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Abstract

This paper presents Neural-HATS (Neural Hybrid Ap-
proach for Time Series Causal Discovery), an inno-
vative framework that combines conditional indepen-
dence (CI) testing with continuous optimization-based
learning algorithms to uncover causal structures in
time series data. The approach features an attention-
based encoder-decoder architecture integrated with Ker-
nel Conditional Independence (KCI) testing, enabling
direct CI tests between time series. These tests are then
integrated into continuous optimization learning algo-
rithms for enhanced causal discovery. The integration
not only refines the CI process but also expands the
capabilities of continuous optimization algorithms. Our
experiments demonstrate the efficacy of this hybrid ap-
proach in deriving more accurate causal graphs, show-
ing promise for extensive applications across various
domains where time series data is prevalent.

Introduction
Causal discovery algorithms identify cause-and-effect rela-
tionships within data, represented as causal graphs. These al-
gorithms are generally classified into two types: constraint-
based and score-based methods (Guo et al. 2020; Hasan,
Hossain, and Gani 2023; Zanga, Ozkirimli, and Stella
2022). Constraint-based methods use conditional indepen-
dence tests to define causal directions under a fixed set
of constraints (Krich et al. 2020). This approach often has
high computational costs due to combinatorial optimization.
Score-based methods, however, learn causal graphs by op-
timizing a score function that evaluates possible structures
(Absar, Wu, and Zhang 2023; Marcinkevičs and Vogt 2021;
Pamfil et al. 2020; Sun et al. 2021). Recent score-based tech-
niques utilize continuous optimization and deep learning for
cost function minimization (Vowels, Camgoz, and Bowden
2022), but they require large datasets, which are often chal-
lenging to obtain in practice.

The majority of causal discovery literature primarily ad-
dresses non-temporal, static data, yet real-world data of-
ten take the form of time series, where observations occur
over time. Handling temporal data to uncover causal re-
lationships is crucial in advancing causal discovery tech-

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

niques (Assaad, Devijver, and Gaussier 2022b; Glymour,
Zhang, and Spirtes 2019; Hasan, Hossain, and Gani 2023;
Moraffah et al. 2021). A key approach for time series
causal inference is Granger causality, which states that one
time series can causally influence another if past values
of the former predict future values of the latter, assum-
ing causes precede effects and no hidden confounders exist
(Granger 1969, 1980, 2001; Shojaie and Fox 2022). Early
Granger causality methods used joint probability (Hiemstra
and Jones 1994) and linear regression models (Luo et al.
2015), evolving later to non-linear forms through neural net-
works, such as in TCDF (Nauta, Bucur, and Seifert 2019),
which uses attention-based convolutional neural networks
(CNNs) to predict causality. Score-based approaches apply-
ing Granger causality include methods like DYNOTEARS,
GVAR, NTS-NOTEARS, NTiCD (Absar, Wu, and Zhang
2023; Marcinkevičs and Vogt 2021; Pamfil et al. 2020; Sun
et al. 2021), etc.

Despite advancements in time series causal discovery,
constraint-based approaches grounded in graphical criteria
are relatively scarce. This is likely due to the difficulties in
performing Conditional Independence (CI) tests for time se-
ries data. Traditional CI tests, such as Pearson’s chi-square,
Fisher’s exact test, or kernel-based methods like the Kernel
Conditional Independence (KCI) test (for high-dimensional
settings) (Zhang et al. 2012) are not applicable to temporal
data. Methods such as PCMCI (Runge 2018) adapt CI test-
ing to time series by treating each time point as a variable
and testing for independence across time points, conditioned
on other points. Yet, such methods often struggle with data
scarcity at each time point or depend on strong assumptions
about causal relationships, including stationarity.

To bridge this gap, we introduce a novel CI testing frame-
work tailored for time series analysis. The core idea is to en-
code the predictive information contained in the time series
into vector representations, and then leverage kernel-based
approaches like the KCI to test for conditional independence
directly between different time series. To compute the vec-
tor representations, we propose an attention-based encoder-
decoder architecture that utilizes long-short-term memory
(LSTM) networks as the encoder and decoder and learns
hidden representations from input time series based on the
attention mechanism. Specifically, to conduct the CI test
CI (α, β | C) where α, β are time series and C is a set of



conditioned time series, we feed α and C into the encoding
LSTM, and β into the decoding LSTM, to compute hidden
features. These learned features are used to calculate atten-
tion scores, and the scored features then are aggregated and
fed into a multilayer perceptron (MLP) for decoding, pre-
dicting the output time series β. Following training, the en-
coder and decoder are directly used to generate vector repre-
sentations of the time series data, which then undergo a KCI
test to assess conditional independence.

