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Abstract

Accurately predicting commuting flows is crucial for sustainable urban planning and preventing disease spread due
to human mobility. While recent advancements have produced effective models for predicting these recurrent flows,
the existing methods rely on datasets exclusive to a few study areas, limiting the transferability to other locations. This
research broadens the utility of state-of-the-art commuting flow prediction models with globally available Open-
StreetMap data while achieving prediction accuracy comparable to location-specific and proprietary data. We show
that the types of buildings, residential and non-residential, are a strong indicator for predicting commuting flows.
Consistent with theoretical and analytical models, our experiments indicate that building types, distance, and popu-
lation are the determining characteristics for mobility related to commuting. Our experiments show that predicted
flows closely match ground truth flows. Our work enables accurate flow prediction using building types to support

applications such as urban planning and epidemiology.

Keywords Commuting flows, OSM, Flow prediction, Graph attention networks

1 Introduction

Understanding how individuals commute between places
is as challenging as it is significant (Gonzalez et al. 2008;
Alessandretti et al. 2020). Commuting flow prediction
estimates the number of people moving between regions
in a geographic area based on descriptive features, such
as population (Rong et al. 2021), distance to other loca-
tions (Levinson 1998), and land use type (Layman and
Horner 2010). Commuting flow prediction is helpful
in many applications, such as understanding migration
patterns (Jiang et al. 2021), urban planning (Rodrigue
2020), and epidemiology (Balcan et al. 2009). Considering
that commuting flows vary little from workday to work-
day (Yang et al. 2014), the goal is typically to predict a
set of static flows where each flow represents the average
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number of daily commuters between origin-destination
pairs, i.e., home and work locations (Masucci et al. 2013).
Therefore, similar to other approaches (Liu et al. 2020;
Yin et al. 2023), we define the term flow prediction as the
task of predicting repetitive static flows rather than fore-
casting flows along a series of points in time using his-
torical data, which is a time series problem.

Analytical flow prediction approaches include spa-
tial interaction models such as the gravity model (Zipf
1946) and its extensions, including the radiation model
(Alonso 1971; Ren et al. 2014), the intervening opportu-
nities model (Stouffer 1940; Kotsubo and Nakaya 2021),
and the competing migrants model (Stouffer 1960). Each
model proposes different characteristics to predict accu-
rate flows. For example, the gravity model assumes that
the flow between locations is a function of two main
characteristics: (i) the population at both locations and
(ii) the distance between them. In another example, the
intervening opportunities model replaces distance with
the number of opportunities at the destination location
that satisfy the trip objective (Schneider 1959). Thus,
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when predicting commuter flows, the “opportunity” in
question might be the number of commercial businesses.

More recently, machine learning models for commut-
ing flow prediction far outperform the traditional math-
ematical approaches when comparing the predicted flows
with ground truth (Morton et al. 2018; Yao et al. 2020;
Yin et al. 2023). These models leverage machine learn-
ing approaches that can more flexibly incorporate dif-
ferent features of the origin-destination and can capture
complex and non-linear relationships in the data (Koca
et al. 2021; Rong et al. 2023). Many studies use spati-
otemporal characteristics to address the flow prediction
problem using neural networks (Zhang et al. 2017; Liang
et al. 2021; Robinson and Dilkina 2018), which can also
be combined with ordinary differential equations (Zhou
et al. 2021). A state-of-the-art model, the Geo-contextual
Multitask Embedding Learner (GMEL) (Liu et al. 2020)
predicts commuting flows based on origin-destination
features and their spatial contexts. GMEL uses 65 fea-
tures derived from the 2015 NYC Primary Land Use Tax
Lot Output (PLUTO) (NYC 2015) dataset, which is only
available for NYC. In another example, the ConvGCN-RF
model (Yin et al. 2023) uses a convolutional neural net-
work, graph convolutional network, and a random forest
regressor to predict the commuting flow based on origin-
destination features related to land use, as well as the res-
idential and working population for homogeneous spatial
units in the region of Beijing, China. Spadon et al. (2019)
derive 22 urban features from datasets provided by the
Brazilian Institute of Geography and Statistics (IBGE) to
predict intercity commuting in Brazil. Despite the ability
of such models to accurately predict flows, these high-
performing models use a large number of input features
derived from location-specific data sets that are not avail-
able outside of the study area. This makes the use of the
models in other data-poor study regions challenging.
Another model, Deep Gravity (Simini et al. 2021) over-
comes this limitation by leveraging features obtained
from a globally crowdsourced and available dataset called
OpenStreetMap (OSM) (2024). As described by the mod-
el’s name, the selected features are inspired by the clas-
sic gravity model, considering population, distance, and
other OSM features to predict flows.

