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Abstract
We study the problem of symmetric positive semi-
definite low-rank matrix completion (MC) with
deterministic entry-dependent sampling. In partic-
ular, we consider rectified linear unit (ReLU) sam-
pling, where only positive entries are observed, as
well as a generalization to threshold-based sam-
pling. We first empirically demonstrate that the
landscape of this MC problem is not globally be-
nign: Gradient descent (GD) with random ini-
tialization will generally converge to stationary
points that are not globally optimal. Nevertheless,
we prove that when the matrix factor with a small
rank satisfies mild assumptions, the nonconvex
objective function is geodesically strongly convex
on the quotient manifold in a neighborhood of a
planted low-rank matrix. Moreover, we show that
our assumptions are satisfied by a matrix factor
with i.i.d. Gaussian entries. Finally, we develop a
tailor-designed initialization for GD to solve our
studied formulation, which empirically always
achieves convergence to the global minima. We
also conduct extensive experiments and compare
MC methods, investigating convergence and com-
pletion performance with respect to initialization,
noise level, dimension, and rank.

1. Introduction
Low-rank matrix completion (MC) refers to the task of
filling in the missing entries of a partially observed low-rank
matrix. It has found applications in diverse fields, such as
recommendation systems (Koren et al., 2009), sequential
bioinformatics (Zheng et al., 2013), and computer vision
(Ji et al., 2010), to name a few. In particular, symmetric
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positive semi-definite (PSD) low-rank MC has applications
in covariance matrix completion (Candes & Plan, 2010;
Hosseini & Sebt, 2017), Hankel matrix completion (Chen &
Chi, 2013; Usevich & Comon, 2016; Cai et al., 2023), and
Euclidean distance matrix completion (Laurent, 2001; Al-
Homidan & Wolkowicz, 2005; Dokmanic et al., 2015). An
extensive body of literature investigates the statistical and
optimization properties of the low-rank MC problem using
different approaches, such as nuclear-norm minimization
(Recht, 2011; Candes & Plan, 2010; Candes & Recht, 2012),
spectral method (Keshavan et al., 2010; Chatterjee, 2015),
and matrix factorization (Sun & Luo, 2016), among others.
To analyze the MC problem, most of these approaches rely
on the following assumptions: (1) the underlying matrix is
low-rank and incoherent, and (2) the entries are observed
independent of the matrix entries according to a probabilistic
mechanism, e.g., uniformly at random. Based on these
assumptions, it is possible to prove how many observed
entries are required so that the missing entries can be exactly
or approximately completed.

The majority of existing work assumes that the entries are
observed uniformly at random, independent of the underly-
ing matrix values. However, this assumption is strict and
often violated in practice. In real-world applications where
data are collected from measurements, such as distance ma-
trices, missing entries tend to be those that are harder to
collect. When data are collected from participants, such as
online shopping or surveys, missing answers are typically
highly correlated with the question and the value of the true
answer. For example, surveys about sensitive topics will
have missing entries on any culturally or morally problem-
atic answers. Moreover, online ratings tend to be skewed to
the high end; for example, most people do not read a book
or watch a movie that they might dislike. Even in sensor
systems, missing data are not likely to be independent and
completely random. Sensors may saturate at a certain value
or break down based on environmental conditions that also
affect the sensor value. In all these applications, the prob-
ability of missing entries in a matrix is dependent on the
underlying values, sometimes deterministically.

Despite being highly relevant for applications, the problem
of recovering missing entries when the sampling mechanism
depends on the entries remains a challenging and relatively
under-explored area of research. Existing papers along these
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lines give impractical results, such as those where the recov-
ery metric provides no guarantees for recovering entries that
are never observed (Foygel et al., 2011; Foucart et al., 2020),
or high-dimensional consistency results that do not admit
finite sample guarantees or make strong assumptions on the
sampling probability functions, for example that they are
Lipschitz in the matrix entry value and nonzero everywhere
(Bhattacharya & Chatterjee, 2022). Research works on MC
with deterministic sampling focused on understanding fun-
damental properties that the sampling patterns must exhibit
(Lee et al., 2023). However, none of these works provide
clear and practical guidelines for what MC problems can be
solved in their given settings and for what algorithms will
successfully complete them.

1.1. Our Contributions

Our work aims to advance the understanding of MC with
deterministic sampling by focusing on symmetric PSD low-
rank MC with ReLU sampling, where only the positive
entries of a matrix are observed. In this setting, under
relatively mild assumptions, we first show that the glob-
ally optimal solutions of the low-rank MC problem with a
known rank can exactly (resp. approximately) complete the
missing entries in the noiseless (resp. noisy) setting. More-
over, we prove that the objective function is geodesically
strongly convex on the quotient manifold around the planted
low-rank matrix, i.e., the underlying true low-rank matrix.
Therefore, with an initial point close enough to the planted
low-rank matrix, GD will converge to this desired matrix.
This motivates us to tailor an initialization method for GD.
We empirically demonstrate that GD with our initialization
always converges to the planted low-rank matrix. It is worth
mentioning that this objective function landscape result is
the first of its kind within the literature on dependent or
deterministic sampling for MC.

While ReLU sampling is a specific setting, it has the poten-
tial to be generalized to a broad class of common missing
data problems, e.g., where only a range of values is observed.
In this direction, we have also provided more general as-
sumptions for a broader class of sampling functions. For
example, a threshold sample where we observe all entries
above a positive threshold will also lead to a strongly convex
objective around the planted low-rank matrix. This more
general setting requires stronger assumptions, but it gives
us more general results that also apply to the noisy setting.
We note that this thresholding sampling setting generally
means that a constant fraction of entries are observed. This
is an interesting sampling regime when observations are
entry-dependent, and a useful one for many sensor data ap-
plications where it may be feasible to collect a moderate
number of matrix entries.

Even in the best case of our theorems, empirical results

(shown in Section 4) drastically outperform the theory, leav-
ing an exciting open question as to whether better assump-
tions and proof techniques can deliver theory that matches
empirical observation.

1.2. Literature Review

Due to space constraints, we defer detailed related work
to Appendix B and focus here on the most related works.
Bishop & Yu (2014) prove PSD matrix recovery for their
proposed algorithm with deterministic sampling of principal
submatrices. Our assumptions are different and our results
showing the benign local landscape of the problem are ap-
plicable to any gradient-based algorithm. Bhattacharya &
Chatterjee (2022) assumes that each entry of a low-rank ma-
trix M∗ is observed with some probability f(M∗), where
f is applied entry-wise and is essentially Lipschitz and non-
zero. Their proofs apply to the high-dimensional regime
where the dimensions grow but rank is uniformly bounded,
as in (Chatterjee, 2020).

In an empirical work that studies ReLU sampling among
others (Naik et al., 2022), the authors conclude that convex
methods generally do not work as well as nonconvex in the
dependent-sampling setting, motivating our focus on the
nonconvex objective function. Finally, the work in (Saul,
2022; Seraghiti et al., 2023) both seek a non-negative low-
rank matrix M∗ such that a sparse M = f(M∗) and f is
a given nonlinearity, such as ReLU. They provide multiple
algorithms for learning M∗ (such as EM, alternating block
descent) but no theoretical guarantees for when this low-
rank approximation exists.

Notation. Given a matrix A ∈ Rm×n, we use σmax(A)
or ∥A∥ to denote its largest singular value (i.e., spec-
tral norm), σmin(A) its smallest non-zero singular value,
∥A∥F its Frobenius norm, and aij its (i, j)-th element.
Given a vector a ∈ Rn, we denote its Euclidean norm
by ∥a∥ and the i-th entry by ai. Given a positive inte-
ger n, we denote by [n] the set {1, . . . , n}. Let Om×n ={
Q ∈ Rm×n : QTQ = In

}
denote the set of all m× n or-

thonormal matrices. In particular, let Om = {Q ∈ Rm×m :
QTQ = Im} denote the set of all m×m orthogonal matri-
ces. Given an integer n, we define [n] := {1, . . . , n}.

2. Problem Formulation
MC with ReLU sampling. In this work, we consider a
noisy symmetric PSD MC completion problem. Specifically,
let M⋆ := U⋆U⋆T ∈ Rn×n be a symmetric PSD matrix,
where U⋆ ∈ Rn×r. In addition, let M ∈ Rn×n be a noisy
version of M⋆ generated by

M := M⋆ +∆, (1)
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Figure 1. Recovery and convergence performance of GD for
solving the MC problem with the uniform (p = 0.2) and ReLU
sampling in the noiseless case. We apply GD with Gaussian
random initialization for solving Problem (3) with the uniform and
ReLU sampling, respectively. Then, we plot the gradient norm
(i.e., ∥∇F (U (t))∥F ) and completion error (i.e., ∥U (t)U (t)T −
M∥F /∥M∥F ) against number of iterations.

where ∆ ∈ Rn×n is a noise matrix. It is worth noting
that M is non-symmetric when the noise matrix ∆ is not
symmetric.

There are many applications where it is common to ob-
serve only a partial set of the entries of M (Nguyen et al.,
2019). This could be due to data collection, experimen-
tal constraints, or inherent missing information (Hu et al.,
2008). In this work, we consider a setting where the miss-
ingness pattern of the matrix is dependent on the underlying
values in the matrix and is deterministic given the matrix
entries. Specifically, we suppose that only the non-negative
entries in M can be observed, i.e., the observed set

Ω = {(i, j) ∈ [n]× [n] : mij ≥ 0} . (2)

Notably, this sampling regime is commonly referred to
as ReLU sampling in the literature (see, e.g., Naik et al.
(2022); Mazumdar & Rawat (2018)), as it utilizes the func-
tion f(x) = max{0, x}, known as the rectified linear unit
(ReLU) function in deep learning1. Then, our goal is to com-
plete the missing entries of M⋆ from the observed entries
in MΩ.

Before proceeding, we make some remarks on this MC
problem. First, existing works (Naik et al., 2022; Saul, 2022;
Seraghiti et al., 2023) have empirically studied the low-rank
MC problem with ReLU sampling and focused on proposing
efficient algorithms to address this problem. In particular,
Mazumdar & Rawat (2018) has theoretically studied the
recovery performance of the ReLU-based representation

1See (Nair & Hinton, 2010) for early use of the phrase “rectified
linear unit,” but it had been in use for neural nets long before,
referred to by the name “linear threshold unit” (Wersing et al.,
2001) or “positive part” (Jarrett et al., 2009), among others.

learning problem under a probabilistic model. This differs
from our work, which studies the global optimality and
optimization landscape of the MC problem. Second, this
sampling is merely a specific instance within a broader
set of general deterministic sampling schemes. We prove
results on one such generalization, where we observe values
above or below a threshold. We believe our work will be a
springboard for the study of more general practical entry-
dependent sampling schemes.

Optimization formulation. Leveraging the low-rank
structure in Equation (1), we consider the following non-
convex MC problem to complete the missing entries of M∗:

min
U∈Rn×r

F (U) :=
1

4

∥∥(UUT −M
)
Ω

∥∥2
F
. (3)

Note that the rank of the optimization variable U is ex-
actly the rank of the planted low-rank matrix M∗. In the
noiseless setting with uniform sampling and incoherence
assumptions, Ge et al. (2016) have shown that Problem (3)
has a benign global optimization landscape in the sense that
it has no spurious local minima—all local minima must
also be global minima. This, together with the result in
(Lee et al., 2016), implies that gradient descent (GD) with
random initialization with high probability converges to
globally optimal solutions that achieve exact completion;
see Figure 1(a). One may then conjecture that Problem (3)
in the ReLU sampling setting also has such a benign opti-
mization landscape. However, this conjecture is refuted by
empirical evidence in Figure 1(b). This result is typical in
the ReLU sampling setting, illustrating that GD with ran-
dom initialization may converge to a spurious critical point
that is not globally optimal. The next question is whether it
is even possible to recover the missing entries by applying
GD for this setting. In this work, we answer this question in
the affirmative.

3. Main Results
In this section, we first present our theoretical result on
symmetric PSD low-rank MC with ReLU sampling in the
noiseless case under mild assumptions in Section 3.1. In
Section 3.2, we extend these results to the noisy case under
more general sampling assumptions. In Section 3.3, we
show that all the introduced assumptions hold with high
probability when the entries of U⋆ are i.i.d. sampled from
the standard Gaussian distribution.