Similar to other constraint-based methods, a naive imple-
mentation that exhaustively tests conditional independence
for all possible time series combinations incurs exponential
time complexity. In this work, we show that our CI test-
ing method can be innovatively integrated into the contin-
uous optimization framework, resulting in a hybrid algo-
rithm. Our approach employs low-order CI tests to derive
a CI matrix, which can be integrated as a regularization con-
straint in the loss function of any score-based continuous
optimization method that discovers a causal structure from
time series data. This approach leverages CI tests to guide
a continuous optimization process, while efficiently bypass-
ing the need for exhaustive testing. Our experiments demon-
strate that 1-order or even 0-order CI tests can effectively
improve the performance of state-of-the-art continuous op-
timization algorithms. As a hybrid approach, our method
offers several advantages. First, leveraging the strengths of
deep neural networks and the KCI test, our proposed CI test
method avoids assumptions about specific lag structures, sta-
tionarity, or linearity in the data. Second, by combining CI
tests with continuous optimization, our method harnesses
the efficiency of continuous optimization for causal struc-
ture search. Finally, our framework has the potential to fur-
ther benefit from advancements in both CI testing and con-
tinuous optimization algorithms.

Preliminaries
Kernel-based Conditional Independence Test. In this pa-
per, we utilize the Kernel-based Conditional Independence
(KCI) test for conducting conditional independence testing.
Conditional independence tests can be challenging when
applied to continuous datasets, due to issues such as the
curse of dimensionality or unknown data distributions. To
address these challenges, a computationally efficient method
has been proposed in (Zhang et al. 2012). This method lever-
ages kernel matrices of the variables to define a simple test
statistic. The authors demonstrated that independence and
conditional independence can be characterized by the un-
correlatedness between functions in certain kernel spaces.
They proposed a procedure involving the calculation of cen-
tralized kernel matrices and their eigenvalues for continuous
variables. The test statistic is then evaluated from the trace of
the kernel matrices. In our method, we used the RBF func-
tions for kernel computations and implemented the Monte
Carlo KCI tests with a significance level of 1%. The detail
is provided in Appendix B.
Assumptions. In our method, we adopt the following as-
sumptions that are commonly utilized in constraint-based
causal discovery.

Figure 1: Example of a summary causal graph consisting of
both a self-loop and cycles.

Assumption 1 (Causal Markov). Given a set of time series
X , and a directed graph G, if there exist no direct edge from
α to β in G, then β is conditionally independent of α given
C\{α} in X .
Assumption 2 (Causal Faithfulness). Given X and G, if β
is conditionally independent of α given C\{α} in X , then
there exists no direct edge from α to β in G.

The above two assumptions require that C does not con-
tain any descendants (causally downstream variables) of β.
Causal Markov implies that any given point in a time se-
ries is conditionally independent of all other points, given
the past values of its parents (direct causes) for any lag. On
the other hand, Causal Faithfulness implies that the only in-
dependencies that exist are those that can be explained by
the temporal causal structure. That is, if two points in time
are statistically independent, it is because there is no direct
causal influence between them for any lag in the time se-
ries model. Based on these assumptions, constraint-based
approaches establish a connection between the existence of
direct edges and the level of conditional independence to
identify the causal structure from data.

Methodology
Problem Statement
Consider X = (X(1), X(2), . . . , X(d)) comprising d
time series, each with a consistent length of n. Each
time series X(i) is represented as a sequence X(i) =

(x
(i)
0 , x

(i)
1 , . . . , x

(i)
n−1). A causal graph for time series, de-

noted as G = (V,E), can be characterized by a directed
graph, where V represents the set of nodes, and E denotes
the set of directed edges. Each node X(i) ∈ V corresponds
to a specific time series in X , and each edge (X(i), X(j)) ∈
E signifies a direct causal relationship from X(i) to X(j).
There are various types of causal graphs for time series, de-
pending on the level of granularity of the temporal depen-
dencies represented in the graph. One commonly used one
is the summary causal graph.
Definition 1 (Summary Causal Graph). Given multivariate
time series X , a summary causal graph is a directed graph
G = (V,E), where:

V := {X(i) | 1 ≤ i ≤ d}
E := {X(i) → X(j) | if any past values of X(i)

causally influence X(j) with any lag}

Note that, unlike a directed acyclic graph, a summary causal
graph may have self-loops (i.e., a directed edge that starts



and ends at the same node) and cycles (i.e., a directed path
that starts and ends at the same node).

A summary causal graph is often represented by an adja-
cency matrix A ∈ Rd×d, where Ai,j = 1 denotes an edge
from X(i) to X(j). An illustrative example of a summary
causal graph is shown in Fig. 1, where A, B, and C repre-
sent three time series variables. In this example, A is caused
by C and itself, B is caused by A alone and C is caused by
both A and B. Note that this graph features a self-loop at A
and cycles such as A → B → C → A, A → C → A, etc.

In this paper, we aim to uncover causal relationships in
multivariate time series X and represent them in terms of a
summary causal graph. Our hybrid approach involves three
main steps:

1. Encode hidden information from the time series into
vector representations using an attention-based encoder-
decoder framework.

