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ABSTRACT

In federated learning (FL), clients usually have diverse participation statistics
that are unknown a priori, which can significantly harm the performance of FL
if not handled properly. Existing works aiming at addressing this problem are
usually based on global variance reduction, which requires a substantial amount of
additional memory in a multiplicative factor equal to the total number of clients.
An important open problem is to find a lightweight method for FL in the presence
of clients with unknown participation rates. In this paper, we address this problem
by adapting the aggregation weights in federated averaging (FedAvg) based on
the participation history of each client. We first show that, with heterogeneous
participation statistics, FedAvg with non-optimal aggregation weights can diverge
from the optimal solution of the original FL objective, indicating the need of finding
optimal aggregation weights. However, it is difficult to compute the optimal weights
when the participation statistics are unknown. To address this problem, we present a
new algorithm called FedAU, which improves FedAvg by adaptively weighting the
client updates based on online estimates of the optimal weights without knowing the
statistics of client participation. We provide a theoretical convergence analysis of
FedAU using a novel methodology to connect the estimation error and convergence.
Our theoretical results reveal important and interesting insights, while showing
that FedAU converges to an optimal solution of the original objective and has
desirable properties such as linear speedup. Our experimental results also verify
the advantage of FedAU over baseline methods with various participation patterns.

1 INTRODUCTION

We consider the problem of finding x → Rd that minimizes the distributed finite-sum objective:

f(x) := 1
N

∑N
n=1 Fn(x), (1)

where each individual (local) objective Fn(x) is only computable at the client n. This problem often
arises in the context of federated learning (FL) (Kairouz et al., 2021; Li et al., 2020a; Yang et al.,
2019), where Fn(x) is defined on client n’s local dataset, f(x) is the global objective, and x is the
parameter vector of the model being trained. Each client keeps its local dataset to itself, which is not
shared with other clients or the server. It is possible to extend (1) to weighted average with positive
coefficients multiplied to each Fn(x), but for simplicity, we consider such coefficients to be included
in {Fn(x) : ↑n} (see Appendix A.1) and do not write them out.

Federated averaging (FedAvg) is a commonly used algorithm for minimizing (1), which alternates
between local updates at each client and parameter aggregation among multiple clients with the help
of a server (McMahan et al., 2017). However, there are several challenges in FedAvg, including data
heterogeneity and partial participation of clients, which can cause performance degradation and even
non-convergence if the FedAvg algorithm is improperly configured.

Unknown, Uncontrollable, and Heterogeneous Participation of Clients. Most existing works
on FL with partial client participation assume that the clients participate according to a known or
controllable random process (Chen et al., 2022; Fraboni et al., 2021a; Karimireddy et al., 2020; Li
et al., 2020b;c; Yang et al., 2021). In practice, however, it is common for clients to have heterogeneous
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and time-varying computation power and network bandwidth, which depend on both the inherent
characteristics of each client and other tasks that concurrently run in the system. This generally leads
to heterogeneous participation statistics across clients, which are difficult to know a priori due to
their complex dependency on various factors in the system (Wang et al., 2021). It is also generally
impossible to fully control the participation statistics, due to the randomness of whether a client can
successfully complete a round of model updates (Bonawitz et al., 2019).

The problem of having heterogeneous and unknown participation statistics is that it may cause the
result of FL to be biased towards certain local objectives, which diverges from the optimum of the
original objective in (1). In FL, data heterogeneity across clients is a common phenomenon, resulting
in diverse local objectives {Fn(x)}. The participation heterogeneity is often correlated with data
heterogeneity, because the characteristics of different user populations may be correlated with how
powerful their devices are. Intuitively, when some clients participate more frequently than others, the
final FL result will be benefiting the local objectives of those frequently participating clients, causing
a possible discrimination for clients that participate less frequently.

A few recent works aiming at addressing this problem are based on the idea of global variance
reduction by saving the most recent updates of all the clients, which requires a substantial amount of
additional memory in the order of Nd, i.e., the total number of clients times the dimension of the
model parameter vector (Gu et al., 2021; Jhunjhunwala et al., 2022; Yan et al., 2020; Yang et al.,
2022). This additional memory consumption is either incurred at the server or evenly distributed to
all the clients. For practical FL systems with many clients, this causes unnecessary memory usage
that affects the overall capability and performance of the system. Therefore, we ask the following
important question in this paper:

Is there a lightweight method that provably minimizes the original objective in (1), when the
participation statistics of clients are unknown, uncontrollable, and heterogeneous?

We leverage the insight that we can apply different weights to different clients’ updates in the
parameter aggregation stage of FedAvg. If this is done properly, the effect of heterogeneous
participation can be canceled out so that we can minimize (1), as shown in existing works that
assume known participation statistics (Chen et al., 2022; Fraboni et al., 2021a; Li et al., 2020b;c).
However, in our setting, we do not know the participation statistics a priori, which makes it challenging
to compute (estimate) the optimal aggregation weights. It is also non-trivial to quantify the impact of
estimation error on convergence.

Our Contributions. We thoroughly analyze this problem and make the following novel contributions.

1. To motivate the need for adaptive weighting in parameter aggregation, we show that FedAvg with
non-optimal weights minimizes a different objective (defined in (2)) instead of (1).

2. We propose a lightweight procedure for estimating the optimal aggregation weight at each
client n as part of the overall FL process, based on client n’s participation history. We name this
new algorithm FedAU, which stands for FedAvg with adaptive weighting to support unknown
participation statistics.

3. We analyze the convergence upper bound of FedAU, using a novel method that first obtains a
weight error term in the convergence bound and then further bounds the weight error term via a
bias-variance decomposition approach. Our result shows that FedAU converges to an optimal
solution of the original objective (1). In addition, a desirable linear speedup of convergence with
respect to the number of clients is achieved when the number of FL rounds is large enough.

4. We verify the advantage of FedAU in experiments with several datasets and baselines, with a
variety of participation patterns including those that are independent, Markovian, and cyclic.

Related Work. Earlier works on FedAvg considered the convergence analysis with full client
participation (Gorbunov et al., 2021; Haddadpour et al., 2019; Lin et al., 2020; Malinovsky et al.,
2023; Stich, 2019; Wang & Joshi, 2019; 2021; Yu et al., 2019), which do not capture the fact that
only a subset of clients participates in each round in practical FL systems. Recently, partial client
participation has came to attention. Some works analyzed the convergence of FedAvg where the
statistics or patterns of client participation are known or controllable (Chen et al., 2022; Cho et al.,
2023; Fraboni et al., 2021a;b; Karimireddy et al., 2020; Li et al., 2020b;c; Rizk et al., 2022; Wang &
Ji, 2022; Yang et al., 2021). However, as pointed out by Bonawitz et al. (2019); Wang et al. (2021), the
participation of clients in FL can have complex dependencies on the underlying system characteristics,

2



Published as a conference paper at ICLR 2024

which makes it difficult to know or control each client’s behavior a priori. A recent work analyzed
the convergence for a re-weighted objective (Patel et al., 2022), where the re-weighting is essentially
arbitrary for unknown participation distributions. Some recent works (Gu et al., 2021; Jhunjhunwala
et al., 2022; Yan et al., 2020; Yang et al., 2022) aimed at addressing this problem using variance
reduction, by including the most recent local update of each client in the global update, even if they
do not participate in the current round. These methods require a substantial amount of additional
memory to store the clients’ local updates. In contrast, our work focuses on developing a lightweight
algorithm that has virtually the same memory requirement as the standard FedAvg algorithm.

A related area is adaptive FL algorithms, where adaptive gradients (Reddi et al., 2021; Wang et al.,
2022b;c) and adaptive local updates (Ruan et al., 2021; Wang et al., 2020) were studied. Some recent
works viewed the adaptation of aggregation weights from different perspectives (Tan et al., 2022;
Wang et al., 2022a; Wu & Wang, 2021), which do not address the problem of unknown participation
statistics. All these methods are orthogonal to our work and can potentially work together with our
algorithm. To the best of our knowledge, no prior work has studied weight adaptation in the presence
of unknown participation statistics with provable convergence guarantees.

A uniqueness in our problem is that the statistics related to participation need to be collected across
multiple FL rounds. Although Wang & Ji (2022) aimed at extracting a participation-specific term in
the convergence bound, that approach still requires the aggregation weights in each round to sum to
one (thus coordinated participation); it also requires an amplification procedure over multiple rounds
for the bound to hold, making it difficult to tune the hyperparameters. In contrast, this paper considers
uncontrolled and uncoordinated participation without sophisticated amplification mechanisms.

2 FEDAVG WITH PLUGGABLE AGGREGATION WEIGHTS

Algorithm 1: FedAvg with pluggable
aggregation weights

Input: ω, ε, x0, I; Output: {xt : ↑t};
1 Initialize t0 ↓ 0, u ↓ 0;
2 for t = 0, . . . , T ↔ 1 do
3 for n = 1, . . . , N in parallel do
4 Sample Ilnt from an unknown process;
5 if Ilnt = 1 then
6 yn

t,0 ↓ xt;
7 for i = 0, . . . , I ↔ 1 do
8 yn

t,i+1 ↓ yn
t,i ↔ ωgn(yn

t,i);
9 !n

t ↓ yn
t,I ↔ xt;

10 else
11 !n

t ↓ 0;
12 ϑ

n
t ↓ComputeWeight({Ilnω :ϖ<t});

13 xt+1 ↓ xt +
ε
N

∑N
n=1 ϑ

n
t !

n
t ;

We begin by describing a generic FedAvg
algorithm that includes a separate oracle
for computing the aggregation weights, as
shown in Algorithm 1. In this algorithm,
there are a total of T rounds, where each
round t includes I steps of local stochastic
gradient descent (SGD) at a participating
client. For simplicity, we consider I to be
the same for all the clients, while noting that
our algorithm and results can be extended
to more general cases. We use ω > 0 and
ε > 0 to denote the local and global step
sizes, respectively. The variable x0 is the
initial model parameter, Ilnt is an identity
function that is equal to one if client n

participates in round t and zero otherwise,
and gn(·) is the stochastic gradient of the
local objective Fn(·) for each client n.

The main steps of Algorithm 1 are similar
to those of standard FedAvg, but with a few notable items as follows. 1) In Line 4, we clearly state
that we do not have prior knowledge of the sampling process of client participation. 2) Line 12
calls a separate oracle to compute the aggregation weight ϑn

t (ϑn
t > 0) for client n in round t. This

computation is done on each client n alone, without coordinating with other clients. We do not need
to save the full sequence of participation record {Ilnω : ϖ < t}, because it is sufficient to save an
aggregated metric of the participation record for weight computation. In Section 3, we will see that
we use the average participation interval for weight computation in FedAU, where the average can
be computed in an online manner. We also note that we do not include Ilnt in the current round t for
computing the weight, which is needed for the convergence analysis so that ϑn

t is independent of
the local parameter yn

t,i when the initial parameter of round t (i.e., xt) is given. 3) The parameter
aggregation is weighted by ϑ

n
t for each client n in Line 13.

Objective Inconsistency with Improper Aggregation Weights. We first show that without weight
adaptation, FedAvg minimizes an alternative objective that is generally different from (1).
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Theorem 1 (Objective minimized at convergence, informal). When Ilnt ↗ Bernoulli(pn) and the
weights are time-constant, i.e., ϑn

t = ϑn but generally ϑn may not be equal to ϑn→ (n ↘= n
→), with

properly chosen learning rates ω and ε and some other assumptions, Algorithm 1 minimizes the
following objective:

h(x) := 1
P

∑N
n=1 ϑnpnFn(x), (2)

where P :=
∑N

n=1 ϑnpn.

