
Online Bilevel Optimization: Regret Analysis of Online Alternating
Gradient Methods

Davoud Ataee Tarzanagh Parvin Nazari Bojian Hou
University of Pennsylvania Amirkabir University of Technology University of Pennsylvania

Li Shen Laura Balzano
University of Pennsylvania University of Michigan

Abstract

This paper introduces online bilevel optimiza-
tion in which a sequence of time-varying
bilevel problems is revealed one after the
other. We extend the known regret bounds
for single-level online algorithms to the bilevel
setting. Specifically, we provide new notions
of bilevel regret, develop an online alternat-
ing time-averaged gradient method that is
capable of leveraging smoothness, and give
regret bounds in terms of the path-length of
the inner and outer minimizer sequences.

1 Introduction

Bilevel optimization (BO) is rapidly evolving due to its
wide array of applications in modern machine learning
problems, including meta-learning [Bertinetto et al.,
2018], hyperparameter optimization [Feurer and Hutter,
2019], neural network architecture search [Liu et al.,
2018], data hypercleaning [Shaban et al., 2019], and re-
inforcement learning [Wu et al., 2020]. A fundamental
assumption in BO, which has been adopted by almost
all of the relevant literature [Franceschi et al., 2017,
Ghadimi and Wang, 2018, Ji et al., 2021b, Nazari et al.,
2022a], is that the inner and outer cost functions do not
change throughout the horizon over which we seek to op-
timize. This offline setting may not be suitable to model
temporal changes in today’s machine learning problems,
such as online actor-critic [Vamvoudakis and Lewis,
2010, Zhou et al., 2020a], online meta-learning [Finn
et al., 2019], strategic dynamic regression [Harris et al.,
2021], and sequential decision-making, for which the

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

objective functions are time-varying and are not avail-
able to the decision-maker a priori. To address these
challenges, this paper introduces an online bilevel opti-
mization (OBO) setting in which a sequence of bilevel
problems is revealed one after the other, and it stud-
ies computationally tractable notions of bilevel regret
minimization.

1.1 Background: Online Single-Level
Optimization

In online single-level optimization, the setup resem-
bles a game between a learner and an adversary
[Hazan, 2016a]. In each of the repeated decision rounds
(t ∈ [T] := 1, . . . , T), the learner predicts xt ∈ X ⊂ Rd1 ,
an element within a convex decision set. Simultane-
ously, the adversary selects a loss function ft : X → R,
and the learner observes ft(x), incurring a loss of ft(xt).
In the non-static setting [Besbes et al., 2015], the
learner’s performance is measured through its single-
level dynamic regret

D-RegT :=
T∑

t=1

(ft(xt)− ft(x
∗
t)), (1)

where x∗
t ∈ argminx∈X ft(x).

In the case of static regret [Zinkevich, 2003], x∗
t is

replaced by x∗ ∈ argminx∈X
∑T

t=1 ft(x), i.e.,

S-RegT :=
T∑

t=1

(ft(xt)− ft(x
∗)). (2)

The static regret (2) assumes that the comparators
do not change over time. This assumption can be
unrealistic in many practical online problems, ranging
from motion imagery formation to network analysis,
where the underlying environment is dynamic. The
parameters {x∗

t }Tt=1 could correspond to frames in a
video or the weights of edges in a social network and,
by nature, are variable [Hall and Willett, 2015].

Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods

1.2 Stackelberg Game and Online Bilevel
Optimization

Bilevel optimization, also known as the Stackelberg
leader-follower model, involves two players whose
choices impact each other’s outcomes. One player,
the leader, possesses knowledge of the other player’s ob-
jective function, enabling her to predict the follower’s
choice accurately. Consequently, the leader optimizes
her own objective while factoring in the follower’s ex-
pected response. In contrast, the follower is only aware
of her own objective and must consider how it is influ-
enced by the leader’s decisions [von Stackelberg, 1952].

Online Bilevel Optimization: Let xt ∈ X ⊂ Rd1

and ft : X × Rd2 → R denote the decision variable
and the objective function for the leader, respectively;
similarly define yt ∈ Rd2 and gt : X ×Rd2 → R for the
follower 1. In each round t ∈ [T], knowing the decision
xt−1 of the leader and the objective function gt−1 of
the follower, the follower has to select yt ∈ Rd2 in an
attempt to minimize gt(xt,y) using the information
from rounds t − 1, t − 2, . . . , 0. Being aware of the
follower’s selection, the leader then moves by selecting
xt ∈ X in an attempt to minimize the bilevel dynamic
regret, defined as:

BD-RegT :=

T∑
t=1

(ft(xt,y
∗
t (xt))− ft(x

∗
t ,y

∗
t (x

∗
t))), (3a)

where

y∗
t (x) ∈ argmin

y∈Rd2

gt(x,y), and

x∗
t ∈ argmin

x∈X
ft (x,y

∗
t (x)) .

(3b)

Our objective is to design online algorithms with a
sublinear bilevel regret, i.e., BD-RegT = o(T).

We also study the framework of regret mini-
mization where x∗

t in (3) is replaced by x∗ ∈
argminx∈X

∑T
t=1 ft(x,y

∗
t (x)). In this case, the goal of

the leader is to generate a sequence of decisions {xt}Tt=1

so that the following regret can be minimized:

BS-RegT :=
T∑

t=1

(
ft(xt,y

∗
t (xt))− ft(x

∗,y∗
t (x

∗))
)
. (4)

Note that the above regret is not fully static, as the
inner optima {y∗

t }Tt=1 are changing over T .

In general, it is impossible to achieve a sublinear dy-
namic regret bound due to the arbitrary fluctuations in
the time-varying functions [Besbes et al., 2015]. Exist-
ing single-level analysis shows that it is indeed possible

1For simplicity of analysis, we use Rd2 as the follower’s
decision set.

to bound the dynamic regret in terms of certain regu-
larities of the comparator sequence [Zinkevich, 2003].
Hence, in order to achieve sublinear regret, one has to
impose some regularity constraints on the sequence of
cost functions. In this work, we define the outer and
inner path-length (of order p) quantities to capture the
regularity of the sequences:

Pp,T :=
T∑

t=2

∥x∗
t−1 − x∗

t ∥p, and

Yp,T :=
T∑

t=2

∥∥y∗
t−1(x

∗
t−1)− y∗

t (x
∗
t)
∥∥p . (5a)

Here, Pp,T is the path-length of the outer minimizers
and is widely used for analyzing the dynamic regret of
single-level non-stationary optimization; see Table 1.
Yp,T is a new regularity metric for OBO that measures
how fast the minimizers of inner cost functions change.
For simplicity of notation, we set

Sp,T := Pp,T + Yp,T . (5b)

Besides (5a), other notions of regularity have also been
considered in online learning such as function variation
[Besbes et al., 2015] VT :=

∑T
t=2 supx∈X |ft−1(x) −

ft(x)| and gradient variation [Chiang et al., 2012]
GT :=

∑T
t=2 supx∈X ∥∇ft−1(x)−∇ft(x)∥2. For the

leader’s regret analysis in the static and local settings,
we respectively define

Ȳp,T :=
T∑

t=2

∥∥y∗
t−1(x

∗)− y∗
t (x

∗)
∥∥p , and

Hp,T :=

T∑
t=2

sup
x∈Rd1

∥y∗
t−1(x)− y∗

t (x)∥p
(6)

for capturing the dynamics of the inner problem.

The metrics in (5) and (6) are generally not comparable.
Appendix A.1 demonstrates their significant differences
across various online problems.

Our Results. Our main contributions lie in developing
several new results for OBO, including the first-known
regret bound. More specifically, we

• Define new notions of bilevel regret, as given in (3)
and (4), which are applicable to a wide class of con-
vex OBO problems. To minimize the proposed regret,
we introduce an online alternating gradient descent
(OAGD) method capable of leveraging smoothness and
provide its regret bounds in terms of the path-length
of the inner and/or outer minimizer sequences.

• Present a problem-dependent regret bound on the
proposed dynamic regret that depends solely on the
outer and inner path-length in Theorem 4. We then

Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, Laura Balzano

Single-Level Regret Minimization
Regret

SC-D Mokhtari et al. [2016] O(1 + P1,T)
Zhang et al. [2017] O (1 + min{P1,T , P2,T })

SC-S Hazan et al. [2007] O (log T)

Besbes et al. [2015] O(1 +G
1/2
T P

1/2
1,T)

C-D Jadbabaie et al. [2015] O(1 + T 2/3VT
1/3)

Yang et al. [2016] O (1 + P1,T)

C-S Zinkevich [2003] O(
√
T)

NC-L Hazan et al. [2017] O(T/W 2)

Bilevel Regret Minimization
Leader’s Regret

SC-D Theorem 4 O (1 + min{S1,T , S2,T })
SC-S Theorem 6 O

(
log T + Ȳ2,T

)
C-D Theorem 7 O (1 + S1,T + Y2,T)

C-S Theorem 8 O(
√
T + Ȳ1,T + Ȳ2,T)

NC-L Theorem 9 O(T/W +H1,T +H2,T)

Table 1: Comparison with prior works on regret min-
imization. Here, W =

∑w−1
i=0 ui for {ui}w−1

i=0 with
1 = u0 ≥ u1 . . . uw−1 > 0 (Def. 1); SC-D (-S), C-
D(-S), and NC-L denote strongly convex-dynamic (-
static), convex-dynamic (-static), and non-convex-local
settings, respectively.

establish a lower bound for OBO in Theorem 5 that
matches the upper bound we obtain for smooth strongly
convex functions. Notably, our bound in the single-level
setting (Y1,T = Y2,T = 0) aligns with the state-of-the-
art result in [Zhang et al., 2017], without the need for
multiple gradient queries (multiple updates to xt) as
used in their analysis.

• Introduce a novel notion of bilevel local regret, which
permits efficient OBO in the non-convex setting. We
give an alternating time-averaged gradient method, and
prove in Theorem 9 that it achieves sublinear regret
according to our proposed bilevel local regret.

Notation. Any notation is defined upon its use and
is summarized in Table 2 for reference.

2 Related Work

Static Regret Minimization: Single-level static re-
gret (Eq. (2)) is well-studied in the literature of online
learning [Shalev-Shwartz et al., 2011]. Zinkevich [2003]
shows that online gradient descent (OGD) provides
an O(

√
T) regret bound for convex functions {ft}Tt=1.

Hazan et al. [2007] improve this bound to O(log T) for
strongly-convex functions {ft}Tt=1.

Dynamic Regret Minimization: Single-level dy-
namic regret forces the player to compete with time-
varying comparators and is thus particularly favored
in non-stationary environments [Besbes et al., 2015].

There are two kinds of dynamic regret in previous stud-
ies: universal dynamic regret aims to compare with any
feasible comparator sequence [Zinkevich, 2003], while
worst-case dynamic regret (defined in (1)) specifies the
comparator sequence to be the sequence of minimizers
of online functions [Besbes et al., 2015]. We compare
regret bounds from related works for the latter case in
Table 1, as it is the setting studied in this paper.

Local Regret Minimization: There are several ap-
proaches to treat online single-level non-convex op-
timization, including adversarial multi-armed bandit
with a continuum of arms [Bubeck et al., 2008, Héliou
et al., 2020], and the classical Follow-the-Perturbed-
Leader (FPL) algorithm with access to an offline non-
convex optimization oracle [Agarwal et al., 2019, Sug-
gala and Netrapalli, 2020]. Complementing this litera-
ture, [Hazan et al., 2017] considered a local regret that
averages a sliding window of gradients at the current
model xt and quantifies the objective of predicting
points with small gradients on average.

Bilevel Optimization: Since its first formulation
by [von Stackelberg, 1952] and the initial mathematical
model by [Bracken and McGill, 1973], there has been
a steady growth in investigations and applications of
offline BO [Liu et al., 2021]. Recently, gradient-based
approaches have become popular for their simplicity
and efficacy [Franceschi et al., 2017, Ghadimi and Wang,
2018, Ji et al., 2021b, Chen et al., 2021], yet they
assume a static cost function, a limitation we overcome
by exploring new bilevel optimization algorithms in
the online setting. Since our initial submission, several
OBO studies have emerged [Lin et al., 2024, Huang
et al., 2023], with Lin et al. [2024] introducing an
OBO method that updates xt based on an average of
recent hypergradient estimates, enabling scalable OBO
through an approximate Hessian-inverse vector product
by solving a linear system.

3 Algorithm and Regret Bounds

In this section, we provide bilevel regret bounds based
on the regularities defined in (5) and (6). We first list
assumptions for OBO.
Assumption A. For all t ∈ [T]:

A1. ft is ℓf,0-Lipschitz continuous.

A2. gt(x,y) is µg-strongly convex in y for any x ∈ X .

A3. ∇ft,∇gt, and ∇2gt are respectively ℓf,1, ℓg,1, and
ℓg,2-Lipschitz continuous.

Assumption A necessitates well-behaved {(ft, gt)}Tt=1,
typical in offline BO [Chen et al., 2021]. Throughout,
we use κg := ℓg,1/µg to denote the condition number
of online inner functions {gt}Tt=1.

Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods

Assumption B. The non-empty closed and convex
decision set X ⊆ Rd1 is bounded, i.e., ∥x − x′∥ ≤ D
for any x,x′ ∈ X and some D > 0. Further, ∥y1 −
y∗
1(x1)∥ ≤ D′ for some D′ > 0.