2. Utilize the KCI to test for conditional independence
among variables and form a conditional independence
matrix based on the results.

3. Integrate this matrix into a continuous optimization
causal discovery method as a regularization term, to de-
rive the summary causal graph.

An overview of our proposed approach is outlined in Fig. 2.
The details of each of these steps will be discussed in the
subsequent sections.

Conditional Independence Test
Constraint-based approaches rely on examining conditional
independence relations among the variables of multivariate
time series data. For time series, conditional independence
between two time series α, β given a subset of time series C
is defined as follows (Mogensen, Hansen et al. 2020).

Definition 2 (Conditional independence). Let α, β ∈ V,
C ⊆ V\{α}. We say that β is conditionally independent of
α given C if for any time point t, the past of C until time t
gives us the same predictable information about βw0

as the
past of both α and C until time t, denoted by α ̸→ β | C.

We propose a novel conditional independence (CI) test-
ing framework for time series by first encoding the time
series into vector embeddings and then utilizing the KCI
to test for conditional independence relationships, as de-
tailed in the next subsection. To establish a theoretical ba-
sis for our method, we leverage the conditional transfer en-
tropy CTEα→β|C to quantify the amount of information
flow from α to β specifically due to α and not due to C,
or that cannot be otherwise explained by the past values of β
and C alone. We show that conditional independence tested
based on the above embeddings implies that the correspond-
ing conditional transfer entropy equals 0, which further im-
plies conditional independence between time series.

Specifically, the conditional transfer entropy (CTE) could
be expressed as:

CTEα→β|C = H(βw0
|Cw1

)−H(βw0
|αw1

,Cw1
) (1)

Figure 2: Overview of proposed hybrid temporal causal
discovery, comprising three main components: an attention-
based encoder-decoder, kernel-based conditional indepen-
dence testing, and continuous optimization-based causal dis-
covery method, to derive a summary causal graph A, with d
denoting the number of variables. The architecture of the
encoder-decoder model is depicted on the right.

where βw0 is the time series in a time window from time t
with length w0, αw1

,Cw1
are the time series in a time win-

dow prior to time t with length w1, and H is the conditional
entropy given by

H(βw0 |Cw1) = −
∑

βw0 ,Cw1

P (βw0 ,Cw1)log(P (βw0 |Cw1)).

(2)
We then have the following proposition.
Proposition 1. Let f be a functional mapping f : Rw → Rd
and hX = f(Xw). If f is continuous and bijective, then

hα ⊥⊥ hβ | hC ⇒ CTEα→β|C = 0. (3)

Please refer to Appendix C for the proof. By treating CTE
as a measure of conditional independence between time se-
ries, Proposition 1 implies that

hα ⊥⊥ hβ | hC ⇒ α ̸→ β | C. (4)

Thus, if we can carefully design an encoder network such
that all the information in the domain space is preserved in
the codomain space. Next, we introduce our attention-based
encoder-decoder architecture.

Attention-based Encoder-Decoder Architecture
To facilitate conditional independence test CI (α, β|C)
where C = {C(1), . . . , C(k), . . .} is the conditioning set of
time series, we propose an attention-based encoder-decoder
framework to encode the hidden features of the time se-
ries variables into vector representations. The architectural
overview of our proposed model is presented in the right half
of Fig. 2. This model is structured as a sequence-to-sequence
network, which takes a batch of input time series variables



Figure 3: Data preprocessing before feeding into the
encoder-decoder model, assuming conditional set C con-
tains a single time series.

and processes them through encoding-decoding and atten-
tion layers to forecast future time steps of a target series. The
input series are sequentially passed, one time window at a
time. The encoder and decoder compute hidden embeddings
from the inputs and the target series respectively. These are
then fed into the attention layer to calculate attention scores.
Subsequently, the weighted embeddings are used to com-
pute the context vector, facilitating the prediction of the tar-
get variable by the predictor. Through time series prediction,
our proposed architecture derives vector representations for
all variables in the temporal data.

To simplify the representation, we first assume the causal
graph has no self-loops, and then introduce a straightforward
extension to accommodate scenarios where self-loops might
be present. Below we elaborate on the design of the encoder-
decoder model tailored for datasets devoid of self-loops.
Encoding-Decoding. We employ multi-layer long-short-
term memory (LSTM) networks featuring an attention
mechanism as both encoder and decoder. The encoding
LSTM network f inθ takes the input time series α and C se-
quentially, one after another, where θ indicates the parame-
ter of the model, as shown in Eq. (5). Similarly, the decod-
ing network foutψ takes the output time series β. For each
triple (α, β, C) in the data X , this network learns the non-
linear hidden representations for each time series, with the
attention scores aiding in determining the significance of se-
quences α and C in predicting β.