A formal version of the theorem is given in Appendix B.4. Theorem 1 shows that, even in the
special case where each client n participates according to a Bernoulli distribution with probability
pn, choosing a constant aggregation weight such as ϑn = 1, ↑n as in standard FedAvg causes
the algorithm to converge to a different objective that is weighted by pn. As mentioned earlier,
this implicit weighting discriminates clients that participate less frequently. In addition, since the
participation statistics (here, the probabilities {pn}) of clients are unknown, the exact objective being
minimized is also unknown, and it is generally unreasonable to minimize an unknown objective. This
means that it is important to design an adaptive method to find the aggregation weights, so that we
can minimize (1) even when the participation statistics are unknown, which is our focus in this paper.

The full proofs of all mathematical claims are in Appendix B.

3 FEDAU: ESTIMATION OF OPTIMAL AGGREGATION WEIGHTS

In this section, we describe the computation of aggregation weights {ϑn
t } based on the participation

history observed at each client, which is the core of our FedAU algorithm that extends FedAvg. Our
goal is to choose {ϑn

t } to minimize the original objective (1) as close as possible.

Intuition. We build from the intuition in Theorem 1 and design an aggregation weight adaptation
algorithm that works for general participation patterns, i.e., not limited to the Bernoulli distribution
considered in Theorem 1. From (2), we see that if we can choose ϑn = 1/pn, the objective being
minimized is the same as (1). We note that pn ≃ 1

T

∑T↑1
t=0 Ilnt for each client n when T is large, due

to ergodicity of the Bernoulli distribution considered in Theorem 1. Extending to general participation
patterns that are not limited to the Bernoulli distribution, intuitively, we would like to choose the
weight ϑn to be inversely proportional to the average frequency of participation. In this way, the bias
caused by lower participation frequency is “canceled out” by the higher weight used in aggregation.
Based on this intuition, our goal of aggregation weight estimation is as follows.
Problem 1 (Goal of Weight Estimation, informal). Choose {ϑn

t } so that its long-term average (i.e.,
for large T ) 1

T

∑T↑1
t=0 ϑ

n
t is close to 1

1
T

∑T↑1
t=0 Ilnt

, for each n.

Some previous works have discovered this need of debiasing the skewness of client participation
(Li et al., 2020c; Perazzone et al., 2022) or designing the client sampling scheme to ensure that the
updates are unbiased (Fraboni et al., 2021a; Li et al., 2020b). However, in our work, we consider the
more realistic case where the participation statistics are unknown, uncontrollable, and heterogeneous.
In this case, we are unable to directly find the optimal aggregation weights because we do not know
the participation statistics a priori.

Technical Challenge. If we were to know the participation pattern for all the T rounds, an immediate
solution to Problem 1 is to choose ϑ

n
t (for each client n) to be equal to T divided by the number

of rounds where client n participates. We can see that this solution is equal to the average interval
between every two adjacent participating rounds, assuming that the first interval starts right before
the first round t = 0. However, since we do not know the future participation pattern or statistics in
each round t, we cannot directly apply this solution. In other words, in every round t, we need to
perform an online estimation of the weight ϑn

t based on the participation history up to round t↔ 1.

A challenge in this online setting is that the estimation accuracy is related to the number of times each
client n has participated until round t↔ 1. When t is small and client n has not yet participated in any
of the preceding rounds, we do not have any information about how to choose ϑn

t . For an intermediate
value of t where client n has participated only in a few rounds, we have limited information about the
choice of ϑn

t . In this case, if we directly use the average participation interval up to the (t↔ 1)-th
round, the resulting ϑ

n
t can be far from its optimal value, i.e., the estimation has a high variance if
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the client participation follows a random process. This is problematic especially when there exists
a long interval between two rounds (both before the (t↔ 1)-th round) where the client participates.
Although the probability of the occurrence of such a long interval is usually low, when it occurs, it
results in a long average interval for the first t rounds when t is relatively small, and using this long
average interval as the value of ϑn

t may cause instability to the training process.

Key Idea. To overcome this challenge, we define a positive integer K as a “cutoff” interval length. If
a client has not participated for K rounds, we consider K to be a participation interval that we sample
and start a new interval thereafter. In this way, we can limit the length of each interval by adjusting
K. By setting ϑ

n
t to be the average of this possibly cutoff participation interval, we overcome the

aforementioned challenge. From a theoretical perspective, we note that ϑn
t will be a biased estimation

when K < ⇐ and the bias will be larger when K is smaller. In contrast, a smaller K leads to a
smaller variance of ϑn

t , because we collect more samples in the computation of ϑn
t with a smaller K.

Therefore, an insight here is that K controls the bias-variance tradeoff 1 of the aggregation weight
ϑ
n
t . In Section 4, we will formally show this property and obtain desirable convergence properties of

the weight error term and the overall objective function (1), by properly choosing K in the theoretical
analysis. Our experimental results in Section 5 also confirm that choosing an appropriate value of
K < ⇐ improves the performance in most cases.

Algorithm 2: Weight computation in FedAU
Input: K, {Ilnt : ↑t, n}; Output: {ϑn

t : ↑t, n};
1 for n = 1, . . . , N in parallel do
2 Initialize Mn ↓ 0, S↓

n ↓ 0, ϑn
0 ↓ 1;

3 for t = 1, . . . , T ↔ 1 do
4 S

↓
n ↓ S

↓
n + 1;

5 if Ilnt↑1 = 1 or S↓
n = K then

6 Sn ↓ S
↓
n; // final interval computed

7 ϑ
n
t ↓

{
Sn, if Mn = 0
Mn·ϑn

t↑1+Sn

Mn+1 , if Mn ⇒ 1
;

8 Mn ↓ Mn + 1;
9 S

↓
n ↓ 0;

10 else
11 ϑ

n
t ↓ ϑ

n
t↑1;

Online Algorithm. Based on the above
insight, we describe the procedure of
computing the aggregation weights {ϑn

t },
as shown in Algorithm 2. The computation
is independent for each client n. In this
algorithm, the variable Mn denotes the
number of (possibly cutoff) participation
intervals that have been collected, and S

↓
n

denotes the the length of the last interval
that is being computed. We compute the
interval by incrementing S

↓
n by one in every

round, until the condition in Line 5 holds.
When this condition holds, Sn = S

↓
n is

the actual length of the latest participation
interval with possible cutoff. As explained
above, we always start a new interval when
S
↓
n reaches K. Also note that we consider

Ilnt↑1 instead of Ilnt in this condition and start
the loop from t = 1 in Line 3, to align with the requirement in Algorithm 1 that the weights are
computed from the participation records before (not including) the current round t. For t = 0, we
always use ϑ

n
t = 1. In Line 7, we compute the weight using an online averaging method, which is

equivalent to averaging over all the participation intervals that have been observed until each round t.
With this method, we do not need to save all the previous participation intervals. Essentially, the
computation in each round t only requires three state variables that are scalars, including Mn, S↓

n,
and the previous round’s weight ϑn

t↑1. This makes this algorithm extremely memory efficient.

In the full FedAU algorithm, we plug in the result of ϑt
n for each round t obtained from Algorithm 2

into Line 12 of Algorithm 1. In other words, ComputeWeight in Algorithm 1 calls one step of
update that includes Lines 4–11 of Algorithm 2.

Compatibility with Privacy-Preserving Mechanisms. In our FedAU algorithm, the aggregation
weight computation (Algorithm 2) is done individually at each client, which only uses the client’s
participation states and does not use the training dataset or the model. When using these aggregation
weights as part of FedAvg in Algorithm 1, the weight ϑn

t can be multiplied with the parameter update
!n

t at each client n (and in each round t) before the update is transmitted to the server. In this way,
methods such as secure aggregation (Bonawitz et al., 2017) can be applied directly, since the server
only needs to compute a sum of the participating clients’ updates. Differentially private FedAvg
methods (Andrew et al., 2021; McMahan et al., 2018) can be applied in a similar way.

1Note that we focus on the aggregation weights here, which is different from classical concept of the
bias-variance tradeoff of the model.
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Practical Implementation. We will see from our experimental results in Section 5 that a coarsely
chosen value of K gives a reasonably good performance in practice, which means that we do not
need to fine-tune K. There are also other engineering tweaks that can be made in practice, such as
using an exponentially weighted average in Line 7 of Algorithm 2 to put more emphasis on the recent
participation characteristics of clients. In an extreme case where each client participates only once, a
possible solution is to group clients that have similar computation power (e.g., same brand/model of
devices) and are in similar geographical locations together. They may share the same state variables
Mn, S↓

n, and ϑ
n
t↑1 used for weight computation in Algorithm 2. We note that according to the lower

bound derived by Yang et al. (2022), if each client participates only once, it is impossible to have an
algorithm to converge to the original objective without sharing additional information.

4 CONVERGENCE ANALYSIS

Assumption 1. The local objective functions are L-smooth, such that

⇑⇓Fn(x)↔⇓Fn(y)⇑ ⇔ L ⇑x↔ y⇑ , ↑x,y, n. (3)

Assumption 2. The local stochastic gradients and unbiased with bounded variance, such that

E [gn(x)|x] = ⇓Fn(x) and E
[
⇑gn(x)↔⇓Fn(x)⇑2

∣∣∣x
]
⇔ ϱ

2
, ↑x, n. (4)

In addition, the stochastic gradient noise gn(x)↔⇓Fn(x) is independent across different rounds
(indexed by t), clients (indexed by n), and local update steps (indexed by i).
Assumption 3. The divergence between local and global gradients is bounded, such that

⇑⇓Fn(x)↔⇓f(x)⇑2 ⇔ ς
2
, ↑x, n. (5)

Assumption 4. The client participation random variable Ilnt is independent across different t and
n. It is also independent of the stochastic gradient noise. For each client n, we define pn such that
E [Ilnt ] = pn, i.e., Ilnt ↗ Bernoulli(pn), where the value of pn is unknown to the system a priori.

Assumptions 1–3 are commonly used in the literature for the convergence analysis of FL algorithms
(Cho et al., 2023; Wang & Ji, 2022; Yang et al., 2021). Our consideration of independent participation
across clients in Assumption 4 is more realistic than the conventional setting of sampling among all
the clients with or without replacement (Li et al., 2020c; Yang et al., 2021), because it is difficult to
coordinate the participation across a large number of clients in practical FL systems.

Challenge in Analyzing Time-Dependent Participation. Regarding the assumption on the
independence of Ilnt across time (round) t in Assumption 4, the challenge in analyzing the more
general time-dependent participation is due to the complex interplay between the randomness in
stochastic gradient noise, participation identities {Ilnt }, and estimated aggregation weights {ϑn

t }. In
particular, the first step in our proof of the general descent lemma (see Appendix B.3, the specific
step is in (B.3.6)) would not hold if Ilnt is dependent on the past, because the past information is
contained in xt and {ϑn

t } that are conditions of the expectation. We emphasize that this is a purely
theoretical limitation, and this time-independence of client participation has been assumed in the
majority of works on FL with client sampling (Fraboni et al., 2021a;b; Karimireddy et al., 2020; Li
et al., 2020b;c; Yang et al., 2021). The novelty in our analysis is that we consider the true values of
{pn} to be unknown to the system. Our experimental results in Section 5 show that FedAU provides
performance gains also for Markovian and cyclic participation patterns that are both time-dependent.
Assumption 5. We assume that either of the following holds and define ”G accordingly.

• Option 1: Nearly optimal weights. Under the assumption that 1
N

∑N
n=1 (pnϑ

n
t ↔ 1)2 ⇔ 1

81
for all t, we define ”G := 0.

• Option 2: Bounded global gradient. Under the assumption that ⇑⇓f(x)⇑2 ⇔ G
2 for any x,

we define ”G := G
2.

Assumption 5 is only needed for Theorem 2 (stated below) and not for Theorem 1. Here, the bounded
global gradient assumption is a relaxed variant of the bounded stochastic gradient assumption
commonly used in adaptive gradient algorithms (Reddi et al., 2021; Wang et al., 2022b;c). Although
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focusing on very different problems, our FedAU method shares some similarities with adaptive
gradient methods in the sense that we both adapt the weights used in model updates, where the
adaptation is dependent on some parameters that progressively change during the training process;
see Appendix A.2 for some further discussion. For the nearly optimal weights assumption, we can
see that it holds if 8/9pn ⇔ ϑ

n
t ⇔ 10/9pn, which means a toleration of a relative error of 1/9 ≃ 11%

from the optimal weight 1/pn. Theorem 2 holds under either of these two additional assumptions.