Assumption B is similar to the existing assumptions on
the decision set in single-level online learning [Hazan,
2016a, Zinkevich, 2003].

3.1 OBO with (Hyper-)Gradient Information

Perhaps the simplest algorithm that applies to the most
general setting of online (single-level) optimization is
OGD [Zinkevich, 2003]: For each t ∈ [T], play xt ∈ X ,
observe the function ft, and set

xt+1 = ΠX
(
xt − αt∇ft(xt)

)
, αt > 0, (OGD)

where ΠX is the projection onto X .

We consider a natural extension of (OGD) to the bilevel
setting (containing inner and outer OGD) and demon-
strate that it exhibits regret bounds based on the
path-length of the inner and/or outer minimizer se-
quences. To do so, we need to compute the gradient
of the outer objective (hypergradient) ∇ft(x,y∗

t (x))
where y∗

t (x) is defined in (3b). The computation
of ∇ft(x,y∗

t (x)) involves Jacobian ∇2
xygt(x,y

∗
t (x))

and Hessian ∇2
ygt(x,y

∗
t (x)). More concretely, since

∇ygt(x,y
∗
t (x)) = 0, it follows from Assumption A and

the implicit function theorem

∇y∗
t (x)∇2

ygt (x,y
∗
t (x)) +∇2

xygt (x,y
∗
t (x)) = 0,

which together with the chain rule gives

∇ft(x,y∗
t (x)) = ∇xft (x,y

∗
t (x))

+∇y∗
t (x)∇yft (x,y

∗
t (x)) .

The exact gradient ∇ft(x,y∗
t (x)) is generally not avail-

able, preventing the use of gradient-type methods for
bilevel regret minimization. In this work, inspired by
offline bilevel optimization [Ghadimi and Wang, 2018]
and online single-level optimization [Hazan et al., 2017,
Aydore et al., 2019], we define a new time-averaged hy-
pergradient as a surrogate of ∇ft(x,y∗

t (x)) by replacing
y∗
t (xt) with yt ∈ Rd2 and using the history of the hy-

pergradients.

Definition 1 (Time-Averaged Hypergradient).
Given a window size w ∈ [T], let {ui}w−1

i=0 be a positive
decreasing sequence with u0 = 1. Let Ft,u(x,y) :=

(1/W)
∑w−1

i=0 uift−i(x,y) with W =
∑w−1

i=0 ui and the
convention ft ≡ 0 for t ≤ 0. Let Mt(x,y) be the
solution of the following linear equation:

∇2
xygt (x,y) +Mt(x,y)∇2

ygt (x,y) = 0.

Algorithm 1 : OAGDOAGDOAGD for Bilevel Regret Minimization

Require: Initial values (x1,y1) ∈ X × Rd2 ; parame-
ters w, T,K1,K2, . . . ,KT ∈ N; stepsizes {(αt, βt) ∈
R2

++}Tt=1; and weights {ui}w−1
i=0 with 1 = u0 ≥ u1 ≥

. . . ≥ uw−1 > 0.
1: for t = 1 to T do
2: Acquire information about functions ft and gt
3: Set z1t ← yt

4: for k = 1 to Kt do
5: Update zk+1

t ← zkt − βt∇zgt(xt, z
k
t)

6: end for
7: Update yt+1 ← zKt+1

t

8: Update xt+1 ← ΠX
[
xt − αt∇̃Ft,u(xt,yt+1)

]
9: end for

Then, the time-averaged hypergradient is defined as

∇̃Ft,u(x,y) :=
1

W

w−1∑
i=0

ui∇̃ft−i(x,y), (7)

where

∇̃ft(x,y) := ∇xft(x,y) +Mt(x,y)∇yft(x,y). (8)

Remark 2. ∇̃Ft,u(x,y) is defined using the hypergra-
dients of the losses from the w recent rounds. By setting
ui = 1, it averages a sliding window of online hyper-
gradients at each update. With ui = δi for δ ∈ (0, 1),
it emphasizes recent values, giving an exponential av-
erage of hypergradients. Although ∇̃Ft,u(x,y) seems
computationally intensive for large w, the w terms can
be processed in parallel, mitigating the cost.

The pseudo-code for the online alternating gradient
descent (OAGD) method is presented in Algorithm 1.
This algorithm is very simple to implement. At each
timestep t ∈ [T], OAGD alternates between the gra-
dient update on yt and the time-averaged projected
hypergradient on xt. One can notice that the alter-
nating update in Algorithm 1 serves as a template for
running (OGD) on OBO problems. In OAGD, w and
ui are tunable parameters. Remark 2 and Theorem 9
provide suggested values for them. Intuitively, the
value of w captures the level of averaging (smoothness)
of the hypergradient at round t. We note that OAGD
is similar to single-level time-smoothing OGD-type
methods for the outer variable update [Hazan et al.,
2017]. Also, without the inner variable and by setting
the window size w = 1, OAGD reduces to (OGD). It
should be mentioned that w > 1 is not required for our
bilevel dynamic and static regret minimization. How-
ever, evaluations in Section 4 reveal that Equation (7)
with w > 1 provides a performance boost over the case
w = 1. Finally, we note that for w = 1, Algorithm 1 is
similar to the gradient methods for offline BO [Ghadimi
and Wang, 2018, Chen et al., 2021, Ji et al., 2021b].

Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, Laura Balzano

Lemma 3. Under Assumption A, for all t ∈ [T],
x,x′ ∈ X , and y ∈ Rd2 , we have

∥y∗
t (x)− y∗

t (x
′)∥ ≤ Ly ∥x− x′∥ ,

∥∇̃ft(x,y)−∇ft(x,y∗
t (x))∥ ≤Mf ∥y − y∗

t (x)∥ ,
∥∇ft(x,y∗

t (x))−∇ft(x′,y∗
t (x

′))∥ ≤ Lf ∥x− x′∥ .

Here, Ly = O(κg), Mf = O(κ2
g), and Lf = O(κ3

g).

The proof of Lemma 3 is provided in Appendix C.2.1.

3.2 Main Results

This section presents the convergence results of the
OAGD algorithm. In Theorems 4–8, we simplify the
analysis by setting w = 1. For a summary and compar-
ison of these results with the single-level setting, we
refer to Table 1. Proofs can be found in Appendix C.
Theorem 4 (Strongly-Convex Dynamic). Suppose
Assumptions A–B hold, and {ft}Tt=1 are strongly convex
with parameter µf . Then, Algorithm 1 with

βt = β =
2

ℓg,1 + µg
, αt = α ≤ min

{ 1

ℓf,1
,

µf

128M2
fL

2
y

}
,

Kt = K ≥
⌈
0.25(κg + 1) log

(
4(

1

αµf
+ 2)2

)⌉
,

for all t ∈ [T], satisfies the follwoing

BD-RegT ≤ O
(
1 + min

{
S1,T ,

T∑
t=1

∥∇ft(x∗
t ,y

∗
t (x

∗
t))∥

2
+ S2,T

})
.

(10)

Theorem 4 shows that Algorithm 1, using fixed step
sizes and Kt = Õ(κg), achieves a problem-dependent
regret bound. While it might appear advantageous
to increase Kt, our analysis suggests that even as Kt

approaches infinity, the regret bound only improves by
a constant factor.

In single-level online setting, [Zhang et al., 2017] shows
that if

∑T
t=1 ∥∇ft(x∗

t)∥
2
= O(P2,T), the dynamic re-

gret bound of (OGD) can be further improved to
O (1 + min{P1,T , P2,T }) by allowing multiple gradient
queries (resulting in multiple updates to xt). When
Y1,T = Y2,T = 0, we achieve a similar dynamic regret
bound without multiple gradient queries.

If ft = f and gt = g, then S1,T = S2,T = 0 implies a
regret bound of O(1), leading to convergence rates for
offline bilevel gradient methods [Ghadimi and Wang,
2018]. If the difference between consecutive inner and
outer arguments decreases as 1/t, then P1,T = Y1,T =
O(log T), resulting in a logarithmic regret bound.

The following theorem provides the lower bound Ω(1 +
S2,T) for OBO.

Theorem 5 (Lower Bound). For any OBO algo-
rithm, there always exists a sequence of smooth and
strongly convex functions {(ft, gt)}Tt=1 such that

BD-RegT = Ω(1 + S2,T).

Theorem 5 indicates that the upper bound in Theorem
4 cannot be improved in general.
Theorem 6 (Strongly-Convex Static). Suppose
Assumptions A–B hold, and {ft}Tt=1 are strongly convex
with parameter µf . Then, Algorithm 1 with

βt = β =
2

ℓg,1 + µg
, αt =

2

µf t
,

Kt = K ≥
⌈
0.25(κg + 1) log

(
(
24LyMf

µf
)2 + 2

)⌉
,

for all t ∈ [T], satisfies the follwoing

BS-RegT ≤ O
(
log T + Ȳ2,T

)
. (11)

Theorem 6 shows that Algorithm 1, with decreasing αt

and Kt = Õ(κg), achieves a problem-dependent regret
bound, where the log T term mirrors single-level static
findings [Hazan et al., 2007], and Ȳ2,T accounts for the
variability in {y∗

t (x
∗)}Tt=1 over T .

The following theorem provides the regret bounds for
online convex functions {ft}Tt=1 in the dynamic setting.
Theorem 7 (Convex Dynamic). Suppose Assump-
tions A–B hold, functions {ft}Tt=1 are convex, and
∃ (x∗

t ,y
∗
t (x

∗
t)) ∈ X×Rd2 such that ∇ft(x∗

t ,y
∗
t (x

∗
t)) = 0

for all t ∈ [T]. Then, Algorithm 1 with

βt = β =
2

ℓg,1 + µg
, αt = α ≤ 1

4Lf
,

Kt ≥
⌈
0.25(κg + 1) log 4t2

⌉
,

for all t ∈ [T], satisfies the following

BD-RegT ≤ O (1 + S1,T + Y2,T) . (12)

From Theorem 7 we see that Algorithm 1 achieves
an O (1 + S1,T + Y2,T) dynamic regret for a sequence
of loss functions that satisfy Assumption A with
only gradient feedback. Note that the condition
∇ft(x∗

t ,y
∗
t (x

∗
t)) = 0 is referred to as the vanishing gra-

dient condition, which is widely used in the analysis of
OGD methods in the single-level convex setting [Yang
et al., 2016, Assumption 2].
Theorem 8 (Convex Static). Suppose Assump-
tions A-B hold and functions {ft}Tt=1 are convex. Then,
Algorithm 1 with

βt = β =
2

ℓg,1 + µg
, αt =

D

ℓf,0
√
t
,

Kt ≥
⌈
0.25(κg + 1) log 4t2

⌉
,

Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods

for all t ∈ [T], satisfies the following

BS-RegT ≤ O
(√

T + Ȳ1,T + Ȳ2,T

)
. (13)

Theorem 8 provides static bounds when the cost func-
tions are convex. We observe that the term

√
T is

identical to the bound in the single-level static setting
[Zinkevich, 2003], and Ȳ1,T and Ȳ2,T account for the
variability in {y∗

t (x
∗)}Tt=1 over T . Additionally, we

note that Ȳ1,T and Ȳ2,T are not generally comparable;
see Example 1 in Appendix A.1.

3.2.1 Local Regret Minimization

In this section, we consider online bilevel learning with
non-convex outer losses. While minimizing the regret
(3) makes sense for online convex functions {ft}Tt=1, it
is not appropriate for general non-convex online costs,
as the global minimization of a non-convex objective
is generally intractable. We address this issue with
a combined approach, leveraging optimality criteria
and measures from offline non-convex bilevel analy-
sis, together with smoothing of the online part of the
outer objective function similar to [Hazan et al., 2017].
Throughout this section, we set X ≡ Rd1 .

For the sequence {ui}w−1
i=0 given in Definition 1 and for

all w ∈ [T], we define the following bilevel local regret :

BL-RegT,u :=

T∑
t=1

∥∇Ft,u(xt,y
∗
t (xt))∥2 . (14)

Here, y∗
t (x) ∈ argminy∈Rd2 gt(x,y), and

Ft,u(xt,y
∗
t (xt)) =

1

W

w−1∑
i=0

uift−i(xt,y
∗
t (xt))

with the convention ft ≡ 0 for t ≤ 0. Note that in the
single-level setting, (14) with ui = 1 simplifies to the
local regret in [Hazan et al., 2017].

For local regret analysis, we utilize Hp,T , as defined in
(6), to measure the variation of y∗

t (x). We introduce
Hp,T to account for cases where its value is inherently
small. For instance, in the online problem discussed in
Section 4, Hp,T represents the label variability over T ,
which can be small for an optimal range of hyperpa-
rameters x ∈ Rd1 .

Assumption C. For all t ∈ [T], |ft(x,y)| ≤ M for
some finite constant M > 0.

Assumption C is a common assumption in the literature
[Hazan et al., 2017]. The following theorem demon-
strates OAGD’s sublinear local regret.