We use a sliding window technique to preprocess the data
(Fig. 3). The encoder processes a batch of overlapping win-
dows, namely αt:(t+wi−1) and C

(k)
t:(t+wi−1), to predict the

next time-step window of β(t+wi):(t+wi+wo), where wi and
wo denotes the input and output window sizes. For simplic-
ity, we denote (t+ wi − 1) as ti and (t+ wi + wo) as to.
Attention. In this architecture, we have adopted the conven-
tional scaled-dot product attention mechanism outlined in
(Vaswani et al. 2017). We employed different LSTM models
for the input and output sequences. For instance, consider-
ing the triple α, β, C, we compute the hidden embeddings
hα and h

(k)
C for the input sequences α and c(k) ∈ C using

the encoding LSTM f inθ . On the other hand, the hidden em-
bedding hβ for the output sequence β is calculated using the
decoding LSTM model foutψ . Here, hα, hβ , and h

(k)
C belong

to the space Rh1 .

hα = f inθ (αt:ti), h
(k)
C = f inθ (C

(k)
t:ti

), hβ = foutψ (βti+1:to)
(5)

Next, we concatenate the input hidden embeddings to ob-
tain a matrix hα|C = {hα, h(1)

C , . . ., h(k)
C , . . .}, such that we

have hα|C ∈ Rj×h1 with j representing the number of in-
put sequences. This matrix ensures that the attention scores
of the inputs are collectively computed relative to the out-
put sequence. Both hα|C and hβ are then passed through
a cross-attention module to determine the key, query, and
value, as shown in Eq. (6). The weight matrices WQ, WK ,
and WV are trainable parameters of the model, each belong-
ing to the space Rh1×h2 . Consequently, the weight matrices
of the cross-attention module are trained considering both
inputs α and C, and updated accordingly. In this setup, hβ
acts as the query input, while hα|C serves as both key and
value inputs. Thus we have (K,V ) ∈ Rj×h2 and Q ∈ Rh2 .

Q = WQ(hβ), K = WK(hα|C), V = WV (hα|C)
(6)

The cross-attention module effectively merges two dis-
tinct embedding sequences, hα|C and hβ leveraging infor-
mation from the output sequence as well. It computes at-
tention scores for α and C relative to the output sequence
β through matrix multiplication. Subsequently, the attention
scores corresponding to each variable are normalized by ap-
plying a softmax function to the product of Q and K as out-
lined in Eq. (7). The resulting normalized attention scores
are then utilized to calculate the weighted sum of the value
matrix V of the inputs, employing Eq. (8), where D ∈ Rh

2

scores = softmax(QKT ) (7)
D = matmul(scores, V ) (8)

Prediction. The above equation produces a context, D,
which is then fed to the prediction module to forecast the
time series β of window length wo. To generate a normal-
ized prediction, the predictor fϕ incorporates a multilayer
perceptron (MLP) network, featuring one fully connected
layer followed by a sigmoid layer. Leveraging the context
from the attention module, the predictor forecasts the output
time series for the corresponding window βti+1:to as:

β̂ti+1:to = fϕ(D) (9)

Training. The entire model, as described above, is trained
end-to-end, in a batch-wise manner using the mean square
error loss function:

Loss = MSE(β̂ti+1:to , βti+1:to) (10)

The trained hidden embedding matrices hα, hβ , and h
(k)
C are

then used for the conditional independence test as described
in the following section.
Assuming self-loops in the data
We extend our encoder-decoder model to accommodate sce-
narios where each variable in a multivariate time series X =
(X(1), X(2), . . . , X(d)) may be dependent on itself, leading
to a summary causal graph with self-loops. This adjustment



is crucial because, in such graphs, a variable is causally de-
pendent on itself, necessitating the inclusion of its historical
information in the input sequence. To achieve this, we aug-
ment our simplified encoder-decoder architecture by adding
an additional input, denoted as β′, which represents the past
time steps of the target variable. Specifically, we increase the
input dimension and conditioning set size to incorporate an
extra input variable. This adjustment involves expanding the
conditional set such that C = {C ′, β′}. Consequently, we
include β′ for predicting β using our encoder-decoder archi-
tecture. This adaptation is applied to every variable in the
dataset.

In the attention module, the additional input β′ is fed to
the decoder LSTM foutψ . This enables the decoder to extract
the attributes of the target variable from its past and trans-
mit them to the attention mechanism. The cross-attention
module extracts the features of α,C ′, β′ to forecast the fu-
ture time points of β. As previously mentioned, we con-
catenate the separate hidden embeddings into a matrix as
hα|C′β′ = (hα, hC′ , hβ′), which are then projected to key,
query, and value matrices Q, K, and V using matrix multi-
plication.

