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Abstract

Ecologists interested in monitoring the effects caused by climate change on bio-
diversity are increasingly turning to passive acoustic monitoring, the practice of
placing autonomous audio recording units in ecosystems to monitor species rich-
ness and occupancy via species calls. However, identifying species calls in large
datasets by hand is an expensive task, leading to the development of machine
learning techniques to reduce cost. Due to a lack of annotated datasets of sound-
scape recordings, these models are often trained on large databases of community
created focal recordings. A challenge of training on such data is that clips are
given a “weak label,” a single label that represents the whole clip. This includes
segments with background noise, anthropogenic sounds, and difference species
that are labeled as calls in the training data, reducing model performance. Heuristic
methods exist to convert clip-level labels to “strong” call-specific labels, where
the label tightly bounds the temporal length of the call and better identifies bird
vocalizations. Our work improves on the current weakly to strongly labeled method
used on the training data for BirdNET, the current most popular model for audio
species classification. We utilize an existing RNN-CNN hybrid, resulting in a
precision improvement of 12% (going to 90% precision) against our new strongly
hand-labeled dataset of Peruvian bird species.

1 Introduction

Climate change threatens to cause devastating biodiversity loss in regions such as the Amazon, which
hosts about a quarter of all global biodiversity and more than half of the world’s remaining tropical
forests. To monitor the biodiversity of such vast and dense regions, ecologists are relying more on
passive acoustic monitoring [1,2]. Compared to traditional techniques such as transects, point counts,
and captures, acoustic monitoring scales better with large datasets, is less invasive, and is cheaper
thanks to autonomous recording units such as AudioMoths [3-10]. Therefore, acoustic monitoring
presents a better way to monitor the effects of climate change.

However, the volume of data produced makes manual labeling of audio data impractical and expensive.
In order to greatly reduce the cost for researchers using passive acoustic monitoring to study bird
communities, we can use automated techniques such as deep learning [3, 11, 12].

One of the most popular models for automatic bird species classification is BirdNET, a convolutional
neural network (CNN) capable of classifying more than 6,000 species and trained on large bird
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species focal-recording databases, such as xeno-canto and the Macaulay Library [13—15]. The major
downside of these databases is that files are weakly labeled, meaning an entire audio file is labeled
with its species. There is no indication of how much of the file contains vocalizations of the species
of interest. Thus, training data will frequently include extraneous noise, such as other vocalizations,
anthropogenic sounds, or environmental noise. This is in contrast to strongly labeled data, for which
the exact start and end times of the call are labeled, allowing the removal of segments where the bird
is not calling.

To handle weakly labeled data, it has become common practice in bioacoustics to feed training data
through a detection algorithm to convert weak labels into strong labels before presenting them to the
classifier [16]. However, most of these detection algorithms (discussed in section 2) are rooted in
signal processing, causing reliance on signal-to-noise ratio (SNR) or other static features. This in
turn leads to false detections of non-bioacoustic events.

We propose a prepossessing technique using deep learning to convert focal recordings into strongly
labeled annotations for training data that improves upon currently used signal processing techniques.

2 Related Work

The weak-to-strong label (WTS) technique used by BirdNET is background foreground separation, a
digital signal processing method based on the premise that focal recordings have a high SNR [17-19].
Assuming the peaks of a given signal are when the weakly labeled species vocalizes, identifying
signal peaks will output strong labels for the bird calls.

Other techniques also depend on amplitude or other such static features for bioacoustic sound event
detection. One approach employs a threshold for amplitude and duration for detecting bird note
onsets and offsets [20]. In another, a wavelet peak detector was used to find frames with high energy,
which each had a 6-second window drawn around it. The 5 windows with the highest peaks were
then extracted [21].

However, given the crowdsourced nature of these focal recordings, such assumptions may not always
hold during other loud sound events, such as a tree branch falling, gunshots, or human vocalizations.
These cases create false positives in the training data which may lead to downstream errors and
inefficiencies during training.