Theorem 9 (Non-convex Local). Suppose Assump-
tions A and C hold. Then, Algorithm 1 with

βt = β =
2

ℓg,1 + µg
, Kt = 1,

αt = α ≤ min
{ 1

8Lf
,

1

2
√
2LyMf (κ2

g − 1)1/2

}
,

for all t ∈ [T], satisfies the following

BL-RegT,u ≤ O
(T

W
+H1,T +H2,T

)
. (15)

The above regret can become sublinear in T provided
H1,T = o(T), H2,T = o(T), and the weight w is appro-
priately chosen so that W = o(T). Theorem 9 aligns
closely with the existing bounds in various non-convex
optimization contexts. In the OBO setting, it parallels
[Lin et al., 2024, Theorem 5.7], yet it does not require
monitoring fluctuations between online objective func-
tions. When Hp,T = 0, as in a single-level setting,
Theorem 9 matches the findings of [Hazan et al., 2017]
but applies to a broader range of weight sequences
{ui}w−1

i=0 . It is important to note that when ui = 1 for
all i ∈ {0, . . . , w − 1}, it yields a local regret bound
of O(T/w +H1,T +H2,T). For the offline case where
ft = f , the results provide a convergence guarantee for
non-convex BO [Ghadimi and Wang, 2018].

4 Experimental Results

In this section, we conduct preliminary experiments to
evaluate OAGD performance, with additional experi-
ments available in Appendix D. Code is available at
https://github.com/BojianHou/OAGD.

4.1 Online Hyperparameters Learning for
Dynamic Regression

Hyperparameter optimization (HO) is the process of
finding the best set of hyperparameters that cannot
be learned using the training data alone [Franceschi
et al., 2018]. An HO problem can be formulated as
a BO problem. The outer objective, f(y∗(x);Dval),
aims to minimize the validation loss concerning the
hyperparameters x. Meanwhile, the inner objective,
g(x,y;Dtr), minimizes the training loss concerning the
model parameters y.

We consider online HO for dynamic regression as
follows: At each round or timestep t, new samples
(at, bt) ∈ Dt := {Dval

t ,Dtr
t } for all t ∈ [T] are received,

where at ∈ Rd2 represents the feature vector and bt ∈ R
is the corresponding target. It’s important to note
that the potential correct decision can change abruptly.
Specifically, we consider an S-stage scenario where

https://github.com/BojianHou/OAGD

Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, Laura Balzano

0.1 0.2 0.3 0.4 0.5
104

100

105

1010
P2,T+Y2,T
w=T

w=100
w=1

0.1 0.2 0.3 0.4 0.5
104

100

101

102

103

104

w=T w=100 w=1

Figure 1: Performance of OAGD in online hyperparameter learning over five runs. The left and middle figures
show OBO’s regret with three comparators and a fixed comparator, respectively. The right figure illustrates the
outer problem’s trajectories and the performance of OAGD and offline HO in learning the hyperparameter x1.

(x∗
s,y

∗
s(x

∗
s)) represents potentially the best decisions

for the s-th stage, encompassing all s ∈ [S]:

x∗
s ∈ argmin

x∈X

∑Ts

t=1 f
(
y∗
s(x);Dval

t

)
s.t. y∗

s(x) ∈ argmin
y∈Rd2

∑Ts

t=1 g (x,y;Dtr
t) .

(16)

At each round t of online HO, given a sample (at, bt) ∈
Dtr

t , the follower is required to make the prediction
by a⊤t yt based on the learned inner and outer models
(xt−1,yt−1) ∈ X × Rd2 ; then, as a consequence the
follower suffers a loss g(xt−1,yt;Dtr

t) = 1/2(a⊤
t yt −

bt)
2 + y⊤

t C(xt−1)yt, where C(x) := diag(exp(xi))
d1
i=1.

The leader then receives the feedback of the inner model,
i.e., yt, predicts the new hyperparameter xt using a
validation sample (at, bt) ∈ Dval

t , and suffers the loss
f(yt(xt);Dval

t) = 1/2(a⊤
t yt(xt) − bt)

2. This process
repeats across T = {T1, . . . , TS} rounds.

Figure 1 (left and middle) shows the variation P2,T +
Y2,T and the regret bound of OAGD with three different
window sizes w ∈ {1, 100, T} on synthetic data; see
Appendix D.1 for further details. We observe that
OAGD with w = T performs the best, with a gradual
decrease in performance as w decreases to 100 and
w = 1. Additionally, Figure 1 (right) demonstrates
that the performance of OAGD is comparable to the
performance of the offline HO [Franceschi et al., 2018].

4.2 Online Parametric Loss Tuning for
Imbalanced Data

Imbalanced datasets are common in modern machine
learning, posing challenges in generalization and fair-
ness due to underrepresented classes and sensitive at-
tributes. This issue is exacerbated by deep neural net-
works’ tendency to overfit, appearing accurate and fair
during training but performing poorly during testing.
AutoBalance [Li et al., 2021] addresses this by automat-
ically designing a parametric training loss to balance
accuracy and fairness while preventing overfitting. We

give an online variant of AutoBalance, demonstrating
the enhanced performance of OAGD in this setting.

The bilevel objective function for loss tuning is the
same as (16) but the leader’s and the follower’s loss
functions are defined differently. At each round or
timestep t, new samples (at, bt) ∈ Dt := {Dval

t ,Dtr
t }

for all t ∈ [T] are received, where at ∈ Rd2 represents
the feature vector and bt ∈ {1, . . . , J} represents the
corresponding label. For a new sample (at, bt), the
follower suffers from a parametric cross-entropy loss:

g(xt−1,yt;Dtr
t) = − log

eγbt [yt(at)]bt+∆bt∑J
j=1 e

γj [yt(at)]j+∆j

, (17a)

where xt−1 := (∆j , γj)
J
j=1 represents the logits.

In the outer-level, the leader suffers from a balanced
cross entropy loss

f(yt(xt);Dval
t) = −ubt log

e[yt(at)]bt∑J
j=1 e

[yt(at)]j
, (17b)

where uj represents the reciprocal of the proportion
of samples from the j-th class to the total number of
samples [Li et al., 2021].

There might be one notation abuse in (17) that we
need to clarify: yt(xt) still indicates that the follower
yt is conditioned on the leader xt, whereas [yt(at)]bt
denotes the predicted logit for class bt that the follower
yt makes on sample at. Note that the backbone model
for yt is a 4-layer CNN, resulting in a nonconvex bilevel
objective. For more details, refer to Appendix D.

We compare Algorithm 1 with the following baselines:

- Single-Level OGD [Zinkevich, 2003]: Updates the
model yt with fixed hyperparameters x at each timestep
on the newly observed data using gradient descent.
- AutoBalance [Li et al., 2021]: An offline bilevel gra-
dient descent framework that updates hyperparameters
xt and the model yt to address imbalance issues.

Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods

0 25 50 75 100 125 150 175 200
T

0

200

400

600

800

1000
R
un
ti
m
e
(s
ec
on
ds
)

AutoBalance

Single-Level OGD

OAGD (w=5)

OAGD (w=10)

0 25 50 75 100 125 150 175 200
T

0.6

0.7

0.8

0.9

1.0

B
al

an
ce

d
T

ra
in

in
g

A
cc

ur
ac

y

AutoBalance

Single-Level OGD

OAGD (w=5)

OAGD (w=10)

0 25 50 75 100 125 150 175 200
T

0.6

0.7

0.8

0.9

1.0

B
al

an
ce

d
T

es
ti

ng
A

cc
ur

ac
y

AutoBalance

Single-Level OGD

OAGD (w=5)

OAGD (w=10)

Figure 2: Performance comparison (mean±std) on loss tuning for imbalanced MNIST data across five runs.

0 50 100 150 200 250 300 350 400
T

0

500

1000

1500

2000

R
un

ti
m

e
(s

ec
on

ds
)

AutoBalance

OAGD (δ=1.0)

OAGD (δ=0.9)

OAGD (δ=0.5)

0 50 100 150 200 250 300 350 400
T

0.0

0.2

0.4

0.6

0.8

1.0

1.2

B
al

an
ce

d
T

ra
in

in
g

A
cc

ur
ac

y

AutoBalance

OAGD (δ=1.0)

OAGD (δ=0.9)

OAGD (δ=0.5)

0 50 100 150 200 250 300 350 400
T

0.0

0.2

0.4

0.6

0.8

1.0

1.2

B
al

an
ce

d
T

es
ti

ng
A

cc
ur

ac
y

AutoBalance

OAGD (δ=1.0)

OAGD (δ=0.9)

OAGD (δ=0.5)

Figure 3: Performance comparison (mean±std) on loss tuning for imbalanced MNIST data across five runs,
considering induced distribution shift.

We conducted experiments using the MNIST
dataset [LeCun et al., 2010]. To create an imbalanced
scenario, we selected samples in proportions of 0.6i

from each class (i = 0, 1, . . . , 9). For online learn-
ing, we used a batch size of 128 at each timestep to
train our OAGD. If the window size w exceeded 1, we
combined the current batch with the previous w − 1
batches for OAGD training. We evaluated cumulative
runtime, along with balanced training and testing accu-
racy, where balanced accuracy is the class-specific aver-
age accuracy: 1

J

∑J
j=1 Pat∼Dj [argmaxi([yt(at)]i) = j]

where Dj refers to the distribution over samples whose
groundtruth class label is j and P[A] means the prob-
ability of event A [Li et al., 2021]. To ensure consis-
tency, we maintained a fixed inner-level learning rate of
β = 0.1 for all bilevel algorithms and single-level OGD,
with the outer-level learning rate set at α = 0.001.

Figure 2 (left) provides runtime comparisons. The
single-level OGD algorithm is the fastest since it lacks
an outer-level training step and trains on a single batch
of data at each timestep. Our OAGD exhibits similar
runtime characteristics, with the runtime increasing as
the window size w grows due to more extensive training.
In contrast, AutoBalance is the slowest method as it
trains on all observed data up to each timestep.

Figure 2 (middle and right) displays balanced training
and testing accuracy. AutoBalance quickly achieves
high accuracy after 10 timesteps, whereas single-level
OGD exhibits slower improvement. OAGD (w = 5)

and OAGD (w = 10) exhibit rapid growth in both
testing and training accuracy, eventually outperform-
ing AutoBalance. They benefit from time-smoothing
hypergradients. Larger window sizes further enhance
OAGD’s balanced training and testing accuracy.

We conducted experiments on the MNIST dataset to
evaluate performance under time-varying distribution
shifts across 400 timesteps, divided into four phases
of varying distributions, each lasting 100 timesteps.
Initially, the distribution was highly imbalanced, with
class proportions set by 0.4i for classes i = 0 to 9. This
imbalance gradually lessened over the next two phases,
changing from 0.6i to 0.8i. The final 100 timesteps
featured a balanced distribution across the 10 MNIST
classes, ensuring normalized class proportions through-
out all phases.

The parameter δ influences the weighting of each win-
dow in the “time-averaged hypergradient,” per Defini-
tion 1. Setting ui = 1 computes the average of online
hypergradients in a sliding window. For ui = δi with
δ ∈ (0, 1), it weights recent values more through an
exponential average. Experiments with δ values of 1,
0.9, and 0.5 show that lower δ gives more emphasis to
recent windows.

The results, illustrated in Figure 3, show a signifi-
cant performance decrease for AutoBalance at timestep
T = 200, while OAGD remains comparatively stable
against distribution shifts. At T = 80, OAGD experi-
ences a noticeable drop due to shifting from a single-

Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, Laura Balzano

0 100 200 300 400 500 600
T

0

1000

2000

3000

4000

5000

R
un

ti
m

e
(s

ec
on

ds
)

ANIL

ITD-BiO

OAGD (w=10)

0 100 200 300 400 500 600
T

0.40

0.45

0.50

0.55

0.60

0.65

T
ra

in
in

g
A

cc
ur

ac
y

ANIL

ITD-BiO

OAGD (w=10)

0 100 200 300 400 500 600
T

0.30

0.35

0.40

0.45

0.50

T
es

ti
ng

A
cc

ur
ac

y

ANIL

ITD-BiO

OAGD (w=10)

Figure 4: Performance comparison (mean±std) on meta-learning for FC100 data across five runs.

level method with fixed hyperparameters (warm-up
phase) to a bilevel framework that starts adjusting
hyperparameters at T = 80, causing a short disruption.
This warm-up phase is standard in bilevel optimization
[Li et al., 2021, Lorraine et al., 2020]. Although larger
w are beneficial for gradient accuracy, they can produce
outdated gradients if data distribution changes, nega-
tively affecting model updates. In contrast, a smaller δ
can improve adaptability and performance by focusing
on recent data, even with large window sizes w.

4.3 Online Meta-Learning

Meta-learning aims to bootstrap from a set of given
tasks to learn faster on future tasks [Finn et al., 2017,
Balcan et al., 2019]. A popular formulation is online
meta-learning (OML) where agents sequentially face
tasks and apply methods such as classical FPL [Finn
et al., 2019] or mirror descent [Denevi et al., 2019]
for enhanced meta-learning. We consider an implicit
gradient-based OML setting: for each task Tt and
some β > 0, the follower adapts the leader’s model
wt ∈ W ⊂ Rd using training data Dtr

t an inner OGD:

u∗
t (wt) ∈ argmin

u∈Rd

〈
u,∇f(wt;Dtr

t)
〉
+

1

2β
∥u−wt∥2 .

