Max
Area Type Deviation

NYC Outflows 280 176 4 168 244 350 1604

Inflows 280 817 1 34 81 190 10243

Fairfax Outflows 197 120 5 111 173 255 904

Inflows 197 482 1 21 67 180 5702

Fig. 2  The workflow of solving commuting flow prediction problem using OSM data with various machine learning models
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from the OSM road network for calculating the shortest 
paths between O-D pairs.

3 � Results
The evidence from experiments at multiple scales sug-
gests our approach produces meaningful mobility 
patterns while providing notable insights into the com-
muting flows.

3.1 � Benchmark results
Table  3 provides the NYC commuting flow prediction 
accuracy for the state-of-the-art models GMEL and 
Deep Gravity and out-of-the-box models XGBoost and 
RF using the OSM data for the same features employed 
in Deep Gravity. Table  4 provides the NYC commuting 
flow accuracy for the models using the new set of features 
based on building type.

Based on the results presented in Table  3, GMEL has 
the lowest RMSE and highest CPC and R2 in compari-
son to XGBoost, Deep Gravity, and RF. Note that the two 
state-of-the-art models, GMEL and Deep Gravity, are 
originally implemented to predict commuting flow using 
a different set of input features, making them difficult to 
compare. Therefore, in order to evaluate the performance 
of the models independent of the data, the models are 
benchmarked using the same set of input features used 
in Deep Gravity. The experiment shows that GMEL is 
the best-performing model compared to other methods 
using the same features.

In the next experiment, we replace Deep Gravity fea-
tures with our proposed features based on building types. 
In essence, we enrich the OSM data using the building 
classification method proposed in  (Atwal et  al. 2022) 
and utilize the count, density, and area of residential and 
non-residential buildings as features for predicting com-
muting flows. Besides these features, we use population 
and distance features, which are also used in Deep Grav-
ity. Compared to the prediction accuracy in Table 3 using 
Deep Gravity features, results in Table 4 show that with 
all else equal, all models outperform when using build-
ing types features except RF, which performs compara-
tively for both data sets. Therefore, we conclude that the 
type of buildings in an area is a major driving factor for 

commuting, and including such features can help predict 
the corresponding flows more accurately.

Benchmark results show that GMEL is the best 
model with a different set of features. The graph atten-
tion mechanism of GMEL makes it capable of utilizing 
the geo-contextual information from the input features. 
Without the attention mechanism, Deep Gravity and 
other simpler models lack the spatial correlation between 
the outflows and inflows of commuting. Additionally, the 
residential and non-residential building types capture the 
correlation between home and work locations. Therefore, 
the nine features derived from building types consistently 
outperform the 39 features used in Deep Gravity.

3.2 � Comparative analysis
Given our results showing that GMEL is the best-per-
forming model, we next compare the performance of 
the originally proposed GMEL model, which leverages 
the PLUTO dataset (NYC 2015) available only for New 
York City, with the performance of GMEL using OSM 
data with buildings classification enrichment. To distin-
guish between the two, we call the original model GMEL-
PLUTO and our approach GMEL-OSM throughout the 
rest of the paper. In other words, GMEL-PLUTO uses 
region-specific PLUTO data for flow prediction, while 
GMEL-OSM uses features derived from OSM data based 
on building types.

Table  5 shows that a comparable level of prediction 
accuracy can be achieved overall when using features 
derived from publically available OSM data. The R2 
value indicates that the three characteristics account for 
an 53.5% variation in commuting flows. Additionally, 
GMEL-OSM utilizes a smaller set of features to achieve 
accuracy close to GMEL-PLUTO with 65 features.

Table 3  Evaluation of different models using Deep Gravity 
features for predicting NYC commuting flows

Model RMSE CPC R
2

GMEL 2.393 0.491 0.486

Deep Gravity 3.326 0.305 0.039

XGBoost 3.172 0.245 0.063

RF 3.204 0.225 0.049

Table 4  Evaluation of different models using building types 
features for predicting NYC commuting flows