Hybrid Approach for Time Series Causal
Discovery

Algorithm 1: Neural-HATS Algorithm
1 Input: X
2 M = zeros(n, n)
3 foreach β ∈ V do
4 foreach α ∈ V \{β} do
5 foreach C ∈ V \{α, β} do
6 hα, hβ , hC = fenc−dec(α, β, C)
7 if KCI(hα ⊥⊥ hβ | hC) then
8 M[α, β] = 1;
9 break;

10 return: M

Most of the existing constraint-based algorithms face a
challenge with exponential time complexity when discov-
ering a causal graph. Despite efforts to enhance efficiency
through various algorithms (e.g., (Absar and Zhang 2021;
Assaad, Devijver, and Gaussier 2022a; Entner and Hoyer
2010; Runge et al. 2019)), many of them still suffer from
high complexity. To address this, we propose a hybrid ap-
proach named Neural Hybrid Approach for Time Series
causal discovery (Neural-HATS). By combining conditional
independence testing with continuous optimization meth-
ods, our approach capitalizes on the accuracy of score-based
techniques even with limited data while maintaining man-
ageable time complexity. The encoder-decoder architecture,
discussed above, effectively captures the hidden embeddings
of each time series in the data, which are then employed to
execute kernel-based conditional independence tests on ev-
ery triple within the dataset. Based on this, we identify all
conditional independence relations for low degrees (1 or 0)

and construct a CI matrix to summarize the results, as de-
fined below:
Definition 3 (CI Matrix). The CI matrix M is defined as:

Mα,β =

{
1 ∃C ∈ V \ {α, β}, α ̸→ β|C,

0 otherwise
(11)

In the context of a general continuous optimization-based
causal discovery method, where L represents the loss func-
tion, we can incorporate our CI matrix as a constraint in the
following manner:

min
A

L = L(X, X̂; θ) +R(θ)

s.t. Mα,β ∗ Aα,β = 0 ∀α, β ∈ X
(12)

where X̂ represents the reconstructed or predicted time se-
ries, θ is the set of model parameters, A denotes the ad-
jacency matrix, and R(θ) is any regularization term. The
CI-constraint Mα,β ∗ Aα,β = 0 requires Aα,β = 0 when
Mα,β = 1, denoting a conditional independence relation-
ship between α and β and the absence of a causal link be-
tween them. Inspired by the work of (Ng et al. 2022), we
transform the problem into a continuous optimization frame-
work using the augmented Lagrangian multiplier. Conse-
quently, the CI constraint is converted into another regu-
larization term and added to the loss function outlined in
Eq. (13).

min
A

L = L(X, X̂; θ) +R(θ) + λCI ||M ◦ A||2F (13)

In this expression, ◦ denotes the Hadamard product, and λCI
represents the regularization parameter, serving to balance
the impact of the CI matrix. The term ||M ◦ A||2F plays an
important role in diminishing the influence of the penalized
elements in A by M . Consequently, solving Eq. (13) using
any continuous optimization method enables the inference
of a more precise summary causal graph A. The incorpo-
ration of this information subsequently diminishes the re-
quired sample size for continuous optimization. Addition-
ally, in scenarios involving large and sparse graphs, the use
of CI tests facilitates the removal of more edges, thereby el-
evating the overall efficacy of causal discovery.

The proposed algorithm for generating the CI matrix M is
outlined in Algorithm 1. Initially, M is initialized with zeros,
assuming dependencies between all variable pairs. Then, a
conditional independence test is conducted between every
β and α in V for each C ∈ V\{α, β}, with the condition
that α ̸= β. The KCI test is executed on the hidden embed-
dings obtained from our proposed attention-based encoder-
decoder model. We consider the following hypotheses:

H0 : hα ⊥⊥ hβ | hC (14)
H1 : hα ̸⊥⊥ hβ | hC (15)

Here, hα, hβ , and hC denote the hidden embeddings of time
series α, β, and C respectively, and fenc−dec represents the
computations of f inθ and foutψ . The KCI test uses the non-
linear representation of the time series extracted from the
trained encoder as inputs, ensuring the incorporation of both
historical information and hidden features in the conditional



independence assessment. If H0 is not rejected for any C,
indicating independence between α and β given C, the cor-
responding element in the CI-matrix Mα,β is set to 1, and
the test is repeated for the next triple.

Experiments
In this section, we conduct extensive experiments to evaluate
Neural-HATS using different data. We will first evaluate its
performance of conducting conditional independence tests
alone. Then, we will evaluate its performance of causal dis-
covery by incorporating it with various base models.