Then, the test data Dts
t will be revealed to the leader

for evaluating the performance of the follower’s model
u∗
t (wt). The loss observed at this timestep, denoted as

f(u∗
t (wt);Dts

t), can then be fed into the leader’s algo-
rithm (outer OGD) to update wt. Despite the convex
nature of the loss function, which is a cross-entropy
loss, where w represents a 4-layer CNN, ultimately
rendering the outer problem non-convex. Further, the
inner problem for loss tuning involves training a CNN
and is non-convex, showing our implementation’s wide
scope. We compare our OAGD with the following
meta-learning methods:

- ANIL [Raghu et al., 2019]: A widely used meta-
learning algorithm, which simplifies MAML by remov-
ing the inner loop for all parts of the MAML-trained
network except for the task-specific head.

- ITD-BiO [Ji et al., 2021b]: A gradient-based stochas-
tic bilevel optimization framework based on iterative
differentiation (ITD).

We evaluate our model on the FC100 (Fewshot-
CIFAR100) dataset [Oreshkin et al., 2018] through a
5-way 5-shot task. In the online setting, each timestep
presents one task with 25 training and 25 testing sam-
ples. If the window size exceeds 1, data from up to
w − 1 previous tasks are included. In contrast, the
offline setting allows baselines to use all observed data
up to the current timestep. The inner and outer learn-
ing rates for ANIL and ITD-BiO are 0.01 and 5e− 5,
respectively, while our OAGD employs learning rates
of 0.1 and 1e− 4. These experiments were conducted
on a P100 GPU equipped with 12 GB of memory.

In Figure 4, we provide the performance comparison
in terms of runtime, training accuracy, and testing
accuracy. We compare only our OAGD (w = 10) to
other baselines to enhance the precision of the figure.
For the sensitivity analysis concerning the window size,
please refer to the Appendix. From the left figure in
Figure 4, it’s noticeable that the two baselines consume
a similar longer time with an exponential trend, while
our OAGD requires the least time, following a linear
trend. However, as indicated by the middle and right
figures, our OAGD demonstrates competitive training
accuracy and even better testing accuracy across all
the timesteps, highlighting its superiority.

5 Conclusion

This paper studies online bilevel optimization and pro-
vides regret guarantees under different convexity as-
sumptions on the time-varying objective functions. In
particular, we propose a new class of online bilevel algo-
rithms capable of leveraging smoothness and providing
regret bound in terms of problem-dependent quantities,
such as the path-length of the comparator sequence.

Acknowledgements

This work was supported in part by NSF CAREER
award CCF1845076, AFOSR YIP award FA9550-19-1-

Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods

0026, ARO YIP award W911NF1910027, and NIH
grants U01 AG066833, U01 AG068057, and RF1
AG063481.

References

J. Abernethy, P. L. Bartlett, A. Rakhlin, and
A. Tewari. Optimal strategies and minimax lower
bounds for online convex games. In Proceedings of
the 21st Annual Conference on Learning Theory, page
415–423, 2008.

N. Agarwal, A. Gonen, and E. Hazan. Learning in
non-convex games with an optimization oracle. In
Conference on Learning Theory, pages 18–29. PMLR,
2019.

E. Aiyoshi and K. Shimizu. A solution method for
the static constrained stackelberg problem via penalty
method. IEEE Transactions on Automatic Control,
29(12):1111–1114, 1984.

F. A. Al-Khayyal, R. Horst, and P. M. Pardalos.
Global optimization of concave functions subject to
quadratic constraints: an application in nonlinear
bilevel programming. Annals of Operations Research,
34(1):125–147, 1992.

S. M. Arnold, P. Mahajan, D. Datta, I. Bunner, and
K. S. Zarkias. learn2learn: A library for meta-learning
research. arXiv preprint arXiv:2008.12284, 2020.

S. Aydore, T. Zhu, and D. P. Foster. Dynamic local
regret for non-convex online forecasting. Advances in
Neural Information Processing Systems, 32, 2019.

D. Baby and Y.-X. Wang. Online forecasting of total-
variation-bounded sequences. In Advances in Neural
Information Processing Systems 32, page 11071–11081,
2019.

M.-F. Balcan, M. Khodak, and A. Talwalkar. Prov-
able guarantees for gradient-based meta-learning. In
International Conference on Machine Learning, pages
424–433. PMLR, 2019.

B. Becker and R. Kohavi. Adult. UCI
Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

L. Bertinetto, J. F. Henriques, P. Torr, and A. Vedaldi.
Meta-learning with differentiable closed-form solvers.
In International Conference on Learning Representa-
tions, 2018.

O. Besbes, Y. Gur, and A. Zeevi. Non-stationary
stochastic optimization. Operations research, 63(5):
1227–1244, 2015.

O. Bousquet and M. K. Warmuth. Tracking a small
set of experts by mixing past posteriors. Journal of
Machine Learning Research, 3(Nov):363–396, 2002.

J. Bracken and J. T. McGill. Mathematical programs
with optimization problems in the constraints. Oper-
ations Research, 21(1):37–44, 1973.

S. Bubeck, G. Stoltz, C. Szepesvári, and R. Munos.
Online optimization in x-armed bandits. Advances in
Neural Information Processing Systems, 21, 2008.

T.-J. Chang and S. Shahrampour. On online opti-
mization: Dynamic regret analysis of strongly convex
and smooth problems. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages
6966–6973, 2021.

T. Chen, Y. Sun, and W. Yin. Closing the gap:
Tighter analysis of alternating stochastic gradient
methods for bilevel problems. Advances in Neural
Information Processing Systems, 34, 2021.

T. Chen, Y. Sun, and W. Yin. A single-timescale
stochastic bilevel optimization method. AISTATS,
2022.

C.-K. Chiang, T. Yang, C.-J. Lee, M. Mahdavi, C.-
J. Lu, R. Jin, and S. Zhu. Online optimization with
gradual variations. In Conference on Learning Theory,
pages 6–1. JMLR Workshop and Conference Proceed-
ings, 2012.

A. Daniely, A. Gonen, and S. Shalev-Shwartz.
Strongly adaptive online learning. In International
Conference on Machine Learning, pages 1405–1411,
2015.

G. Denevi, D. Stamos, C. Ciliberto, and M. Pontil.
Online-within-online meta-learning. Advances in Neu-
ral Information Processing Systems, 32, 2019.

J. Domke. Generic methods for optimization-based
modeling. In Artificial Intelligence and Statistics,
pages 318–326. PMLR, 2012.

T. A. Edmunds and J. F. Bard. Algorithms for nonlin-
ear bilevel mathematical programs. IEEE transactions
on Systems, Man, and Cybernetics, 21(1):83–89, 1991.

M. Feurer and F. Hutter. Hyperparameter optimiza-
tion. In Automated machine learning, pages 3–33.
Springer, Cham, 2019.

C. Finn, P. Abbeel, and S. Levine. Model-agnostic
meta-learning for fast adaptation of deep networks. In
International Conference on Machine Learning, pages
1126–1135. PMLR, 2017.

Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, Laura Balzano

C. Finn, A. Rajeswaran, S. Kakade, and S. Levine.
Online meta-learning. In International Conference on
Machine Learning, pages 1920–1930. PMLR, 2019.

L. Franceschi, M. Donini, P. Frasconi, and M. Pontil.
Forward and reverse gradient-based hyperparameter
optimization. In International Conference on Machine
Learning, pages 1165–1173. PMLR, 2017.

L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and
M. Pontil. Bilevel programming for hyperparame-
ter optimization and meta-learning. In International
Conference on Machine Learning, pages 1568–1577.
PMLR, 2018.

S. Ghadimi and M. Wang. Approximation meth-
ods for bilevel programming. arXiv preprint
arXiv:1802.02246, 2018.

R. Grazzi, L. Franceschi, M. Pontil, and S. Salzo. On
the iteration complexity of hypergradient computation.
In International Conference on Machine Learning,
pages 3748–3758. PMLR, 2020.

Z. Guo, Y. Xu, W. Yin, R. Jin, and T. Yang. On
stochastic moving-average estimators for non-convex
optimization. arXiv preprint arXiv:2104.14840, 2021.

E. C. Hall and R. M. Willett. Online convex opti-
mization in dynamic environments. IEEE Journal
of Selected Topics in Signal Processing, 9(4):647–662,
2015.

N. Hallak, P. Mertikopoulos, and V. Cevher. Regret
minimization in stochastic non-convex learning via a
proximal-gradient approach. In International Confer-
ence on Machine Learning, pages 4008–4017. PMLR,
2021.

P. Hansen, B. Jaumard, and G. Savard. New branch-
and-bound rules for linear bilevel programming. SIAM
Journal on scientific and Statistical Computing, 13(5):
1194–1217, 1992.

K. Harris, H. Heidari, and S. Z. Wu. Stateful strategic
regression. Advances in Neural Information Processing
Systems, 34:28728–28741, 2021.

E. Hazan. Introduction to online convex optimiza-
tion. Foundations and Trends® in Optimization,
2(3-4):157–325, 2016a. URL http://ocobook.cs.
princeton.edu/OCObook.pdf.

E. Hazan. Introduction to online convex optimization.
Foundations and Trends in Optimization, 2(3-4):157–
325, 2016b.

E. Hazan and C. Seshadhri. Adaptive algorithms for
online decision problems. In Electronic colloquium on
computational complexity (ECCC), volume 14, 2007.

E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret
algorithms for online convex optimization. Machine
Learning, 69(2):169–192, 2007.

E. Hazan, K. Singh, and C. Zhang. Efficient regret
minimization in non-convex games. In International
Conference on Machine Learning, pages 1433–1441.
PMLR, 2017.

A. Héliou, M. Martin, P. Mertikopoulos, and
T. Rahier. Online non-convex optimization with im-
perfect feedback. Advances in Neural Information
Processing Systems, 33:17224–17235, 2020.

A. Héliou, M. Martin, P. Mertikopoulos, and
T. Rahier. Zeroth-order non-convex learning via hier-
archical dual averaging. In International Conference
on Machine Learning, pages 4192–4202. PMLR, 2021.

M. Herbster and M. K. Warmuth. Tracking the best
expert. Machine learning, 32(2):151–178, 1998.

M. Herbster and M. K. Warmuth. Tracking the best
linear predictor. Journal of Machine Learning Re-
search, 1(281-309):10–1162, 2001.

S. C. Hoi, D. Sahoo, J. Lu, and P. Zhao. Online
learning: A comprehensive survey. Neurocomputing,
459:249–289, 2021.

M. Hong, H.-T. Wai, Z. Wang, and Z. Yang. A two-
timescale stochastic algorithm framework for bilevel
optimization: Complexity analysis and application to
actor-critic. SIAM Journal on Optimization, 33(1):
147–180, 2023.

F. Huang and H. Huang. Biadam: Fast adap-
tive bilevel optimization methods. arXiv preprint
arXiv:2106.11396, 2021.

Y. Huang, Y. Cheng, Y. Liang, and L. Huang. On-
line min-max problems with non-convexity and non-
stationarity. Transactions on Machine Learning Re-
search, 2023.

A. Jadbabaie, A. Rakhlin, S. Shahrampour, and
K. Sridharan. Online optimization: Competing with
dynamic comparators. In Artificial Intelligence and
Statistics, pages 398–406, 2015.

K. Ji, J. Yang, and Y. Liang. Provably faster algo-
rithms for bilevel optimization and applications to
meta-learning. In International Conference on Ma-
chine Learning, 2021a.

K. Ji, J. Yang, and Y. Liang. Bilevel optimization:
Convergence analysis and enhanced design. In In-
ternational Conference on Machine Learning, pages
4882–4892. PMLR, 2021b.

http://ocobook.cs.princeton.edu/OCObook.pdf
http://ocobook.cs.princeton.edu/OCObook.pdf

Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods

R. Kleinberg, A. Slivkins, and E. Upfal. Multi-armed
bandits in metric spaces. In Proceedings of the forti-
eth annual ACM symposium on Theory of computing,
pages 681–690, 2008.

W. Krichene, M. Balandat, C. Tomlin, and A. Bayen.
The hedge algorithm on a continuum. In Interna-
tional Conference on Machine Learning, pages 824–
832. PMLR, 2015.

Y. LeCun, C. Cortes, and C. Burges. Mnist hand-
written digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2, 2010.

J. Li, B. Gu, and H. Huang. Improved bilevel model:
Fast and optimal algorithm with theoretical guarantee.
arXiv preprint arXiv:2009.00690, 2020.

M. Li, X. Zhang, C. Thrampoulidis, J. Chen, and
S. Oymak. Autobalance: Optimized loss functions
for imbalanced data. Advances in Neural Information
Processing Systems, 34:3163–3177, 2021.

Y. Liang et al. Lower bounds and accelerated algo-
rithms for bilevel optimization. Journal of Machine
Learning Research, 24(22):1–56, 2023.

S. Lin, D. Sow, K. Ji, Y. Liang, and N. Shroff. Non-
convex bilevel optimization with time-varying objec-
tive functions. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

H. Liu, K. Simonyan, and Y. Yang. Darts: Dif-
ferentiable architecture search. arXiv preprint
arXiv:1806.09055, 2018.

R. Liu, P. Mu, X. Yuan, S. Zeng, and J. Zhang. A
generic first-order algorithmic framework for bi-level
programming beyond lower-level singleton. In In-
ternational Conference on Machine Learning, pages
6305–6315. PMLR, 2020.

R. Liu, J. Gao, J. Zhang, D. Meng, and Z. Lin. Inves-
tigating bi-level optimization for learning and vision
from a unified perspective: A survey and beyond.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(12):10045–10067, 2021.