Given the variety of input features used across the
various models, it is difficult to compare and select the
best-performing model for flow prediction. Therefore, in
this study, we start with a benchmark of the two state-of-
the-art models GMEL (Liu et al. 2020) and Deep Grav-
ity (Simini et al. 2021), and two out-of-the-box models
including eXtreme Gradient Boosting (XGBoost) and
random forests (RF) (Morton et al. 2018; Spadon et al.
2019) against the same set of features derived from OSM.
Our case study focuses on New York City (NYC), USA,
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at the census tract granularity. We first evaluate the flow
prediction models against the 39 OSM features proposed
by Deep Gravity, comparing the predictions against the
Longitudinal Employer-Household Dynamics (LEHD)
Origin-Destination Employment Statistics (LODES) data
(Census Bureau 2015) as a ground truth. Moreover, since
models are typically assessed using high-level metrics,
such as Root Mean Square Error (RMSE), Coefficient of
Determination (R?), and Common Part of Commuters
(CPC), which provide limited insight into the model’s
ability to replicate authentic patterns intrinsic to com-
muting flows, we investigate the degree to which these
models prove valuable in predicting significant mobility
flows at different scales.

The lack of semantic information in OSM data lim-
its the features that can be used for prediction (Vargas-
Munoz et al. 2020; Liu and Long 2016). While Deep
Gravity improves transferability to other study areas by
using features that are directly available from OSM, there
are opportunities to use feature engineering to improve
the accuracy and applicability of flow prediction models.
As such, we propose to improve flow predictions by addi-
tionally incorporating building type as an indicator, a key
factor identified in the intervening opportunities model.
Specifically, we extract nine input features from open
data, as follows:

+ The number (count), density, and area of residential
and non-residential buildings, respectively (six fea-

tures),
+ Region population and population density (two fea-
tures), and

» Distance between census tracts (one feature)

It is hard to obtain building types from authorita-
tive or open data sources, including OSM (Fonte et al.
2018). Therefore, our feature generation approach lever-
ages existing work using a machine learning approach
to classify building footprints by building type (residen-
tial/non-residential) using only OSM data (Atwal et al.
2022). Additionally, as used in GMEL, we employ Open
Source Routing Machine (OSRM), an OSM-based rout-
ing API (Luxen and Vetter 2011), to generate trip dura-
tion between all pairs of regions representing distance.

Based on the benchmark results, we find that GMEL
is consistently the best model for predicting commut-
ing flows. Additionally, we show that the majority of
models improve flow prediction accuracy when using
building-type features derived from OSM versus the
OSM features leveraged by Deep Gravity. Finally, we
show that GMEL coupled with OSM building-type fea-
tures produces comparable prediction accuracy to the
original GMEL model trained on location-specific data.
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Therefore, we couple the GMEL model with building-
type features derived from OSM to predict commuting
flows for Fairfax County, USA, for which the original
features leveraged by GMEL are not available. Results
from both case studies show that we can get accurate
flow predictions between census tracts using features
derived from open data without relying on location-
specific features. Figure 1 shows the map of the study
areas.

We note that OSM lacks complete building footprint
data (Zhou et al. 2022), and coverage is uneven in dif-
ferent regions globally (Herfort et al. 2023). Therefore,
our approach is applicable in urbanized areas where
building footprint data can be obtained. As explained
in Sect. 2.3 on the data, both case studies have more
than 75% building coverage compared to authoritative
sources. Additionally, the footprint data with building
types is publicly available in the United States (F. de
Arruda et al. 2024).

2 Methods
Before presenting our findings, we briefly define the
commuting flow prediction problem.
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2.1 Problem definition
The commuting flow prediction problem can be defined
as follows. Table 1 summarizes the used notations.

Definition 1 (Commuting Flow Prediction). Let A
denote a study region partitioned into n smaller sub-
regions (41, ..., ay), such as census tracts in the United
States. For each subregion a;, let f; denote a correspond-
ing set of features, and for each pair of subregions a;, a;,
let djj denote a distance measure between regions. Given
these features and distance, the task is to predict the
commuting flow Tj; for each pair of subregions a;, a; € A.