Dataset
Synthetic Data. For the generation of multivariate time se-
ries data, we employ the vector autoregressive method, given
by the equation:

Xt = AT
5∑
j=1

βj cos(Xt−j + 1) + ϵ (16)

Here, Xt signifies a vector of d variables at time step t, β
is the regression coefficient, and ϵ represents standard Gaus-
sian noise. The noise scale is kept below 1 and is propor-
tional to the value of n. The non-linear relationship between
time series is introduced through the cos function. The adja-
cency matrix A of the underlying causal graph is generated
using the Erdős–Rényi model (Newman 2018). We employ
a maximum lag of 5 to generate the causal relationships and
initialize the values X0:4 randomly. We have generated mul-
tiple datasets in this way, each possessing a distinct underly-
ing causal graph A.
Real Data. We also evaluate the performance of our Neural-
HATS and other baselines using real-world Netsim dataset
(Smith et al. 2011). This dataset comprises realistic simu-
lated functional magnetic resonance imaging (fMRI) time
series data representing the blood-oxygen-level-dependent
(BOLD) signals across various regions of the human brain.
The underlying connectivity in this dataset reflects the causal
relationships between different brain regions, with the adja-
cency matrix depicting this relationship and the nodes rep-
resenting the various brain regions. The Netsim dataset con-
tains simulations from numerous areas of the brain. From
that, we select the fifth simulation, Sim-5.mat, for our anal-
ysis. This particular simulation consists of data with 5 nodes
and 1200 time steps for 50 participants. We opted for this
simulation due to its ample data length, which is conducive
to training our deep-learning models.

Experimental Setting
We randomly sample 500 consecutive data points from each
dataset to construct the CI matrix using our Neural-HATS
algorithm. Following this, the entire dataset is used to train
the baseline methods based on continuous optimization. For
the CI matrix construction, we perform order-1 CI tests (i.e.,
|C| = 1) on the synthetic data and order-0 (marginal) CI
tests (i.e., C = ∅) on the Netsim dataset. In order to perform
marginal tests CI(α, β|∅), we propose to first manually con-
struct a time series C with random Gaussian noise and then
perform the CI test for CI(α, β|C) as usual.

The encoder-decoder architecture is designed with three
LSTM layers for synthetic data, with h1 = 32 and a dropout
of 0.2. For real data, a different encoder-decoder setup with
two LSTM layers and dimension h1 = 50 is employed. In-
put and output window sizes are set to wi = 10 and wo = 5
for synthetic data, while for real data, wi = 5 and wo = 1 are
used for preprocessing before feeding into the LSTM. The
model is trained with a learning rate of 1×10−3 and a batch
size of 128 to update hα, hβ , and hC for all data instances.
For the attention layers, we use h2 = 2 ∗ h1. Following this,
we perform the KCI test with a significance level of 0.1.
Our model is evaluated across various synthetic datasets and
a real-world dataset. All experiments are conducted in Py-
Torch and run on a computer with Ubuntu 20.04.4 LTS, fea-
turing an Intel(R) Core(TM) i9-10900X CPU and NVIDIA
GeForce RTX 3080 10GB GPU. The codes for replicating
all our experiments are available at https://github.
com/SaimaAbsar/Neural-HATS.

Base Models
Neural-HATS stands out as a hybrid method, providing a
generated CI matrix that can be seamlessly incorporated as
a regularization term into any base continuous optimiza-
tion model for temporal causal discovery. In this study,
we employ four algorithms as the base models, namely
DYNOTEARS (Pamfil et al. 2020), NTS-NOTEARS (Sun
et al. 2021), NTiCD (Absar, Wu, and Zhang 2023), and
GVAR (Marcinkevičs and Vogt 2021), chosen for their con-
tinuous score-based nature. We also consider these methods
as baselines against which we can assess the improvements
offered by Neural-HATS.

Note that as DYNOTEARS and NTS-NOTEARS gener-
ate window causal graphs, we transform them into a sum-
mary graph by considering an edge from one variable to an-
other if there exists an edge with any lag between the corre-
sponding variables in the window causal graph.

Results
Conditional Independence Testing We first present the
results of conditional independence tests conducted on both
synthetic ER data and real-world Netsim data in Table 1.
The table shows the mean and standard deviation across 10
simulations involving different causal graphs. Here, preci-
sion denotes the ratio of the pairs that are genuinely inde-
pendent among all that are detected independent. On the
other hand, recall indicates the proportion of correctly iden-
tified independent pairs among all independent pairs in the
ground truth. Accuracy reflects the percentage of correctly
detected independent and also dependent pairs. Notably,
Neural-HATS demonstrates high accuracy in detecting inde-
pendent pairs within the dataset, as evident from the table.

Hybrid Causal Discovery The performance of the hybrid
method offered by Neural-HATS using all four base mod-
els is illustrated in the plot in Fig. 4. Here, the results for
the four base models before and after incorporating Neural-
HATS are presented. Fig. 4a displays the performance re-
sults for synthetic data, while Fig. 4b shows the results for
the Netsim dataset. The metric values are averaged across 10



(a) Synthetic data.

(b) Real data (Netsim).

Figure 4: The performance of different baselines w/ and w/o
the incorporation of Neural-HATS.

experiment runs and shown along with their variances. For
each experiment, we tuned the regularization parameter λCI
in the logarithmic scale from 0.05 to 500 for all methods
and recorded the highest performance obtained. The plots in
the figure compare the results obtained from the base mod-
els with the hybrid methods, which show that Neural-HATS
generally outperforms all base models in terms of accuracy,
precision, recall, and f1-score.