Main Results. We now present our main results, starting with the convergence of Algorithm 1 with
arbitrary (but given) weights {ϑt

n} with respect to (w.r.t.) the original objective function in (1).
Theorem 2 (Convergence error w.r.t. (1)). Let ω ⇔ 1

4
↔
15LI

and ωε ⇔ min
{

1
4LI ;

N
54LIQ

}
, where

Q := maxt↗{0,...,T↑1}
1
N

∑N
n=1 pn(ϑ

n
t )

2. When Assumptions 1–5 hold, the result {xt} obtained
from Algorithm 1 satisfies:
1
T

∑T↑1
t=0 E

[
⇑⇓f(xt)⇑2

]
(6)

⇔O
(

F
ωεIT

+
”G+ς

2+ω
2
L
2
Iϱ

2

NT

T↑1∑

t=0

N∑

n=1

E
[
(pnϑ

n
t ↔1)2

]
+
ωεLQ

(
Iς

2+ϱ
2
)

N
+ ω

2
L
2
I
(
Iς

2+ϱ
2
)
)
,

where F := f(x0)↔ f
↘, and f

↘ := minx f(x) is the truly minimum value of the objective in (1).

The proof of Theorem 2 includes a novel step to obtain 1
NT

∑T↑1
t=0

∑N
n=1 E

[
(pnϑn

t ↔ 1)2
]

(ignoring
the other constants), referred to as the weight error term, that characterizes how the aggregation
weights {ϑt

n} affect the convergence. Next, we focus on {ϑn
t } obtained from Algorithm 2.

Theorem 3 (Bounding the weight error term). For {ϑn
t } obtained from Algorithm 2, when T ⇒ 2,

1

NT

T↑1∑

t=0

N∑

n=1

E
[
(pnϑ

n
t ↔ 1)2

]
⇔ O

(
K log T

T
+

1

N

N∑

n=1

(1↔ pn)
2K

)
. (7)

The proof of Theorem 3 is based on analyzing the unique statistical properties of the possibly cutoff
participation interval Sn obtained in Algorithm 2. The first term of the bound in (7) is related to
the variance of ϑn

t . This term increases linearly in K, because when K gets larger, the minimum
number of samples of Sn that are used for computing ϑ

n
t gets smaller, thus the variance upper bound

becomes larger. The second term of the bound in (7) is related to the bias of ϑn
t , which measures

how far E [ϑn
t ] departs from the desired quantity of 1/pn. Since 0 < pn ⇔ 1, this term decreases

exponentially in K. This result confirms the bias-variance tradeoff of ϑn
t that we mentioned earlier.

Corollary 4 (Convergence of FedAU). Let K = ↖logc T ↙ with c := 1/(1 ↑ minn pn)
2, ω =

min
{

1
LI

↔
T
; 1
4
↔
15LI


, and choose ε such that ωε = min

{
FN

Q(Iϖ2+ϱ2)LIT ;
1

4LI ;
N

54LIQ


. When

T ⇒ 2, the result {xt} obtained from Algorithm 1 that uses {ϑn
t } obtained from Algorithm 2 satisfies

1
T

∑T↑1
t=0 E

[
⇑⇓f(xt)⇑2

]

⇔ O
(
ϱ
∝
LFQ∝
NIT

+
ς
∝
LFQ∝
NT

+

(
”G + ς

2 + ϱ2

IT

)
R log2 T

T
+

LF
(
1 + Q

N

)
+ ς

2 + ϱ2

I

T

)
, (8)

where Q and ”G are defined in Theorem 2 and R := 1/log c.

The result in Corollary 4 is the convergence upper bound of the full FedAU algorithm. Its proof
involves further bounding (7) in Theorem 3, when choosing K = logc T , and plugging back the
result along with the values of ω and ε into Theorem 2. It shows that, with properly estimated
aggregation weights {ϑn

t } using Algorithm 2, the error approaches zero as T ′ ⇐, although the
actual participation statistics are unknown. The first two terms of the bound in (8) dominate when T

is large enough, which are related to the stochastic gradient variance ϱ
2 and gradient divergence ς

2.
The error caused by the fact that {pn} is unknown is captured by the third term of the bound in (8),
which has an order of O( log2 T/T). We also see that, as long as we maintain T to be large enough so
that the first two terms of the bound in (8) dominate, we can achieve the desirable property of linear
speedup in N . This means that we can keep the same convergence error by increasing the number
of clients (N ) and decreasing the number of rounds (T ), to the extent that T remains large enough.
Our result also recovers existing convergence bounds for FedAvg in the case of known participation
probabilities (Karimireddy et al., 2020; Yang et al., 2021); see Appendix A.3 for details.
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5 EXPERIMENTS

We evaluate the performance of FedAU in experiments. More experimental setup details, including
the link to the code, and results are in Appendices C and D, respectively.

Datasets, Models, and System. We consider four image classification tasks, with datasets including
SVHN (Netzer et al., 2011), CIFAR-10 (Krizhevsky & Hinton, 2009), CIFAR-100 (Krizhevsky &
Hinton, 2009), and CINIC-10 (Darlow et al., 2018), where CIFAR-100 has 100 classes (labels) while
the other datasets have 10 classes. We use FL train convolutional neural network (CNN) models
of slightly different architectures for these tasks. We simulate an FL system that includes a total of
N = 250 clients, where each n has its own participation pattern.

Heterogeneity. Similar to existing works (Hsu et al., 2019; Reddi et al., 2021), we use a Dirichlet
distribution with parameter φd = 0.1 to generate the class distribution of each client’s data, for
a setup with non-IID data across clients. Here, φd specifies the degree of data heterogeneity,
where a smaller φd indicates a more heterogeneous data distribution. In addition, to simulate the
correlation between data distribution and client participation frequency as motivated in Section 1,
we generate a class-wide participation probability distribution that follows a Dirichlet distribution
with parameter φp = 0.1. Here, φp specifies the degree of participation heterogeneity, where a
smaller φp indicates more heterogeneous participation across clients. We generate client participation
patterns following a random process that is either Bernoulli (independent), Markovian, or cyclic,
and study the performance of these types of participation patterns in different experiments. The
participation patterns have a stationary probability pn, for each client n, that is generated according
to a combination of the two aforementioned Dirichlet distributions, and the details are explained in
Appendix C.6. We enforce the minimum pn, ↑n, to be 0.02 in the main experiments, which is relaxed
later. This generative approach creates an experimental scenario with non-IID client participation,
while our FedAU algorithm and most baselines still do not know the actual participation statistics.

Baselines. We compare our FedAU algorithm with several baselines. The first set of baselines includes
algorithms that compute an average of parameters over either all the participating clients (average
participating) or all the clients (average all) in the aggregation stage of each round, where the latter
case includes updates of non-participating clients that are equal to zero as part of averaging. These
two baselines encompass most existing FedAvg implementations (e.g., McMahan et al. (2017); Patel
et al. (2022); Yang et al. (2021)) that do not address the bias caused by heterogeneous participation
statistics. They do not require additional memory or knowledge, thus they work under the same

Table 1: Accuracy results (in %) on training and test data
Participation

pattern
Dataset SVHN CIFAR-10 CIFAR-100 CINIC-10

Method / Metric Train Test Train Test Train Test Train Test

Bernoulli

FedAU (ours, K ≃ ⇐) 90.4±0.5 89.3±0.5 85.4±0.4 77.1±0.4 63.4±0.6 52.3±0.4 65.2±0.5 61.5±0.4
FedAU (ours, K = 50) 90.6±0.4 89.6±0.4 86.0±0.5 77.3±0.3 63.8±0.3 52.1±0.6 66.7±0.3 62.7±0.2

Average participating 89.1±0.3 87.2±0.3 83.5±0.9 74.1±0.8 59.3±0.4 48.8±0.7 61.1±2.3 56.6±2.0
Average all 88.5±0.5 87.0±0.3 81.0±0.9 72.7±0.9 58.2±0.4 47.9±0.5 60.5±2.3 56.2±2.0

FedVarp (250⇒ memory) 89.6±0.5 88.9±0.5 84.2±0.3 77.9±0.2 57.2±0.9 49.2±0.8 64.4±0.6 62.0±0.5
MIFA (250⇒ memory) 89.4±0.3 88.7±0.2 83.5±0.6 77.5±0.3 55.8±1.1 48.4±0.7 63.8±0.7 61.5±0.5

Known participation statistics 89.2±0.5 88.4±0.5 84.3±0.5 77.0±0.5 59.4±0.7 50.6±0.4 63.2±0.6 60.5±0.5

Markovian

FedAU (ours, K ≃ ⇐) 90.5±0.4 89.3±0.4 85.3±0.3 77.1±0.3 63.2±0.5 51.8±0.3 64.9±0.3 61.2±0.2
FedAU (ours, K = 50) 90.6±0.3 89.5±0.3 85.9±0.5 77.2±0.3 63.5±0.4 51.7±0.3 66.3±0.4 62.3±0.2

Average participating 89.0±0.3 87.1±0.2 83.4±0.9 74.2±0.7 59.2±0.4 48.6±0.4 61.5±2.3 56.9±1.9
Average all 88.4±0.6 86.8±0.7 80.8±1.0 72.5±0.5 57.8±0.9 47.7±0.5 59.9±2.8 55.7±2.2

FedVarp (250⇒ memory) 89.6±0.3 88.6±0.2 84.0±0.3 77.8±0.2 56.4±1.1 48.8±0.5 64.6±0.4 62.1±0.4
MIFA (250⇒ memory) 89.1±0.3 88.4±0.2 83.0±0.4 77.2±0.4 55.1±1.2 48.1±0.6 63.5±0.7 61.2±0.6

Known participation statistics 89.5±0.2 88.6±0.2 84.5±0.4 76.9±0.3 59.7±0.5 50.3±0.5 63.5±0.9 60.7±0.6

Cyclic

FedAU (ours, K ≃ ⇐) 89.8±0.6 88.7±0.6 84.2±0.8 76.3±0.7 60.9±0.6 50.6±0.3 63.5±1.0 60.0±0.8
FedAU (ours, K = 50) 89.9±0.6 88.8±0.6 84.8±0.6 76.6±0.4 61.3±0.8 51.0±0.5 64.5±0.9 60.9±0.7

Average participating 87.4±0.5 85.5±0.7 81.6±1.2 73.3±0.8 58.1±1.0 48.3±0.8 58.9±2.1 55.0±1.6
Average all 89.1±0.8 87.4±0.8 83.1±1.0 73.8±0.8 59.7±0.3 48.8±0.4 62.9±1.7 57.6±1.5

FedVarp (250⇒ memory) 84.8±0.5 83.9±0.6 79.7±0.9 75.3±0.7 50.9±0.5 45.9±0.4 60.4±0.7 58.5±0.6
MIFA (250⇒ memory) 78.6±1.2 77.4±1.1 73.0±1.3 70.6±1.1 44.8±0.6 41.1±0.6 51.2±1.0 50.2±0.9

Known participation statistics 89.9±0.7 88.7±0.6 83.6±0.7 76.1±0.5 60.2±0.4 50.8±0.4 62.6±0.8 59.8±0.7

Note to the table. The top part of the sub-table for each participation pattern includes our method and baselines in the same setting. The bottom
part of each sub-table includes baselines that require either additional memory or known participation statistics. For each column, the best values
in the top and bottom parts are highlighted with bold and underline, respectively. The total number of rounds is 2, 000 for SVHN; 10, 000 for
CIFAR-10 and CINIC-10; 20, 000 for CIFAR-100. The mean and standard deviation values shown in the table are computed over experiments
with 5 different random seeds, for the average accuracy over the last 200 rounds (measured at an interval of 10 rounds).
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system assumptions as FedAU. The second set of baselines has algorithms that require extra resources
or information, including FedVarp (Jhunjhunwala et al., 2022) and MIFA (Gu et al., 2021), which
require N = 250 times of memory, and an idealized baseline that assumes known participation
statistics and weighs the clients’ contributions using the reciprocal of the stationary participation
probability. For each baseline, we performed a separate grid search to find the best ω and ε.