3.1. Noiseless Case and ReLU Sampling

In this subsection, we consider the noiseless case, i.e., ∆ =
0, and ReLU sampling in (2). We start by introducing some
assumptions on the underlying matrix U⋆ and the sampling
set Ω. Noting that the r-dimensional space has 2r orthants,
we denote by Ci the i-th orthant of the r-dimensional space
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Figure 2. An illustrative figure on the partition of rows of U⋆ ∈
Rn×2. We rearrange the rows of U⋆ and partition them into 4
blocks, each belonging to different orthants.

for each i ∈ [2r]. For example, there are 4 orthants (i.e.,
quadrants) in the 2-dimensional space and 8 orthants (i.e.,
octants) in the 3-dimensional space. Here, Ci for each i ∈
[2r] is ordered such that the signs of components of a vector
belonging to orthant Ci differ from those in orthant Ci+1

in only one component. For ease of exposition, without
loss of generality, we assume the rows of U⋆ ∈ Rn×r are
partitioned into the following blocks

U⋆ =
[
U⋆T

1 U⋆T
2 . . . U⋆T

2r
]T ∈ Rn×r, (4)

where each row of U⋆
i ∈ Rni×r belongs to the i-th orthant

Ci for each i ∈ [2r] and
∑2r

i=1 ni = n. For example, when
r = 2, the rows of different blocks of U∗

i takes the signs as
shown in Figure 2. Based on the above setup, we make the
following assumption.
Assumption 3.1. For each i ∈ [2r], rank(U⋆

i ) = r.

We remark that if r is much smaller than log n and the en-
tries of U⋆ are i.i.d. sampled from a distribution symmetric
about zero, such as the standard normal distribution, then the
generated submatrices are full rank with high probability.

Next, we discuss the second assumption that will lead to
unique completion. This assumption is illustrated in Fig-
ure 3. For any pair of indices (i, j) ∈ [2r] × [2r], we
denote by M (i,j) ∈ Rni×nj the (i, j)-th block of M , i.e.,
M (i,j) = U⋆

i U
⋆T
j . Moreover, we denote the set of obser-

vations in the (i, j) block by Ωi,j = {(k, l) ∈ [ni]× [nj ] :

m
(i,j)
kl ≥ 0} where m

(i,j)
kl is the (k, l)-th entry of M (i,j).

Let a column vector u⋆
i,k ∈ Rr denote the k-th row of U⋆

i

for each k ∈ [ni]. Then, we have m
(i,j)
kl = u⋆T

i,ku
⋆
j,l. It is

obvious that Ωi,i = [ni] × [ni] under the ReLU sampling
since u⋆T

i,ku
⋆
i,l ≥ 0 always holds for all k, l ∈ [ni] due to the

fact that the rows of U⋆
i have the same sign. Besides, since

M (i+1,i) = U⋆
i+1U

⋆T
i and the signs of components in each

row of U⋆
i+1 and those of U⋆

i only differ in one component,
one can image that there are enough observations in Ωi+1,i

with ReLU sampling. More precisely, we can formalize the
above observation as follows:
Assumption 3.2. For any i ∈ [2r − 1], we have |Ωi+1,i| ≥
r2 and the matrix space spanned by {u⋆

i+1,ku
⋆T
i,l : (k, l) ∈

Ωi+1,i} is the whole space Rr×r.

Figure 3. An illustrative figure on Assumption 3.2 when r = 2.
Orange pixels denote observed entries, while white pixels denote
missing entries.

Assumptions 3.1 and 3.2 guarantee that there are enough
positive (observed) entries for the uniqueness of the comple-
tion. We note that these assumptions can be checked from
the observed matrix by finding a permutation of rows and
columns such that the diagonal blocks are fully observed
and of rank r and the off-diagonal blocks have enough en-
tries. In Section 3.3, we will show that, when U⋆ is i.i.d.
Gaussian random matrix and r ≤ 1

2 log n, Assumptions 3.1
and 3.2 hold with high probability.

Characterization of global optimality. Based on the two
assumptions, we are ready to characterize the global opti-
mality of the MC problem (3) under ReLU sampling.

Theorem 3.3. Suppose that ∆ = 0 in (1), the observed set
Ω is defined in (2), and Assumptions 3.1 and 3.2 hold. Then,
U ∈ Rd×r is a global optimal solution to Problem (3) if
and only if it satisfies UUT = M⋆.

We defer the proof of this theorem to Appendix A.1.1. This
theorem demonstrates that even under the ReLU sampling
regime, the global optimal solutions of Problem (3) still
recover the underlying matrix M⋆ exactly, just as in the
uniform sampling regime.

Uniqueness of global solutions on the manifold. Remark
that the objective function F (·) of Probelm (3) is invariant
under any orthogonal matrices in Rr×r, i.e., F (UQ) =
F (U) for all Q ∈ Or. To characterize this invariance
to orthogonal transformations, let ∼ denote an equivalent
relation on Rn×r with the equivalence class

[U ] :=
{
V ∈ Rn×r : V ∼ U iff ∃Q ∈ Or,V = UQ

}
.

Then, we define the Riemannian quotient manifold M as

M := Rn×r\ ∼ = {[U ] : U ∈ Rn×r}. (5)

If we consider Problem (3) on the manifold M, Theorem 3.3
implies that Problem (3) has a unique global optimal solu-
tion [U⋆]. Next, we will show that the objective function
F (·) exhibits geodesic strong convexity on the quotient
manifold M near the global optimum [U⋆] .
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Main technical ingredient. The proof of Theorem 3.3
relies on the following technical lemma, which could be
independent interest. This lemma indicates that the distance
between two low-rank matrices on the quotient manifold
M is bounded by their subspace distance. Its proof is also
deferred to Appendix A.1.3.

Lemma 3.4. For arbitrary U ,V ∈ Rn×r with r ≤ n,
suppose that rank(U) = r. Then, there exists an orthogonal
matrix Q ∈ Or such that

∥U − V Q∥F ≤ σmin(U) + ∥V ∥
σ2
min(U)

∥UUT − V V T ∥F .

Preliminary setup for manifold optimization. As dis-
cussed above, we study Problem (3) over the quotient mani-
fold M defined in (5). Toward this end, we introduce some
concepts of manifold optimization, such as tangent space,
Riemannian gradient, and Riemannian Hessian. Since the
formal definition of the tangent space to a quotient mani-
fold is abstract, we describe it informally as follows. We
define the vertical space at U ∈ Rn×r denoted by SU (see
Boumal (2023, Definition 9.23, Example 9.25)) as

SU :=
{
UR ∈ Rn×r : R+RT = 0,R ∈ Rr×r

}
. (6)

As shown in (14), the orthogonal complement of SU , which
is called the horizontal space and denoted by S⊥

U , is

S⊥
U :=

{
D ∈ Rn×r : UTD = DTU

}
. (7)

According to Boumal (2023, Definition 9.24)), for any U ∈
Rn×r, there exists a bijective mapping liftU between any
tangent vector ξ ∈ T[U ]M and any matrix D ∈ S⊥

U , i.e.,

liftU : T[U ]M 7→ S⊥
U , liftU (ξ) = D,

where T[U ]M : M → Rn×r denotes the tangent space to
M at [U ]. According to Boumal (2023, Propositions 9.38
and 9.44)), the Riemannian gradient and Hessian at [U ]
along a direction ξ ∈ T[U ]M, denoted by gradF ([U ])[ξ]
and HessF ([U ])[ξ, ξ], are computed by

gradF ([U ])[ξ] = ⟨∇F (U), liftU (ξ)⟩ ,
HessF ([U ])[ξ, ξ] =

〈
∇2F (U)[liftU (ξ)], liftU (ξ)

〉
. (8)

Geodesic strong convexity on M. Equipped with the above
setup, we analyze the optimization landscape of Problem
(3) around the global optimal solutions in the ReLU sam-
pling regime. Although Problem (3) does not possess a
benign global optimization landscape, we show that it has a
favorable local optimization landscape.

Theorem 3.5. Under Assumptions 3.1 and 3.2, F (·) is
geodesically strongly convex on the quotient manifold M at
[U⋆], i.e., for all ξ ∈ T[U⋆]M,

HessF ([U⋆])[ξ, ξ] ≥ γ

2
∥liftU⋆(ξ)∥2F , (9)

where

γ := min
D∈S⊥

U⋆ ,∥D∥F=1
∥(U⋆DT +DU⋆T )Ω∥2F > 0. (10)

We defer the proof of this theorem to Appendix A.1.2. Intu-
itively, this theorem demonstrates that the objective function
F (·) is strongly convex on the manifold M in the neighbor-
hood of U⋆. Consequently, if a tailored initialization in the
local neighborhood of U⋆ is available, GD is guaranteed to
find a global optimal solution.

From geodesic strong convexity on M to strong con-
vexity in Euclidean space. Notably, the above geodesic
strong convexity on the manifold M implies strong con-
vexity of F (·) along some directions in Euclidean space.
Specifically, for any U ∈ Rn×r, let UTU⋆ = PΣQT be a
singular value decomposition of UTU⋆, where P ,Q ∈ Or

and Σ ∈ Rr×r, and Ũ := UPQT . Using this and (9), we
can show

∇2F (U⋆)[Ũ −U⋆, Ũ −U⋆] ≥ γ

2
∥Ũ −U⋆∥2F .

Please refer to Appendix A.1 for detailed proof.

3.2. Noisy Case and General Deterministic Sampling

In this subsection, we extend our above results to the noisy
case with a general deterministic sampling regime. Toward
this goal, we need the following assumption on the sampling
pattern, which generalizes Assumptions 3.1 and 3.2.

Assumption 3.6. There exists a collection of index set
{I1, I2, . . . , IK} such that the following conditions hold:

(a)
⋃

k∈[K] Ik = [n];

(b) Ik × Ik ⊆ Ω holds for all k ∈ [K];

(c) There exists λ > 0 such that U⋆T
k U⋆

k ⪰ λIr for each
k ∈ [K], where U⋆

k is the matrix with the rows consist-
ing of u⋆

i for all i ∈ Ik;

(d) For any k ̸= l ∈ [K], there exists a path k0 → k1 →
· · · → ks such that k0 = k, ks = l and Ikj−1

× Ikj
⊆

Ω for all j ∈ [s].

Now, let us explain these conditions in more detail. Condi-
tion (a) guarantees that each row of U⋆ belongs to at least
one submatrix; Condition (b) guarantees that the diagonal
blocks of M index by Ik for all k ∈ [K] are fully observed;
Condition (c) indicates that there are enough rows in each
part such that the submatrix U⋆

k is of full row rank; Finally,
condition (d) ensures that there are some off-diagonal blocks
that are also fully observed and any two of these blocks are
connected via a path. We note that the last condition is strict
but aids significantly in the proof of Theorem 3.8. With a
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slightly more careful analysis, this condition could be weak-
ened so that off-diagonal blocks are only partially observed.
In Section 3.3, we show that under the setting where the
entries of U⋆ are i.i.d. sampled from the standard Gaus-
sian distribution, r ≤ O(log n), and the noise is bounded,
Assumption 3.6 holds with high probability.

Comparison to (Bishop & Yu, 2014). Assumption 3.6 is
similar to the assumptions in (Bishop & Yu, 2014), but as
far as we know, neither implies the other. More specifically,
Bishop & Yu (2014) consider deterministic sampling and
assume that a collection of subsets of Ω admit an ordering
such that any two adjacent parts have enough overlap. How-
ever, in the ReLU sampling setting, this order is hard to
construct, and it is not clear whether there exists such an or-
dered collection of subsets. Moreover, both the analysis and
the algorithm proposed in (Bishop & Yu, 2014) heavily rely
on these ordered subsets, while we only use our partition
for analysis.

General sampling regimes. Notably, Assumption 3.6 can
be applied to more general sampling regimes. For example,
consider a positive-threshold sampling regime, where the
entry mij of M is observed if mij ≥ η for a constant η ≥ 0.
In particular, ReLU sampling corresponds to the case η = 0.