Model RMSE CPC R
2

GMEL 2.279 0.495 0.535

Deep Gravity 3.144 0.325 0.078

XGBoost 3.125 0.261 0.111

RF 3.228 0.218 0.051

Table 5  Comparison of OSM and PLUTO data using GMEL 
model for NYC

Features RMSE CPC R
2

GMEL-OSM 2.279 0.495 0.535

GMEL-PLUTO 2.084 0.536 0.611
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To better understand the ability of the models to cap-
ture meaningful mobility patterns beyond aggregate 
metrics, we also evaluate the predicted sum of outgo-
ing commuters from an origin location ai denoted as 
Ôi =

∑
j T̂ij , which we call outflows, and the predicted 

sum of incoming commuters to a destination location 
ai denoted as Îi =

∑
j T̂ji , which we call inflows. The Ôi 

and Îi for each region ai stemming from the GMEL-OSM 
and GMEL-PLUTO predictions are then compared to the 
ground truth values Oi =

∑
j Tij and Ii =

∑
j Tji derived 

from LODES data for NYC.
Figure  3 shows the distribution of relative predic-

tion errors for the outflows Oi−Ôi
Oi

 and the inflows Ii−Îi
Ii

 
for GMEL-OSM (Fig. 3a and c) and for GMEL-PLUTO 
(Fig.  3b and d). We observe that GMEL-OSM is com-
parable with GMEL-PLUTO to predict outflows, but 
performs somewhat weaker for inflows. It is likely due 
to the nature of commuting flows, with inflows being 
limited to a small group of destination census tracts (cf. 
discussion in Sect. 2.3 on the data). Even so, the results 
show the practicality of predicted flows compared to 
ground truth data. Out of those census tracts where 
flow is over-predicted by more than 100%, many have 
a commuting flow count of 10 individuals or fewer. It 

indicates that our approach is capable of predicting 
real-world commuting mobility at the tract level, where 
the flow count is generally more than 10.

To assess the accuracy of the predicted inflows and 
outflows for census tracts, Fig.  4 shows scatter plots 
comparing the ground truth flows against the predicted 
flows using GMEL-OSM (Fig.  4a and c) and GMEL-
PLUTO (Fig.  4b and d). Both models tend to overes-
timate inflows that are smaller in the real world and 
underestimate large inflows, as indicated by the points 
that fall above and below the identity line. Likewise, 
both models also tend to overestimate smaller outflows. 
Again, while both models produce similar results for 
outflows, GMEL-PLUTO (65 custom feature model) 
seems to perform better when predicting the inflows, 
essentially confirming the results of Fig.  3 at a more 
granular level.

We note that the maximum number of commuters 
going to a census tract is much higher than coming from 
a home location, which is consistent in both prediction 
models and the ground truth. It indicates that the inflows 
are much denser to specific census tracts or workplaces. 
We investigate and explain this phenomenon in Sect. 2.3 
on the data.

Fig. 3  Comparison of GMEL-OSM and GMEL-PLUTO commuters under or overestimation in NYC flows
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We can also map the differences between predicted and 
ground truth outflows as presented in Fig. 5 and inflows 
presented in Fig.  6. Positive relative prediction errors 
indicate over-prediction and are depicted in shades of 
blue colors. In contrast, negative percentages indicate 
under-prediction and are shown in shades of red. Green 
shows a prediction largely matching the ground truth 
flows. Note that the large tracts in the south of the study 
area are mostly comprised of water, thus having small in 
and outflows. As a result, minor flow prediction errors 
for these census tracts provide high relative percentage 
errors and as such are shown as large light blue areas.

Upon comparing Figs. 5 and 6, we can see that GMEL-
OSM and GMEL-PLUTO flow predictions are very 
similar in terms of the relative prediction error. Both 
approaches have less success in predicting destination 
flows. It is once again likely due to the large number of 
features used in GMEL-PLUTO that are likely better at 
capturing the inflows to destination census tracts. We 
discuss steps that we may take to address this in future 
work in the Discussion Section.

To better understand the utility of predicted com-
muter flows, we also performed experiments focusing 
on a single origin (destination) tract to understand how 
well models can capture the distribution of destination 

(origin) tracts to (from) this tract. For this purpose, 
we select the census tract having the median outflow 
(GeoID: 36047037300, denoted as the Origin Median) 
and the census tract having the median inflow (GeoID 
36005024800, denoted as the Destination Median). We 
use these two census tracts to evaluate (i) the distribution 
of outflows from the Origin Median to understand how 
well the models can understand where people commute 
to (from one specific census tract) and (ii) the distribu-
tion of inflows from the Destination Median to under-
stand how well our models can capture the distribution 
of where people commute from (to one specific census 
tract).