Results. The main results are shown in Table 1, where we choose K = 50 for FedAU with finite
K based on a simple rule-of-thumb without detailed search. Our general observation is that FedAU
provides the highest accuracy compared to almost all the baselines, including those that require
additional memory and known participation statistics, except for the test accuracy on the CIFAR-10
dataset where FedVarp performs the best. Choosing K = 50 generally gives a better performance
than choosing K ′ ⇐ for FedAU, which aligns with our discussion in Section 3.

The reason that FedAU can perform better than FedVarp and MIFA is that these baselines keep
historical local updates, which may be outdated when some clients participate infrequently. Updating
the global model parameter with outdated local updates can lead to slow convergence, which is similar
to the consequence of having stale updates in asynchronous SGD (Recht et al., 2011). In contrast,
at the beginning of each round, participating clients in FedAU always start with the latest global
parameter obtained from the server. This avoids stale updates, and we compensate heterogeneous
participation statistics by adapting the aggregation weights, which is a fundamentally different and
more efficient method compared to tracking historical updates as in FedVarp and MIFA.

It is surprising that FedAU even performs better than the case with known participation statistics.
To understand this phenomenon, we point out that in the case of Bernoulli-distributed participation
with very low probability (e.g., pn = 0.02), the empirical probability of a sample path of a client’s
participation can diverge significantly from pn. For T = 10, 000 rounds, the standard deviation of
the total number of participated rounds is ϱ→ :=


Tpn(1↔ pn) = 0.0196 = 14 while the mean is

µ
→ := Tpn = 200. Considering the range within 2ϱ→, we know that the optimal participation weight

when seen on the empirical probability ranges from T/(µ→ + 2ϱ→) ≃ 43.9 to T/(µ→ ↑ 2ϱ→) ≃ 58.1, while
the optimal weight computed on the model-based probability is 1/pn = 50. Our FedAU algorithm
computes the aggregation weights from the actual participation sample path of each client, which
captures the actual client behavior and empirically performs better than using 1/pn even if pn is
known. Some experimental results that further explain this phenomenon are in Appendix D.4.
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Figure 1: FedAU with
different K (CIFAR-10 with
Bernoulli participation).

As mentioned earlier, we lower-bounded pn, ↑n, by 0.02 for the
main results. Next, we consider different lower bounds of pn,
where a smaller lower bound of pn means that there exist clients
that participate less frequently. The performance of FedAU with
different choices of K and different lower bounds of pn is shown in
Figure 1. We observe that choosing K = 50 always gives the best
performance; the performance remains similar even when the lower
bound of pn is small and there exist some clients that participate
very infrequently. However, choosing a large K (e.g., K ⇒ 500)
significantly deteriorates the performance when the lower bound of
pn is small. This means that having a finite cutoff interval K of an
intermediate value (i.e., K = 50 in our experiments) for aggregation
weight estimation, which is a uniqueness of FedAU, is essential
especially when very infrequently participating clients exist.

6 CONCLUSION

In this paper, we have studied the challenging practical FL scenario of having unknown participation
statistics of clients. To address this problem, we have considered the adaptation of aggregation weights
based on the participation history observed at each individual client. Using a new consideration of
the bias-variance tradeoff of the aggregation weight, we have obtained the FedAU algorithm. Our
analytical methodology includes a unique decomposition which yields a separate weight error term
that is further bounded to obtain the convergence upper bound of FedAU. Experimental results have
confirmed the advantage of FedAU with several client participation patterns. Future work can study
the convergence analysis of FedAU with more general participation processes and the incorporation
of aggregation weight adaptation into other types of FL algorithms.

9



Published as a conference paper at ICLR 2024

ACKNOWLEDGMENT

The work of M. Ji was supported by the National Science Foundation (NSF) CAREER Award
2145835.

REFERENCES

Galen Andrew, Om Thakkar, Brendan McMahan, and Swaroop Ramaswamy. Differentially private
learning with adaptive clipping. Advances in Neural Information Processing Systems, 34:
17455–17466, 2021.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan,
Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for
privacy-preserving machine learning. In proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pp. 1175–1191, 2017.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir
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A ADDITIONAL DISCUSSION

A.1 EXTENDING OBJECTIVE (1) TO WEIGHTED AVERAGE

We note that our objective (1) can be easily extended to a weighted average of per-client empirical
risk (i.e., average of sample losses), with arbitrary weights {qn : ↑n}. To see this, let F̂n(x) denote
the (local) empirical risk of client n, and let # :=

∑N
n=1 qn. We can define the local objective of

client n as Fn(x) =
qnN
! F̂n(x), which gives us the global objective of

f(x) =
1

N

N∑

n=1

Fn(x) =
1

#

N∑

n=1

qnF̂n(x). (A.1.1)

This objective is in a standard form seen in most FL papers. The extension allows us to give different
importance to different clients, if needed. For simplicity, we do not write out the weights {qn}
in the main paper, because this extension to arbitrary weights {qn} is straightforward, and such
a simplification has also been made in various other works such as Jhunjhunwala et al. (2022);
Karimireddy et al. (2020); Reddi et al. (2021); Wang & Ji (2022).

A.2 ASSUMPTION ON BOUNDED GLOBAL GRADIENT

As stated in Theorem 2, our convergence result holds when either of the “bounded global gradient”
assumption or the “nearly optimal weights” assumption holds. When the aggregation weights {ϑn

t }
are nearly optimal satisfying 1

N

∑N
n=1 (pnϑ

n
t ↔ 1)2 ⇔ 1

81 , we do not need the bounded gradient
assumption.

For the bounded gradient assumption itself, a stronger assumption of bounded stochastic gradient
is used in related works on adaptive gradient algorithms (Reddi et al., 2021; Wang et al., 2022b;c),
which implies an upper bound on the per-sample gradient. Compared to these works, we only require
an upper bound on the global gradient, i.e., average of per-sample gradients, in our work. Although
focusing on very different problems, our FedAU method shares some similarities with adaptive
gradient methods in the sense that we both adapt the weights used in model updates, where the
adaptation is dependent on some parameters that progressively change during the training process.
The difference, however, is that our weight adaptation is based on each client’s participation history,
while adaptive gradient methods adapt the element-wise weights based on the historical model update
vector. Nevertheless, the similarity in both methods leads to a technical (mathematical) step of
bounding a “weight error” in the proofs, which is where the bounded gradient assumption is needed
especially when the “weight error” itself cannot be bounded. In our work, this step is done in the
proof of Theorem 2 (in Appendix B.5). In adaptive gradient methods, as an example, this step is on
page 14 until Equation (4) in Reddi et al. (2021).

Again, we note that the bounded gradient assumption is only needed when the aggregation weights
are estimated and the estimation error is large. This is seen in the two choices in Assumption 5; the
convergence bound holds when either of these two conditions hold. Intuitively, this aligns with the
reasoning of the need for bounding the “weight error”.

A.3 COMPARISON WITH EXISTING CONVERGENCE BOUNDS FOR FEDAVG

We compare our result in Corollary 4 with existing FedAvg convergence results, where the latter
assumes known participation probabilities. Since most existing results consider equiprobable
sampling of a certain number (denoted by S here) of clients out of all the N clients, we first convert our
bound to the same setting so that it is comparable with existing results. We note that our convergence
bound includes the parameter Q that is defined as Q := maxt↗{0,...,T↑1}

1
N

∑N
n=1 pn(ϑ

n
t )

2 in
Theorem 2. When we know the participation probabilities and choose ϑ

n
t = 1

pn
for all t, we have

Q = 1
N

∑N
n=1

1
pn

. Further, for equiprobable sampling of S clients out of a total of N clients, we
have pn = S

N and thus Q = N
S . Therefore, when T is large and ignoring the other constants, our

upper bound in Corollary 4 becomes O
 ↔

Q↔
NT


= O


1↔
ST


.

14



Published as a conference paper at ICLR 2024

Considering existing results of FedAvg with partial participation where the probabilities are both
homogeneous and known, Theorem 1 in Karimireddy et al. (2020) gives the same convergence
bound of O


1↔
ST


for non-convex objectives, and Corollary 2 in Yang et al. (2021) gives a

covergence bound of O
 ↔

I↔
ST


. Here, we note that Karimireddy et al. (2020) express the bound on

communication rounds while we give the bound on the square of gradient norm, but the two types of
bounds are directly convertible to each other. Our bound of O


1↔
ST


matches with Theorem 1 in

Karimireddy et al. (2020) and improves over Corollary 2 in Yang et al. (2021). We also note that, in
this special case, our result shows a linear speedup with respect to the number of participating clients,
i.e., S, which is the same as the existing results in Karimireddy et al. (2020); Yang et al. (2021).

The uniqueness of our work compared to Karimireddy et al. (2020); Yang et al. (2021) and most other
existing works is that we consider heterogeneous and unknown participation statistics (probabilities),
where each client n has its own participation probability pn that can be different from other clients.
In contrast, Karimireddy et al. (2020); Yang et al. (2021) assume uniformly sampled clients where a
fixed (and known) number of S clients participate in each round. Our setup is more general where
the number of clients that participate in each round can vary over time. Because of this generality, we
cannot define a fixed value of S in our convergence bound that holds for this general setup, so we
use Q to capture the statistical characteristics of client participation. When the overall probability
distribution of client participation remains the same, increasing the total number of clients (N ) has
the same effect as increasing the number of participating clients (S), as we have shown above.

As a side note, when choosing ϑ
n
t = 1

pn
, the weight error term E[(pnϑn

t ↔ 1)2] becomes zero and
the third term in (8) in Corollary 4 will not exist, i.e., it becomes zero. See the proof in Appendix B.7
for why the third term in (8) is related to the weight error.
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B PROOFS

B.1 PRELIMINARIES

We first note the following preliminary inequalities that we will use in the proofs without explaining
them further.

We have

1

M

M∑

m=1

zm



2

⇔ 1

M

M∑

m=1

⇑zm⇑2 and



M∑

m=1

zm



2

⇔ M

M∑

m=1

⇑zm⇑2 (B.1.1)

for any zm → Rd with m → {1, 2, . . . ,M}, which is a direct consequence of Jensen’s inequality.

We also have

∞z1, z2∈ ⇔
↼ ⇑z1⇑2

2
+

⇑z2⇑2

2↼
, (B.1.2)

for any z1, z2 → Rd and ↼ > 0, which is known as (the generalized version of) Young’s inequality
and also Peter-Paul inequality. A direct consequence of (B.1.2) is

⇑z1 + z2⇑2 ⇔ (1 + b) ⇑z1⇑2 +

1 +

1

b


⇑z2⇑2 , (B.1.3)

for some constant b > 0.

We also use the variance relation as follows:

E
[
⇑z⇑2

]
= ⇑E [z]⇑2 + E

[
⇑z↔ E [z]⇑2

]
, (B.1.4)

for any z → Rd, while noting that (B.1.4) also holds when all the expectations are conditioned on the
same variable(s).

In addition, we use Et [·] to denote E [·|xt, {ϑn
t }] in short. We also assume that Assumptions 1–4

hold throughout our analysis.

B.2 EQUIVALENT FORMULATION OF ALGORITHM 1

For the purpose of analysis, similar to Wang & Ji (2022), we consider an equivalent formulation of
the original Algorithm 1, as shown in Algorithm B.2.1. In this algorithm, we assume that all the
clients compute their local updates in Lines 5–8. This is logically equivalent to the practical setting
where the clients that do not participate have no computation, because their computed update !n

t has
no effect in Line 10 if Ilnt = 0, thus Algorithm 1 and Algorithm B.2.1 give the same output sequence
{xt : ↑t}. Our proofs in the following sections consider the logically equivalent Algorithm B.2.1 for
analysis and also use the notations defined in this algorithm.