Figure 4. A figure on the partition of the plane into 12 equal
sectors.

Example 3.7 (Positive-Threshold Mask). Consider the
noiseless case with r = 2 and the entry mij is observed if
mij ≥ η for a threshold η > 0. We partition the 2D plane
into 12 equal sectors, shown in Figure 4. Let us define a
collection of index sets as follows:

Ik := {i ∈ [n] : u⋆
i ∈ Ck}, ∀k ∈ [12].

Obviously, we have [n] = ∪k∈[K]Ik, and thus con-
dition (a) in Assumption 3.6 holds. For any i, j ∈
Ik, the rows u⋆

i and u⋆
j belong to the same sector Ck,

which implies that the angle between u⋆
i and u⋆

j is
less than π/6. Therefore, we have mij = u⋆T

i u⋆
j =

∥u⋆
i ∥∥u⋆

j∥ cos(π/6) =
√
3∥u⋆

i ∥∥u⋆
j∥/2. As long as the

threshold η ≤ min{
√
3∥u⋆

i ∥∥u⋆
j∥/2 : i, j ∈ Ck, ∀k ∈

[12]}, the entry mij can be observed for all i, j ∈ Ik, and

thus Ik × Ik ⊆ Ω. This implies that condition (b) in As-
sumption 3.6 holds. Condition (c) in Assumption 3.6 holds
as long as each Ik contains at least two elements i ̸= j such
that u⋆

i is not parallel to u⋆
j . Finally, for any i ∈ Ik and

j ∈ Ik+1, one can verify that mij ≥ ∥u⋆
i ∥∥u⋆

j∥/2 using
the similar argument. Consequently, as long as the threshold
η ≤ min{∥u⋆

i ∥∥u⋆
j∥/2 : i ∈ Ik, j ∈ Ik+1, ∀k ∈ [11]},

we have Ik × Ik+1 ⊆ Ω. That is, all the near-diagonal
blocks of M will be fully observed, and thus condition (d)
in Assumption 3.6 holds.

Global optimality and local landscape analysis. Based
on Assumption 3.6, we are ready to characterize the global
optimality and local optimization landscape of Problem (3)
in the noisy case.

Theorem 3.8. Let U ∈ Rn×r be any global optimal solu-
tion to Problem (3). Under Assumption 3.6, we have

∥UUT −U⋆U⋆T ∥F ≤ c

λ
∥∆∥F

where c > 0 depends on λ, ∥U⋆∥F and ∥∆∥F .

We defer the proof of the theorem to Appendix A.2.1. In
particular, the dependence of c on λ, ∥U⋆∥F and ∥∆∥F in
specified in (39). Notably, this theorem generalizes Theo-
rem 3.3 to the noisy case with general deterministic sam-
pling satisfying Assumption 3.6.

Theorem 3.9. Let U ∈ Rn×r be any global optimal solu-
tion to Problem (3). Suppose that the Assumption 3.6 holds
and the noise matrix ∆ in (1) satisfies

∥∆∥F ≤ min

{
γ

8
,

λ
√
λ

4(
√
λ+

√
γ + ∥U⋆∥)

,

λ
√
γ

4c̃0
(
1 + κ(

√
γ + 2∥U⋆∥)

)} (11)

where γ is provided in (10) in Theorem 3.5, c̃0 > 0 depends
on γ,U⋆, and λ, and κ > 0 only depends on U⋆. Then,
F (·) is geodesically strongly convex on M at [U ], i.e., for
all ξ ∈ T[U ]M,

HessF ([U ])[ξ, ξ] ≥
(γ
8
− ∥∆∥F

)
∥liftU (ξ)∥2F .

We defer the proof of this theorem to Appendix A.2.2. Intu-
itively, this theorem demonstrates that the objective function
F (·) is strongly convex on the quotient manifold M in the
neighborhood of [U ].

3.3. Verification of Assumptions

In this subsection, we show that when the entries of U⋆

are i.i.d. sampled from the standard Gaussian distribution,
Assumptions 3.1, 3.2, and 3.6 all hold with high probability
using a concentration argument.
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Noiseless setting. We first show that when ∆ = 0 in (1),
if the entries of U⋆ are i.i.d. Gaussian random variables and
the rank is small, Assumptions 3.1 and 3.2 hold with a high
probability.
Proposition 3.10. Suppose that r ≤ (log2 n)/2 and the
entries of U⋆ are i.i.d. sampled from the standard Gaus-
sian distribution. Then, Assumptions 3.1 and 3.2 hold with
probability at least 1−

√
n exp(−

√
n/16).

We defer the proof of this proposition to Appendix A.3.1.
While the rank assumption is strict, we empirically observe
in Section 4.4 that it can be relaxed. This rank requirement
arises from our proof technique. It is of great interest to find
an alternative approach to improve our analysis technique.

Noisy setting. For the noisy case, i.e., ∆ ̸= 0 in (1), we
construct the collection of index sets mentioned in Assump-
tion 3.6 in a similar manner to the partition shown in Fig-
ure 4. However, it is more difficult to characterize it in high
dimensions. To address this, we introduce the concept of ϵ-
net (see Definition A.2) to construct these index sets. Under
the Gaussian distribution and ReLU sampling, we prove the
following proposition that shows as long as r ≤ O(log n)
and the noise is small enough, Assumption 3.6 hold with
high probability. We defer the proof to Appendix A.3.2.
Proposition 3.11. Suppose that r ≤ log n/(4 log 3), the
entries of U⋆ are i.i.d. sampled from the standard Gaussian
distribution, and the noise matrix ∆ satisfies ∥∆∥∞ <
min

{
∥u⋆

k∥2 : k ∈ [n]
}
/2. Then, Assumption 3.6 holds

with probability at least 1− 1/n.

4. Experimental Results
In this section, we conduct numerical experiments to vali-
date our theoretical developments and demonstrate the per-
formance of several state-of-the-art algorithms on the MC
problem with ReLU sampling. All of our experiments are
implemented in MATLAB R2023a on a PC with 32GM
memory and Intel(R) Core(TM) i7-11800H 2.3GHz CPU.
Experiments with Euclidean distance matrix completion can
be found in Appendix C.3.

4.1. Our Proposed Algorithm

A natural approach to solving Problem (3) is to apply GD
as follows: Given the current iterate U (t), we generate the
next iterate via

U (t+1) = U (t) − η∇F (U (t)), t ≥ 0, (12)

where Z = (UUT )Ω−MΩ and ∇F (U) =
(
Z +ZT

)
U .

According to Theorem 3.5, Problem (3) with the ReLU sam-
pling exhibits a benign local optimization landscape, even
though it possesses a complicated global landscape as illus-
trated in Figure 1. Consequently, GD may not be effective

Algorithm 1 GD for MC with ReLU sampling

Input: observed set Ω, observed matrix MΩ

Generate Q̄ ∈ Rn×n using (13)
Apply a truncated SVD to Q̄ to obtain U (0) ∈ On×r

for t = 0, 1, 2, . . . do
U (t+1) = U (t) − η∇F (U (t))

end for

for solving Problem (3) unless a proper initial point U (0) is
available. This motivates us to propose a tailor-designed ini-
tialization as follows: We first randomly generate a matrix
Y ∈ Rn×r, whose entries are i.i.d. sampled from the stan-
dard normal distribution. Then, we construct Q = Y Y T

and generate a new matrix Q̄ ∈ Rn×n via

q̄ij =

{
mij , if (i, j) ∈ Ω,

−|qij |, otherwise.
(13)

Finally, we apply a truncated SVD to Q̄ to obtain an initial
point U (0) ∈ On×r, where the columns of U (0) consist
of right singular vectors of Q̄ corresponding to its top r
singular values. Notably, we leverage the low-rank structure
of M and the ReLU sampling to design the initialization
scheme. According to this and (12), we now summarize our
proposed method for solving Problem (3) in Algorithm 1.

4.2. Convergence Behavior and Recovery Performance

In this subsection, we study the convergence behavior and
recovery performance of GD in Algorithm 1 for solving
Problem (3) in the ReLU sampling regime. To measure
the convergence and recovery performance of the studied
algorithms, we employ the following metrics at the t-th
iteration:

Norm of gradient: αt = ∥∇F (U (t))∥F ,
Function value: βt = F (U (t)),

Completion error: γt = ∥U (t)U (t)T −M∥F /∥M∥F .

Obviously, if αt is smaller, then U (t) will be closer to a
critical point. Moreover, if βt and γt are smaller, then U (t)

will be closer to ground truth.

Our tailor-designed vs. random-imputation spectral ini-
tialization (RI) & random spectral (RS) initialization.
To demonstrate the effectiveness of our tailor-designed ini-
tialization, we compare our proposed initialization with a
random-imputation spectral (RI) and a random spectral (RS)
initialization. Specifically, the RI initialization proceeds as
follows: we generate a matrix Y ∈ Rn×r, whose entries
are i.i.d. sampled from the standard normal distribution.
Then, we construct Q = Y Y T and generate a matrix Q̄
via setting q̄ij = mij if (i, j) ∈ Ω. Finally, we generate

7
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(b) Noisy case: σ = 10−4
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Figure 5. Convergence and recovery performance of GD for MC with ReLU sampling under different initialization schemes.

Table 1. Comparison of the norm of gradient, function value, and completion error returned by GD with different initialization.

σ = 0 αT βT γT

Our init (9.7± 0.16) · 10−7 (3.3± 0.36) · 10−14 (7.6± 0.7) · 10−11

RI init (6.8± 0.3) · 10−3 (7.9± 2.1) · 103 0.5± 0.13
RS init 0.1± 0.45 (7.1± 3.8) · 103 0.45± 0.24

σ = 10−4 αT βT γT

Our init (9.7± 0.14) · 10−7 (1.8± 0.03) · 10−4 (4.4± 0.13) · 10−5

RI init (0.39± 1.2) · 10−5 (8.4± 2.1) · 103 0.51± 0.13
RS init (1.5± 6.5) · 10−3 (8.4± 2.0) · 103 0.51± 0.13

U (0) ∈ On×r using the truncated SVD to Q̄ as explained
in Section 4.1. Moreover, the RS initialization proceeds
exactly the same way as above, but without the imputation
scheme q̄ij = mij if (i, j) ∈ Ω.

Experimental setup. In our experiments, we set n = 200
and r = 5. We generate data matrix M according to the
model (1) with different noise level σ ∈ {0, 10−4, 10−2}
and sample the observed entries via ReLU sampling, e.g.
(2). For each noise level, we generate 20 data matrices and
run GD with our proposed, RI, and RS initialization on each
data matrix, respectively. In each test, we terminate the
algorithm when the Frobenious norm of the gradient at the
T -th iteration is less than 10−6 or T ≥ 5000.

Experimental results. To demonstrate the convergence
and recovery performance of our proposed approach, we
calculate and report the mean and standard deviation of the
norm of gradient αT , function value βT , and completion
error γT averaged over 20 runs in Table 1. An additional
result for σ = 10−2 can be found in Appendix C.1. In
addition, we select one run from the 20 runs and plot norms
of gradients {αt}t≥0 and completion errors {γt}t≥0 against
the number of iterations in Figure 5. In the noiseless case,
i.e., σ = 0, it is observed that GD with the tailor-designed
initialization efficiently finds the ground truth at a linear
rate, while GD with the RI or RS initialization converges
a critical point that is not globally optimal. In the noisy
case, i.e., σ = 10−4, we observe that GD with the tailor-

designed initialization converges to a critical point within
an O(σ)-neighborhood of the ground truth, while GD with
the RI or RS initialization converges a critical point that is
significantly distant from the ground truth.

The results in Table 1 and Figure 5 support our theoretical
results in Theorem 3.3 and Theorem 3.5. They empirically
demonstrate that the optimal solutions to Problem (3) can
recover the ground truth but this problem only has a local
benign optimization landscape. Additionally, the compar-
ison between our proposed initialization and the RI spec-
tral initialization further highlights the effectiveness of our
tailor-designed initialization.