3 Methodology

Following the same assumptions as BirdNET’s signal strength estimator, we assume the weakly
labeled bird is the most prominent bird in the audio recording. Therefore, any positive bird detection
by the WTS technique can be labeled with the corresponding weak label. We propose that TweetyNet,
a CNN-RNN hybrid [22], and other CNNs can be retrained using open source bird/no-bird datasets
and outperform the current WTS method to create labeled training data. We compare TweetyNet’s
performance to BirdNET’s WTS pipeline as well as preexisting binary bird-no/bird DNNs like
Microfaune [12] on hand-labeled xeno-canto clips.

More detailed descriptions for each method are as follows:

Foreground-Background Separation: BirdNET uses signal-to-noise ratio (SNR) thresholds
foreground-background separation to isolate bird calls [13, 18]. The algorithm takes a normal-
ized short-time Fourier transform (STFT) and generates a binary mask of the resulting STFT keeping
bins in the mask that have a magnitude greater than or equal to three times its column median and row
median. The binary mask highlights elements that seem more powerful than the background noise
indicating a species of interest. A morphological opening is performed to reduce noise. From there, a
temporal indicator vector is created by taking the sum of all the rows and setting each non-zero value
in the result to 1. Two successive dilation operations are performed on the vector to further reduce
noise. An annotation heuristically contains a bird if the temporal indicator vector is one.

RNN Model: Microfaune is composed of a convolution layer, a recurrent layer, and a final max-
pooling layer [12]. The convolution layer takes in audio that has been converted to a mel-spectrogram
and extracts features from that audio. It passes this to the recurrent layer, which computes the features
at the time step level based on neighboring time steps. The predictions on these steps amount to a



Technique | Time Ratio Number of 3 Second Segments  Precision  Recall  F1

FG BG Sep | 1.000 21582 0.7797 9831  0.8697
Microfaune | 1.329 13200 0.7767 0.7062 0.7398
TweetyNet | 0.853 18365 0.9009 0.9704  0.9344

Table 1: The aggregate metrics for the results of each model.

local score array of elements [0,1] representing bird presence/absence. The model was trained on
field [23], mobile device [24], and soundscape recordings [25,26]. We take the local score arrays and
apply an isolation technique that sets a lower bound static threshold of 0.15, and a relative threshold
of 3.2 times the median of the local score array. It then loops through all elements in the array that
are greater than both the static and relative thresholds and applies a 1.5 s window around said point.
All overlapping windows are consolidated into a single strong label.

CNN-RNN Hybrid Model: TweetyNet is a neural network model designed to segment and annotate
bird songs at the syllable level [22]. The network is built from a convolution layer which uses two
rounds of standard convolution and max-pooling to learn the features of the data, a recurrent layer
that computes the features found for each time-bin, and a linear layer that assigns a similarity score
for each class to each time-bin based on the recurrent layer’s output. We assigned the similarity score
of the bird to each time-bin and used a threshold to distinguish between time-bins with and without
bird calls. We have retrained the model with field recordings (freefield1010 [23]) and mobile device
recordings (warblrb10k [24]) similar to Microfaune.

Each method was evaluated on data from xeno-canto of a list of 1000 provided by an ornithologist
familiar with the Madre de Dios region, a biodiversity hotspot in Southeastern Peru [27]. We selected
audio files marked “A” or “B” quality [28]. The audio was then uploaded into a browser-based acoustic
labeling tool [29]. Eight students were instructed to select a species, listen to all corresponding
xeno-canto recordings in order to identify the intersecting sounds most-likely associated with the
weak label, and only labeled calls from the specified species ignoring other vocalizations. Students
were explicitly told to label 5 audio files of high priority species and aim for about 3 files per species
for the rest (see appendix). Post-labeling, the audio was processed into uniform clips by binning the
annotations into three second intervals. Following this method, 630 of the selected 1000 species were
labeled, resulting in 17,125 three second annotations.

All of the annotations from the automated labeling techniques as well as the manual annotations were
converted into left-aligned uniform three second segments. We compute True Positives (TP), False
Positives (FP), and False Negatives (FN) for each automated labeling technique by comparing their
strong labels to the human labeled ground-truth. Over a given three second interval, an interval is
TP if both the automated label and human label agree and FP If the automated label identifies a bird
where the human does not. The converse is labeled a FN. From these descriptions of TP, FP and FN,
we define precision, recall, and F1 as seen in appendix (Equation 1).