2.2 Models

We aim to predict commuting flows from three char-
acteristics operationalized using publicly available data
such as OSM. Therefore, we examine four models includ-
ing GMEL, Deep Gravity, XGBoost, and random forest
(RF), comparing their performance using the same set of
features derived from OSM. GMEL employs graph rep-
resentation learning by using the graph attention net-
work (GAT) framework for capturing the geographic

Fairfax

NYC

0 5 10 km
| —

Fig. 1 The map of NYC and Fairfax study areas

Table 1 Notations used in the study

Notation Meaning

A={ay,..,an} The study region

aj A subregion of the study region

n The number of subregions

Tj The ground truth commuter flow from subregion g; to subregion a;
?U The estimated commuter flow from subregion g; to subregion g;

dj Spatial distance between two subregions

0 = Z/ Tj The total outflow of subregion g; (to any other subregion)

i = E/ T The total inflow of subregion g; (from any other subregion)

6/ — Z/ ?/.j The estimated outflow of subregion g; (to any other subregion)

//;:ZJ/T}/

The estimated inflow of subregion a; (from any other subregion)




Atwal et al. Computational Urban Science (2025) 5:2

contextual information from the nearby regions for com-
muting flow predictions. Given the potentially unique
characteristics of the regions, it uses two GATs separately
for origin and destination locations. As described in the
proposed model (Liu et al. 2020), we used one hidden
layer and an embedding size of 128 as hyperparameters
for GMEL. Deep Gravity utilizes deep neural networks
to generate mobility flows using features retrieved from
OSM and census data (Simini et al. 2021). The main fea-
tures include road network, points of interest, land use,
and the population of the study region. XGBoost is a
regression tree gradient boosting model, a highly scal-
able learning system capable of efficiently handling
sparse data and supporting multicore parallel computing
for quick model exploration (Chen and Guestrin 2016).
XGBoost has been shown to outperform traditional
mathematical gravity and radiation models for commut-
ing flow prediction using U.S. Census data (Morton et al.
2018). Random forests are the ensemble of individual tree
predictions averaged for regression problems and the
prediction with maximum votes selected for classifica-
tion problems (Breiman 2001). Compared to the gravity
model and artificial neural networks, the accuracy for the
random forest is higher for predicting commuting flows
in NYC in previous work (Pourebrahim et al. 2019). As
described in Sect. 3 on results, we evaluate the compara-
tive performance of these models for our approach using
the parameters and configurations prescribed in the pro-
posed studies.

GMEL uses 65 features as urban indicators of NYC to
predict commuting flows. The features, such as the num-
ber of buildings in each built year interval, the number of
tax lots, and floor area ratio statistics, are region-specific
indicators available only for NYC. Similarly, Deep Grav-
ity employs 39 features obtained from OSM, such as road
network, count of education and food points of interests,
etc. As explained in Sect. 2.4 on features, our approach
utilizes building types as the main indicator to derive
nine features for predicting commuting flows.

To evaluate model performance, we use the root mean
square error (RMSE) (Hancock and Freeman 2001), the
Coefficient of Determination (Chicco et al. 2021) R?, and
the Common Part of Commuters (CPC) metric (Lenor-
mand et al. 2012).

The RMSE is defined as follows:

. T — T;)?
RMSE(A) = \/ z“/(ng’) 1)

where A = {41, ..., a,} is the study region with subregions,
Ty is the ground truth flow between subregions a; and
a; (obtained for NYC using LODES data) as defined in
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Definition 1, 7 is the predicted commuting flow, and 7 is
the number of subregions (census tracts for NYC).

RMSE values are notoriously difficult to interpret. For
example, it is not clear to what degree a prediction with
an RMSE of 2.393 is accurate. As such, we also provide
the Coefficient of Determination R? and Common Part
of Commuters (CPC) to provide an additional evaluation
of model accuracy. Although the R? is well known and
measures the fraction of variance explained by the model,
the Common Part of Commuters (CPC) is less known.
Thus, we define CPC, as follows:

2%, min(Ty, Tj)
Zai,- Tl] + Za,'/ Ti‘

CPC(A) = (2)

The CPC ranges from 0 (no overlap between prediction
and ground truth) to 1 (identical prediction and ground
truth).