4.3. Comparison to Existing Methods

In this subsection, we compare our proposed method with
some state-of-the-art methods for solving MC in the ReLU
sampling regime in terms of recovery performance and com-
putational efficiency. This includes the alternating direc-
tion method of multipliers (ADMM) (Boyd et al., 2011)
for the convex formulation of MC, scaled gradient descent
(ScaledGD) for MC studied in (Tong et al., 2021), proximal
alternating minimization (PAM) for solving the formulation
proposed in (Saul, 2022), momentum proximal alternating
minimization (MPAM) for solving nonlinear matrix decom-
position studied in (Seraghiti et al., 2023), and Gaussian-
Newton matrix recovery (GNMR) method for low-rank MC
(Zilber & Nadler, 2022). To guarantee the performance of
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Figure 6. Comparison of completion error and CPU time for a
variety of MC algorithms in the noiseless case.

ScaleGD, we employ our tailored-designed initialization
scheme in Section 4.1 to initialize it. We refer the reader to
Appendix C.2 for the problem formulations and implemen-
tation details.

Experimental setup. In our experiments, we set n =
1000, r = 20 and generate data matrix M according to
the model (1) with different noise levels σ ∈ {0, 10−2}.
For each noise level, we generate 10 data matrices and run
the MC algorithms on each data matrix. In each test, we
terminate our algorithm when the Frobenius norm of the
gradient is less than 10−4. The termination criteria of other
algorithms are specified in Appendix C.2.

Experimental results. To compare the recovery perfor-
mance and computational efficiency of the tested methods,
we calculate and report the completion error and CPU times
averaged over 10 runs using box plots in Figure 6. See an
additional figure for the noisy case in Appendix C.1. It is ob-
served that our proposed method can achieve a comparable
recovery performance to the other tested methods in both
noiseless and noisy cases. Moreover, our proposed method
is as fast as MPAM, slightly faster than PAM and ScaledGD,
and substantially faster than ADMM and GNMR in terms
of computational efficiency.

It is notable that all methods compared here have reason-
able completion error on this ReLU MC problem. It was
shown empirically in (Naik et al., 2022) that other methods,
including direct nuclear norm minimization, do not work as
well. It is of great interest to develop a broader theory to
understand or clarify this discrepancy among algorithms for
the ReLU sampling and more general entry-dependent MC
problems.

4.4. Completion with various ranks

In Figure 7, we investigate completion accuracy in the
noiseless setting when we increase the rank. In all cases,
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Figure 7. Completion in the noiseless case as rank varies, with
dimension n = 200, 300, 400. Line shows the median error, and
bars show the 25% and 75% error quantiles for 100 trials.

completion is successful well beyond our assumed rank
bound of r ≤ 1

2 log n. Consider n = 200; even though
log2(200) ≈ 7.6, completion only begins to break down
around r = 45. This behavior was also reported in (Naik
et al., 2022). A deeper understanding of this fundamental
limit is an exciting question for future work.

5. Conclusions
In this work, we studied the MC problem with ReLU sam-
pling. Under mild assumptions on the underlying matrix,
we showed that global optimal solutions of the low-rank
formulation of MC recover the underlying matrix in both
noiseless and noisy cases. Moreover, we also characterized
the local optimization landscape, which is strongly convex
on the quotient manifold in the neighborhood of global
optimal solutions. Finally, we proposed a tailor-designed
initialization for GD to optimize the studied formulation and
conducted extensive experiments to showcase the potential
of our proposed approach.

While our work fills a gap in the literature, there are still lim-
itations that need to be addressed, starting with generalizing
from SPSD matrices to rectangular matrices and consider-
ing unknown rank r. Weakening Assumption 3.6(d) is of
great interest, as mentioned before. Additionally, we point
out that our method and initialization have prior knowledge
that may not be available in general, e.g., our initialization
explicitly uses the ReLU sampling assumption. It would
be interesting to empirically explore the sensitivity of MC
algorithms to this coupling between sampling scheme and
initialization. A final general future direction of study is to
extend our landscape analysis to more general deterministic
and entry-dependent sampling regimes.
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Supplementary Material

The appendix is organized as follows: Appendix A contains all the proofs for the main results. Specifically, in Section
A.1, we focus on the noiseless ReLU case and provide proofs for all the theorems presented in Section 3.1. In Section
A.2, we shift our attention to the noisy general case and provide proofs for the theorems found in Section 3.2. In Section
A.3, we concentrate on the Gaussian and ReLU sampling settings and present all the required proofs for Section 3.3.
Appendix B provides the detailed related work. Appendix C provides detailed setups of our experiments and includes
additional numerical results to supplement Section 4.

A. Proofs of Main Results
Before we proceed, let us recall some definitions and notions. Based on the block partition in (4), we denote by M (i,j) ∈
Rni×nj the (i, j)-th block of M , i.e., M (i,j) = U⋆

i U
⋆T
j for any pair of indices (i, j) ∈ [2r]× [2r]. Moreover, we denote

the set of observations in the (i, j) block by Ωi,j = {(k, l) ∈ [ni] × [nj ] : m
(i,j)
kl ≥ 0} where m

(i,j)
kl is the (k, l)-th entry

of M (i,j). Let a column vector u⋆
i,k ∈ Rr denote the k-th row of U⋆

i for each k ∈ [ni]. Then, we have m
(i,j)
kl = u⋆T

i,ku
⋆
j,l.

Since u⋆T
i,ku

⋆
i,l ≥ 0 always holds for all k, l ∈ [ni] due to the fact that the rows of U⋆

i have the same sign, we have
Ωi,i = [ni]× [ni] for all i ∈ [2r] under the ReLU sampling (2).

A.1. Proofs for Section 3.1: Noiseless Case and ReLU Sampling

Firstly, we need to show that the horizontal space S⊥
U , which is the orthogonal complement of SU defined in (6), is given

by (7). Indeed, for arbitrary D ∈ S⊥
U , due to the orthogonality, we obtain that ⟨D,UR⟩ = ⟨UTD,R⟩ = 0 holds for all

skew-symmetric matrix R. This holds if and only if UTD is symmetric. Consequently, S⊥
U is given by

S⊥
U =

{
D ∈ Rn×r | UTD = DTU

}
. (14)

A.1.1. PROOF OF THEOREM 3.3

Proof of Theorem 3.3. Let U ∈ Rn×r be an arbitrary optimal solution to Problem (3). According to (1) and ∆ = 0,
we have M = U⋆U⋆T . This, together with the optimality of Problem (3), implies that (UUT )Ω = (U⋆U⋆T )Ω. Let
U =

[
UT

1 UT
2 · · · UT

2r
]T

be the same partition as that in (4). Since all diagonal blocks are fully observed, we have
UiU

T
i = U⋆

i U
⋆T
i . This, together with Assumption 3.1 and Lemma 3.4, yields that there exists Qi ∈ Or such that

Ui = U⋆
i Qi for all i ∈ [2r].

Next, we show that the above Qi for all i ∈ [2r] are the same. For each tri-diagonal block, it follows from (UUT )Ω =
(U⋆U⋆T )Ω that (Ui+1U

T
i )Ωi+1,i

= (U⋆
i+1U

⋆T
i )Ωi+1,i

for all i ∈ [2r − 1]. By substituting the equality Ui = U⋆
i Qi into it,

we get (U⋆
i+1Qi+1Q

T
i U

⋆T
i )Ωi+1,i

= (U⋆
i+1U

⋆T
i )Ωi+1,i

. We write its entry-wise form as follows:

u⋆T
i+1,kQi+1Q

T
i u

⋆
i,l = u⋆T

i+1,ku
⋆
i,l, ∀(k, l) ∈ Ωi+1,i. (15)

According to Assumption 3.2, {u⋆
i+1,ku

⋆T
i,l : (k, l) ∈ Ωi+1,i} spans the whole r-by-r matrix space, so (15) holds if and

only if Qi+1Q
T
i = Ir. Therefore, Qi = Qj for all i ̸= j. This yields U = U⋆Q with Q ∈ Or for any optimal solution U .

Then, we complete the proof.

A.1.2. PROOF OF THEOREM 3.5

Before we proceed, let us compute the gradient and Hessian of F (U). Obviously, the gradient is

∇F (U) = (UUT −M)ΩU . (16)

Given a direction D ∈ Rn×r, we have

∇F (U + tD) = (UUT + tUDT + tDUT + t2DDT −M)Ω(U + tD)

= ∇F (U) + t(UDT +DUT )ΩU + t2(DDT )ΩU + t(UUT −M)ΩD

t2(UDT +DUT )ΩD + t3(DDT )ΩD.

13
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Then, we compute its bilinear form of the Hessian along a direction D ∈ Rn×r as follows:

∇2F (U)[D,D] =

〈
D, lim

t→0

∇F (U + tD)−∇F (U)

t

〉
= ⟨D, (UUT −M)ΩD + (UDT +DUT )ΩU⟩

= ⟨DDT , (UUT −M)Ω⟩+ ⟨DUT , (UDT +DUT )Ω⟩

= ⟨DDT , (UUT −M)Ω⟩+
1

2
∥(UDT +DUT )Ω∥2F ,

(17)

where the last inequality holds because ⟨DUT , (UDT +DUT )Ω⟩ = ⟨UDT , (UDT +DUT )Ω⟩ and

⟨DUT , (UDT +DUT )Ω⟩ =
1

2
⟨UDT +DUT , (UDT +DUT )Ω⟩ =

1

2
⟨(UDT +DUT )Ω, (UDT +DUT )Ω⟩.

Proof of Theorem 3.5. Using (17) and M = U⋆U⋆T , we have

∇2F (U⋆)[D,D] =
1

2
∥(U⋆DT +DU⋆T )Ω∥2F ≥ 0. (18)

This implies that the Hessian of F at U⋆ is semi-definite positive.

Next, we consider these directions D such that ∇2F (U⋆)[D,D] = 0. We aim to show

D = U⋆V , where V + V T = 0. (19)

First, for each i ∈ [2r], since the i-th diagonal part is fully observed, i.e., Ωi,i = [ni]× [ni], we have

U⋆
i D

T
i +DiU

⋆T
i = 0. (20)

It follows from Assumption 3.1 that rank(U⋆
i ) = r, and thus its pseudo-inverse is U⋆†

i = (U⋆T
i U⋆

i )
−1U⋆T

i ∈ Rr×ni .
By multiplying U⋆†T

i on the right hand side of (20), we get Di = −U⋆
i D

T
i U

⋆†T
i = U⋆

i Vi, where Vi := −DT
i U

⋆†T
i .

Moreover, by multiplying U⋆†

i and U⋆†T
i on the left and right sides of (20), we get DT

i U
⋆†T
i + U⋆†

i Di = 0. This
implies Vi + V T

i = 0, which means Vi is a skew-symmetric matrix. Now, let us consider the (i + 1, i)-th block of
(U⋆DT +DU⋆T )Ω. According to (20) and Di = U⋆

i Vi for all i ∈ [2r], we have

0 =
(
U⋆

i+1D
T
i +Di+1U

⋆T
i

)
Ωi+1,i

=
(
U⋆

i+1V
T
i U⋆T

i +U⋆
i+1Vi+1U

⋆T
i

)
Ωi+1,i

=
(
U⋆

i+1

(
V T
i + Vi+1

)
U⋆T

i

)
Ωi+1,i

.

Using the same argument in (15), we have V T
i + Vi+1 = 0. Thus, we have Vi = Vi+1 for all i ∈ [2r − 1], and thus Vi

for all i ∈ [2r] are the same. Consequently, the space spanned by all the directions D satisfying ∇F (U⋆)[D,D] = 0 is
exactly the vertical space SU⋆ defined in (6), i.e.,

SU⋆ =
{
D ∈ Rn×r : ∇F (U⋆)[D,D] = 0

}
.