4 Results

The foreground-background separation technique produced the most annotations (21582) and had the
highest recall (98.31 %), as shown in Table 1. However, TweetyNet had the highest precision (90.0 %)
out of the three techniques, as well as the highest F1 score (93.4 %), in addition to being the fastest
method of the three, taking 85.3 % of the time as foreground-background separation. Microfaune
was outperformed in every metric. In addition, before three-second preprocessing, we collected the
statistics for the annotation duration’s can be found in Table 2 in the appendix.

When examining the scores for each species (seen in Figure 1), we observe TweetyNet’s precision
and F1 scores were higher than the other models for more species, implying TweetyNet performed
well across the different species studied. The foreground-background separation technique was higher
with respect to recall than the other models, implying for most species there were few false negatives
at the cost of a higher rate of false positive.
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Figure 1: The distribution for each performance metric across the 630 species of interest.

5 Discussion

The experimental results favor TweetyNet. Notably, TweetyNet has higher precision, implying lower
false positives and fewer sections of audio incorrectly labeled as a region of interest. This leads to less
noisy data in training, which is our ultimate goal. TweetyNet’s higher F1 also means that TweetyNet
is not increasing precision by being overly restrictive, implying it produces enough annotations for a
sufficiently large training dataset. Lastly, according to Figure 1, we can see that the TweetyNet scores
for precision and F1 metrics are more skewed left, implying TweetyNet can work well across a wide
range of species. While BirdNET and more recent approaches [30] continue to use a signal-to-noise
ratio method, these results imply that TweetyNet is well suited for distilling higher-quality training
data from a dataset of focal recordings.

Future work might consider the performance of these models on non-focal recordings with lower SNR
as the data we studied were primarily focal recordings. Furthermore, as we relied on student-labeled
annotations, any future replication should consider using expert annotators.

Our Python code encapsulating these methods as well as our student-hand-labeled, strongly-labeled
evaluation dataset can be accessed at https://github.com/UCSD-E4E/AID_NeurIPS_2024.

6 Conclusion

We have demonstrated that through deep learning, we can create better WTS pipelines than that
currently being used by the largest passive acoustic monitoring analysis tool available to ecologists
worldwide. The new tool can therefore be used to better parse through training datasets to reduce
noise and better identify species of interest. Future work should consider further investigations
into WTS pipelines (such as ensembling these weakly to strongly label pipelines to further improve
precision) as they can continue to produce richer datasets. That way improvements can be made to
multispecies models without having to modify the underlying architectures. Towards these ends, we
hope our work can make it easier to identify species in passive recordings before they can no longer
be heard.
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7 Appendix

7.1 Precision, Recall, and F1

In our paper, we reference the evaluation metrics of precision, recall, and F1, which are calculated
using True Positives (TPs), False Positives (FPs), and False Negatives (FNs). The exact formulas are
as follows:

.. total TP
recision =
p total_TP + total_FP
total_TP
1= = 1
feca total_TP + total_FN M
Fl — 2 * precision * recall

precision + recall
7.2 Annotation Durations
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Figure 2: The distribution of annotation lengths for each method.

Technique \ Mode Mean STD Min Ql Median Q3 Max
Manual 0.3 1.07 1.85 0.00 0.36 0.61 1.17  143.32
FGBG Sep | 0.03 0.13 024 0.02 0.03 0.06 0.14 17.07
Microfaune | 1.52 385 444 084 159 236 428 135.10
TweetyNet | 0.05 1.38 570 0.02 0.19 047 1.00 178.00

Table 2: Statistics for the duration of annotations produced by each technique.

Prior to performing chunking to produce uniform, 3-second annotations, we collected data on the
lengths of annotations generated by each method. As can be seen in Figure 2 and Table 2, the lengths



of annotations produced by TweetyNet had the most similar distribution to the lengths of the ground
truth (Manual Labeling) annotations. This supports that using DL techniques can generate annotations
that are closer to those made by humans than previous techniques.

7.3 Species Label Distribution
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Figure 3: The distribution of labels per species. Most species had 3 labeled clips each. Due to the
crowdsourced nature of the labeling process, species had differing number of labels.
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