2.3 Data

We use real-world commuting flows obtained from the
Longitudinal Employer-Household Dynamics (LEHD)
Origin-Destination Employment Statistics (LODES) 2015
dataset (Census Bureau 2015; Credit and Arnao 2023) as
ground truth for training and testing the models. LODES
data captures the raw number of commuters between
two regions at the census block level, and we aggregated
it at the census tract level.

Across the 2,168 NYC census tracts, there are
21682 = 4,700, 224 pair-wise flows, of which 905,837
are non-zero with a total of 3,031,641 commuters. Simi-
larly, across the 263 Fairfax County census tracts, there
are a possible 69,169 flows out of which 34,366 are non-
zero flows, capturing 259,792 commuters. Unlike prior
work (Liu et al. 2020; Yang et al. 2014; Pourebrahim
et al. 2019), we include flows that are zero in the ground
truth LODES data. While LODES data does not explic-
itly include zero flows in their data, the omitted flows
between a pair of census tracts are implicitly assumed to
be zero values, which are missing from the evaluation of
prior work (Liu et al. 2020; Yang et al. 2014; Pourebrahim
et al. 2019). However, omitting such flows creates biased
models that learn that any pair of origin-destination cen-
sus tracts must always have at least a flow count of one
commuter. Our experiments include all pairs of census
tracts, including zero flows, eliminating the bias. In other
words, we add zero flows to training and test sets of all
evaluated models to allow a fair evaluation. We note that
due to this difference, the quantitative results we report
in the aggregated metrics in the Results Section (such
as Table 5) are generally lower than reported in prior
work, as our results include cases of flows where models
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predict a non-zero flow instead of a zero flow count in
the ground truth. For training and testing, we split the
flows into a 60% training set, a 20% validation set, and a
20% test set.

Table 2 presents the descriptive statistics for the NYC
and Fairfax County LODES outflows O; and inflows I;
aggregated at the tract level. We notice a much higher
standard deviation of the inflow of commuters in both
study regions. The maximum count of commuters for
the inflows also highlights the significant difference in
variance. Furthermore, the 3rd quantile values in both
cases show the skewness in the distribution of commut-
ers. These results demonstrate the concentrated nature
of inflows in comparison to outflows, where the majority
of commuters move to a small set of destination census
tracts. Therefore, as our results suggest, it is much harder
to predict the commuters’ count for inflows.

OSM is an open-source collaborative project that pro-
vides free access to geographic data collected by volun-
teers at the global level (OSM 2024). The OSM data is
structured as a set of elements such as nodes, ways, and
relations that represent points of interest, polylines or
polygons, and more complex shapes consisting of rela-
tionships between simple elements. Tags of key and value
pairs can describe all the elements. For instance, a poly-
gon can be tagged with the key as building and value as
a residential, describing a residential building. This way,
OSM data provides extensive coverage of points, build-
ings, roads, parking lots, and many other types of geo-
graphic information via editable maps. However, the lack
of semantic information is a challenge (Liu and Long

Table 2 Descriptive statistics of ground truth data
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2016). The OSM data we used for this work consists of
1,090,752 NYC and 204,671 Fairfax building footprints,
which cover 99% and 76% of buildings respectively for
both study areas compared to authoritative sources
(N.Y.C 2024; Fairfax County 2024). Figure 2 shows the
workflow of our approach.

2.4 Features

The features used in the models for predicting the flows
are derived from OSM and the 2010 U.S. Census data
(Census Bureau 2010). Previous work shows that build-
ing types are missing from a vast majority of OSM data,
and the spatial and non-spatial features of the data can be
used to categorize buildings into residential or non-resi-
dential types (Atwal et al. 2022). We use this classification
method to label the OSM buildings data and derive six
input features for our study. In the first step of data prep-
aration, we classify buildings for NYC and Fairfax. And in
the second step, we calculate the count, area, and density
of two building types for each census tract, resulting in
six features.