Table 6 shows the results of these experiments. Out of 
all 448 census tracts in the NYC study region included in 
the test set, 354 tracts have a zero commuting flow from 
the Origin Median. The remaining 94 census tracts hav-
ing non-zero commuting flows capture a total of 244 
commuters. Using GMEL-OSM, we have 332 predicted 
zero commuting flows and 116 predicted non-zero com-
muting flow. Out of the predicted 116 predicted non-
zero flows, 48 match with the 94 ground truth non-zero 
flows. Out of the 332 predicted zero flows, 286 match 
with the 354 ground truth flows. It yields an overall 74.5% 
accuracy in predicting whether any census tract has 

Fig. 4  Comparison of GMEL-OSM and GMEL-PLUTO commuters with ground truth in NYC flows
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a non-zero flow from the Origin Median. Note that we 
round predictions to the nearest integer for this experi-
ment, such as that a predicted zero flow is equivalent to 
a predicted flow of less than 0.5 individuals. We observe 
that for GMEL-PLUTO, the accuracy is higher at 79.6%, 
indicating that the model can better predict destination 
flows by leveraging PLUTO data.

Similarly, by considering only the Destination Median 
as a single destination, GMEL-OSM and GMEL-PLUTO 
matched 90.5% and 90.8%, respectively, out of 457 ori-
gin tracts in the test set. We observe that the destination 
median has a relatively small number of only 81 incom-
ing commuters in the ground truth. It is explained by the 
long-tail distribution of inflows, which we further investi-
gate and explain in the Data Section.

Overall, we observe that while GMEL-OSM and 
GMEL-PLUTO provide very accurate flow predictions 
when aggregated to census tracts, the prediction of indi-
vidual origin-destination flows remains challenging. The 
reason is that the vast majority of origin-destination 

flows are zero and among the non-zero flows, most 
flows are less than five individuals. Despite these small 
numbers, which correspond to rare events of individual 
origin-destination commutes, both GMEL-OSM and 
GMEL-PLUTO give good results.

Based on the results presented so far, we can con-
clude that there are marginal gains in performance by 
using a large number of region-specific features using 
GMEL-PLUTO, and we can achieve similar results with 
a small set of features derived from publicly available 
OSM data. To examine whether GMEL-OSM is usable in 
other regions, we trained and tested the model for Fair-
fax County in Virginia and compared the predicted flows 
with the LODES data as ground truth. Note that we can-
not compare GMEL-OSM with GMEL-PLUTO because 
the latter approach uses NYC-specific data, which is pub-
licly unavailable for Fairfax.

Histograms in Fig.  7 show the relative percentage 
errors of outflows and inflows at the tract level com-
pared to the ground truth. Figure  8 demonstrates the 

Fig. 5  Comparison of GMEL-OSM and GMEL-PLUTO in NYC outflows. Plotly version 5.13.0 was used to create the maps
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trend of flow prediction for outflows and inflows, 
respectively. We observe that the model performance in 
Fairfax, VA is comparable, if not better than the NYC 
case study using GMEL-PLUTO. Based on the histo-
grams, it appears that the commuting inflows for Fair-
fax are easier to predict and less extreme than in NYC.

Additionally, we trained GMEL-OSM using NYC data 
and tested the pre-trained model to predict the commut-
ing flows for Fairfax to determine whether the model is 
useful in locations where training commuting flow data 
(obtained for the U.S. from LODES data) is not avail-
able. Table  7 shows that the model trained in NYC and 

Fig. 6  Comparison of GMEL-OSM and GMEL-PLUTO in NYC inflows. Plotly version 5.13.0 was used to create the maps

Table 6  Single origin and destination census tract predictions

Census tract Approach Zero flows Count Non-zero flows Count Sum of 
Commuters

(Matching) (Matching)

Origin Median Ground Truth 354 (354) 94 (94) 244

GMEL-OSM 332 (286) 116 (48) 212

GMEL-PLUTO 345 (304) 103 (53) 201

Destination Median Ground Truth 411 (411) 46 (46) 81

GMEL-OSM 418 (393) 39 (21) 43

GMEL-PLUTO 427 (398) 30 (17) 32
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transferred to Fairfax provides acceptable results by 
explaining 62.1% of the variation in the commuting flows 
of Fairfax, compared to 70.2% using the model that was 
trained using Fairfax LODES data.