Algorithm B.2.1: A logically equivalent version of Algorithm 1
Input: ω, ε, x0, I
Output: {xt : ↑t}

1 Initialize t0 ↓ 0, u ↓ 0;
2 for t = 0, . . . , T ↔ 1 do
3 for n = 1, . . . , N in parallel do
4 Sample Ilnt from an unknown stochastic process;
5 yn

t,0 ↓ xt;
6 for i = 0, . . . , I ↔ 1 do
7 yn

t,i+1 ↓ yn
t,i ↔ ωgn(yn

t,i); // In practice, no computation if Ilnt = 0

8 !n
t ↓ yn

t,I ↔ xt;
9 ϑ

n
t ↓ ComputeWeight({Ilnω : ϖ < t});

10 xt+1 ↓ xt +
ε
N

∑N
n=1 Il

n
t ϑ

n
t !

n
t ;
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B.3 GENERAL DESCENT LEMMA

To prove the general descent lemma that is used to derive both Theorems 1 and 2, we first define the
following generally weighted loss function.
Definition B.3.1. Define

f̃(x) :=
N∑

n=1

↽nFn(x) (B.3.1)

where ↽n ⇒ 0 for all n and
∑N

n=1 ↽n = 1.

In (B.3.1), choosing ↽n = 1
N gives our original objective of f(x). Note that we consider the updates

in Algorithm B.2.1 to be still without weighting by ↽n, which allows us to quantify the convergence
to a different objective when the aggregation weights are not properly chosen.
Lemma B.3.1. Define ς̃ := 2ς, we have

⇓Fn(x)↔⇓f̃(x)

2
⇔ ς̃

2
, ↑x, n. (B.3.2)

Proof. From Assumption 3, we have
⇓Fn(x)↔⇓f̃(x)


2
=

⇓Fn(x)↔⇓f(x) +⇓f(x)↔⇓f̃(x)

2

⇔ 2 ⇑⇓Fn(x)↔⇓f(x)⇑2 + 2
⇓f(x)↔⇓f̃(x)


2

= 2 ⇑⇓Fn(x)↔⇓f(x)⇑2 + 2



N∑

n=1

↽n(⇓f(x)↔⇓Fn(x))



2

(a)
⇔ 2 ⇑⇓Fn(x)↔⇓f(x)⇑2 + 2

N∑

n=1

↽n ⇑⇓f(x)↔⇓Fn(x)⇑2

⇔ 4ς2,

where we use the Jensen’s inequality in (a). The final result follows due to ς̃
2 := 4ς2.

Lemma B.3.2. When ω ⇔ 1↔
30LI

,

Et

[yn
t,i ↔ xt

2
]
⇔ 5Iω2(ϱ2 + 6I ς̃2) + 30I2ω2

⇓f̃(xt)

2

(B.3.3)

Proof. This lemma has the same form as in Yang et al. (2021, Lemma 2) and Reddi et al. (2021,
Lemma 3), but we present it here for a single client n instead of average over multiple clients.

For i → {0, 1, 2, . . . , I ↔ 1}, we have

Et

[yn
t,i+1 ↔ xt

2
]

= Et

[yn
t,i ↔ xt ↔ ωgn(y

n
t,i)

2
]

= Et

[yn
t,i ↔ xt ↔ ω

(
gn(y

n
t,i)↔⇓Fn(y

n
t,i) +⇓Fn(y

n
t,i)↔⇓Fn(xt) +⇓Fn(xt)

↔⇓f̃(xt) +⇓f̃(xt)


2


(a)
= Et

[ω
(
gn(y

n
t,i)↔⇓Fn(y

n
t,i)

)2
]

+2Et

[
Et

[
ω
(
gn(y

n
t,i)↔⇓Fn(y

n
t,i)

)
,yn

t,i↔xt↔ω


⇓Fn(y

n
t,i)↔⇓Fn(xt)+⇓Fn(xt)

↔⇓f̃(xt) +⇓f̃(xt)
∣∣∣yn

t,i,xt

]]

+ Et

yn
t,i ↔ xt ↔ ω


⇓Fn(y

n
t,i)↔⇓Fn(xt) +⇓Fn(xt)↔⇓f̃(xt) +⇓f̃(xt)


2

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(b)
= Et

[ω
(
gn(y

n
t,i)↔⇓Fn(y

n
t,i)

)2
]

+2Et

[
Et

[
ω
(
gn(y

n
t,i)↔⇓Fn(y

n
t,i)

)∣∣yn
t,i,xt

]
,

yn
t,i↔xt↔ω


⇓Fn(y

n
t,i)↔⇓Fn(xt)+⇓Fn(xt)↔⇓f̃(xt)+⇓f̃(xt)

]

+ Et

yn
t,i ↔ xt ↔ ω


⇓Fn(y

n
t,i)↔⇓Fn(xt) +⇓Fn(xt)↔⇓f̃(xt) +⇓f̃(xt)


2


(c)
= Et

[ω
(
gn(y

n
t,i)↔⇓Fn(y

n
t,i)

)2
]

+ Et

yn
t,i ↔ xt ↔ ω


⇓Fn(y

n
t,i)↔⇓Fn(xt) +⇓Fn(xt)↔⇓f̃(xt) +⇓f̃(xt)


2


(d)
⇔ Et

[ω
(
gn(y

n
t,i)↔⇓Fn(y

n
t,i)

)2
]
+


1 +

1

2I ↔ 1


Et

[yn
t,i ↔ xt

2
]

+ 2IEt

ω

⇓Fn(y

n
t,i)↔⇓Fn(xt) +⇓Fn(xt)↔⇓f̃(xt) +⇓f̃(xt)


2


⇔ Et

[ω
(
gn(y

n
t,i)↔⇓Fn(y

n
t,i)

)2
]
+


1 +

1

2I ↔ 1


Et

[yn
t,i ↔ xt

2
]

+ 6IEt

[ω
(
⇓Fn(y

n
t,i)↔⇓Fn(xt)

)2
]
+ 6IEt

ω

⇓Fn(xt)↔⇓f̃(xt)


2


+ 6I
ω⇓f̃(xt)


2

(e)
⇔ ω

2
ϱ
2 +


1 +

1

2I ↔ 1


Et

[yn
t,i ↔ xt

2
]
+ 6Iω2

L
2Et

[yn
t,i ↔ xt

2
]
+ 6Iω2

ς̃
2

+ 6Iω2
⇓f̃(xt)


2

=


1 +

1

2I ↔ 1
+ 6Iω2

L
2


Et

[yn
t,i ↔ xt

2
]
+ ω

2
ϱ
2 + 6Iω2

ς̃
2 + 6Iω2

⇓f̃(xt)

2
, (B.3.4)

where (a) follows from expanding the squared norm above and applying the law of total expectation
on the second term, (b) is because the second part of the inner product has no randomness when
yn
t,i and xt are given, (c) is because the inner product is zero due to the unbiasedness of stochastic

gradient, (d) follows from expanding the second term and applying the Peter-Paul inequality, (e) uses
gradient variance bound, Lipschitz gradient, and gradient divergence bound.

Because ω ⇔ 1↔
30LI

, we have

1

2I ↔ 1
+ 6Iω2

L
2 ⇔ 1

2I ↔ 1
+

1

5I
⇔ 2

2I ↔ 1
=

1

I ↔ 1
2

.

Continuing from (B.3.4), we have

Et

[yn
t,i+1 ↔ xt

2
]
⇔


1 +

1

I ↔ 1
2


Et

[yn
t,i ↔ xt

2
]
+ ω

2
ϱ
2 + 6Iω2

ς̃
2 + 6Iω2

⇓f̃(xt)

2

By unrolling the recursion, we obtain

Et

[yn
t,i+1 ↔ xt

2
]

⇔
i∑

i→=0


1 +

1

I ↔ 1
2

i→ 
ω
2
ϱ
2 + 6Iω2

ς̃
2 + 6Iω2

⇓f̃(xt)

2


⇔
I↑1∑

i→=0


1 +

1

I ↔ 1
2

i→ 
ω
2
ϱ
2 + 6Iω2

ς̃
2 + 6Iω2

⇓f̃(xt)

2


=


1 +

1

I ↔ 1
2

I

↔ 1


I ↔ 1

2


·

ω
2
ϱ
2 + 6Iω2

ς̃
2 + 6Iω2

⇓f̃(xt)

2

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=


1 +

1

I ↔ 1
2

I↑ 1
2

1 +

1

I ↔ 1
2

 1
2

↔ 1


I ↔ 1

2


·

ω
2
ϱ
2 + 6Iω2

ς̃
2 + 6Iω2

⇓f̃(xt)

2


(a)
⇔

[∝
3e↔ 1

]
I ↔ 1

2


·

ω
2
ϱ
2 + 6Iω2

ς̃
2 + 6Iω2

⇓f̃(xt)

2


⇔ 5Iω2

ϱ
2 + 6I ς̃2


+ 30I2ω2

⇓f̃(xt)

2

where (a) uses
(
1 + 1

z

)z ⇔ e for any z > 0 and 1 + 1
I↑ 1

2
⇔ 3.

Lemma B.3.3 (General descent lemma). When ω ⇔ 1
4
↔
15LI

and ωε ⇔ 1
4LI , we have

Et

[
f̃(xt+1)

]

⇔ f̃(xt) +
3ωεIN

2

(
15L2

Iω
2
ϱ
2 +

27ς̃2

8

)
N∑

n=1


pnϑ

n
t

N
↔ ↽n

2

+
5ω3

εL
2
I
2

2
(ϱ2 + 6I ς̃2) +

ω
2
ε
2
LI

N2

(
17ϱ2

16
+

27I ς̃2

8

)
N∑

n=1

pn(ϑ
n
t )

2

+ ωεI


81N

16

N∑

n=1


pnϑ

n
t

N
↔ ↽n

2

+ 15L2
I
2
ω
2 +

27ωεLI

8N2

N∑

n=1

pn(ϑ
n
t )

2 ↔ 1

4


·
⇓f̃(xt)


2
.

(B.3.5)

Proof. Due to Assumption 1 (L-smoothness), we have

Et

[
f̃(xt+1)

]
⇔ f̃(xt)↔ ωεEt


⇓f̃(xt),

1

N

N∑

n=1

Ilnt ϑ
n
t

I↑1∑

i=0

gn(y
n
t,i)



+
ω
2
ε
2
L

2
Et





1

N

N∑

n=1

Ilnt ϑ
n
t

I↑1∑

i=0

gn(y
n
t,i)



2




= f̃(xt)↔ ωεEt


⇓f̃(xt),

1

N

N∑

n=1

pnϑ
n
t

I↑1∑

i=0

⇓Fn(y
n
t,i)



+
ω
2
ε
2
L

2
Et





1

N

N∑

n=1

Ilnt ϑ
n
t

I↑1∑

i=0

gn(y
n
t,i)



2


 , (B.3.6)

where the last equality is due to Et [Il
n
t ] = pn and the unbiasedness of the stochastic gradient giving

Et

[
E
[
gn(yn

t,i)
∣∣yn

t,i

]]
= Et

[
⇓Fn(yn

t,i)
]

(for simplicity, we will not write out this total expectation
in subsequent steps of this proof).