We use population and the population density for each
tract as two more input features. Although population
estimates can be derived from OSM features in the same
way (Bast et al. 2015; Bakillah et al. 2014), we use census
data as a proxy for this approach. Finally, we obtain the
trip duration between the centroids of census tracts using
Open Source Routing Machine (OSRM) (Luxen and Vet-
ter 2011) and use it as the edge feature for the geo-adja-
cency network of GMEL. OSRM also relies on the maps

Study Flow Mean Standard Min 25% Median 75% Max

Area Type Deviation

NYC Outflows 280 176 4 168 244 350 1604
Inflows 280 817 1 34 81 190 10243

Fairfax Outflows 197 120 5 1 173 255 904
Inflows 197 482 1 21 67 180 5702

OoSM
input data

Buildings
classification

P

|

5
OD Flows [

Deep Gravity

Random Forests

Fig. 2 The workflow of solving commuting flow prediction problem using OSM data with various machine learning models
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from the OSM road network for calculating the shortest
paths between O-D pairs.

3 Results

The evidence from experiments at multiple scales sug-
gests our approach produces meaningful mobility
patterns while providing notable insights into the com-
muting flows.

3.1 Benchmark results

Table 3 provides the NYC commuting flow prediction
accuracy for the state-of-the-art models GMEL and
Deep Gravity and out-of-the-box models XGBoost and
RF using the OSM data for the same features employed
in Deep Gravity. Table 4 provides the NYC commuting
flow accuracy for the models using the new set of features
based on building type.

Based on the results presented in Table 3, GMEL has
the lowest RMSE and highest CPC and R? in compari-
son to XGBoost, Deep Gravity, and RF. Note that the two
state-of-the-art models, GMEL and Deep Gravity, are
originally implemented to predict commuting flow using
a different set of input features, making them difficult to
compare. Therefore, in order to evaluate the performance
of the models independent of the data, the models are
benchmarked using the same set of input features used
in Deep Gravity. The experiment shows that GMEL is
the best-performing model compared to other methods
using the same features.

In the next experiment, we replace Deep Gravity fea-
tures with our proposed features based on building types.
In essence, we enrich the OSM data using the building
classification method proposed in (Atwal et al. 2022)
and utilize the count, density, and area of residential and
non-residential buildings as features for predicting com-
muting flows. Besides these features, we use population
and distance features, which are also used in Deep Grav-
ity. Compared to the prediction accuracy in Table 3 using
Deep Gravity features, results in Table 4 show that with
all else equal, all models outperform when using build-
ing types features except RF, which performs compara-
tively for both data sets. Therefore, we conclude that the
type of buildings in an area is a major driving factor for

Table 3 Evaluation of different models using Deep Gravity
features for predicting NYC commuting flows

Model RMSE CPC R?

GMEL 2393 0491 0486
Deep Gravity 3.326 0.305 0.039
XGBoost 3.172 0.245 0.063
RF 3.204 0.225 0.049
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Table 4 Evaluation of different models using building types
features for predicting NYC commuting flows

Model RMSE CPC R?

GMEL 2.279 0.495 0.535
Deep Gravity 3.144 0.325 0.078
XGBoost 3.125 0.261 0111
RF 3.228 0218 0.051

commuting, and including such features can help predict
the corresponding flows more accurately.

Benchmark results show that GMEL is the best
model with a different set of features. The graph atten-
tion mechanism of GMEL makes it capable of utilizing
the geo-contextual information from the input features.
Without the attention mechanism, Deep Gravity and
other simpler models lack the spatial correlation between
the outflows and inflows of commuting. Additionally, the
residential and non-residential building types capture the
correlation between home and work locations. Therefore,
the nine features derived from building types consistently
outperform the 39 features used in Deep Gravity.

3.2 Comparative analysis

Given our results showing that GMEL is the best-per-
forming model, we next compare the performance of
the originally proposed GMEL model, which leverages
the PLUTO dataset (NYC 2015) available only for New
York City, with the performance of GMEL using OSM
data with buildings classification enrichment. To distin-
guish between the two, we call the original model GMEL-
PLUTO and our approach GMEL-OSM throughout the
rest of the paper. In other words, GMEL-PLUTO uses
region-specific PLUTO data for flow prediction, while
GMEL-OSM uses features derived from OSM data based
on building types.

Table 5 shows that a comparable level of prediction
accuracy can be achieved overall when using features
derived from publically available OSM data. The R?
value indicates that the three characteristics account for
an 53.5% variation in commuting flows. Additionally,
GMEL-OSM utilizes a smaller set of features to achieve
accuracy close to GMEL-PLUTO with 65 features.