Define the constant

γ := min
D∈S⊥

U⋆ ,∥D∥F=1
∥(U⋆DT +DU⋆T )Ω∥2F > 0 (21)

We claim that γ > 0. Now, we prove this claim by contradiction. Indeed, suppose that γ = 0. This implies that there exists
a D ∈ S⊥

U⋆ with ∥D∥F = 1 such that ∥(U⋆DT +DU⋆T )Ω∥2F = 0. This, together with (19), yields D ∈ SU⋆ and thus
D ∈ SU⋆ ∩ S⊥

U⋆ = {0}, which contradicts the fact that ∥D∥F = 1. Then, for any D ∈ S⊥
U⋆ , (18) shows that

∇2F (U⋆)[D,D] =
1

2
∥(U⋆DT

S⊥
U⋆

+DS⊥
U⋆

U⋆T )Ω∥2F ≥ γ

2
∥DS⊥

U⋆
∥2F =

γ

2
∥D∥2F . (22)

where DS⊥
U⋆

= ProjS⊥
U⋆

(D) is the projection of D on S⊥
U⋆ . Finally, substituting D = liftU⋆(ξ) ∈ S⊥

U⋆ into the above
inequality for any ξ ∈ T[U⋆]M, together with (8), yields the desired result.

14
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From the geodesic strong convexity on M to the strong convexity in Euclidean space. For any U ,V ∈ Rn×r,
let UTU⋆ = PΣQT be an SVD of UTU⋆, where P ,Q ∈ Or and Σ ∈ Rr×r. Moreover, let Ũ := UPQT and
D := Ũ −U⋆, then we must have D ∈ S⊥

U⋆ . This is because, for any E ∈ SU⋆ = {U⋆V : V + V T = 0}, we have

⟨E, Ũ −U⋆⟩ = ⟨U⋆V ,UPQT −U⋆⟩ = ⟨V ,U⋆TUPQT −U⋆TU⋆⟩ = ⟨V ,QΣQT −U⋆TU⋆⟩ = 0, (23)

where the last equality holds because V is a skew-symmetric matrix and QΣQT −U⋆TU⋆ is symmetric. Therefore, (22)
implies that

∇2F (U⋆)[Ũ −U⋆, Ũ −U⋆] ≥ γ

2
∥Ũ −U⋆∥2F . (24)

A.1.3. PROOF OF LEMMA 3.4

Proof of Lemma 3.4. According to r = rank(U), we obtain that the pseudo-inverse of U is U † := (UTU)−1UT ∈ Rr×n.
Then, one can verify ∥U †∥ ≤ 1/σmin(U). Next, let Ψ := UUT − V V T . Then, we compute

ΨU †T = U − V V TU †T , U †ΨU †T = Ir −U †V V TU †T .

Note that

∥U †ΨU †T ∥F ≤ ∥U †∥2∥Ψ∥F ≤ ∥Ψ∥F
σ2
min(U)

. (25)

Let V TU †T = PΣHT be a singular value decomposition (SVD) of V TU †T ∈ Rr×r, where P ,H ∈ Or and Σ ∈ Rr×r.
Then, we have

∥Ir −Σ2∥F = ∥Ir −HΣ2HT ∥F = ∥Ir −U †V V TU †T ∥F = ∥U †ΨU †T ∥F ≤ ∥Ψ∥F
σ2
min(U)

,

where the inequality follows from (25). This implies

∥Σ− Ir∥F = ∥(Σ+ Ir)
−1(Σ2 − Ir)∥F ≤ ∥Σ2 − Ir∥F ≤ ∥Ψ∥F

σ2
min(U)

. (26)

Finally, by choosing Q = PHT , we get

ΨU †T = U − V V TU †T = U − V Q+ V P (Ir −Σ)HT .

Therefore, we obtain

∥U − V Q∥F ≤ ∥ΨU †T ∥F + ∥V P (Ir −Σ)HT ∥F ≤ ∥Ψ∥F
σmin(U)

+
∥V ∥∥Ψ∥F
σ2
min(U)

,

where the last inequality follows from ∥U †∥ ≤ 1/σmin(U) and (26).

Now, we remove the full rank assumption rank(U) = r and prove the following more general lemma.

Lemma A.1. For arbitrary U ,V ∈ Rn×r with r ≤ n, there exists an orthogonal matrix Q ∈ Or such that

∥U − V Q∥F ≤ max

{
σ2
min(U) + ∥V ∥

σ2
min(U)

,
1

σmin(V )

}
∥UUT − V V T ∥F , (27)

where σmin(U) and σmin(V ) denote the smallest non-zero singular value of U and V , respectively.

Proof. For ease of exposition, we denote the rank of U by r̂ = rank(U), where r̂ ≤ r. Let U = P1Σ1Q
T
1 be a compact

SVD of U , where P1 ∈ On×r̂, Σ1 ∈ Rr̂×r̂, and Q1 ∈ Or̂. Notice that

∥UUT − V V T ∥2F = ∥P1P
T
1 (UUT − V V T ) + (I − P1P

T
1 )(UUT − V V T )∥2F

= ∥P1P
T
1 (UUT − V V T )∥2F + ∥(I − P1P

T
1 )(UUT − V V T )∥2F

= ∥P T
1 (UUT − V V T )∥2F + ∥(I − P1P

T
1 )V V T ∥2F ,

15
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where the last equality holds because P T
1 P1 = I and (I − P1P

T
1 )U = 0. Using the same argument, we have

∥P T
1 (UUT − V V T )∥2F = ∥P T

1 (UUT − V V T )P1P
T
1 ∥2F + ∥P T

1 (UUT − V V T )(I − P1P
T
1 )∥2F

= ∥P T
1 (UUT − V V T )P1∥2F + ∥P T

1 V V T (I − P1P
T
1 )∥2F

≥ ∥P T
1 (UUT − V V T )P1∥2F = ∥Σ2

1 − P T
1 V V TP1∥2F ,

where the last equality holds because U = P1Σ1Q
T
1 . Putting the above results together yields

∥UUT − V V T ∥2F ≥ ∥Σ2
1 − P T

1 V V TP1∥2F + ∥(I − P1P
T
1 )V V T ∥2F . (28)

Similarly, we also have

∥U − V Q∥2F = ∥P T
1 (U − V Q)∥2F + ∥(I − P1P

T
1 )V Q∥2F . (29)

Let P T
1 V = P2Σ2Q

T
2 be a compact SVD of P T

1 V , where P2 ∈ On×r̂, Σ2 ∈ Rr̂×r̂, and Q2 ∈ Or̂. By choosing Q such
that QT

2 Q = QT
1 , we have

∥P T
1 (U − V Q)∥F = ∥Σ1Q

T
1 − P T

1 V Q∥F = ∥Σ1 − P2Σ2∥F ≤ σ2
min(U) + ∥V ∥

σ2
min(U)

∥Σ2
1 − P T

1 V V TP1∥2F , (30)

where the second equality follows from P T
1 V = P2Σ2Q

T
2 and QT

2 Q = QT
1 , and the inequality uses Lemma 3.4. Moreover,

we have
∥(I − P1P

T
1 )V Q∥2F = ∥(I − P1P

T
1 )V1∥2F ≤ 1

σmin(V )
∥(I − P1P

T
1 )V1V

T
1 ∥2F .

This, together with (28), (29), and (30), implies (27).

A.2. Proofs for Section 3.2: Noisy Case with General Sampling

A.2.1. PROOF OF THEOREM 3.8

Proof of Theorem 3.8. Using the global optimality of U , (1), and (3), we have

F (U) ≤ F (U⋆) =
1

4
∥∆Ω∥2F ≤ 1

4
∥∆∥2F . (31)

In addition, we have

F (U) =
1

4
∥(UUT −M)Ω∥2F ≥ 1

8
∥(UUT −U⋆U⋆T )Ω∥2F − 1

4
∥∆∥2F ,

where the inequality follows from (1) and ∥A−B∥2F ≥ ∥A∥2F /2− ∥B∥2F for all A,B. This, together with (31), implies

∥(UUT −U⋆U⋆T )Ω∥2F ≤ 4∥∆∥2F . (32)

Now, we consider the diagonal blocks of M index by Ik × Ik. For each k ∈ [K], let Ck := UkU
T
k −U⋆

kU
⋆T
k . According

to condition (a) in Assumption 3.6, the block Ik × Ik is fully observed, and thus we have for each k ∈ [K],

∥Ck∥F ≤ ∥(UUT −U⋆U⋆T )Ω∥F ≤ 2∥∆∥F . (33)

Recall that U⋆†

k = (U⋆T
k U⋆

k )
−1U⋆T

k . Let U⋆†

k Uk = PkΣkH
T
k be an SVD of U⋆†

k Uk ∈ Rr×r, where Pk,Hk ∈ Or and
Σk ∈ Rr×r, and Qk := HkP

T
k . According to Lemma 3.4 and the proof, we have

∥UkQk −U⋆
k∥F ≤ σmin(U

⋆
k ) + ∥Uk∥

σ2
min(U

⋆
k )

∥UkU
T
k −U⋆

kU
⋆T
k ∥F

≤ 2(
√
λ+ ∥Uk∥)

λ
∥∆∥F ≤ 2

λ
∥∆∥F

(√
λ+ 2∥∆∥ 1

2 + ∥U⋆
k∥
)
, (34)
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where the second inequality follows from (33) and σmin(U
⋆
k ) ≥

√
λ for all k ∈ [K] due to condition (b) in Assumption 3.6,

and the last inequality uses

∥Uk∥ = ∥UkU
T
k ∥ 1

2 = ∥Ck +U⋆
kU

⋆T
k ∥ 1

2 ≤ ∥Ck∥
1
2 + ∥U⋆

k∥ ≤ 2∥∆∥ 1
2 + ∥U⋆

k∥.

For these off-diagonal blocks satisfying Ij × Ik ∈ Ω, let Cj,k := UjU
T
k −U⋆

j U
⋆T
k for all j ̸= k ∈ [K]. Similar to (33),

we have ∥Cj,k∥F ≤ 2∥∆∥F and
U⋆†

j Uj(U
⋆†

k Uk)
T = Ir +U⋆†

j Cj,kU
⋆†T
k .

Substituting the SVDs U⋆†

j Uj = PjΣjH
T
j and U⋆†

k Uk = PkΣkH
T
k into the above equality yields

Ir +U⋆†

j Cj,k(U
⋆†

k )T = U⋆†

j Uj(U
⋆†

k Uk)
T = PjΣjH

T
j HkΣkP

T
k

= Pj(Σj − Ir)H
T
j Hk(Σk − Ir)P

T
k + Pj(Σj − Ir)H

T
j HkP

T
k +

PjH
T
j Hk(Σk − Ir)P

T
k + PjH

T
j HkP

T
k

Note that Qk = HkP
T
k for all k ∈ [K], and thus PjH

T
j HkP

T
k = QT

j Qk. Then, we have

∥Qj −Qk∥F = ∥QjQ
T
k − Ir∥F = ∥PjH

T
j HkP

T
k − Ir∥F

= ∥U⋆†

j Cj,k(U
⋆†

k )T − Pj(Σj − Ir)H
T
j Hk(Σk − Ir)P

T
k − Pj(Σj − Ir)H

T
j HkP

T
k −

PjH
T
j Hk(Σk − Ir)P

T
k ∥F

≤ ∥Σj − Ir∥F ∥Σk − Ir∥F + ∥Σj − Ir∥F + ∥Σk − Ir∥F + ∥U⋆†

j Cj,kU
⋆†T
k ∥F

≤ 1

λ2
∥Cj∥F ∥Ck∥F +

1

λ
∥Cj∥F +

1

λ
∥Ck∥F +

1

λ
∥Cj,k∥F ≤ 2

λ
∥∆∥F

(
3 +

2

λ
∥∆∥F

)
,

(35)

where the second inequality follows from (26). For each k ∈ [K], according to condition (d) in Assumption 3.6, there exists
a path k0 → k1 → · · · → ks such that k0 = k, ks = 1 and Ikj−1 × Ikj ⊆ Ω for all j ∈ [s]. Therefore, we bound the term
Qk −Q1 as follows:

∥Qk −Q1∥F ≤
∑
j∈[s]