Additionally, we present the performance obtained by
converting the CI matrix M produced by Neural-HATS di-
rectly to the adjacency matrix A with red dashed lines in
each plot. This conversion simply involves changing the 1’s
in M to 0’s in A as 1 in M represents independence. Here,
we only present the mean metric values for visualization ef-
ficiency, as the standard deviation typically ranges from 0.04
to 0.18. The size of the conditioning set is 1 for the synthetic
data and 0 for the real data. The results from both real and
synthetic data show that the CI prediction falls short of the
best version of Neural-HATS in all settings. This demon-
strates the advantage of Neural-HATS as a hybrid method
that leverages the strengths of both conditional indepen-
dence testing and continuous optimization. This result also
implies that low-order CI tests are sufficient to achieve high
causal discovery accuracy.

Table 1: Independent test results for Synthetic ER data and
Real data, where the metrics show the mean values of 10
experiment runs.

Synthetic data Real data

Accuracy 0.81 ±0.015 0.76 ±0.075
F1-score 0.81 ±0.025 0.83 ±0.066
Precision 0.75 ±0.079 0.87 ±0.040
Recall 0.88 ±0.057 0.80 ±0.103

Figure 5: Performance variation of proposed conditional in-
dependence test with respect to different input-output win-
dow sizes on synthetic data.

Influence of Window Size As implied by Proposition 1,
the conditional independence relations in the embedding
space are maintained in the time series space if the encoder
network can preserve the information in the domain space in
the codomain space. In this experiment, we fix the output di-
mension of the encoding LSTM to 32 and vary the window
sizes of the input and output sequences in order to study the
impact of the varying windows on the performance of CI
testing. The results are shown in Fig. 5 for synthetic data
where the X-axis represents the input-output window sizes.
As can be seen, utilizing an input window length of 10 to
predict the output with a window of 5 in the encoder-decoder
model yields the highest performance metrics in terms of
F1-score, accuracy, precision, and recall. This result shows
the importance of carefully designing the encoder network
as indicated by our theoretical results.

Conclusion
In this paper, we introduced Neural-HATS, a novel method
that merges conditional independence (CI) tests with con-
tinuous optimization for temporal causal discovery. We pro-
posed an attention-based encoder-decoder framework that
extracts vector embeddings from time series data, facilitat-
ing CI tests using kernel-based conditional independence
(KCI) testing. By conducting lower-order CI tests on these
vectors, we constructed a CI matrix, which is then inte-
grated into a continuous optimization-based causal discov-
ery method. We demonstrated performance improvement by
incorporating Neural-HATS into four state-of-the-art score-
based methods using synthetic and real-world data.
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Appendix A: Related Work
Granger causality (Granger 1969; Shojaie and Fox 2022), a
key approach for time series causal discovery, has evolved
from its origins in linear processes to encompass non-linear
relationships through various extensions (Löwe et al. 2022;
Lütkepohl 2005; Sugihara et al. 2012; Sun 2008; Tank
et al. 2021). For example, the Temporal Causal Discovery
Framework (TCDF) (Nauta, Bucur, and Seifert 2019) uti-
lizes CNNs and attention mechanisms, while InGRA (Chu
et al. 2020) applies LSTM-based attention for causal in-
ference. Other methods, such as Tank et al.’s (Tank et al.
2021) sparse neural network approach and Cheng et al.’s
(Cheng et al. 2023) CUTS algorithm, push the boundaries
of Granger causality into non-linear domains. Constraint-
based algorithms infer causal relationships by testing con-
ditional independence (CI), as seen in PCMCI (Runge et al.
2019), which adapts to both linear and nonlinear data. Ex-
tensions such as PCMCI+, LPCMCI, tsFCI, and FCITMI
have been developed to enhance scalability (Assaad, De-
vijver, and Gaussier 2022a; Entner and Hoyer 2010; Ger-
hardus and Runge 2020; Runge 2020), but often assume sta-
tionarity and face dimensionality challenges. Recent devel-
opments like µ-PC (Absar and Zhang 2021) use neural net-
works for CI measures, extending causal discovery to time-
dependent domains, despite limitations like a focus on Re-
current Marked Temporal Point Processes (RMTPP). Score-
based approaches, which optimize predefined score func-
tions to learn Bayesian networks, have also advanced sig-
nificantly with deep learning integration. Methods such as
GVAR (Marcinkevičs and Vogt 2021), DYNOTEARS (Pam-
fil et al. 2020), NTS-NOTEARES (Sun et al. 2021), and
NTiCD (Absar, Wu, and Zhang 2023) have extended these
approaches to time series data to detect Granger causality.
Despite their computational robustness, these methods often
require large datasets to accurately determine causal graphs.