Table 5 Comparison of OSM and PLUTO data using GMEL
model for NYC

Features RMSE CPC R2
GMEL-OSM 2279 0.495 0.535
GMEL-PLUTO 2.084 0.536 0611
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To better understand the ability of the models to cap-
ture meaningful mobility patterns beyond aggregate
metrics, we also evaluate the predicted sum of outgo-
mg commuters from an origin location a; denoted as

=2 TU, which we call outflows, and the predicted
sum of incoming commuters to a destination location
a; denoted as I; = Z Tﬂ, which we call inflows. The Oi
and ; for each region a; stemming from the GMEL-OSM
and GMEL-PLUTO predictions are then compared to the
ground truth values O; = Zj Tjand I; = Zj Tj; derived
from LODES data for NYC.

Figure 3 shows the distribution of relative predic-
tion errors for the outflows OOO‘ and the inflows 11
for GMEL-OSM (Fig. 3a and c) and for GMEL-PLUTO
(Fig. 3b and d). We observe that GMEL-OSM is com-
parable with GMEL-PLUTO to predict outflows, but
performs somewhat weaker for inflows. It is likely due
to the nature of commuting flows, with inflows being
limited to a small group of destination census tracts (cf.
discussion in Sect. 2.3 on the data). Even so, the results
show the practicality of predicted flows compared to
ground truth data. Out of those census tracts where
flow is over-predicted by more than 100%, many have
a commuting flow count of 10 individuals or fewer. It
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indicates that our approach is capable of predicting
real-world commuting mobility at the tract level, where
the flow count is generally more than 10.

To assess the accuracy of the predicted inflows and
outflows for census tracts, Fig. 4 shows scatter plots
comparing the ground truth flows against the predicted
flows using GMEL-OSM (Fig. 4a and c) and GMEL-
PLUTO (Fig. 4b and d). Both models tend to overes-
timate inflows that are smaller in the real world and
underestimate large inflows, as indicated by the points
that fall above and below the identity line. Likewise,
both models also tend to overestimate smaller outflows.
Again, while both models produce similar results for
outflows, GMEL-PLUTO (65 custom feature model)
seems to perform better when predicting the inflows,
essentially confirming the results of Fig. 3 at a more
granular level.

We note that the maximum number of commuters
going to a census tract is much higher than coming from
a home location, which is consistent in both prediction
models and the ground truth. It indicates that the inflows
are much denser to specific census tracts or workplaces.
We investigate and explain this phenomenon in Sect. 2.3
on the data.
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Fig. 3 Comparison of GMEL-OSM and GMEL-PLUTO commuters under or overestimation in NYC flows
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Fig. 4 Comparison of GMEL-OSM and GMEL-PLUTO commuters with ground truth in NYC flows

We can also map the differences between predicted and
ground truth outflows as presented in Fig. 5 and inflows
presented in Fig. 6. Positive relative prediction errors
indicate over-prediction and are depicted in shades of
blue colors. In contrast, negative percentages indicate
under-prediction and are shown in shades of red. Green
shows a prediction largely matching the ground truth
flows. Note that the large tracts in the south of the study
area are mostly comprised of water, thus having small in
and outflows. As a result, minor flow prediction errors
for these census tracts provide high relative percentage
errors and as such are shown as large light blue areas.

Upon comparing Figs. 5 and 6, we can see that GMEL-
OSM and GMEL-PLUTO flow predictions are very
similar in terms of the relative prediction error. Both
approaches have less success in predicting destination
flows. It is once again likely due to the large number of
features used in GMEL-PLUTO that are likely better at
capturing the inflows to destination census tracts. We
discuss steps that we may take to address this in future
work in the Discussion Section.

To better understand the utility of predicted com-
muter flows, we also performed experiments focusing
on a single origin (destination) tract to understand how
well models can capture the distribution of destination

(origin) tracts to (from) this tract. For this purpose,
we select the census tract having the median outflow
(GeolD: 36047037300, denoted as the Origin Median)
and the census tract having the median inflow (GeolD
36005024800, denoted as the Destination Median). We
use these two census tracts to evaluate (i) the distribution
of outflows from the Origin Median to understand how
well the models can understand where people commute
to (from one specific census tract) and (ii) the distribu-
tion of inflows from the Destination Median to under-
stand how well our models can capture the distribution
of where people commute from (to one specific census
tract).