J. Lorraine, P. Vicol, and D. Duvenaud. Optimizing
millions of hyperparameters by implicit differentiation.
In International conference on artificial intelligence
and statistics, pages 1540–1552. PMLR, 2020.

Y. Lv, T. Hu, G. Wang, and Z. Wan. A penalty
function method based on kuhn–tucker condition for
solving linear bilevel programming. Applied Mathe-
matics and Computation, 188(1):808–813, 2007.

D. Maclaurin, D. Duvenaud, and R. Adams. Gradient-
based hyperparameter optimization through reversible
learning. In International conference on machine
learning, pages 2113–2122. PMLR, 2015.

R. V. Marinescu, N. P. Oxtoby, A. L. Young, E. E.
Bron, A. W. Toga, M. W. Weiner, F. Barkhof, N. C.
Fox, P. Golland, S. Klein, et al. Tadpole challenge:
Accurate alzheimer’s disease prediction through crowd-
sourced forecasting of future data. In Predictive Intel-
ligence in Medicine: Second International Workshop,
PRIME 2019, Held in Conjunction with MICCAI
2019, Shenzhen, China, October 13, 2019, Proceed-
ings 2, pages 1–10. Springer, 2019.

A. Mokhtari, S. Shahrampour, A. Jadbabaie, and
A. Ribeiro. Online optimization in dynamic envi-
ronments: Improved regret rates for strongly convex
problems. In 2016 IEEE 55th Conference on Decision
and Control (CDC), pages 7195–7201. IEEE, 2016.

G. M. Moore. Bilevel programming algorithms for ma-
chine learning model selection. Rensselaer Polytechnic
Institute, 2010.

P. Nazari and E. Khorram. Dynamic regret
analysis for online meta-learning. arXiv preprint
arXiv:2109.14375, 2021.

P. Nazari, E. Khorram, and D. A. Tarzanagh. Adap-
tive online distributed optimization in dynamic envi-
ronments. Optimization Methods and Software, pages
1–25, 2019.

P. Nazari, A. Mousavi, D. A. Tarzanagh, and
G. Michailidis. A penalty-based method for
communication-efficient decentralized bilevel program-
ming. arXiv preprint arXiv:2211.04088, 2022a.

P. Nazari, D. A. Tarzanagh, and G. Michailidis.
Dadam: A consensus-based distributed adaptive gra-
dient method for online optimization. IEEE Transac-
tions on Signal Processing, 2022b.

Y. Nesterov. Introductory lectures on convex optimiza-
tion: A basic course, volume 87. Springer Science &
Business Media, 2003.

B. Oreshkin, P. Rodríguez López, and A. Lacoste.
Tadam: Task dependent adaptive metric for improved
few-shot learning. Advances in neural information
processing systems, 31, 2018.

F. Pedregosa. Hyperparameter optimization with
approximate gradient. In International conference on
machine learning, pages 737–746. PMLR, 2016.

A. Raghu, M. Raghu, S. Bengio, and O. Vinyals.
Rapid learning or feature reuse? towards under-
standing the effectiveness of maml. arXiv preprint
arXiv:1909.09157, 2019.

Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, Laura Balzano

A. Shaban, C.-A. Cheng, N. Hatch, and B. Boots.
Truncated back-propagation for bilevel optimization.
In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 1723–1732. PMLR,
2019.

S. Shalev-Shwartz. Online learning: Theory, algo-
rithms, and applications. Hebrew University, 2007.

S. Shalev-Shwartz et al. Online learning and online
convex optimization. Foundations and trends in Ma-
chine Learning, 4(2):107–194, 2011.

C. Shi, J. Lu, and G. Zhang. An extended kuhn–tucker
approach for linear bilevel programming. Applied
Mathematics and Computation, 162(1):51–63, 2005.

A. Sinha, P. Malo, and K. Deb. A review on bilevel op-
timization: from classical to evolutionary approaches
and applications. IEEE Transactions on Evolutionary
Computation, 22(2):276–295, 2017.

N. Srebro, K. Sridharan, and A. Tewari. Smooth-
ness, low noise and fast rates. Advances in neural
information processing systems, 23, 2010.

A. S. Suggala and P. Netrapalli. Online non-convex
learning: Following the perturbed leader is optimal. In
Algorithmic Learning Theory, pages 845–861. PMLR,
2020.

M. Sugiyama and M. Kawanabe. Machine learning in
non-stationary environments: Introduction to covari-
ate shift adaptation. MIT press, 2012.

K. G. Vamvoudakis and F. L. Lewis. Online actor–
critic algorithm to solve the continuous-time infinite
horizon optimal control problem. Automatica, 46(5):
878–888, 2010.

O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al.
Matching networks for one shot learning. Advances
in neural information processing systems, 29, 2016.

H. von Stackelberg. Theory of the market economy.
United Kingdom: William Hodge, 1952.

C.-Y. Wei, Y.-T. Hong, and C.-J. Lu. Tracking the
best expert in non-stationary stochastic environments.
Advances in neural information processing systems,
29:3972–3980, 2016.

Y. F. Wu, W. Zhang, P. Xu, and Q. Gu. A finite-
time analysis of two time-scale actor-critic methods.
Advances in Neural Information Processing Systems,
33:17617–17628, 2020.

T. Yang, L. Zhang, R. Jin, and J. Yi. Tracking slowly
moving clairvoyant: Optimal dynamic regret of on-
line learning with true and noisy gradient. In In-
ternational Conference on Machine Learning, pages
449–457. PMLR, 2016.

L. Zhang, T. Yang, J. Yi, J. Rong, and Z.-H. Zhou.
Improved dynamic regret for non-degenerate functions.
In NIPS, 2017.

L. Zhang, S. Lu, and Z.-H. Zhou. Adaptive online
learning in dynamic environments. In Advances in
neural information processing systems, pages 1323–
1333, 2018a.

L. Zhang, T. Yang, Z.-H. Zhou, et al. Dynamic re-
gret of strongly adaptive methods. In International
Conference on Machine Learning, pages 5882–5891,
2018b.

L. Zhang, T.-Y. Liu, and Z.-H. Zhou. Adaptive regret
of convex and smooth functions. In International
Conference on Machine Learning, pages 7414–7423,
2019.

L. Zhang, S. Lu, and T. Yang. Minimizing dynamic
regret and adaptive regret simultaneously. In In-
ternational Conference on Artificial Intelligence and
Statistics, pages 309–319. PMLR, 2020.

P. Zhao and L. Zhang. Improved analysis for dy-
namic regret of strongly convex and smooth functions.
In Learning for Dynamics and Control, pages 48–59.
PMLR, 2021.

P. Zhao, Y.-J. Zhang, L. Zhang, and Z.-H. Zhou.
Dynamic regret of convex and smooth functions. Ad-
vances in Neural Information Processing Systems, 33:
12510–12520, 2020.

K. Zheng, H. Luo, I. Diakonikolas, and L. Wang.
Equipping experts/bandits with long-term memory.
Advances in neural information processing systems,
2019.

W. Zhou, Y. Li, Y. Yang, H. Wang, and T. Hospedales.
Online meta-critic learning for off-policy actor-critic
methods. Advances in Neural Information Processing
Systems, 33:17662–17673, 2020a.

Y. Zhou, V. Sanches Portella, M. Schmidt, and N. Har-
vey. Regret bounds without lipschitz continuity: on-
line learning with relative-lipschitz losses. Advances
in Neural Information Processing Systems, 33:15823–
15833, 2020b.

M. Zinkevich. Online convex programming and gener-
alized infinitesimal gradient ascent. In Proceedings of
the 20th international conference on machine learning
(icml-03), pages 928–936, 2003.

Checklist

A. For all models and algorithms presented, check if
you include:

Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]

B. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

C. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
[Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

D. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Yes]

(b) The license information of the assets, if appli-
cable. [Yes]

(c) New assets either in the supplemental material
or as a URL, if applicable. [Yes]

(d) Information about consent from data provider-
s/curators. [Yes]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

E. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]

Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, Laura Balzano

Supplementary Materials for
Online Bilevel Optimization: Regret Analysis of Online Alternating

Gradient Methods

Roadmap. The appendix is organized as follows:

• Appendix A provides some preliminaries on online optimization and a summary of notations used in the
appendix.

• Appendix B discusses additional related work on online single-level optimization and offline bilevel optimiza-
tion.

• Appendix C gives an addendum to Section 3:

– Appendix C.1 provides the lower bound of OBO (proof of Theorem 5).
– Appendix C.2 gives the proof for strongly convex OBO with partial information in both dynamic (proof

of Theorem 4) and static (proof of Theorem 6) settings.
– Appendix C.3 gives the proof for convex OBO with partial information in both dynamic (proof of

Theorem 7) and static (proof of Theorem 8) settings.
– Appendix C.4 provides the proof for non-convex OBO with partial information (proof of Theorem 9).

• Appendix D details the implementation and includes additional experiments:

– Appendix D.1 gives details on hyperparameters learning for dynamic regression.
– Appendix D.2 gives details on online parametric loss tuning experiments as well as additional experiments.
– Appendix D.3 provides details of online meta-learning experiments as well as additional experiments.
– Appendix D.4 presents the numerical sensitivity of algorithms to window size and learning rate.

Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods

Table 2: Summary of the Notations

Notation Description
t Time (round) index
Kt The number of inner iterations at each round t
T The total number of rounds
α Outer stepsize
β Inner stepsize
xt Leader’s decision at round t
ft Leader’s objective at round t
yt Follower’s decision at round t
gt Follower’s objective at round t
x∗
t Leader’s optimal decision in the dynamic setting at round t: x∗

t ∈ argminx∈X ft(x)

x∗ Leader’s optimal decision in static setting: x∗ ∈ argminx∈X
∑T

t=1 ft(x)
y∗
t (x) Follower’s optimal decision at round t for a given x
∇ht, ∇2

xyht, ∇2
yht Gradient, Jacobian, and Hessian of ht

∇̃ft(x,y) An approximation of the hypergradient ∇ft(x,y)
W , w W =

∑w−1
i=0 ui for {ui}w−1

i=0 with 1 = u0 ≥ u1 . . . uw−1 > 0 and window size w ∈ [T]

∇̃Ft,u(x,y) Approximate time-averaged hypergradient: ∇̃Ft,u(x,y) =
1
W

∑w−1
i=0 ui∇̃ft−i(x,y)

∇Ft,u(xt,y
∗
t (xt)) Exact time-averaged hypergradient: ∇Ft,u(xt,y

∗
t (xt)) =

1
W

∑w−1
i=0 ui∇ft−i(xt,y

∗
t (xt))

∥·∥ The Euclidean norm
E [x] Expectation of the random variable x
D The (2-norm) diameter of X : D = maxx,x′∈X ∥x− x′∥
D′ Upper bound on follower’s initialization: ∥y1 − y∗

1(x1)∥ ≤ D′

M Upper bound on the outer function: |ft| ≤M

Mf Difference between ∇̃ft(x,yt) and ∇ft(x,y∗
t (x)) w.r.t. ∥y∗

t (x)− yt∥
Ly Lipschitz constant of y∗

t (x)
Lf Lipschitz constant of ∇ft(x)
FT Outer function value at the optimum:

∑T
t=1 ft(x

∗
t ,y

∗
t (x

∗
t))

Pp,T Path-length of the outer minimizers:
∑T

t=2 ∥x∗
t−1 − x∗

t ∥p
Yp,T Path-length of the inner minimizers:

∑T
t=2

∥∥y∗
t−1(x

∗
t−1)− y∗

t (x
∗
t)
∥∥p

Sp,T The summation of the inner and outer path-lengths as Sp,T = Pp,T + Yp,T

Ȳp,T The static variant of Yp,T :
∑T

t=2

∥∥y∗
t−1(x

∗)− y∗
t (x

∗)
∥∥p

Hp,T Inner minimizer function variation:
∑T

t=2 supx∈Rd1 ∥y∗
t−1(x)− y∗

t (x)∥p
VT Online functions variation:

∑T
t=2 supx∈X |ft−1(x)− ft(x)|

GT Online gradients variation:
∑T

t=2 supx∈X ∥∇ft−1(x)−∇ft(x)∥2

D-RegT (single-level) dynamic regret:
∑T

t=1 ft(xt)−
∑T

t=1 ft(x
∗
t)

S-RegT (single-level) static regret:
∑T

t=1 ft(xt)−minx∈X
∑T

t=1 ft(x)

L-RegT (single-level) local regret:
∑T

t=1 ∥∇Ft,u(xt)∥2

BD-RegT Bilevel dynamic regret:
∑T

t=1 ft(xt,y
∗
t (xt))−

∑T
t=1 ft(x

∗
t ,y

∗
t (x

∗
t))

BS-RegT Bilevel (outer) static regret:
∑T

t=1 ft(xt,y
∗
t (xt))−minx∈X

∑T
t=1 ft(x,y

∗
t (x))

BL-RegT Bilevel local regret:
∑T

t=1 ∥∇Ft,u(xt,y
∗
t (xt))∥2

Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, Laura Balzano

A Addendum to Section 1: Preliminaries and Notations

We provide several technical lemmas used in the proofs. We start by assembling some well-known facts about
convex and smooth functions.