Expanding the second term of (B.3.6), we have

↔ ωεEt


⇓f̃(xt),

1

N

N∑

n=1

pnϑ
n
t

I↑1∑

i=0

⇓Fn(y
n
t,i)



= ↔ωεEt


⇓f̃(xt),

1

N

N∑

n=1

pnϑ
n
t

I↑1∑

i=0

⇓Fn(y
n
t,i)↔

N∑

n=1

↽n

I↑1∑

i=0

⇓Fn(y
n
t,i)

+
N∑

n=1

↽n

I↑1∑

i=0

⇓Fn(y
n
t,i)↔ I⇓f̃(xt) + I⇓f̃(xt)



= ↔ωεEt


⇓f̃(xt),

1

N

N∑

n=1

pnϑ
n
t

I↑1∑

i=0

⇓Fn(y
n
t,i)↔

N∑

n=1

↽n

I↑1∑

i=0

⇓Fn(y
n
t,i)
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where we use ∞a,b∈ = 1
2 (⇑a+ b⇑2 ↔ ⇑a⇑2 ↔ ⇑b⇑2) to expand the second term in (a).
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ω
2
ε
2
L

2
Et





1

N

N∑

n=1

Ilnt ϑ
n
t

I↑1∑

i=0

gn(y
n
t,i)



2




=
ω
2
ε
2
L

2
Et





1

N

N∑

n=1

Ilnt ϑ
n
t

I↑1∑

i=0

(
gn(y

n
t,i)↔⇓Fn(y

n
t,i)

)
+

1

N

N∑

n=1

Ilnt ϑ
n
t

I↑1∑

i=0

⇓Fn(y
n
t,i)



2




⇔ ω
2
ε
2
LEt





1

N

N∑

n=1

Ilnt ϑ
n
t

I↑1∑

i=0

(
gn(y

n
t,i)↔⇓Fn(y

n
t,i)

)


2




+ ω
2
ε
2
LEt





1

N

N∑

n=1

Ilnt ϑ
n
t

I↑1∑

i=0

⇓Fn(y
n
t,i)



2




(a)
=

ω
2
ε
2
L

N2

N∑

n=1

Et




Il

n
t ϑ

n
t

I↑1∑

i=0

(
gn(y

n
t,i)↔⇓Fn(y

n
t,i)

)


2




20



Published as a conference paper at ICLR 2024

+ ω
2
ε
2
LEt





1

N

N∑

n=1

(Ilnt ↔ pn + pn)ϑ
n
t

I↑1∑

i=0

⇓Fn(y
n
t,i)



2




(b)
=

ω
2
ε
2
LIϱ

2

N2

N∑

n=1

pn(ϑ
n
t )

2 + ω
2
ε
2
LEt





1

N

N∑

n=1

(Ilnt ↔ pn)ϑ
n
t

I↑1∑

i=0

⇓Fn(y
n
t,i)



2




+ ω
2
ε
2
LEt





1

N

N∑

n=1

pnϑ
n
t

I↑1∑

i=0

⇓Fn(y
n
t,i)



2




(c)
=

ω
2
ε
2
LIϱ

2

N2

N∑

n=1

pn(ϑ
n
t )

2 +
ω
2
ε
2
L

N2

N∑

n=1

Et




(Il

n
t ↔ pn)ϑ

n
t

I↑1∑

i=0

⇓Fn(y
n
t,i)



2




+ ω
2
ε
2
LEt






N∑

n=1


pnϑ

n
t

N
↔ ↽n + ↽n

 I↑1∑

i=0

⇓Fn(y
n
t,i)



2




(d)
⇔ ω

2
ε
2
LIϱ

2

N2

N∑

n=1

pn(ϑ
n
t )

2 +
ω
2
ε
2
L

N2

N∑

n=1

pn(1↔ pn)(ϑ
n
t )

2Et






I↑1∑

i=0

⇓Fn(y
n
t,i)



2




+ 2ω2
ε
2
LEt






N∑

n=1


pnϑ

n
t

N
↔ ↽n

 I↑1∑

i=0

⇓Fn(y
n
t,i)



2


+ 2ω2
ε
2
LEt






N∑

n=1

↽n

I↑1∑

i=0

⇓Fn(y
n
t,i)



2




⇔ ω
2
ε
2
LIϱ

2

N2

N∑

n=1

pn(ϑ
n
t )

2 +
ω
2
ε
2
LI

N2

N∑

n=1

pn(ϑ
n
t )

2
I↑1∑

i=0

Et

[⇓Fn(y
n
t,i)

2
]

+ 2ω2
ε
2
LIN

N∑

n=1


pnϑ

n
t

N
↔ ↽n

2 I↑1∑

i=0

Et

[⇓Fn(y
n
t,i)

2
]

+ 2ω2
ε
2
LEt






N∑

n=1

↽n

I↑1∑

i=0

⇓Fn(y
n
t,i)



2


 , (B.3.8)

where we note that Ilnt follows Bernoulli distribution with probability pn, thus E [Ilnt ] = pn and
Var [Ilnt ] = pn(1↔ pn), yielding the relation in (d). We also use the independence across different n
and i for the stochastic gradients and the independence across n for the client participation random
variable Ilnt , as well as the fact that Ilnt and the stochastic gradients are independent of each other, so
the local updates (progression of yn

t,i) are independent of Ilnt according to the logically equivalent
algorithm formulation in Algorithm B.2.1. The independence yields some inner product terms to be
zero, giving the results in (a), (b), and (c).
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Combining (B.3.7), (B.3.8), (B.3.9) gives
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(B.3.10)

where (a) uses ωε ⇔ 1
4LI , (b) uses Lemma B.3.2 and (B.3.9), and (c) uses ωε ⇔ 1

4LI and ω ⇔ 1
4
↔
15LI

.
The final result is obtained by plugging (B.3.10) into (B.3.6).

B.4 FORMAL VERSION AND PROOF OF THEOREM 1

We first state the formal version of Theorem 1 as follows.
Theorem B.4.1 (Objective minimized at convergence, formal). Define an alternative objective
function as

h(x) :=
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ϑnpnFn(x), (B.4.1)
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N . Then, we choose ↽n = ϑnpn

P = pnς̃n

N in Lemma B.3.3. We can see that this choice
satisfies

∑N
n=1 ↽n = 1, so Lemma B.3.3 holds after replacing ε and ϑ

n
t in the lemma with ε̃ and φ̃n,

respectively, and f̃(x) in Lemma B.3.3 is equal to h(x) defined in Theorem B.4.1 with this choice of
↽n. Therefore,

Et [h(xt+1)] ⇔ h(xt) +
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
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I
2
ω
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27ωε̃LI

8N2

N∑

n=1

pnφ̃
2
n ↔ 1

4


· ⇑⇓h(xt)⇑2 . (B.4.2)

Because ω ⇔ c↔
T

and ωε̃ = c→→↔
T

, there exists a sufficiently large T so that 15L2
I
2
ω
2 +

27φε̃LI
8N2

∑N
n=1 pnφ̃

2
n ⇔ 1

8 . In this case, after taking the total expectation of (B.4.2) and rearranging,
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we have

E
[
⇑⇓h(xt)⇑2

]

⇔ 8 (E [h(xt)]↔ E [h(xt+1)])

ωε̃I
+ 20ω2
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(
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pnφ̃
2
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(B.4.3)

Then, summing up over T rounds and dividing by T , we have

1

T

T↑1∑

t=0

E
[
⇑⇓h(xt)⇑2

]
⇔ 8H

ωε̃IT
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(
17ϱ2

16
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27I ς̃2

8

)
N∑

n=1

pnφ̃
2
n,

(B.4.4)

where H := h(x0)↔ h
↘ with h

↘ := minx h(x) as the truly minimum value.

Since ω ⇔ c↔
T

and ωε̃ = c→→↔
T

, we can see that the upper bound above converges to zero as T ′ ⇐.
Thus, there exists a sufficiently large T to achieve an upper bound of an arbitrarily positive value of
⇀
2.

B.5 PROOF OF THEOREM 2

We first present the following variant of the descent lemma for the original objective defined in (1).
Lemma B.5.1 (Descent lemma for original objective). Under the same conditions as in Lemma B.3.3,

Et [f(xt+1)]
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3ωεI
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
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
· ⇑⇓f(xt)⇑2 .

(B.5.1)

Proof. The result can be immediately obtained from Lemma B.3.3 by choosing ↽n = 1
N in

(B.3.1) and noting that gradient divergence bound holds for ς with this choice of ↽n according
to Assumption 3.

Proof of Theorem 2. Consider the last term in Lemma B.5.1. Due to ω ⇔ 1
4
↔
15LI

, and

ωε ⇔ min
{

1
4LI ;

N
54LIQ


as specified in the theorem, we have 15L2

I
2
ω
2 ⇔ 1

16 and
27φεLI
8N2

∑N
n=1 pn(ϑ

n
t )

2 ⇔ 1
16 .

Case 1: When assuming ⇑⇓f(x)⇑2 ⇔ G
2, we have
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
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8
⇑⇓f(xt)⇑2 . (B.5.2)

Plugging back into Lemma B.5.1, after taking total expectation and rearranging, we obtain

E
[
⇑⇓f(xt)⇑2

]
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Case 2: When assuming 1
N

∑N
n=1 (pnϑ
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t ↔ 1)2 ⇔ 1

81 , we have
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Plugging back into Lemma B.5.1, after taking total expectation and rearranging, we obtain

E
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The final result is obtained by summing up either (B.5.3) or (B.5.5) over T rounds and dividing by T ,
choosing ”G accordingly for each case, and absorbing the constants in O(·) notation.

B.6 PROOF OF THEOREM 3

We start by analyzing the statistical properties of the possibly cutoff participation interval Sn. Because
in every round, each client n participates according to a Bernoulli distribution with probability pn,
the random variable Sn has the following probability distribution:

Pr{Sn = k} =

{
pn(1↔ pn)k↑1

, if 1 ⇔ k < K

(1↔ pn)k↑1
, if k = K

, (B.6.1)

which is a “cutoff” geometric distribution with a maximum value of K. We will refer to this
probability distribution as K-cutoff geometric distribution. We can see that when K ′ ⇐, this
distribution becomes the same as the geometric distribution, but we consider the general case with an
arbitrary K that is specified later. We also recall that the actual value of pn is unknown to the system,
which is why we need to compute {ϑn

t } using the estimation procedure in Algorithm 2.
Lemma B.6.1. Equation (B.6.1) defines a probability distribution, and the mean and variance of Sn

are

E [Sn] =
1

pn
↔ (1↔ pn)K

pn
; Var [Sn] =

1↔ pn

p2n

↔ (2K ↔ 1)(1↔ pn)K

pn
↔ (1↔ pn)2K

p2n

.

(B.6.2)

Proof. We first show that (B.6.1) defines a probability distribution. According to the definition in
(B.6.1), we have

∑K
k=1 Pr{Sn = k} = 1 for any K. We prove this by induction. Let Sn and

S
→
n denote the random variables following K-cutoff and (K + 1)-cutoff geometric distributions,

respectively. For K = 2, we have
∑K

k=1 Pr{Sn = k} = pn + (1 ↔ pn) = 1. Therefore, we can
assume that

∑K
k=1 Pr{Sn = k} = 1 holds for a certain value of K. For (K + 1)-cutoff distribution,

we first note that according to (B.6.1),

Pr{S→
n = k} =






Pr{Sn = k}, 1 ⇔ k < K

pn · Pr{Sn = K}, k = K

(1↔ pn) · Pr{Sn = K}, k = K + 1

.

25



Published as a conference paper at ICLR 2024

Therefore,
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=
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= 1

This shows that Pr{Sn = k} defined in (B.6.1) is a probability distribution.

In the following, we derive the mean and variance of Sn, where we use dy
dx to denote the derivative of

y with respect to x.

We have
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which gives the expression for the expected value.

To compute the variance, we note that
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
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Thus,
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Therefore,
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which gives the final variance result.

Now, we are ready to obtain an upper bound of the weight error term.

Proof of Theorem 3.