∥Qkj−1
−Qkj

∥F ≤ 2K

λ
∥∆∥F

(
3 +

2

λ
∥∆∥F

)
, (36)

where the last inequality follows from (35) and s ≤ K. Therefore, we obtain

∥U −U⋆QT
1 ∥2F =

K∑
k=1

∥Uk −U⋆
kQ

T
1 ∥2F ≤ 2

K∑
k=1

(
∥Uk −U⋆

kQ
T
k ∥2F + ∥U⋆

k (Qk −Q1)
T ∥2F

)
≤ 8K

λ2
∥∆∥2F (

√
λ+ 2∥∆∥ 1

2 + ∥U⋆∥)2 + 2K2∥U⋆∥2
(
2

λ
∥∆∥F

(
3 +

2

λ
∥∆∥F

))2

≤ 8K

λ2
∥∆∥2F

((√
λ+ 2∥∆∥

1
2

F + ∥U⋆∥
)2

+K2∥U⋆∥2
(
3 +

2

λ
∥∆∥F

)2
)

where the second inequality follows from (34) and (36), and the third inequality holds because ∥U⋆
k (Qk − Q1)

T ∥F ≤
∥U⋆

k∥∥Qk −Q1∥F . As a result, we get

∥U −U⋆QT
1 ∥F ≤ c0

λ
∥∆∥F , where c0 =

√
8K

(√
λ+ 2∥∆∥

1
2

F + ∥U⋆∥+K∥U⋆∥
(
3 +

2

λ
∥∆∥F

))
. (37)

Finally, based on the fact that U⋆U⋆T = U⋆QT
1 (U

⋆QT
1 )

T , we have

∥UUT −U⋆U⋆T ∥F =∥UUT −U⋆QT
1 (U

⋆QT
1 )

T ∥F
=∥(U −U⋆QT

1 )(U −U⋆QT
1 )

T + (U −U⋆QT
1 )(U

⋆QT
1 )

T +U⋆QT
1 (U −U⋆QT

1 )
T ∥F

≤∥U −U⋆QT
1 ∥F

(
2∥U⋆∥+ ∥U −U⋆QT

1 ∥
)

≤c0
λ

(
2∥U⋆∥+ c0

λ
∥∆∥F

)
∥∆∥F ,

(38)
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where the first inequality holds because of the triangle inequality and the second inequality holds because of (37). We
complete the proof by letting

c :=
c0
λ

(
2∥U⋆∥2 +

c0
λ
∥∆∥F

)
∥∆∥F . (39)

A.2.2. PROOF OF THEOREM 3.9

Proof of Theorem 3.9. Recall that U ∈ Rn×r is a global optimal solution of Problem (3). For ease of exposition, let
∆̃ := (UUT −M)Ω. Obviously, we have ∥∆̃∥F ≤ ∥∆∥F . This, together with (17), yields

∇2F (U)[D,D] ≥ 1

2
∥(UDT +DUT )Ω∥2F − ∥DDT ∥F ∥∆̃∥F ≥ 1

2
∥(UDT +DUT )Ω∥2F − ∥∆∥F ∥D∥2F . (40)

Next, we consider some direction D such that (UDT +DUT )Ω = 0. We claim that D = UV for some skew-symmetric
matrix V ∈ Rr×r. Indeed, for each i ∈ [2r], since the i-th diagonal part is fully observed, i.e., Ωi,i = [ni]× [ni], we have

UiD
T
i +DiU

T
i = 0. (41)

Using Weyl’s inequality, we obtain

σr(Ui) ≥ σr(U
⋆
i )− ∥UiQi −U⋆

i ∥F ≥
√
λ− 2

λ
∥∆∥F

(√
λ+

√
γ + ∥U⋆∥

)
≥ 1

2

√
λ,

where the second inequality follows from the assumption that U⋆T
i U⋆

i ⪰ λIr, (34), and ∥∆∥F < γ/8 by (11), and
the last inequality holds because of ∥∆∥F ≤ λ

√
λ/4(

√
λ+

√
γ + ∥U⋆∥) by (11). Therefore, the pseudo-inverse

U †
i = (UT

i Ui)
−1UT

i is well-defined for all i ∈ [2r]. Multiplying U †T
i from the right-hand side of (41) yields

Di = −Ui(U
†
i Di)

T = UiVi, where Vi = −(U †
i Di)

T . Moreover, multiplying Û †
i and Û †T

i from the left and right
hand sides of (41) yields (U †

i Di)
T +U †

i Di = 0. This implies Vi + V T
i = 0, which means Vi is a skew matrix. Then,

consider the (i, j)-th block of (UDT +DUT )Ω. Since Di = UiVi for any i ∈ [2r], it follows from (41) that

0 = UjD
T
i +DjU

T
i = UjV

T
i UT

i +UjVjU
T
i = Ui+1

(
V T
i + Vi+1

)
UT

i .

Since Ui and Ui+1 are full-rank, we obtain V T
i +Vi+1 = 0. Thus, we have Vi = Vi+1 for all i ∈ [2r − 1], and thus Vi for

all i ∈ [2r] are the same.

For ease of exposition, let S = SU and S⊥ = S⊥
U . For any D ∈ Rn×r, we decompose it as

D = DS +DS⊥ , where DS = projS(D), DS⊥ = projS⊥(D). (42)

Define the constant

γ̂ := ∥(UÊT + ÊUT )Ω∥2F , where Ê = argmin
E∈S⊥,∥E∥F=1

∥(UET +EUT )Ω∥2F . (43)

According to (40), we compute for any D ∈ S⊥,

∇2F (U)[D,D] ≥ 1

2
∥(UDT

S⊥ +DS⊥UT )Ω∥2F − ∥∆∥F ∥D∥2F ≥ γ̂

2
∥DS⊥∥2F − ∥∆∥F ∥D∥2F =

(
γ̂

2
− ∥∆∥F

)
∥D∥2F .

We complete the proof by letting D = liftU (ξ) for any ξ ∈ T[U ]M and showing that γ̂ ≥ γ/4.

Then, the rest of the proof is devoted to proving γ̂ ≥ γ/4. Without loss of generality, we assume that Q1 = Ir in (37) and
let U = U −U⋆, then we have ∥U∥F ≤ c0∥∆∥F /λ ≤ c̃0∥∆∥F /λ where

c̃0 =
√
8K

(√
λ+

√
γ + ∥U⋆∥+K∥U⋆∥

(
3 +

γ

4λ

))
≥

√
8K

(√
λ+ 2∥∆∥

1
2

F + ∥U⋆∥+K∥U⋆∥
(
3 +

2

λ
∥∆∥F

))
= c0, (44)
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which holds because of the condition ∥∆∥F ≤ γ
8 . Thus, we have√

γ̂ ≥ ∥(U⋆ÊT + ÊU⋆T )Ω∥F − ∥(UÊT + ÊU
T
)Ω∥F ≥ ∥(U⋆ÊT + ÊU⋆T )Ω∥F − 2c̃0

λ
∥∆∥F , (45)

where the first inequality holds because of the triangle inequality, and the second inequality follows from ∥Ê∥F = 1 and
∥U∥F ≤ c̃0∥∆∥F /λ. Recall that γ is defined w.r.t. S⊥

U⋆ = {D : U⋆TD = DTU⋆}, i.e., the subspace S⊥
U⋆ is the solution

space of the linear system U⋆TD = DTU⋆. Even though Ê may not fulfill the linear system requirements, due to the fact
Ê ∈ S⊥

U , we can bound

∥U⋆T Ê − ÊTU⋆∥F = ∥UT
Ê − ÊTU∥F ≤ 2c̃0

λ
∥∆∥F ,

where the first equality holds because of Ê ∈ S⊥
U , i.e., UT Ê = ÊTU . According to Hoffman’s error bound for linear

system (Hoffman, 2003; Pena et al., 2021; Güler et al., 1995), there exists some constant κ > 0, which only depends on the
linear system of U⋆, and some D ∈ S⊥

U⋆ such that

∥D − Ê∥F ≤ κ∥U⋆T Ê − ÊTU⋆∥F ≤ 2κc̃0
λ

∥∆∥F . (46)

Then, we have

∥(U⋆ÊT + ÊU⋆T )Ω∥F ≥∥(U⋆DT +DU⋆T )Ω∥F − 2∥U⋆∥∥D − Ê∥F
≥√

γ∥D∥F − 2∥U⋆∥|D − Ê∥F ≥ √
γ − (

√
γ + 2∥U⋆∥)∥D − Ê∥F ,

where the first inequality holds because of the triangle inequality and the fact ∥UD∥F ≤ ∥U∥∥D∥F holds for any matrices
U and D, the second inequality follows from the definition of γ, and the last one uses the triangle inequality and ∥Ê∥F = 1.
Substituting this and (46) into (45) yields√

γ̂ ≥ ∥(U⋆ÊT + ÊU⋆T )Ω∥F − 2c̃0
λ

∥∆∥F ≥ √
γ − 2c̃0

λ
(1 + κ(

√
γ + 2∥U⋆∥2)) ∥∆∥F .

This, together with (11), implies
√
γ̂ ≥ √

γ/2, which completes the proof.

A.2.3. DISCUSSION ON THE RELATIONSHIP BETWEEN γ AND λ

Note that λ is defined to satisfy U⋆T
k U⋆

k =
∑

i∈Ik
u⋆
i (u

⋆
i )

T ≥ λ. Under the setting of Gaussian matrix and noise, we could
first compute the conditional expectation

E
[
U⋆T

k U⋆
k | U⋆

k ∈ Ck
]
=
∑
i∈Ik

E[u⋆
i (u

⋆
i )

T | u⋆
i ∈ Ck] = |Ik|E[u⋆

i (u
⋆
i )

T | u⋆
i ∈ Ck].

Under the noiseless setting where Ck is an octant, a simple computation shows that

E
[
u⋆
i (u

⋆
i )

T | u⋆
i ∈ Ck

]
=

(
1− 2

π

)
Ir +

2

π
eeT ,

where e ∈ Rr is the all-one vector. For the noisy setting, even though it is not easy to get a close form, we could still show
that E[u⋆

i (u
⋆
i )

T | u⋆
i ∈ Ck] is positive definite whose least eigenvalue is independent of n and r, under the assumption

r = O(log n). Besides, note that all u⋆
i , i ∈ Ik are still i.i.d. variables under the condition u⋆

i ∈ Ck. By applying the
concentration theory, we could show that λ = Θ(|Ik|) ≥ Θ(

√
n), where the last inequality holds because we already shows

that |Ik| ≥
√
n/2 under the assumption r = O(log n).

Regarding γ, we define the linear map ϕ : Rn×r 7→ Rn×n with ϕ(D) = (U⋆DT +DU⋆T )Ω. The linear map ϕ can be
vectorized by introducing a matrix A ∈ Rn2×nr, i.e.

vec(ϕ(D)) = A · vec(D)

where A consist of the entries of U⋆. Recall that γ = min ||ϕ(D)||F where D ∈ S⊥, ||D||F = 1. Since we already show
S⊥ is the kernel space of ϕ, we know γ is the smallest nonzero singular value of A. By carefully computation and applying
the concentration inequality, one can also show γ = O(

√
n). Then, according to Equation (7), Theorem 3.8 holds when

∥∆∥F = O(n
1
4 ), in other words, we need the noise level δ = O(n− 3

4 ).
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A.3. Proofs for Section 3.3: Verification of Assumptions under the Gaussian Distribution

A.3.1. PROOF OF PROPOSITION 3.10

Proof of Proposition 3.10. Since u⋆
i

i.i.d.∼ N (0, Id) for all i ∈ [n] and Ck for each k ∈ [2r] is an orthant, we have

P (u⋆
i ∈ Ck) =

1

2r
, ∀i ∈ [n], ∀k ∈ [2r].

Note that nk =
∑n

i=1 1(u
⋆
i ∈ Ck) denotes the number of u⋆

i belonging to orthant Ck. Applying the Bernstein inequality
(see, e.g., (Vershynin, 2018, Theorem 2.8.4)) to nk, we obtain

P
(
nk − n

2r
≤ t
)
≤ exp

(
−

1
2 t

2

n
2r + t

3

)
, ∀ t ≥ 0.

By choosing t = n/2r+1 ≥
√
n/2 due to r ≤ (log2 n)/2, we have for each k ∈ [2r],

P
(
nk ≤ n

2r+1

)
≤ exp

(
−
√
n

16

)
This, together with the union bound, yields

P
(
nk ≥

√
n

2
, ∀k ∈ [2r]

)
≤ 1− 2r exp

(
−
√
n

16

)
≤ 1−

√
n exp

(
−
√
n

16

)
. (47)

Since
√
n/2 ≫ r and the entries of U⋆ is i.i.d. standard Gaussian random variables, Assumption 3.1 always holds.