(F1) (Smoothness): Suppose f(x) is L-smooth. Then, by definition, the following inequalities hold for any two
points x,y ∈ Rd:

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥,

f(y)− f(x) ≤ ⟨y − x,∇f(x)⟩+ L

2
∥y − x∥2.

Further, if x∗ ∈ argminx∈Rd f(x), then

∥∇f(y)∥2 ≤ 2L(f(y)− f(x∗)).

(F2) (Smoothness and Convexity): Suppose f(x) is L-smooth and convex. Then, the following holds for any
two points x,y ∈ Rd:

⟨∇f(y)−∇f(x),y − x⟩ ≥ 1

L
∥∇f(y)−∇f(x)∥2.

(F3) (Strong-Convexity): Suppose f(x) is µ-strongly convex. Then, by definition, the following inequality
holds for any two points x,y ∈ Rd:

f(y)− f(x) ≥ ⟨y − x,∇f(x)⟩+ µ

2
∥y − x∥2.

Using the above inequality, one can conclude that

⟨∇f(y)−∇f(x),y − x⟩ ≥ µ∥y − x∥2.

The following lemma provides the self-bounding property of smooth functions.

Lemma 10. [Srebro et al., 2010, Lemma 3.1] For a non-negative and L–smooth function f : X → R, we have

∥∇f(x)∥ ≤
√
4Lf(x), ∀x ∈ X .

Lemma 11. [Nesterov, 2003, Theorem 2.1.11] Let g : Rd → R be a function that is smooth, µg-strongly convex,
and Lg-gradient Lipschitz continuous on an open convex set Y ⊆ Rd. Suppose that g has a global minimizer y∗

over Y. Then, the sequence {yt}Tt=1 generated by the gradient descent method yt+1 = yt − β∇g(yt) with stepsize
β ∈ (0, 2/(µg + Lg)] satisfies

∥yt+1 − y∗∥2 ≤
(
1− 2βµgLg

µg + Lg

)
∥yt − y∗∥2.

If β = 2/(µg + Lg), then

∥yt+1 − y∗∥2 ≤
(
κg − 1

κg + 1

)2

∥yt − y∗∥2,

where κg = Lg/µg.

Lemma 12. For any set of vectors {xi}mi=1 with xi ∈ Rd, we have∥∥∥∥∥
m∑
i=1

xi

∥∥∥∥∥
2

≤ m
m∑
i=1

∥xi∥2.

Lemma 13. For all T ∈ N,

I. log(T) + 1
T ≤

∑T
t=1

1
t ≤ log(T) + 1;

II.
∑T

t=1
1√
t
≤ 2
√
T ;

Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods

III. If 1 < s <∞, then ξ(s) =
∑T

t=1 1/t
s is called the Riemann ξ-function and we have

ξ(2n) = (−1)n+1 (2π)
2nB2n

2(2n)!
, n = 1, 2, 3, . . . ,

where the coefficients B2n are the Bernoulli numbers.

Lemma 14. For any x,y, z ∈ Rd, the following holds for any c > 0 :

∥x+ y∥2 ≤ (1 + c)∥x∥2 +
(
1 +

1

c

)
∥y∥2, and

∥x− y∥2 ≥ (1− c) ∥x− z∥2 +
(
1− 1

c

)
∥z− y∥2 .

Lemma 15. [Shalev-Shwartz et al., 2011, Lemma 2.8] Let X ⊆ Rd be a nonempty convex set. Let f(x) : X → R
be a µf -strongly convex function over X . Let x∗ ∈ argminx∈X {f(x)}. Then, for any y ∈ X , we have

f(x∗)− f(y) ≤ −µf

2
∥y − x∗∥2.

A.1 On the Comparability of Dynamic Metrics

The following example shows that Pp,T , Yp,T , and Ȳp,T are not comparable in general and all three measures play
a key role in OBO.

Example 1. Let x ∈ X = [−1, 1] ⊂ R, y ∈ R and consider a sequence of quadratic cost functions

ft(x, y) =
1

2

(
x+ 2a

(1)
t

)2
+

1

2

(
y − a

(2)
t

)2
+ a

(3)
t ,

gt(x, y) =
1

2
y2 −

(
x− a

(2)
t

)
y + a

(4)
t ,

for all t ∈ [T], where {a(i)t }4i=1 are some time-varying constants.

It follows from (3b) that

y∗t (xt) = xt − a
(2)
t , x∗

t = −a(1)t + a
(2)
t , y∗t (x

∗
t) = a

(1)
t .

Let a(2)t = (−1)t/
√
t for all t ∈ [T].

• If a(1)t = a
(2)
t , then P1,T = P2,T = 0, Y1,T = Ȳ1,T = O(

√
T), and Y2,T = Ȳ2,T = O(log T).

• If a(1)t = 0, then P1,T = O(
√
T), P2,T = O(log T), and Y1,T = Y2,T = 0.

This shows that S1,T = P1,T + Y2,T , S2,T = P2,T + Y2,T are not comparable in general. Similarly, static metrics
Ȳ1,T and Ȳ2,T are not comparable.

B Addendum to Section 2: Additional Related Work

Online learning and stochastic optimization are closely related. The key difference between them is that at each
round t of the online optimization, the loss function can be arbitrarily chosen by the adversary. Given the vastness
of the online and stochastic optimization literature, we do not strive to provide an exhaustive review. Instead,
we mainly focus on a few representative works on online static and worst-case dynamic regret minimization, as
well as bilevel optimization. Refer to [Hazan, 2016a, Hoi et al., 2021] and [Liu et al., 2021, Sinha et al., 2017] for
surveys on online and bilevel optimization, respectively.

Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, Laura Balzano

Static Regret Minimization: In single-level online optimization, the goal of the player (learner) is to choose
a sequence {xt}Tt=1 such that their regret is minimized. There are different notions of regret in the literature,
including static, dynamic (defined in (1)), and adaptive [Hazan, 2016b, Shalev-Shwartz, 2007, Shalev-Shwartz
et al., 2011]. In the case of static regret, x∗

t is replaced by x∗ ∈ argminx∈X
∑T

t=1 ft(x). This type of regret is
well-studied in the literature of online learning [Hazan, 2016b, Shalev-Shwartz, 2007, Shalev-Shwartz et al., 2011].
Zinkevich [2003] shows that online gradient descent (OGD) provides an O(

√
T) regret bound for convex (possibly

nonsmooth) functions. Hazan et al. [2007] improve this bound to O(log T) for strongly-convex functions. These
results were also shown to be minimax optimal [Abernethy et al., 2008]. Zhou et al. [2020b] provide regret bounds
for online learning algorithms under relative Lipschitz and/or relative strongly-convexity assumptions.

In addition to exploiting the convexity of online functions, recent studies have focused on improving static regret
by incorporating smoothness [Chiang et al., 2012, Srebro et al., 2010]. These problem-dependent bounds can
safeguard the worst-case minimax rate, yet they can be much better in easy cases of online learning problems
(e.g., loss functions with a small deviation). For instance, [Srebro et al., 2010] shows that for convex smooth
non-negative functions, OGD can achieve an O(1 +

√
FT) small-loss regret bound, where FT =

∑T
t=1 ft(x

∗) and
x∗ ∈ argminx∈X

∑T
t=1 ft(x). For convex smooth functions, [Chiang et al., 2012] establishes an O(1 +

√
GT)

bound, where GT =
∑T

t=2 supx∈X ∥∇ft−1(x)−∇ft(x)∥2 is the gradient variation. These bounds are particularly
favored in slowly changing environments in which the online functions evolve gradually [Zhao et al., 2020].

Dynamic Regret Minimization: Single-level dynamic regret forces the player to compete with time-varying
comparators, and thus is particularly favored in non-stationary environments [Sugiyama and Kawanabe, 2012].
The notion of dynamic regret is also referred to as tracking regret or shifting regret in the prediction with
expert advice setting [Bousquet and Warmuth, 2002, Herbster and Warmuth, 1998, 2001, Wei et al., 2016, Zheng
et al., 2019]. There are two kinds of dynamic regret in previous studies: The universal dynamic regret aims to
compare with any feasible comparator sequence [Zhang et al., 2018a, Zhao et al., 2020, Zinkevich, 2003], while
the worst-case dynamic regret (defined in (1)) specifies the comparator sequence to be the sequence of minimizers
of online functions [Aydore et al., 2019, Besbes et al., 2015, Jadbabaie et al., 2015, Mokhtari et al., 2016, Yang
et al., 2016, Zhang et al., 2017, Nazari and Khorram, 2021]. We present related works for the latter case as it is
the setting studied in this paper.

It is known that in the worst case, sublinear dynamic regret is not attainable unless one imposes regularity of some
form on the comparator sequence or the function sequence [Besbes et al., 2015, Hall and Willett, 2015, Jadbabaie
et al., 2015]. Yang et al. [2016] shows that OGD enjoys an O(1 +

√
TP1,T) worst-case dynamic regret bound

for convex functions when the path-length P1,T is known. For strongly convex and smooth functions, [Mokhtari
et al., 2016] shows that an O(1 + P1,T) dynamic regret bound is achievable. Chang and Shahrampour [2021]
proves that OGD can achieve an O(1 + P2,T) regret bound without the bounded gradient assumption. Zhang
et al. [2017] further proposes the online multiple gradient descent algorithm and proves that the algorithm enjoys
an O(1 + min{P1,T , P2,T }) regret bound; this bound has been recently enhanced to O(1 + min{P1,T , P2,T , VT })
by an improved analysis [Zhao and Zhang, 2021], where VT =

∑T
t=2 supx∈X |ft−1(x)− ft(x)|. Yang et al. [2016]

further shows that the O(1 + P2,T) rate is attainable for convex and smooth functions, provided that all the
minimizers x∗

t lie in the interior of the domain X . The above results use path-length (or squared path-length) as
the regularity, which is in terms of the trajectory of the comparator sequence. Nazari et al. [2019, 2022b] extend
the above results to the distributed settings and provide dynamic regret bounds in terms of the ℓ1 path-length.
Besbes et al. [2015] shows that OGD with a restarting strategy attains an O(1 + T 2/3VT

1/3) regret for convex
functions when VT is available, which has been recently improved to O(1 + T 1/3VT

2/3) for the square loss [Baby
and Wang, 2019].

Adaptive Regret: Adaptive regret [Daniely et al., 2015, Hazan and Seshadhri, 2007, Zhang et al., 2019, 2020,
2018b] is also used to capture the dynamics in the environment. Specifically, it characterizes a local version of
static regret, where

RegretT ([r, s]) ≜
s∑

t=r

ft(xt)−min
x∈X

s∑
t=r

ft(x),

for each interval [r, s] ⊆ [T]. Zhang et al. [2018b] provide a connection between strongly adaptive regret and
dynamic regret and proposes an adaptive algorithm that can bound the dynamic regret without prior knowledge
of the functional variation. Zhang et al. [2020] develop a new algorithm that can minimize the dynamic regret

Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods

and the adaptive regret simultaneously.

Local Regret Minimization: Non-convex online optimization is a more challenging setting than the convex
case. Some notable works in the non-convex literature include adversarial multi-armed bandit with a continuum of
arms [Bubeck et al., 2008, Héliou et al., 2020, 2021, Krichene et al., 2015] and classical Follow-the-Perturbed-Leader
algorithm with access to an offline non-convex optimization oracle [Agarwal et al., 2019, Kleinberg et al., 2008,
Suggala and Netrapalli, 2020]. Hazan et al. [2017] introduces a local regret measure based on gradients of the
loss to address intractable non-convex online models. Their regret is local in the sense that it averages a sliding
window of gradients and quantifies the objective of predicting points with small gradients on average. They are
motivated by a game-theoretic perspective, where an adversary reveals observations from an unknown static
loss. The gradients of the loss functions from the w most recent rounds of play are evaluated at the current
model parameters xt, and these gradients are then averaged. The motivation behind averaging is two-fold: (i) a
randomly selected update has a small time-averaged gradient in expectation if an algorithm incurs local regret
sublinear in T , and (ii) for any online algorithm, an adversarial sequence of loss functions can force the local
regret incurred to scale with T as O(T/w2). Hallak et al. [2021] extends the local regret minimization to online,
non-smooth, non-convex problems. These arguments, presented in [Aydore et al., 2019, Hallak et al., 2021, Hazan
et al., 2017, Nazari et al., 2022b], inspire our use of local regret for OBO.

(Offline) Bilevel Optimization: Since its first formulation by Stackelberg [von Stackelberg, 1952] and the first
mathematical model by Bracken and McGill [Bracken and McGill, 1973], there has been significant growth in the
applications and developments of bilevel programming. Existing works either reduce the problem to a single-level
optimization problem [Aiyoshi and Shimizu, 1984, Al-Khayyal et al., 1992, Edmunds and Bard, 1991, Hansen
et al., 1992, Lv et al., 2007, Moore, 2010, Shi et al., 2005, Sinha et al., 2017], or apply (alternating) optimization
methods to solve the original problem. The single-level formulations, which employ the Karush-Kuhn-Tucker
(KKT) conditions or penalty approaches, are generally difficult to solve [Sinha et al., 2017].