Case 1: According to Algorithm 2, we have ϑ
n
t = 1 in the initial rounds before the first participation

has occurred. This includes at least one round (t = 0) and at most K rounds. In these initial rounds,
we have

E
[
(pnϑ

n
t ↔ 1)2

]
⇔ 1. (B.6.7)

Case 2: For all the other rounds, ϑn
t is estimated based on at least one sample of Sn. Therefore, using

the mean and variance expressions from Lemma B.6.1, we have the following for these rounds:

E
[
(pnϑ

n
t ↔ 1)2

]
= (pn)

2E


ϑ
n
t ↔


1

pn
↔ (1↔ pn)K

pn


↔ (1↔ pn)K

pn

2


(a)
= (pn)

2E


ϑ
n
t ↔


1

pn
↔ (1↔ pn)K

pn

2

+ (1↔ pn)

2K

27



Published as a conference paper at ICLR 2024

(b)
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where (a) is because the inner product term is zero since the mean of ϑn
t is equal to 1

pn
↔ (1↑pn)

K

pn
;

(b) is due to the definition of variance, the fact that we consider the computation of ϑn
t to be based on

at least one sample of Sn, and for any round t there are at least ∋ t
K △ samples of Sn due to the cutoff

interval of length K; (c) uses the upper bound of Var [Sn] ⇔ 1↑pn

p2
n

.

We note that the bound (B.6.7) in Case 1 always applies for t = 0, because we always have ϑ
n
t = 1

for t = 0 according to Algorithm 2. For rounds 0 < t < K, either the bound (B.6.7) in Case 1 or
the bound (B.6.8) in Case 2 applies, thus E

[
(pnϑn

t ↔ 1)2
]

is upper bounded by the sum of both
bounds in these rounds. Then, for t ⇒ K, the bound (B.6.8) in Case 2 applies. According to this fact,
summing up the bounds for each round and dividing by T gives
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where we use the relation that
∑T↑1

t=1
1
t ⇔ log T + 1 for T ⇒ 2, and the logarithm is based on e.

The final result is obtained by averaging (B.6.9) over all n.

B.7 PROOF OF COROLLARY 4

We first prove the upper bound of the weight error term in the following lemma.

Lemma B.7.1. Choosing K = ↖logc T ↙, where c :=


1
1↑p

2
and p := minn pn. Define R := 1

log c .
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Proof. Let K = ↖logc T ↙, we have

1

N
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This shows that by choosing K = ↖logc T ↙ where T ⇒ 2, the RHS in (7) of Theorem 3 is upper
bounded by O


log2 T
T log c +

log2 T
T


= O


R log2 T

T


, which proves the result.

Proof of Corollary 4. We note that

ω = min

{
1

LI
∝
T
;

1

4
∝
15LI

}
⇔ 1

LI
∝
T
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ωε = min
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The result follows by plugging these upper bounds of ω, ωε, and 1
φε and the result in Lemma B.7.1

into Theorem 2, where we note that
∝
Iς2 + ϱ2 ⇔

∝
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2 ⇔ Iς
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.
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C ADDITIONAL SETUP DETAILS OF EXPERIMENTS

C.1 CODE

The code for reproducing our experiments is available via the following link:
https://shiqiang.wang/code/fedau

C.2 DATASETS

The SVHN dataset has a citation requirement Netzer et al. (2011). Its license is for non-commercial
use only. It includes 32 ▽ 32 color images with real-world house numbers of 10 different digits,
containing 73, 257 training data samples and 26, 032 test data samples.

The CIFAR-10 dataset only has a citation requirement Krizhevsky & Hinton (2009). It includes
32 ▽ 32 color images of 10 different types of real-world objects, containing 50, 000 training data
samples and 10, 000 test data samples.

The CIFAR-100 dataset only has a citation requirement Krizhevsky & Hinton (2009). It includes
32▽ 32 color images of 100 different types of real-world objects, containing 50, 000 training data
samples and 10, 000 test data samples.

The CINIC-10 dataset Darlow et al. (2018) has MIT license. It includes 32▽ 32 color images of 10
different types of real-world objects, containing 90, 000 training data samples and 90, 000 test data
samples.

We have cited all the references in the main paper and conformed to all the license terms.

We applied some basic data augmentation techniques to these datasets during the training stage.
For SVHN, we applied random cropping. For CIFAR-10 and CINIC-10, we applied both random
cropping and random horizontal flipping. For CIFAR-100, we applied a combination of random
sharpness adjustment, color jitter, random posterization, random equalization, random cropping, and
random horizontal flipping.

C.3 MODELS

All the models include two convolutional layers with a kernel size of 3, filter size of 32, and ReLU
activation, where each convolutional layer is followed by a max-pool layer. The model for the
SVHN dataset has two fully connected layers, while the models for the CIFAR-10/100 and CINIC-10
datasets have three fully connected layers. All the fully connected layers use ReLU activation, except
for the last layer that is connected to softmax output. For CIFAR-100 and CINIC-10 datasets, a
dropout layer (with dropout probability p = 0.2) is applied before each fully connected layer. We use
Kaiming initialization for the weights. See the code for further details on model definition (the model
class files are located inside the “model/” subfolder).

C.4 HYPERPARAMETERS

For each dataset and algorithm, we conducted a grid search on the learning rates ω and ε separately.
The grid for the local step size ω is {10↑2

, 10↑1.75
, 10↑1.5

, 10↑1.25
, 10↑1

, 10↑0.75
, 10↑0.5} and

the grid for the global step size ε is {100, 100.25, 100.5, 100.75, 101, 101.25, 101.5}. To reduce the
complexity of the search, we first search for the value of ω with ε = 1, and then search for ε

while fixing ω to the value found in the first search. We consider the training loss at 500 rounds
for determining the best ω and ε. The hyperparameters found from this search and used in our
experiments are shown in Table C.4.1.

Learning Rate Decay for CIFAR-100 Dataset. Only for the CIFAR-100 dataset, we decay the local
learning rate ω by half every 1, 000 rounds, starting from the 10, 000-th round.
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Table C.4.1: Values of hyperparameters ω and ε, where we use 10↑1.25 ≃ 0.0562, 10↑1.5 ≃
0.0316, 100.25 ≃ 1.78

Dataset SVHN CIFAR-10 CIFAR-100 CINIC-10
Method / Hyperparameter ω ε ω ε ω ε ω ε

FedAU (ours, K → ↑) 0.1 1.0 0.1 1.0 0.0562 1.78 0.1 1.0

FedAU (ours, K = 50) 0.1 1.0 0.1 1.0 0.0562 1.78 0.1 1.0

Average participating 0.0562 1.78 0.0562 1.78 0.0316 1.78 0.0562 1.78

Average all 0.1 10.0 0.1 10.0 0.0562 10.0 0.1 10.0

FedVarp (250↓ memory) 0.1 1.0 0.0562 1.0 0.0316 1.78 0.0562 1.0

MIFA (250↓ memory) 0.1 1.0 0.0562 1.0 0.0316 1.78 0.0562 1.0

Known participation statistics 0.1 1.0 0.0562 1.0 0.0316 1.78 0.0562 1.0

C.5 COMPUTATION RESOURCES

The experiments were split between a desktop machine with RTX 3070 GPU and an internal GPU
cluster. In our experiments, the total number of rounds is 2, 000 for SVHN, 10, 000 for CIFAR-10 and
CINIC-10, and 20, 000 for CIFAR-100. Each experiment with 10, 000 rounds took approximately 4
hours to complete, for one random seed on RTX 3070 GPU. The time taken for experiments with
other number of rounds scales accordingly. We ran experiments with 5 different random seeds for
each dataset and algorithm. It was possible to run multiple experiments simultaneously on the same
GPU while not exceeding the GPU memory.

C.6 HETEROGENEOUS PARTICIPATION ACROSS CLIENTS

C.6.1 GENERATING PARTICIPATION PATTERNS

In each experiment with a specific simulation seed, we take only one sample of this Dirichlet
distribution with parameter φp, which gives a probability vector q ↗ Dir(φp) that has a dimension
equal to the total number of classes in the dataset.2 The participation probability pn for each client n
is obtained by computing an inner product between q and the class distribution vector of the data at
client n, and then dividing by a normalization factor. The rationale behind this approach is that the
elements in q indicate how different classes contribute to the participation probability. For example, if
the first element of q is large, it means that clients with a lot of data samples in the first class will have
a high participation probability, and vice versa. Since the participation probabilities {pn} generated
using this approach are random variables, the normalization ensures a certain mean participation
probability, i.e., E [pn], of any client n, which is set to 0.1 in our experiments. We further cap the
minimum value of any pn to be 0.02.

Among the three participation patterns in our experiments, i.e., Bernoulli, Markovian, and cyclic, we
maintain the same stationary participation probabilities {pn} for the clients, so the difference is in
the temporal distribution of when a client participates, which is summarized as follows.

• For Bernoulli participation, in every round t, each client n decides whether or not to
participate according to a Bernoulli distribution with probability pn. This decision is
independent across time, i.e., independent across different rounds.

• For Markovian participation, each client participates according a two-state Markov chain,
where the motivation is similar to cyclic participation (see next item below) but includes more
randomness. We set the maximum transition probability of a client transitioning from not
participating to participating to 0.05. The initial state of the Markov chain is determined by a
random sampling according to the stationary probability pn, and the transition probabilities
are determined in a way so that the same stationary probability is maintained across all the
subsequent rounds.

• For cyclic participation, each client participates cyclically, i.e., it participates for a certain
number of rounds and does not participate in the other rounds of a cycle. This setup has

2We use Dir(ϑp) to denote Dir(ωp) with all the elements in the vector ωp equal to ϑp.
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been used in existing works to simulate periodic behavior of client devices being charged
(e.g., at night) (Cho et al., 2023; Ding et al., 2020; Eichner et al., 2019; Wang & Ji, 2022).
We set each cycle to be 100 rounds. We apply a random initial offset to the cycle for each
client, to simulate a stationary random process for each client’s participation pattern.

Figure C.6.1 shows examples of these three types of participation patterns.
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Figure C.6.1: Illustration of different participation patterns, in the first 400 rounds of a single client
with 52.7% mean participation rate.

C.6.2 ILLUSTRATION OF DATA AND PARTICIPATION HETEROGENEITY

As described in Section 5 and Appendix C.6.1, we generate the data and participation heterogeneity
with two separate Dirichlet distributions with parameters φd and φp, respectively. In the following,
we illustrate the result of this generation for a specific random instance. In Figure C.6.2, the class-wise
data distribution of each client is drawn from Dir(φd). For computing the participation probability,
we draw a vector q from Dir(φp), which gave the following result in our random trial:

q = [0.02, 0.05, 0.12, 0.00, 0.00, 0.78, 0.00, 0.00, 0.02, 0.00].

Then, the participation probability is set as the inner product of q and the class distribution of each
client’s data, divided by a normalization factor. For the above q, the 6-th element has the highest
value, which means that clients with a larger proportion of data in the 6-th class (label) will have
a higher participation probability. This is confirmed by comparing the class distributions and the
participation probabilities in Figure C.6.2.
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Figure C.6.2: Illustration of data and participation heterogeneity, for an example with 20 clients.

In this procedure, q is kept the same for all the clients, to simulate a consistent correlation between
participation probability and class distribution across all the clients. However, the value of q changes
with the random seed, which means that we have different q for different experiments. We ran
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experiments with 5 different random seeds for each setting, which allows us to observe the general
behavior.

More precisely, let ωn ↗ Dir(φd) denote the class distribution of client n’s data. The participation
probability pn of each client n is computed as

pn =
1

⇁
∞ωn,q∈ , (C.6.1)

where ⇁ is the normalization factor to ensure that E [pn] is equal to some target µ, because pn is
a random quantity when using this randomized generation procedure. In our experiments, we set
µ = 0.1. Let C denote the total number of classes (labels). From the mean of Dirichlet distribution
and the fact that ωn and q are independent, we know that E [∞ωn,q∈] = ∞E [ωn] ,E [q]∈ = 1

C .
Therefore, to ensure that E [pn] = µ, according to (C.6.1), the normalization factor is chosen as
⇁ = 1

Cµ .

We emphasize again that this procedure is only used for simulating an experimental setup with both
data and participation heterogeneity. Our FedAU algorithm still does not know the actual values of
{pn}.
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D ADDITIONAL RESULTS FROM EXPERIMENTS

D.1 RESULTS WITH DIFFERENT PARTICIPATION HETEROGENEITY

We present the results with different participation heterogeneity (characterized by the Dirichlet
parameter φp) on the CIFAR-10 dataset in Table D.1.1, for the case of Bernoulli participation. The
main observations remain consistent with those in Section 5. We also see that the difference between
different methods becomes larger when the heterogeneity is higher (i.e., smaller φp), which aligns
with intuition. For all degrees of heterogeneity, our FedAU algorithm performs the best among the
algorithms that work under the same setting, i.e., the top part of Table D.1.1.