4 � Discussion
Results for the two study areas show that commut-
ing flows can be accurately predicted using features 
derived from publicly available OSM data, which is 
regularly updated by volunteers. We show that the 
enrichment of OSM data with building types signifi-
cantly improves the prediction accuracy of commuting 
flows. By utilizing a building classification method, our 

results outperform Deep Gravity features also obtained 
from OSM. Therefore, we illustrate that residential and 
non-residential building types in census tracts are cru-
cial in predicting commuters’ mobility. Comparative 
results reveal that GMEL-OSM achieves accuracy close 
to region-specific GMEL-PLUTO, which outperforms 
other state-of-the-art models but cannot be used out-
side NYC due to a lack of input data for other regions. 
The learning framework of GMEL-OSM relies on geo-
graphic contextual information (Feng et  al. 2021) for 
predicting commuting flows between origin-destina-
tion pairs of subregions. Our findings suggest that the 
OSM data captures the contextual information very 
well for the origin and destination locations, providing 
a rich and effective source of input features for GMEL-
OSM. Besides aggregated results, the in-depth analysis 
demonstrates the usefulness of the predicted flows for 
urban planning (Zeng et  al. 2022), disease transmis-
sion (Ferguson et  al. 2006), and other applications (Li 
et al. 2022; Delventhal et al. 2022). However, since our 
approach relies on types of buildings, it requires build-
ing footprints data to derive the input features for the 

Table 7  Comparison of GMEL-OSM in Fairfax using transfer 
learning

Training data RMSE CPC R
2

Fairfax 6.476 0.643 0.702

NYC 7.427 0.572 0.621

Fig. 7  Commuters under or overestimation using GMEL-OSM for Fairfax

Fig. 8  Comparison of GMEL-OSM commuters prediction with ground truth for Fairfax flows
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machine learning models, making it applicable to 
urbanized regions only. Nonetheless, our work demon-
strates the significance of building types in predicting 
commuting mobility. In summary, we find that inflows 
are concentrated in a few destinations while outflows 
are more evenly distributed, validating the intuition 
that people commute to a few workplaces and reside 
in dispersed locations. Our analysis shows that GMEL-
OSM effectively captures this divergent phenomenon, 
matching the trend of outflows and inflows in the 
ground truth. Additionally, our results indicate that 
building types, distance, and population are the essen-
tial characteristics driving commuting mobility.

While the population can be estimated at a fine-grained 
scale using OSM data (Bast et  al. 2015), for simplicity, 
we utilized the U.S. Census data as a proxy for this. In 
future work, we plan to extend our proposed approach 
for generating population features, alleviating the need 
for census data. To investigate the explainability of the 
input features, we might explore a unified mechanism for 
interpreting predictions such as SHapley Additive exPla-
nations (SHAP) (Lundberg and Lee 2017). It would help 
us understand which other features are useful for better 
commuting flow predictions, potentially leading to more 
suitable feature selection for improving the performance 
of our approach. Where we found relatively weaker pre-
diction accuracy for the destination flows, there is an 
opportunity to examine what features might improve this 
aspect of the predictions. Prior work shows the effective-
ness of points of interest (PoIs) (Cai et al. 2022) and land 
use (Lee and Holme 2015; Horner 2004) for predicting 
flows. Therefore, we would explore types of PoIs and land 
use as other characteristics driving mobility. Particularly, 
since the descriptive statistics of our study areas show 
the concentration of destination flows, we would like to 
further investigate this phenomenon. And, to improve 
the prediction accuracy of incoming flows, we will con-
sider additional features to capture this behavior, such 
as commercial or workplace PoIs, economic character-
istics, socio-economic indicators, etc. Another step in 
this direction is to use fine-grained building types such as 
industrial, educational, commercial, religious, etc. Finally, 
our transfer learning results for Fairfax County show 
promise for future work in which we would plan to apply 
our approach to regions where LODES or equivalent 
commuting data is not publicly unavailable, potentially 
outside the U.S. Specifically, we would like to investigate 
the scale of transferability of our approach and come up 
with localized models according to urbanization charac-
teristics and data availability in other regions.
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