To address existing limitations, hybrid causal discovery
algorithms like NBCB (Assaad et al. 2021), HCM (Li et al.
2022), and SVAR-GFCI (Malinsky and Spirtes 2018) com-
bine different frameworks, enhancing causal discovery in
multivariate time series. Despite their innovations, these
methods still face challenges such as high time complex-
ity and restrictions to DAGs, which may not always be suit-
able for real-world temporal data. Structural equation mod-
els (SEM), used by approaches like TiMINo (Peters, Janz-
ing, and Schölkopf 2013) and VarLinGAM (Hyvärinen et al.
2010), continue to play a significant role in causal discovery,
although they are often limited to linear data and can strug-
gle with larger datasets.

Appendix B: Kernel-based Conditional
Independence Test

The centralized kernal matrices K̃X of the sample x could
be constructed by K̃X = HKXH, where the (i, j)th entry
of KX is k(xi,xj) = exp(− ||xi−xj ||2

2σ2
X

), and σX denotes
the kernel width. Similar notations are used for Y and Z.
The authors in (Zhang et al. 2012) further construct the cen-
tralized kernel matrices K̃Ẍ|Z and K̃Y |Z that corresponds



to the functions f̃(Ẍ) and g̃′. The authors then show that
conditional independence holds if and only if the functions
in certain kernel spaces are uncorrelated, formally expressed
as:
X ⊥⊥ Y |Z ⇐⇒ E[f̃g = 0], ∀f̃ ∈ EXZ and g̃′ ∈ E ′

Y Z (17)
Based on kernel ridge regression and EVD decomposi-

tion they derived an equivalent condition for conditional in-
dependence based on the kernel matrix, which could be ex-
pressed as:

X ⊥⊥ Y |Z ⇐⇒ TCI
d
= T̂CI (18)

TCI and T̂CI denote the test statistic and its asymptotic dis-
tribution:

TCI ≜
1

n
Tr(K̃Ẍ|ZK̃Y |Z) (19)

T̂CI ≜
1

n

n2∑
k=1

λ̇k · z2k (20)

where λ̇k are eigenvalues of ŵŵ⊺. The mean and variance of
T̂CI under null hypothesis X ⊥⊥ Y |Z, on the given sample
D, is:

E[T̂CI |D] =
1

n
Tr(ŵŵ⊺) (21)

Var[T̂CI |D] =
2

n2
Tr[(ŵŵ⊺)2] (22)

Subsequently, an empirical null distribution under the null
hypothesis is simulated by drawing random samples from
the χ2 distribution. Finally, the p-value is calculated as the
probability of the simulated distribution exceeding the test
statistic.

Appendix C: Proof of Proposition 3
Proof. By definition, we have
CTEα→β|C =

∑
βw0

,αw1
,Cw1

P (βw0
, αw1

,Cw1
) log (P (βw0

| αw1
,Cw1

))

−
∑

βw0
,Cw1

P (βw0
,Cw1

) log (P (βw0
| Cw1

))

(23)
Since f is continuous and bijective, the conditional inde-
pendence relationship in the codomain space is maintained
in the domain space. Thus, we have:

hα ⊥⊥ hβ | hC ⇒ αw1
⊥⊥ βw0

| Cw1
(24)

It follows that Pβw0 |αw1 ,Cw1
= Pβw0 |Cw1

and
Pαw1

βw0
|Cw1

= Pαw1
|Cw1

Pβw0
|Cw1

. The first term of
Eq. (23) can be rewritten as:∑
βw0

,αw1
,Cw1

P (βw0 , αw1 ,Cw1) log(P (βw0 | αw1 ,Cw1))

=
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(a) Synthetic data.

(b) Real data (Netsim).

Figure 6: Comparing the causal graphs obtained directly
from the CI matrix and both hybrid and raw baselines.

By plugging the results to Eq. (23) we have CTEα→β|C =
0.

Appendix D: Examples of Hybrid Causal
Discovery

Causal graphs predicted by different baseline methods are
depicted in Fig. 6, arranged from the highest to lowest F1-
scores. This figure compares the causal graphs predicted by
the raw baselines with those generated by the hybrid meth-
ods for both synthetic and real datasets. Additionally, we
present the causal graph obtained directly from the CI matrix
(bottom-left). Compared with the ground truth graph (top-
left), we can see that the hybrid methods yield the most accu-
rate summary causal graphs for these datasets. For instance,
in the synthetic data, the graph predicted by raw GVAR in-
cludes a redundant relationship from node 0 to 1, which
is removed by the CI constraint in the hybrid GVAR+CI
method. We observe a similar redundant edge removal in
NTS-NOTEARS from nodes 1 to 4. We also observe the
discovery of true connections in the hybrid method that were
not detected by the raw baseline, for example, the edge from
node 3 to 4 in NTiCD+CI and the self-loop of node 3 in the
real data by NTS-NOTEARS+CI. For the real data, the false
causal connection from node 1 to 0 by DYNOTEARS is re-
moved by the hybrid DYNOTEARS+CI method, resulting
in a more precise graph.