Gradient-based approaches are more attractive for bilevel programming due to their simplicity and effectiveness.
This type of approach estimates the hypergradients for iterative updates, and can generally be divided into two
categories: approximate implicit differentiation (AID) and iterative differentiation (ITD) classes. ITD-based
approaches [Finn et al., 2017, Franceschi et al., 2017, Grazzi et al., 2020, Maclaurin et al., 2015] estimate the
hypergradient either in reverse (automatic differentiation) or forward manner. AID-based approaches [Domke,
2012, Grazzi et al., 2020, Ji et al., 2021b, Pedregosa, 2016] estimate the hypergradient via implicit differentiation.
Franceschi et al. [2018] characterized the asymptotic convergence of a backpropagation-based approach as one of
ITD-based algorithms by assuming the inner-level problem is strongly convex. Shaban et al. [2019] provided a
similar analysis for a truncated backpropagation scheme. Li et al. [2020], Liu et al. [2020] analyzed the asymptotic
performance of ITD-based approaches when the inner-level problem is convex.

Finite-time complexity analysis for bilevel optimization has also been explored. Ghadimi and Wang [2018]
provided a finite-time convergence analysis for an AID-based algorithm under various loss geometries: the outer
function being strongly convex, convex, or non-convex, while the inner function remains strongly convex. Ji
et al. [2021b] provided an improved finite-time analysis for both AID- and ITD-based algorithms under the
nonconvex-strongly-convex geometry. Liang et al. [2023] provided the lower bounds on complexity as well as
upper bounds under these two geometries. When the objective functions can be expressed in an expected or
finite-time form, [Ghadimi and Wang, 2018, Hong et al., 2023, Ji et al., 2021b] developed stochastic bilevel
algorithms and provided the finite-time analysis. There have been subsequent studies on accelerating SGD-type
bilevel optimization via momentum and variance reduction techniques [Chen et al., 2022, Guo et al., 2021, Huang
and Huang, 2021, Ji et al., 2021a] as well. However, a fundamental assumption in all the aforementioned works is
that the cost function does not change throughout the horizon over which we seek to optimize it.

C Addendum to Section 3: Proof of Main Theorems

C.1 Proof of Theorem 5

Proof. We randomly generate a sequence of functions {(ft, gt)}Tt=1 and show that there exists a distribution of
online functions such that for any bilevel algorithm A, we have E [BD-RegT] ≥ E[S2,T]. Specifically, for any
bilevel algorithm A that generates a sequence of (xt, y

∗
t) ∈ R× R for all t ∈ [T], we consider the expected regret

Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, Laura Balzano

as follows:

E [BD-RegT] = E

[
T∑

t=1

ft(xt, y
∗
t (xt))−

T∑
t=1

ft(x
∗
t , y

∗
t (x

∗
t))

]
.

For each round t, we randomly sample a
(1)
t , a

(2)
t ∈ R from the Gaussian distribution N (0, 1). For all t ∈ [T], let

ft(x, y
∗
t (x)) = 6

(
y∗t (x)−

(
a
(1)
t + a

(2)
t

))2
+ 6

(
x− a

(1)
t

)2
,

s.t. y∗t (x) ∈ argmin
y∈R

gt(x, y) =
1

2
y2 −

(
x+ a

(2)
t

)
y.

It follows from (3b) that

y∗t (xt) = xt + a
(2)
t , x∗

t = a
(1)
t , and y∗t (x

∗
t) = a

(1)
t + a

(2)
t .

Notice that xt is independent from a
(1)
t . Hence,

E [BD-RegT] = 6

T∑
t=1

E
[(

xt − a
(1)
t

)2]

= 6
T∑

t=1

(
E
[(

a
(1)
t

)2]
+ E

[
x2
t

])
≥ 6T.

(20)

For T ≥ 2, we obtain

E [S2,T] = E[P2,T] + E[Y2,T] =
T∑

t=2

E
[(
x∗
t−1 − x∗

t

)2]
+

T∑
t=2

E
[(
y∗t−1(x

∗
t−1)− y∗t (x

∗
t)
)2]

=

T∑
t=2

E
[(

a
(1)
t − a

(1)
t−1

)2]
+

T∑
t=2

E
[(

a
(1)
t + a

(2)
t − (a

(1)
t−1 + a

(2)
t−1)

)2]

=
T∑

t=2

2

(
E
[(

a
(1)
t

)2]
+ E

[(
a
(1)
t−1

)2])
+ E

[(
a
(2)
t

)2]
+ E

[(
a
(2)
t−1

)2]
≤ 6(T − 1).

(21)

Here, the third equality follows from the independence of a(1)t and a
(2)
t for all t ∈ [T].

Now, it follows from (20) and (21) that E [BD-RegT] ≥ E[S2,T]. This completes the proof of Theorem 5. ■

C.2 Proof for Strongly Convex OBO with Partial Information

In this section, we provide the dynamic regret bound for strongly convex OBO with partial information. Specifically,
we derive a problem-dependent regret bound for Algorithm 1.

C.2.1 Auxiliary Lemmas

Lemma 16 (Restatement of Lemma 3). Under Assumption A, for all t ∈ [T], x,x′ ∈ X , and y ∈ Rd2 , we have

∥y∗
t (x)− y∗

t (x
′)∥ ≤ Ly ∥x− x′∥ , (22)

∥∇̃ft(x,y)−∇ft(x,y∗
t (x))∥ ≤Mf ∥y − y∗

t (x)∥ , (23)
∥∇ft(x,y∗

t (x))−∇ft(x′,y∗
t (x

′))∥ ≤ Lf ∥x− x′∥ . (24)

Here, Ly, Mf , and Lf are defined in (25), (30), and (32), respectively.

Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods

Proof. The proof is an adaptation of the proof from [Ghadimi and Wang, 2018, Lemma 2.2] to the online setting.

We first show (22). Since y∗
t (x) ∈ argminy∈Rd2 gt(x,y), we have

∇ygt (x,y
∗
t (x)) = 0, and ∇2

xygt (x,y
∗
t (x)) = 0.

This together with the chain rule implies that

∇y∗
t (x)∇2

ygt (x,y
∗
t (x)) +∇2

xygt (x,y
∗
t (x)) = 0.

It follows from Assumption A2. that ∇2
ygt (x,y

∗
t (x)) is positive definite. Hence,

∇y∗
t (x) = −∇2

xygt (x,y
∗
t (x))

(
∇2

ygt (x,y
∗
t (x))

)−1
.

Now, from Assumption A3., we get

∥∇y∗
t (x)∥ =

∥∥∥∇2
xygt (x,y

∗
t (x))

(
∇2

ygt (x,y
∗
t (x))

)−1
∥∥∥

≤
∥∥∇2

xygt (x,y
∗
t (x))

∥∥ ∥∥∥(∇2
ygt (x,y

∗
t (x))

)−1
∥∥∥

≤ ℓg,1
µg

=: Ly.

(25)

Next, we show (23). Let Mt(x,y) := ∇2
xygt (x,y)

(
∇2

ygt (x,y)
)−1. Define

∆t := ∇ft(x,y)−∇ft(x,y∗
t (x)),

∆1
t := ∇xft (x,y)−∇xft (x,y

∗
t (x)) ,

∆2
t := Mt(x,y)∇yft (x,y)−Mt(x,y

∗
t (x))∇yft (x,y

∗
t (x)) ,

∆3
t := Mt(x,y){∇yft (x,y)−∇ft (x,y∗

t (x))},
∆4

t := {Mt(x,y)−Mt (x,y
∗
t (x))}∇yft (x,y

∗
t (x)) ,

∆5
t :=

{
∇2

xygt (x,y)−∇2
xygt (x,y

∗
t (x))

} (
∇2

ygt (x,y)
)−1

,

∆6
t := ∇2

xygt (x,y
∗
t (x))

{(
∇2

ygt (x,y)
)−1 −

(
∇2

ygt (x,y
∗
t (x))

)−1
}
,

which implies that

∆t = ∆1
t −∆2

t = ∆1
t −∆3

t −∆4
t = ∆1

t −∆3
t − (∆5

t +∆6
t)∇yft(x,y

∗
t (x)). (26)

From Assumption A, we have

∥∆1
t∥ ≤ ℓf,1 ∥y − y∗

t (x)∥ , ∥∆3
t∥ ≤

ℓf,1ℓg,1
µg

∥y − y∗
t (x)∥ , ∥∆5

t∥ ≤
ℓg,2
µg
∥y − y∗

t (x)∥ . (27)

Note that, for any invertible matrices A1 and A2, we have

∥A−1
2 −A−1

1 ∥ = ∥A
−1
1 (A1 −A2)A

−1
2 ∥ ≤ ∥A

−1
1 ∥∥A

−1
2 ∥∥A1 −A2∥,

which implies that

∥∆6
t∥ ≤

∥∥∇2
xygt (x,y

∗
t (x))

∥∥ ∥∥∥(∇2
ygt (x,y)

)−1 −
(
∇2

ygt (x,y
∗
t (x))

)−1
∥∥∥

≤ ℓg,1

∥∥∥(∇2
ygt (x,y)

)−1
∥∥∥ ∥∥∥(∇2

ygt (x,y
∗
t (x))

)−1
∥∥∥ ∥∥∇2

ygt (x,y)−∇2
ygt (x,y

∗
t (x))

∥∥
≤ ℓg,1ℓg,2

µ2
g

∥y − y∗
t (x)∥ . (28)

Therefore, by substitution (27) and (28) into (26), we have

∥∇ft(x,y)−∇ft(x,y∗
t (x))∥ ≤ ∥∆1

t∥+ ∥∆3
t∥+ ∥∆5

t +∆6
t∥∥∇yft(x,y

∗
t (x))∥

≤ ∥∆1
t∥+ ∥∆3

t∥+ ∥∆5
t +∆6

t∥ℓf,0
≤Mf ∥y − y∗

t (x)∥ , (29)

Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, Laura Balzano

where

Mf := ℓf,1 +
ℓg,1ℓf,1
µg

+
ℓf,0
µg

(
ℓg,2 +

ℓg,1ℓg,2
µg

)
. (30)

Next, we show (24). Note that

∥∇ft(x,y∗
t (x))−∇ft(x′,y∗

t (x
′))∥ ≤

∥∥∥∇ft(x,y∗
t (x))− ∇̃ft(x,y∗

t (x
′))
∥∥∥

+
∥∥∥∇̃ft(x,y∗

t (x
′))−∇ft(x′,y∗

t (x
′))
∥∥∥ . (31)

We then study each terms separately. From (29) and (22), we get∥∥∥∇ft(x,y∗
t (x))− ∇̃ft(x,y∗

t (x
′))
∥∥∥ ≤Mf∥y∗

t (x)− y∗
t (x

′)∥ ≤MfLy∥x− x′∥.

Moreover, by similar argument to (29), we obtain

∥∇ft(x,y∗
t (x

′))−∇ft(x′,y∗
t (x

′))∥ ≤
(
ℓf,1 +

ℓg,1ℓf,1
µg

+
ℓf,0
µg

(
ℓg,2 +

ℓg,1ℓg,2
µg

))
∥x− x′∥.

By substituting the above two inequalities into (31), we have

∥∇ft(x,y∗
t (x))−∇ft(x′,y∗

t (x
′))∥ ≤ Lf∥x− x′∥,

where

Lf := ℓf,1 +
ℓg,1(ℓf,1 +Mf)

µg
+

ℓf,0
µg

(
ℓg,2 +

ℓg,1ℓg,2
µg

)
. (32)

■

The following lemma characterizes the inner estimation error
∑T

t=1 ∥yt+1 − y∗
t (xt)∥p, where yt+1 is the inner

variable updated via Algorithm 1. It shows that by applying inner OGD multiple times at each round t, we are
able to extract more information from each inner function and, therefore, are more likely to obtain a tight bound
for the inner error in terms of the path-length Yp,T .

Lemma 17. Suppose Assumption A holds. In Algorithm 1, choose

βt = β =
2

ℓg,1 + µg
, and Kt =

⌈
(κg + 1) log ρ−2

t

4

⌉
for some positive deceasing sequence {ρt}Tt=1. Then, Algorithm 1 guarantees the following.

L1. If ρ1 <
√
1/2, we have

T∑
t=1

∥yt+1 − y∗
t (xt)∥2 ≤

ρ21
1− 2ρ21

∥y1 − y∗
1(x1)∥2

+
6

1− 2ρ21

(
2L2

y

T∑
t=1

ρ2t∥xt − x∗
t ∥2 +

T∑
t=2

ρ2t∥y∗
t−1(x

∗
t−1)− y∗

t (x
∗
t)∥2

)
.

L2. If ρ1 < 1, we get

T∑
t=1

∥yt+1 − y∗
t (xt)∥ ≤

ρ1
1− ρ1

∥y1 − y∗
1(x1)∥

+
1

1− ρ1

(
2Ly

T∑
t=1

ρt∥xt − x∗
t ∥+

T∑
t=2

ρt∥y∗
t−1(x

∗
t−1)− y∗

t (x
∗
t)∥

)
.

Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods

Proof. We show L1.. The proof of L2. follows similarly. Since β = 2/(ℓg,1 + µg), from Lemma 11, we have

∥zKt+1
t − y∗

t (xt)∥2 ≤
(
1− 2

κg + 1

)2

∥zKt
t − y∗

t (xt)∥2,

which implies that

∥zKt+1
t − y∗

t (xt)∥2 ≤
(
1− 2

κg + 1

)2Kt

∥z1t − y∗
t (xt)∥2. (33)

By our assumption Kt = ⌈0.25(κg + 1) log ρ−2
t ⌉ which implies that(

1− 2

κg + 1

)2Kt

≤ exp

(
− 4Kt

κg + 1

)
≤ ρ2t . (34)

Then, using (33) and (34), we have

∥zKt+1
t − y∗

t (xt)∥2 = ∥yt+1 − y∗
t (xt)∥2 ≤ ρ2t∥yt − y∗

t (xt)∥2.