Table D.1.1: Accuracy results (in %) on training and test data of CIFAR-10, with different participation
heterogeneity (Bernoulli participation)

Participation heterogeneity ςp = 0.01 ςp = 0.05 ςp = 0.1 ςp = 0.5 ςp = 1.0

Method / Metric Train Test Train Test Train Test Train Test Train Test

FedAU (ours, K ≃ ⇐) 83.7±0.8 76.2±0.7 84.3±0.8 76.6±0.5 85.4±0.4 77.1±0.4 87.3±0.5 77.8±0.2 88.1±0.7 78.1±0.2

FedAU (ours, K = 50) 84.7±0.6 76.9±0.6 85.1±0.5 77.1±0.3 86.0±0.5 77.3±0.3 87.6±0.4 77.8±0.4 88.2±0.7 78.0±0.2

Average participating 80.6±1.2 72.3±1.7 81.5±1.1 72.6±1.4 83.5±0.9 74.1±0.8 85.9±0.7 75.7±0.9 87.0±1.0 76.8±0.6

Average all 76.9±2.7 69.5±2.7 78.5±1.7 70.6±1.8 81.0±0.9 72.7±0.9 83.6±1.4 74.6±0.8 84.9±1.2 75.9±1.0

FedVarp (250⇒ memory) 82.5±0.8 77.3±0.3 83.0±0.4 77.5±0.4 84.2±0.3 77.9±0.2 85.4±0.5 78.1±0.2 86.4±0.7 78.5±0.3

MIFA (250⇒ memory) 82.1±0.8 77.0±0.7 82.6±0.3 77.3±0.4 83.5±0.6 77.5±0.3 84.9±0.5 77.9±0.3 85.4±0.4 78.0±0.4

Known participation statistics 83.1±0.8 76.3±0.6 83.6±0.6 76.7±0.5 84.3±0.5 77.0±0.5 86.1±0.6 77.7±0.4 86.8±0.9 77.9±0.7

Note to the table. The same note in Table 1 also applies to this table.

D.2 LOSS AND ACCURACY PLOTS

For Bernoulli participation, we plot the loss and accuracy results in different rounds for the four
datasets, as shown in Figures D.2.1–D.2.4. In these plots, the curves show the mean values and the
shaded areas show the standard deviation. We applied moving average with a window size equal to
3% of the total number of rounds, and the mean and standard deviation are computed across samples
from all experiments (with 5 different random seeds) within each moving average window.

The main conclusions from Figures D.2.1–D.2.4 are similar to what we have seen from the final-round
results shown in Table 1 in the main paper. We can see that our FedAU algorithm performs the
best in the vast majority of cases and across most rounds. Only for the CIFAR-10 dataset, FedAU
gives a slightly worse test accuracy compared to FedVarp and MIFA, which aligns with the results in
Table 1. However, FedAU still gives the highest training accuracy on CIFAR-10. This implies that
FedVarp/MIFA gives a slightly better generalization on the CIFAR-10 dataset, where the reasons are
worth further investigation. We emphasize again that FedVarp and MIFA both require a substantial
amount of additional memory than FedAU, thus they do not work under the same system assumptions
as FedAU. For the CIFAR-100 dataset, there is a jump around the 10, 000-th round due to the learning
rate decay schedule, as mentioned in Section C.4.
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Figure D.2.1: Results on SVHN dataset (Bernoulli participation).
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Figure D.2.2: Results on CIFAR-10 dataset (Bernoulli participation).
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Figure D.2.3: Results on CIFAR-100 dataset (Bernoulli participation).
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Figure D.2.4: Results on CINIC-10 dataset (Bernoulli participation).

D.3 CLIENT-WISE DISTRIBUTIONS OF LOSS AND ACCURACY

We plot the loss and accuracy value distributions among all the clients in Figure D.3.1, where we
consider Bernoulli participation and compare with baselines that do not require extra resources or
information.
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Figure D.3.1: Client-wise distributions of loss value, training accuracy, and test accuracy, on
CIFAR-10 dataset with Bernoulli participation. The distribution is expressed as empirical cumulative
distribution function (CDF).

We can see that compared to the average-participating and average-all baselines that use the same
amount of memory as FedAU, the spread in the loss and accuracy with FedAU is smaller. This is also
seen in the standard deviation of all the clients’ loss and accuracy values in Table D.3.1, where we
only include the standard deviation values because the mean values are the same as those in Table 1.

Table D.3.1: Client-wise statistics of loss and accuracy (CIFAR-10 dataset with Bernoulli
participation)

Method Client-wise std. dev.
of loss

Client-wise std. dev.
of training accuracy

Client-wise std. dev.
of test accuracy

FedAU (ours, K → ↑) 0.017 9.9% 11.7%
FedAU (ours, K = 50) 0.016 9.5% 11.2%
Average participating 0.031 13.3% 11.6%

Average all 0.030 13.3% 12.2%

This shows that FedAU (especially with K = 50) reduces the bias among clients compared to the two
baselines, which aligns with our motivation mentioned in Section 1 about reducing discrimination.

D.4 AGGREGATION WEIGHTS

As shown in Figure D.4.1, with Bernoulli participation, the computed weights can be quite different
from 1/pn, especially when the participation probability is low (in Subfigures D.4.1c–D.4.1e). In
contrast, we see in Figure D.4.2 that with cyclic participation the weights computed by FedAU
and the known participation statistics baseline are more similar. This aligns with the fact that the
accuracies in the case of cyclic participation are also more similar compared to the case of Bernoulli
participation, as seen in Table 1.

Note that we use K ′ ⇐ for FedAU in both Figure D.4.1 and Figure D.4.2.
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Figure D.4.1: Aggregation weights with Bernoulli participation, (a) average aggregation weights over
all clients, (b) aggregation weights of a single client with a high mean participation rate of 52.7%,
(c)-(e) aggregation weights of three individual clients with a low mean participation rate of 2%.
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Figure D.4.2: Aggregation weights with cyclic participation, (a) average aggregation weights over
all clients, (b) aggregation weights of a single client with a high mean participation rate of 52.7%,
(c)-(e) aggregation weights of three individual clients with a low mean participation rate of 2%.

D.5 CHOICE OF DIFFERENT K

We study the effect of the cutoff interval length K by considering the performance of FedAU under
different minimum participation probabilities. The distributions of participation probabilities {pn} for
all the clients with different lower bounds are shown in Figure D.5.1, where we can see that a smaller
lower bound value corresponds to having more clients with very small participation probabilities.
The full set of plots complementing Figure 1 is shown in Figure D.5.2.
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Figure D.5.1: Distributions of participation probabilities {pn} at clients, with different lower bound
values of these probabilities. The distribution is expressed as empirical cumulative distribution
function (CDF) with logarithmic scale on the x-axis.
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(a) Full plots
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(b) Flots with enlarged y-axis

Figure D.5.2: Results of FedAU with different K, on CIFAR-10 dataset with Bernoulli participation.
The loss is NaN for K = 105 with pn ⇒ 0.0.
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D.6 LOW PARTICIPATION RATES

To further study the performance of FedAU in the presence of clients with low participation rates,
we set the lower bound of participation probabilities to 0.0 (i.e., we do not impose a specific lower
bound; see Appendix C.6.1 and Appendix D.5 for details) and compare the performance of FedAU
with K = 50 to the baseline algorithms. We consider settings with different mean participation
probabilities E [pn], while following the same procedure of generating heterogeneous participation
patterns as described in Appendix C.6, to capture the effect of different overall participation rates of
clients. The resulting distributions of {pn} with different E [pn] are shown in Figure D.6.1.
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Figure D.6.1: Distributions of participation probabilities {pn} at clients, with different values of
E [pn]. The distribution is expressed as empirical cumulative distribution function (CDF) with
logarithmic scale on the x-axis.

Table D.6.1: Accuracy results (in %) on training and test data of CIFAR-10, with different mean
participation probabilities E [pn] of clients (Bernoulli participation) and no minimum cap of pn

Mean participation probability E [pn] = 0.1 E [pn] = 0.01 E [pn] = 0.001

Method / Metric Train Test Train Test Train Test
FedAU (ours, K = 50) 84.1±0.6 75.9±0.5 71.5±1.3 67.7±1.1 45.9±1.2 45.6±1.2

Average participating 81.6±0.7 72.5±0.7 60.2±1.4 57.9±1.5 26.7±1.8 26.8±1.8

Average all 79.5±0.8 71.5±0.9 61.8±2.4 60.0±2.5 33.0±1.8 33.5±1.9

FedVarp (250↓ memory) 61.5±25.8 59.5±24.8 10.0±0.0 10.0±0.0 12.7±3.4 12.8±3.5

MIFA (250↓ memory) 74.8±1.9 72.5±1.5 10.0±0.0 10.0±0.0 10.0±0.0 10.0±0.0

Known participation statistics 15.0±10.0 14.9±9.8 10.0±0.0 10.0±0.0 10.0±0.0 10.0±0.0

Note to the table. Total number of rounds is 10, 000. We do not enforce a minimum participation probability
in these results, i.e., we allow any pn ↔ 0.0. We use the hyperparameters listed in Table C.4.1 for all the
experiments. The same note in Table 1 also applies to this table.

Key Observations. The accuracy results are presented in Table D.6.1, from experiments with
the CIFAR-10 dataset and 10, 000 rounds of FL. As expected, the performance of the majority of
algorithms decreases as E [pn] decreases, where the minor increase of FedVarp’s performance from
the case of E [pn] = 0.01 to E [pn] = 0.001 is due to randomness in the experiments. We summarize
the key findings from Table D.6.1 in the following.

It is interesting to see that the baseline algorithms that require additional memory or other information
actually perform very poorly when the clients’ participation rates are low, where we note that an
accuracy of 10% corresponds to random guess for the CIFAR-10 dataset that has 10 classes of images.
The reason is that FedVarp and MIFA both perform variance reduction based on previous updates
of clients. When clients participate rarely, it is likely that the saved updates are outdated, causing
more distortion than benefit to parameter updates. For the case of known participation statistics, the
aggregation weight of each client n is chosen as 1/pn. When pn is very small, the aggregation weight
becomes very large, which causes instability to the model training process.

The average participating and average all baselines perform better than the FedVarp, MIFA, and known
participation statistics baselines, because the aggregation weights used by the average participating
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and average all algorithms do not have much variation, which provides more stability in the case of
low client participation rates.

FedAU (with K = 50) gives the best performance, because the cutoff interval of length K ensures
that the aggregation weights are not too large, which provides stability in the training process. At the
same time, clients that participate frequently still have lower aggregation weights, which balances the
contributions of clients with different participation rates.

Further Discussion. We further note that all the results in Table D.6.1 are from experiments using
the hyperparameters listed in Table C.4.1. These near-optimal hyperparameters were found from
a grid search (see Appendix C.4) when the clients participate according to Bernoulli distribution
with statistics described in Appendix C.6. For the baseline methods that give random guess (or
close to random guess) accuracies, it is possible that their performance can be slightly improved by
choosing a much smaller learning rate, which may alleviate the impact of stale updates (for FedVarp
and MIFA) or excessively large aggregation weights (for known participation statistics) when the
client participation rate is low. However, it is impractical to fine tune the learning rates depending
on the participation rates, especially when the participation rates are unknown a priori. In addition,
using very small learning rates generally slows down the convergence, although the algorithm may
converge in the end after a large number of rounds. The fact that FedAU gives the best performance
compared to the baselines for a wide range of client participation rates, while keeping the learning
rates unchanged (i.e., using the values in Table C.4.1), confirms its stability and usefulness in practice.
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