Table 6 shows the results of these experiments. Out of
all 448 census tracts in the NYC study region included in
the test set, 354 tracts have a zero commuting flow from
the Origin Median. The remaining 94 census tracts hav-
ing non-zero commuting flows capture a total of 244
commuters. Using GMEL-OSM, we have 332 predicted
zero commuting flows and 116 predicted non-zero com-
muting flow. Out of the predicted 116 predicted non-
zero flows, 48 match with the 94 ground truth non-zero
flows. Out of the 332 predicted zero flows, 286 match
with the 354 ground truth flows. It yields an overall 74.5%
accuracy in predicting whether any census tract has



(2025) 5:2

Atwal et al. Computational Urban Science

Page 9 of 14

Relative prediction error
> 90%
+ 71-90%

B +51-70%

B + 31-50%

W +11-30%
+10%

W -11-30%

B -31-50%

B -51-70%

Relative prediction error
> 90%
|+ 71-90%
B +51-70%
+ 31-50%
+11-30%
+ 10%
- 11-30%
- 31-50%
- 51-70%

75 15km

(b) Relative errors of NYC outflows using GMEL-PLUTO.
Fig. 5 Comparison of GMEL-OSM and GMEL-PLUTO in NYC outflows. Plotly version 5.13.0 was used to create the maps

a non-zero flow from the Origin Median. Note that we
round predictions to the nearest integer for this experi-
ment, such as that a predicted zero flow is equivalent to
a predicted flow of less than 0.5 individuals. We observe
that for GMEL-PLUTO, the accuracy is higher at 79.6%,
indicating that the model can better predict destination
flows by leveraging PLUTO data.

Similarly, by considering only the Destination Median
as a single destination, GMEL-OSM and GMEL-PLUTO
matched 90.5% and 90.8%, respectively, out of 457 ori-
gin tracts in the test set. We observe that the destination
median has a relatively small number of only 81 incom-
ing commuters in the ground truth. It is explained by the
long-tail distribution of inflows, which we further investi-
gate and explain in the Data Section.

Overall, we observe that while GMEL-OSM and
GMEL-PLUTO provide very accurate flow predictions
when aggregated to census tracts, the prediction of indi-
vidual origin-destination flows remains challenging. The
reason is that the vast majority of origin-destination

flows are zero and among the non-zero flows, most
flows are less than five individuals. Despite these small
numbers, which correspond to rare events of individual
origin-destination commutes, both GMEL-OSM and
GMEL-PLUTO give good results.

Based on the results presented so far, we can con-
clude that there are marginal gains in performance by
using a large number of region-specific features using
GMEL-PLUTO, and we can achieve similar results with
a small set of features derived from publicly available
OSM data. To examine whether GMEL-OSM is usable in
other regions, we trained and tested the model for Fair-
fax County in Virginia and compared the predicted flows
with the LODES data as ground truth. Note that we can-
not compare GMEL-OSM with GMEL-PLUTO because
the latter approach uses NYC-specific data, which is pub-
licly unavailable for Fairfax.

Histograms in Fig. 7 show the relative percentage
errors of outflows and inflows at the tract level com-
pared to the ground truth. Figure 8 demonstrates the
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Fig. 6 Comparison of GMEL-OSM and GMEL-PLUTO in NYC inflows. Plotly version 5.13.0 was used to create the maps

Table 6 Single origin and destination census tract predictions

Census tract Approach Zero flows Count Non-zero flows Count Sum of
Commuters
(Matching) (Matching)

Origin Median Ground Truth 354 (354) 94 (94) 244
GMEL-OSM 332 (286) 116 (48) 212
GMEL-PLUTO 345 (304) 103 (53) 201

Destination Median Ground Truth 411 (411) 46 (46) 81
GMEL-OSM 418 (393) 39(21) 43
GMEL-PLUTO 427 (398) 30(17) 32

trend of flow prediction for outflows and inflows,
respectively. We observe that the model performance in
Fairfax, VA is comparable, if not better than the NYC
case study using GMEL-PLUTO. Based on the histo-
grams, it appears that the commuting inflows for Fair-
fax are easier to predict and less extreme than in NYC.

Additionally, we trained GMEL-OSM using NYC data
and tested the pre-trained model to predict the commut-
ing flows for Fairfax to determine whether the model is
useful in locations where training commuting flow data
(obtained for the U.S. from LODES data) is not avail-
able. Table 7 shows that the model trained in NYC and
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Table 7 Comparison of GMEL-OSM in Fairfax using transfer
learning

Training data RMSE CPC R2
Fairfax 6.476 0.643 0.702
NYC 7427 0.572 0.621

transferred to Fairfax provides acceptable results by
explaining 62.1% of the variation in the commuting flows
of Fairfax, compared to 70.2% using the model that was
trained using Fairfax LODES data.