Now, we consider the near diagonal block Ωk+1,k for each k ∈ [2r − 1]. Without loss of generality, we assume Ck =
{(x1, · · · , xr) : xi ≥ 0, i ∈ [r]} and Ck+1 = {(x1, · · · , xr) : xi ≥ 0, i ∈ [r − 1], xr ≤ 0}. Therefore, for each row
u⋆
i ∈ Ck and u⋆

j ∈ Ck+1, sgn(u⋆
i ) differs with sgn(u⋆

j ) only at the last entry. Let Dk consist of all the vectors x ∈ Ck
satisfying xr ≤ max{x1, · · · , xr−1}, i.e.,

Dk = {x ∈ Ck : xr ≤ max{x1, · · · , xr−1}} .

One can verify that the conditional probability P(u⋆
i ∈ Dk | u⋆

i ∈ Ck) ≥ 1
2 , and thus

P(u⋆
i ∈ Dk) = P(u⋆

i ∈ Dk | u⋆
i ∈ Ck) · P(u⋆

i ∈ Ck) ≥
1

2r+1
.

By applying the concentration inequality, one can show that |Dk| ≥
√
n/4 with high probability. Then, for each u⋆

i ∈ Dk

and any u⋆
j ∈ Ck+1, we have

P
(
⟨u⋆

i ,u
⋆
j ⟩ ≥ 0 | u⋆

i

)
≥ 1

2
.

Note that
|Ωk+1,k| =

∑
(i,j)∈Ωk+1,k

1(u⋆
i ,u

⋆
j ⟩ ≥ 0) ≥

∑
i:u⋆

i ∈Dk

∑
j:u⋆

j∈Ck+1

1(u⋆
i ,u

⋆
j ⟩ ≥ 0)

Conditioned on any u⋆
i ∈ Dk, 1(u⋆

i ,u
⋆
j ⟩ ≥ 0) for all i, j are independent of each other. Therefore, we can apply the

concentration inequality to show that ∑
j:u⋆

j∈Ck+1

1(u⋆
i ,u

⋆
j ⟩ ≥ 0) ≥

√
n

4
.

As a result, |Ωk+1,k| ≥ n/16 holds with high probability.

A.3.2. PROOF OF PROPOSITION 3.11

For the noisy case, we need to first introduce the ϵ-net to proceed.

Definition A.2 (Net and Covering Number). Let Sr−1 = {u ∈ Rr : ∥u∥ = 1} be the unit sphere in Rr and ϵ > 0 be a
parameter. A subset Nϵ ⊆ Sr−1 is said to be an ϵ-net of Sr−1 if for any point u ∈ Sr−1, there exists a point a ∈ Nϵ such
that ∥u− a∥ ≤ ϵ. The cardinality of the smallest ϵ-net is called the ϵ-covering number, denoted by N(Sr−1, ϵ).
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According to Szarek (1997), we know that, for any ϵ > 0,

N(Sr−1, ϵ) ≤
(
1 +

2

ϵ

)r

. (48)

Let N 1
4

denote the 1
4 -net Sr−1 with the smallest cardinality. Then, (48) implies that K = |N 1

4
| ≤ 9r. Let N 1

4
=

{a1,a2, . . . ,aM}, then we define

Ck :=

{
u ∈ Rr : uTak ≥

√
6 +

√
2

4
∥u∥

}
, ∀k ∈ [K].

Since ak ∈ N 1
2
⊆ Sr−1, the inequality uTak ≥ (

√
6 +

√
2)∥u∥/4 means the angle between u and ai is less than

arccos
(√

6+
√
2

4

)
= π

12 . According to the definition of ϵ-net, we can show the following lemma.

Lemma A.3. Rr =
⋃

k∈[K] Ck.

Proof. For any u ∈ Rr \ {0} and u/∥u∥ ∈ Sr−1, there exists some ai ∈ N 1
4

such that ∥ai −u/∥u∥∥ ≤ 1
4 , which implies〈

ai,
u

∥u∥

〉
≥ 31

32
>

√
6 +

√
2

4
.

This implies u ∈ Ci.

We can now define the collection of index set as follows:

Ik = {i ∈ [n] : u⋆
i ∈ Ck}, ∀k ∈ [K],

where u⋆
i is the i-th row of U⋆. Lemma A.3 implies that the collection of index sets {I1, I2, . . . , IK} satisfies condition

(a) in Assumption 3.6.

Proof of Proposition 3.11. First, Lemma A.3 already implies condition (a). Next, for any k ∈ [K] and any (i, j) ∈ Ik ×Ik,
we know that u⋆

i ,u
⋆
j ∈ Ck according to the definition of Ik. Owing to the property of Ck, we know that the angle between

u⋆
i and ak is less than π/12 and so is the angle between u⋆

j and ak. This implies that the angle between u⋆
i and u⋆

j is less
than π/6. This further implies

u⋆T
i u⋆

j ≥ cos
(π
6

)
∥u⋆

i ∥∥u⋆T
j ∥ =

√
3

2
∥u⋆

i ∥∥u⋆T
j ∥.

Then, we have mij = u⋆T
i u⋆

j+δij ≥ 0 due to ∥∆∥∞ < 1
2 mink∈[n] ∥u⋆

k∥22. It implies that (i, j) ∈ Ω for all (i, j) ∈ Ik×Ik,
i.e., condition (b) holds.

Next, since each row u⋆
i is an i.i.d. Gaussian vector, we have u⋆

i /∥u⋆
i ∥2 follows the uniform distribution on the unit

sphere Sr−1. One can evaluate the probability that P(u⋆
i ∈ Ck) in the following way: the area of Sr−1 is equal to 2πr/2

Γ(r/2) ,
while the area of Sr−1 ∩ Ck is bigger than volume of (r − 1)-dimensional ball with radius equal to sin(π/12), which is
π(r−1)/2

Γ((r+1)/2) · sin
r−1(π/12). This implies

P(u⋆
i ∈ Ck) ≥

π(r−1)/2

Γ((r+1)/2) · sin
r−1(π/12)

2πr/2

Γ(r/2)

=
Γ(r/2)

2
√
πΓ((r + 1)/2)

sinr−1(π/12) ≥ 1√
πr

sinr(π/12),

where the last inequality holds because Γ((r + 1)/2) = r−1
2 Γ((r − 1)/2) ≤ r

2Γ(r) holds for all positive integers. Since
r ≤ log n/(4 log 3), we have

P (u⋆
i ∈ Ck) ≥

1√
π(r − 1)

sinr−1(π/12) ≥ 4 log 3

log n
· n

log(sin(π/12))
4 log 3 >

4 log 3

log n
n−1/3.
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Similar to (47), one can easily show that, with probability at least 1− 1/n, we have |Ik| ≥
√
n/2 for all k ∈ [K]. Moreover,

since
√
n/2 ≫ r and U⋆ is a matrix with i.i.d. Gaussian entries, it is easy to see that U⋆T

k U⋆
k ⪰ λIr holds for some λ > 0.

Finally, for any two Ck and Cl satisfying Ck ∩ Cl ̸= ∅ and for any u⋆
i ∈ Ck and u⋆

j ∈ Cl, let u⋆
0 ∈ Ck ∩ Cl, then the angle

between u⋆
i and u⋆

0 is less than π/6 and so is the angle between u⋆
j and u⋆

0, which implies the angle between u⋆
i and u⋆

j is
less than π

3 . Thus, we have

u⋆T
i u⋆

j ≥ cos
(π
3

)
∥u⋆

i ∥∥u⋆T
j ∥ =

1

2
∥u⋆

i ∥∥u⋆T
j ∥.

so mij = u⋆T
i u⋆

j + δij ≥ 0 given the condition that ∥∆∥∞ < mink∈[n] ∥u⋆
k∥2/2. It implies that (i, j) ∈ Ω for all

(i, j) ∈ Ik ×Il. For any k, l ∈ [K], we can find a path k0 → k1 → · · · → ks such that k0 = k, ks = l and Ckt
∩ Ckt+1

̸= ∅.
This complete the whole proof.

B. Literature Review
There are three categories of work we review: deterministic sampling, probabilistic sampling that depends on entry values,
and general matrix completion and factorization literature with close relationship to our work.

Deterministic sampling Within deterministic sampling, there is work that must make incoherence or genericity assump-
tions on the underlying matrix, and work that removes almost all assumptions on the matrix but either needs to leverage
other properties (i.e. PSD) or ignore problematic parts of the matrix. We will start with work that does not make assumptions
on the underlying matrix.

Possibly most similar to our work is (Bishop & Yu, 2014), where the authors consider deterministic sampling of PSD
matrices. They require sampling of principal submatrices, which is very similar to the assumptions we have made, since
under ReLU sampling, we observe the diagonal, and under the partition/permutation of (4), we also observe the diagonal
blocks. To the best of our knowledge, neither of the assumptions in our paper or in (Bishop & Yu, 2014) implies the other.
More specifically, Bishop & Yu (2014) consider deterministic sampling and assume that a collection of subsets of Ω admit
an ordering such that any two adjacent parts have enough overlap. However, in the ReLU sampling setting, this order is hard
to construct, and it is not clear whether there exists such an ordered collection of subsets. Moreover, both the analysis and
the algorithm proposed in (Bishop & Yu, 2014) heavily rely on these ordered subsets, while we only use our partition for
analysis. They design an algorithm for completion based on their theoretical guarantees, whereas our work simply uses
the well-known gradient descent algorithm for completion. Additionally, to the best of our knowledge, it is not possible to
extend their approach to non-PSD matrices. Our approach also relies heavily on the synergy of PSD matrices and ReLU
sampling, but we believe that the generalization we provide in Assumption 3.6, and further generalizations thereof, can
break this dependency.

The work in (Mazumdar & Rawat, 2018) studies the ReLU recovery problem in the context of neural network parameters.
They provide theoretical guarantees for estimating a low-rank matrix observed after adding a bias vector and passing through
a ReLU. They formulate a likelihood based on the distribution of the bias vector, and show that the maximizer of the
likelihood is close to the planted low-rank matrix. However, it is not clear how to solve their proposed likelihood. Their
work was inspired in part by the related work in (Soltanolkotabi, 2017), which uses gradient descent to estimate vectors that
are observed through a known linear operator and then passed through a ReLU, and provides high-probability finite sample
guarantees on the accuracy of the estimates when the known linear measurement operator is random. The matrix completion
problem in (Ganti et al., 2015) seeks to estimate a partially observed matrix, which is a low-rank matrix observed through
an unknown entry-wise monotonic and Lipschitz nonlinearity (like ReLU). They estimate both the nonlinearity and the
low-rank matrix in an alternating fashion. Their guarantees are for estimating the matrix entries after the nonlinearity, as
opposed to the latent low-rank matrix entries directly.

(Foucart et al., 2020) studies the non-symmetric matrix completion problem when the observation pattern is deterministic. It
introduces a methodology for deriving a weighting matrix tailored to the specific sampling pattern presented. They then
provide an efficient initialization scheme by making good use of the weighting matrix for the matrix completion problem.
Their recovery guarantees are with respect to this weighting matrix, so if parts of the true matrix are not recoverable, the
corresponding part of the weight matrix will be zero. This allows them to avoid assumptions on the underlying matrix
(other than standard assumptions on the maximum value of the matrix). Other works in this direction include (Chatterjee,
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2020), which proves necessary asymptotic properties of the sampling patterns for a notion of “stable recovery” when no
assumptions are made on the underlying matrix. The requirements are strong and general, and so the results are somewhat
limited, in particular, their results imply that no sparse deterministic pattern can guarantee stable recovery.

For works that make assumptions on the underlying matrix, (Pimentel-Alarcón et al., 2016) assumes the matrix columns (or
rows) are in general position and gives nearly necessarily assumptions on the deterministic pattern. (Király et al., 2015) also
assumes genericity and makes stronger assumptions. (Liu et al., 2017; 2019) develops a different assumption related to the
spark of the sensing matrix or observation pattern and shows that the planted matrix uniquely fits the entries. (Shapiro et al.,
2018) develops conditions for a low-rank solution to be locally unique, i.e. the unique solution in a neighborhood around
that point, and makes several interesting connections to the above literature. Finally, (Singer & Cucuringu, 2010) makes a
connection to rigidity theory and provides a method to determine whether a unique completion of a given partially observed
matrix and a given rank is possible.