4 Discussion

Results for the two study areas show that commut-
ing flows can be accurately predicted using features
derived from publicly available OSM data, which is
regularly updated by volunteers. We show that the
enrichment of OSM data with building types signifi-
cantly improves the prediction accuracy of commuting
flows. By utilizing a building classification method, our

sum of commuters

Relative prediction error

(a) Percentage of under or overestimation of
Fairfax commuters’ outflows using GMEL-
OSM.

Fig. 7 Commuters under or overestimation using GMEL-OSM for Fairfax

Prediction commuters count

0 200 400
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Ground truth commuters count
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(a) Comparison of Fairfax commuters’
outflows using GMEL-OSM with ground
truth.
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results outperform Deep Gravity features also obtained
from OSM. Therefore, we illustrate that residential and
non-residential building types in census tracts are cru-
cial in predicting commuters’ mobility. Comparative
results reveal that GMEL-OSM achieves accuracy close
to region-specific GMEL-PLUTO, which outperforms
other state-of-the-art models but cannot be used out-
side NYC due to a lack of input data for other regions.
The learning framework of GMEL-OSM relies on geo-
graphic contextual information (Feng et al. 2021) for
predicting commuting flows between origin-destina-
tion pairs of subregions. Our findings suggest that the
OSM data captures the contextual information very
well for the origin and destination locations, providing
a rich and effective source of input features for GMEL-
OSM. Besides aggregated results, the in-depth analysis
demonstrates the usefulness of the predicted flows for
urban planning (Zeng et al. 2022), disease transmis-
sion (Ferguson et al. 2006), and other applications (Li
et al. 2022; Delventhal et al. 2022). However, since our
approach relies on types of buildings, it requires build-
ing footprints data to derive the input features for the
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(b) Comparison of Fairfax commuters’ inflows
using GMEL-OSM with ground truth (log-log
scale).

Fig. 8 Comparison of GMEL-OSM commuters prediction with ground truth for Fairfax flows
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machine learning models, making it applicable to
urbanized regions only. Nonetheless, our work demon-
strates the significance of building types in predicting
commuting mobility. In summary, we find that inflows
are concentrated in a few destinations while outflows
are more evenly distributed, validating the intuition
that people commute to a few workplaces and reside
in dispersed locations. Our analysis shows that GMEL-
OSM effectively captures this divergent phenomenon,
matching the trend of outflows and inflows in the
ground truth. Additionally, our results indicate that
building types, distance, and population are the essen-
tial characteristics driving commuting mobility.

While the population can be estimated at a fine-grained
scale using OSM data (Bast et al. 2015), for simplicity,
we utilized the U.S. Census data as a proxy for this. In
future work, we plan to extend our proposed approach
for generating population features, alleviating the need
for census data. To investigate the explainability of the
input features, we might explore a unified mechanism for
interpreting predictions such as SHapley Additive exPla-
nations (SHAP) (Lundberg and Lee 2017). It would help
us understand which other features are useful for better
commuting flow predictions, potentially leading to more
suitable feature selection for improving the performance
of our approach. Where we found relatively weaker pre-
diction accuracy for the destination flows, there is an
opportunity to examine what features might improve this
aspect of the predictions. Prior work shows the effective-
ness of points of interest (Pols) (Cai et al. 2022) and land
use (Lee and Holme 2015; Horner 2004) for predicting
flows. Therefore, we would explore types of Pols and land
use as other characteristics driving mobility. Particularly,
since the descriptive statistics of our study areas show
the concentration of destination flows, we would like to
further investigate this phenomenon. And, to improve
the prediction accuracy of incoming flows, we will con-
sider additional features to capture this behavior, such
as commercial or workplace Pols, economic character-
istics, socio-economic indicators, etc. Another step in
this direction is to use fine-grained building types such as
industrial, educational, commercial, religious, etc. Finally,
our transfer learning results for Fairfax County show
promise for future work in which we would plan to apply
our approach to regions where LODES or equivalent
commuting data is not publicly unavailable, potentially
outside the U.S. Specifically, we would like to investigate
the scale of transferability of our approach and come up
with localized models according to urbanization charac-
teristics and data availability in other regions.
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