Probabilistic entry-dependent sampling There is a line of work in matrix completion that considers arbitrary sampling
distributions (Foygel et al., 2011; Shamir & Shalev-Shwartz, 2014) and seeks to bound the expected loss, where expectation
is taken with respect to the sampling distribution. Therefore, distinct from our work, if an entry is observed with probability
zero, their results provide no guarantees for recovery. In classical statistics literature, one models the data as a random
variable and the missingness mechanism as random, represented by a binary random variable, and potentially dependent
on the data. In this context a commonly used taxonomy of missing data mechanisms follows (Little & Rubin, 2019),
which defines MCAR, MAR, and MNAR: (i) MCAR, missing completely at random, where the missing data variable
is independent of the data, e.g. entries missing uniformly at random in classical matrix completion literature fits into
this category; (ii) MAR, missing at random where the missing data variable is independent of the unobserved data when
conditioned on that which is observed (data and/or covariates); and (iii) MNAR, missing not at random where the missing
data variable depends on that which is unobserved, even conditioned on that which is observed.

Using this probabilistic setup and terminology, (Hernández-Lobato et al., 2014) proposes a Bayesian approach to jointly
infer a complete data factorization model and a missing data mechanism, also modeled with matrix factorization. They also
provide approximate inference methods for the resulting intractable Bayesian inference problem. (Sportisse et al., 2020a)
considers identifiability of PPCA with MNAR data and provides an estimation algorithm for the principal components in this
setting. (Sportisse et al., 2020b) proposes interesting EM-style methods to estimate the joint distribution of the missing data
mechanism and the data. (Ma & Zhang, 2021) identifies novel sufficient conditions such that the ground truth parameters of
a parametric data model are identifiable, and maximum likelihood identifies them uniquely, in the MNAR setting.

Other papers focused on the MNAR setting include (Yang et al., 2021; Jin et al., 2022; Agarwal et al., 2023). (Sengupta
et al., 2023) compares matrix factorization to multiple imputation, the most popular framework in biostatistics and social
sciences for imputing missing entries in the MAR setting. An empirical work that includes ReLU sampling with other
MNAR sampling schemes is found in (Naik et al., 2022). The authors conclude that convex methods generally do not work
as well as nonconvex in the dependent-sampling setting. Closely related to our work is also (Bhattacharya & Chatterjee,
2022), which assumes that each entry of a low-rank M∗ is observed with some probability f(M∗), where f is applied
entry-wise and is essentially Lipschitz and non-zero. The authors provide modified singular value thresholding and nuclear
norm estimators for this setting and prove consistency in the high-dimensional regime, where the dimensions of M∗ grow
but the rank remains uniformly bounded. A similar estimator is proposed in (Ma & Chen, 2019), and under a low-rank
assumption on the matrix of probabilities of observation, they prove error bounds for estimating the matrix of observation
probabilities as well as the underlying matrix.

More general factorization and completion literature The work in (Saul, 2022) is highly related to our work, though
it is not a matrix completion problem per se. This paper seeks a non-negative low-rank matrix X such that very sparse
observation M = f(X) and f is a given nonlinearity, such as ReLU. They provide an EM algorithm for learning X but no
theoretical guarantees for when this low-rank approximation exists. The work in (Seraghiti et al., 2023) studies the same
problem and provides an alternating block coordinate descent approach.

Finally, the work in (Ongie et al., 2020) studies matrix completion with uniformly missing entries, but the underlying matrix
columns are points on a low-dimensional nonlinear variety. The algorithm for completion lifts the partially observed data
using a polynomial lifting, which creates a non-uniform sampling structure in the lifted space, where an entire deterministic
set of entries in the lifted space must be missing if one entry is missing in the original space. The authors show that it is still
possible to perform completion with this structured missing pattern under certain genericity conditions.
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Table 2. Comparison of the norm of gradient, function value, and completion error returned by GD with different initialization.

σ = 0 αT βT γT

Our init (9.7± 0.16) · 10−7 (3.3± 0.36) · 10−14 (7.6± 0.7) · 10−11

RI init (6.8± 0.3) · 10−3 (7.9± 2.1) · 103 0.5± 0.13
RS init 0.1± 0.45 (7.1± 3.8) · 103 0.45± 0.24

σ = 10−4 αT βT γT

Our init (9.7± 0.14) · 10−7 (1.8± 0.03) · 10−4 (4.4± 0.13) · 10−5

RI init (0.39± 1.2) · 10−5 (8.4± 2.1) · 103 0.51± 0.13
RS init (1.5± 6.5) · 10−3 (8.4± 2.0) · 103 0.51± 0.13

σ = 10−2 αT βT γT

Our init (9.7± 0.17) · 10−7 1.8± 0.03 (4.4± 0.22) · 10−3

RI init (8.1± 0.35) · 10−5 (7.3± 3.3) · 103 0.46± 0.2
RS init (6.4± 0.19) · 10−5 (7.9± 3.6) · 103 0.418± 0.21
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(a) Noiseless case: σ = 0
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(b) Noisy case: σ = 10−2

Figure 8. Completion error and CPU time of the tested methods for MC with ReLU sampling.

C. Experimental Setups and Results
C.1. Additional results and figures

In this section, we provide the full version of Table 1, which includes noise level σ = 10−2. See Table 2. We also provide an
additional figure along the lines of Figure 6, also including noise level σ = 10−2. In Figure 8, we see that all the algorithms
perform very similarly in terms of completion accuracy with σ = 10−2, and their computation time is similar to that for the
noiseless case.

C.2. Experimental Setup for Section 4.3

In this subsection, we give details of the studied methods in Section 4.3.

ADMM for the convex formulation of MC. Noting that the noisy model in (1) is considered in this work, then we study
the following convex formulation to complete the missing entries as studied in (Candes & Plan, 2010):

min
X∈Rn×n

∥X∥∗ s.t. ∥XΩ −MΩ∥2F ≤ δ. (49)

In our implementation, we simply set δ = ∥∆∥2F . It is obvious that the classic formulation in (Recht, 2011) is a special
case of the above formulation when δ = 0 in the noiseless case. Then, one can efficiently solve this convex problem using
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ADMM. By introducing an auxiliary variable Y , we first rewrite Problem (49) as

min
X∈Rn×n

∥Y ∥∗ s.t. X = Y , ∥XΩ −MΩ∥2F ≤ δ. (50)

By introducing a dual variable Λ ∈ Rn×n, one can write the augmented Lagrangian as follows:

L(X,Y ;Λ) = ∥Y ∥∗ + δX (X)− ⟨Λ,X − Y ⟩+ ρ

2
∥X − Y ∥2F , (51)

where X = {X ∈ Rn×n : ∥XΩ −MΩ∥2F ≤ δ}. In the implementation, we randomly genearte an initial point (Y (0),Λ(0)),
whose entries are i.i.d. sampled from the standard normal distribution. Given the current iterate (X(t),Y (t),Λ(t)), ADMM
generates the next iterate as follows:

• To update X , we compute

X(t+1) = argminXL(X,Y (t);Λ(t)).

By letting W (t) = Y (t) +Λ(t)/ρ, we compute its closed-form solution as follows:

X(t+1) = W (t), if ∥W (t)
Ω −MΩ∥2F ≤ δ,

X
(t+1)

ΩC = W
(t)

ΩC , X
(t+1)
Ω =

W
(t)
Ω + tMΩ

1 + t
, where t =

∥W (t)
Ω −MΩ∥2F

δ
− 1, otherwise.

• To update Y , we compute

Y (t+1) = argminY L(X(t+1),Y ;Λ(t)) = argminY
1

2

∥∥∥Y −
(
X(t+1) −Λ(t)/ρ

)∥∥∥2
F
+

1

ρ
∥Y ∥∗,

This is to compute the proximal mapping of the nuclear norm that admits a closed-form solution.

• To update Λ, we have

Λ(t+1) = Λ(t) − ρ
(
X(t+1) − Y (t+1)

)
(52)

We terminate the algorithm when
∥∥X(t) − Y (t)

∥∥
F
≤ 10−4 for some t ≥ 0.

ScaledGD for the formulation in (Tong et al., 2021). According to (Tong et al., 2021), one can solve the following
formulation for MC:

min
L,R∈Rn×r

H(L,R) =
1

2

∥∥(LRT )Ω −MΩ

∥∥2
F
. (53)

Here, we directly use their MATLAB codes downloaded from https://github.com/Titan-Tong/ScaledGD to
implement ScaledGD for solving the above problem. Notably, we employ our tailor-designed initialization in Section 4.1
to initialize ScaledGD, which demonstrates great performance in our experiments. We terminate the algorithm when∥∥∇H(L(t),R(t))

∥∥
F
≤ 10−4 for some t ≥ 0.

PAM for the formulation in (Saul, 2022). To complete sparse nonnegative matrices with low-dimensional structures,
Saul (2022) studied the following formulation:

min
X,Θ∈Rn×n

∥X −Θ∥2F s.t. rank(Θ) = r, XΩ = MΩ, XΩc ≤ 0. (54)

Since the variables X,Θ are separable in this problem, we can directly proximal alternating minimization (PAM) to solve
this problem. In the implementation, we randomly genearte an initial point (X(0),Θ(0)), whose entries are i.i.d. sampled
from the standard normal distribution. Given the current iterate (X(t),Θ(t)), PAM generates the next iterate as follows:

X(t+1) ∈ argminX∥X −Θ(t)∥2F +
α

2
∥X −X(t)∥2F s.t. XΩ = MΩ, XΩc ≤ 0,

Θ(t+1) ∈ argminΘ∥X(t+1) −Θ∥2F +
β

2
∥Θ−Θ(t)∥2F s.t. rank(Θ) = r.

Obviously, the above subproblems both admit closed-form solutions. We terminate the algorithm when ∥X(t+1)−X(t)∥F +
∥Θ(t+1) −Θ(t)∥F ≤ 10−4 for some t ≥ 0.
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Figure 9. Matrix completion for Euclidean distance matrices where only a fraction of the smallest entries are observed. Line shows the
median error, and bars show the 25% and 75% error quantiles for 100 trials.

Momentum PAM for the NMD formulation in (Seraghiti et al., 2023). Noting that Θ in Problem (54) admits the
low-rank structure, one can naturally reformulate this problem into the following nonlinear matrix decomposition (NMD)
formulation:

min
X∈Rn×n,W ,H∈Rn×r

∥X −WH∥2F s.t. XΩ = MΩ, XΩc ≤ 0.

In particular, Seraghiti et al. (2023) have proposed a momentum PAM method for solving this problem. Here, we directly
use their MATLAB codes downloaded from https://gitlab.com/ngillis/ReLU-NMD to implement momentum
PAM for solving this problem. We terminate the algorithm when the relative error ∥X(t) − (W (t)H(t))Ω∥F /∥X(t)∥F ≤
10−4.

Gaussian-Newton matrix recovery (GNMR) for low-rank MC (Zilber & Nadler, 2022). Zilber & Nadler (2022)
employed the Gauss-Newton linearization to design a GNMR method for solving the non-convex formulation of MC. Here,
we directly use the MATLAB codes in (Naik et al., 2022) to implement this method for solving MC with ReLU sampling.

C.3. Euclidean Distance Matrix Completion

Centered Euclidean distance matrices are low-rank and PSD. In applications, we may only have access to a small number
of pairwise distances between points, and we would like to complete the Euclidean distance matrix to know all pairwise
distances. In this section, we experiment with the scenario where we observe only the smallest distances in the matrix. We
generate Euclidean distance matrices synthetically, with dimension 200, and our observation is a fraction of the smallest
entries. As shown in Figure 9, depending on rank and fraction of entries, Algorithm 1 recovers the matrix exactly.

Note that after centering, 50% of entries are negative, but for a real Euclidean distance matrix none of the entries are negative.
In a real data setting, we would want to design an algorithm to approximately center the matrix given only the observed
entries.
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