Hence,
T∑

t=1

∥yt+1 − y∗
t (xt)∥2 ≤ ρ21∥y1 − y∗

1(x1)∥2 +
T∑

t=2

ρ2t∥yt − y∗
t (xt)∥2, (35)

which implies that

T∑
t=2

ρ2t∥yt − y∗
t (xt)∥2 ≤ 2

T∑
t=2

ρ2t
(
∥yt − y∗

t−1(xt−1)∥2 + ∥y∗
t−1(xt−1)− y∗

t (xt)∥2
)

≤ 2

T∑
t=1

ρ2t∥yt+1 − y∗
t (xt)∥2 + 2

T∑
t=2

ρ2t∥y∗
t−1(xt−1)− y∗

t (xt)∥2.

(36)

It follows from Lemma 12 that

ρ2t∥y∗
t−1(xt−1)− y∗

t (xt)∥2 ≤ 3ρ2t∥y∗
t (xt)− y∗

t (x
∗
t)∥2

+ 3ρ2t∥y∗
t−1(xt−1)− y∗

t−1(x
∗
t−1)∥2

+ 3ρ2t∥y∗
t−1(x

∗
t−1)− y∗

t (x
∗
t)∥2

≤ 3L2
yρ

2
t−1∥xt−1 − x∗

t−1∥2

+ 3L2
yρ

2
t∥xt − x∗

t ∥2

+ 3ρ2t∥y∗
t−1(x

∗
t−1)− y∗

t (x
∗
t)∥2, (37)

where the second inequality uses the assumption that ρt ≤ ρt−1 for all t ∈ [T].

Now, combining (35), (36), and (37), we obtain

T∑
t=1

(
1− 2ρ2t

)
∥yt+1 − y∗

t (xt)∥2 ≤ ρ21∥y1 − y∗
1(x1)∥2 + 12L2

y

T∑
t=1

ρ2t∥xt − x∗
t ∥2

+ 6
T∑

t=2

ρ2t∥y∗
t−1(x

∗
t−1)− y∗

t (x
∗
t)∥2,

which together with our assumption that ρt ≤ ρt−1 completes the proof. ■

The following lemma is an extension of [Mokhtari et al., 2016, Proposition 2] to (online) bilevel optimization,
characterizing the dynamics of the tracking error ∥xt − x∗

t ∥2. Specifically, it shows that ∥xt+1 − x∗
t ∥2 can be

upper bounded in terms of ∥xt − x∗
t ∥2 and ∥yt+1 − y∗

t (xt)∥2.

Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, Laura Balzano

Lemma 18. Suppose Assumption A holds and αt = α ≤ 1/ℓf,1. Further, assume functions {ft}Tt=1 are strongly
convex with parameter µf . Then, for the sequence {(xt,yt)}Tt=1 generated by Algorithm 1, we have

∥xt+1 − x∗
t ∥2 ≤ (1− γ)∥xt − x∗

t ∥2 +
2M2

fα(
1 +

µf

2 α
)
µf

∥yt+1 − y∗
t (xt)∥2 , (38)

where
γ :=

3µf
2
α + µf

∈ (0, 1]. (39)

Proof. From µf -strong convexity of ft, we get

ft(x,y
∗
t (x)) ≥ ft(xt,y

∗
t (xt)) + ⟨∇ft(xt,y

∗
t (xt)),x− xt⟩+

µf

2
∥x− xt∥2

= ft(xt,y
∗
t (xt)) + ⟨∇ft(xt,y

∗
t (xt)),xt+1 − xt⟩

+ ⟨∇ft(xt,y
∗
t (xt)),x− xt+1⟩+

µf

2
∥x− xt∥2 . (40)

According to the optimality condition of the update rule xt+1 = ΠX

[
xt − α∇̃ft(xt,yt+1)

]
, we have

⟨∇̃ft(xt,yt+1) +
1

α
(xt+1 − xt),x− xt+1⟩ ≥ 0,

which is equivalent to

⟨∇̃ft(xt,yt+1)−∇ft(xt,y
∗
t (xt)) +∇ft(xt,y

∗
t (xt)),x− xt+1⟩ ≥

1

α
⟨xt − xt+1,x− xt+1⟩.

Hence,

⟨∇ft(xt,y
∗
t (xt)),x− xt+1⟩ ≥

1

α
⟨xt − xt+1,x− xt+1⟩

+ ⟨∇ft(xt,y
∗
t (xt))− ∇̃ft(xt,yt+1),x− xt+1⟩.

Substituting this inequality in (40), we get

ft(x,y
∗
t (x)) ≥ ft(xt,y

∗
t (xt)) + ⟨∇ft(xt,y

∗
t (xt)),xt+1 − xt⟩+

1

α
⟨xt − xt+1,x− xt+1⟩

+ ⟨∇ft(xt,y
∗
t (xt))− ∇̃ft(xt,yt+1),x− xt+1⟩+

µf

2
∥x− xt∥2 . (41)

In addition, ℓf,1-smoothness of ft (Assumption A3.) gives

ft(xt+1,y
∗
t (xt+1)) ≤ ft(xt,y

∗
t (xt)) + ⟨∇ft(xt,y

∗
t (xt)),xt+1 − xt⟩+

ℓf,1
2
∥xt+1 − xt∥2

≤ ft(xt,y
∗
t (xt)) + ⟨∇ft(xt,y

∗
t (xt)),xt+1 − xt⟩+

1

2α
∥xt+1 − xt∥2 ,

where the inequality is by α ≤ 1/ℓf,1.

Thus,

ft(xt,y
∗
t (xt)) + ⟨∇ft(xt,y

∗
t (xt)),xt+1 − xt⟩

≥ ft(xt+1,y
∗
t (xt+1))−

1

2α
∥xt+1 − xt∥2

≥ ft(x
∗
t ,y

∗
t (x

∗
t)) +

µf

2
∥xt+1 − x∗

t ∥
2 − 1

2α
∥xt+1 − xt∥2 , (42)

where the second inequality holds since from Lemma 15, we have

ft(x
∗
t ,y

∗
t (x

∗
t)) ≤ ft(xt+1,y

∗
t (xt+1))−

µf

2
∥xt+1 − x∗

t ∥
2
.

Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods

Combining (41) and (42), we get

ft(x,y
∗
t (x)) ≥ ft(x

∗
t ,y

∗
t (x

∗
t)) +

µf

2
∥xt+1 − x∗

t ∥
2 − 1

2α
∥xt+1 − xt∥2 +

1

α
⟨xt − xt+1,x− xt+1⟩

+ ⟨∇ft(xt,y
∗
t (xt))− ∇̃ft(xt,yt+1),x− xt+1⟩+

µf

2
∥x− xt∥2 .

By setting x = x∗
t , we have

ft(x
∗
t ,y

∗
t (x

∗
t)) ≥ ft(x

∗
t ,y

∗
t (x

∗
t)) +

µf

2
∥xt+1 − x∗

t ∥
2

− 1

2α
∥xt+1 − xt∥2 +

1

α
⟨xt − xt+1,x

∗
t − xt+1⟩

+ ⟨∇ft(xt,y
∗
t (xt))− ∇̃ft(xt,yt+1),x

∗
t − xt+1⟩+

µf

2
∥x∗

t − xt∥2 .

Since ⟨u, v⟩ ≥ − c
2∥u∥

2 − 1
2c∥v∥

2, ∀u, v ∈ Rn, ∀c > 0, we obtain

0 ≥− 1

2α
∥xt+1 − xt∥2 +

1

α
⟨xt − xt+1,x

∗
t − xt⟩

+
1

α
⟨xt − xt+1,xt − xt+1⟩ −

1

2c
∥∇ft(xt,y

∗
t (xt))− ∇̃ft(xt,yt+1)∥2

+
(µf

2
− c

2

)
∥x∗

t − xt+1∥2 +
µf

2
∥x∗

t − xt∥2 .

After rearranging, we obtain

⟨xt − xt+1,x
∗
t − xt⟩

≤ 1

2
∥xt+1 − xt∥2 −

µf

2
α ∥x∗

t − xt∥2 − ∥xt − xt+1∥2 + (
c

2
− µf

2
)α∥x∗

t − xt+1∥2

+
α

2c
∥∇ft(xt,y

∗
t (xt))− ∇̃ft(xt,yt+1)∥2. (43)

Note that

∥xt+1 − x∗
t ∥2 = ∥xt+1 − xt + xt − x∗

t ∥2

= ∥xt+1 − xt∥2 + ∥xt − x∗
t ∥2 + 2⟨xt+1 − xt,xt − x∗

t ⟩

≤ (1− µfα) ∥x∗
t − xt∥2 + (c− µf)α∥x∗

t − xt+1∥2

+
α

c
∥∇ft(xt,y

∗
t (xt))− ∇̃ft(xt,yt+1)∥2, (44)

where the inequality follows from (43).

From Lemma 3, we obtain

∥∇ft(xt,y
∗
t (xt))− ∇̃ft(xt,yt+1)∥2 ≤M2

f ∥yt+1 − y∗
t (xt)∥2 . (45)

Inserting (45) into (44) implies

(1− (c− µf)α) ∥xt+1 − x∗
t ∥2 ≤ (1− µfα) ∥x∗

t − xt∥2 +
M2

f

c
α ∥yt+1 − y∗

t (xt)∥2 .

By setting c = µf/2, we get(
1 +

µf

2
α
)
∥xt+1 − x∗

t ∥2 ≤ (1− µfα) ∥x∗
t − xt∥2 +

2M2
f

µf
α
(
∥yt − y∗

t (xt)∥2 + ∥vt − v∗
t (xt)∥2

)
.

Finally, dividing both sides of the above inequality by
(
1 +

µf

2 α
)
, we obtain

∥xt+1 − x∗
t ∥2 ≤ γ ∥x∗

t − xt∥2 +
2M2

fα(
1 +

µf

2 α
)
µf

(
∥yt − y∗

t (xt)∥2 + ∥vt − v∗
t (xt)∥2

)
,

where γ is defined in (39).

Since the strong convexity constant µf is smaller than the constant of gradient Lipschitz continuity ℓf,1, and the
constant α is chosen such that α ≤ 1/ℓf,1, we have α ≤ 1/µf , which implies that γ ≤ 1. ■

Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, Laura Balzano

The following lemma plays a key role in the proof of OAGD in the strongly convex setting. It basically shows
that under certain conditions on inner and outer step sizes,

∑T
t=1 ∥xt − x∗

t ∥p can be bounded in terms of Pp,T

and Yp,T .
Lemma 19. Suppose Assumption A holds. In Algorithm 1, for all t ∈ [T], choose

βt = β =
2

ℓg,1 + µg
,

αt = α ≤ min

{
1

ℓf,1
,

µf

128M2
fL

2
y

}
, and

Kt ≥
⌈
(κg + 1) log ρ−2

t

4

⌉
.

Then, Algorithm 1 guarantees the following.

H1. If ρt = ρ ≤ γ
1+γ , then

T∑
t=1

∥xt − x∗
t ∥ ≤

4

γ
(∥x1 − x∗

1∥+ P1,T)

+
1

2Ly
(∥y1 − y∗

1(x1)∥+ Y1,T) .

H2. If ρt = ρ ≤
√
γ√

2
√
γ+1

, then

T∑
t=1

∥xt − x∗
t ∥2 ≤

64

23γ

(
∥x1 − x∗

1∥2 + (1 +
2

γ
)P2,T

)
+

3

92L2
y

(
∥y1 − y∗

1(x1)∥2 + 6Y2,T

)
.

Here, γ is defined in (39); Pp,T and Yp,T are defined in (5a).

Proof. We first show H1.. It follows from the triangle inequality that
T∑

t=1

∥xt − x∗
t ∥ = ∥x1 − x∗

1∥+
T∑

t=2

∥xt − x∗
t ∥

≤ ∥x1 − x∗
1∥+

T∑
t=2

(
∥xt − x∗

t−1∥+ ∥x∗
t−1 − x∗

t ∥
)

≤ ∥x1 − x∗
1∥+

T∑
t=1

∥xt+1 − x∗
t ∥+ P1,T . (46)

Next, we provide an upper bound for the second term on the right-hand side of (46). Note that our choice of the
stepsize αt in the statement of Lemma 19 satisfies the condition of Lemma 18. Hence, from Lemma 18 and the
inequality

√
a+ b ≤

√
a+
√
b for a, b ≥ 0, we get

∥xt+1 − x∗
t ∥ ≤

√
1− γ∥xt − x∗

t ∥+Mf

√
2α

µf
∥yt+1 − y∗

t (xt)∥ .

Summing both sides of the above inequality from t = 1 to T , we get
T∑

t=1

∥xt+1 − x∗
t ∥ ≤

√
1− γ

T∑
t=1

∥xt − x∗
t ∥+Mf

√
2α

µf

T∑
t=1

∥yt+1 − y∗
t (xt)∥

≤ (1− γ

2
)

T∑
t=1

∥xt − x∗
t ∥+Mf

√
2α

µf

T∑
t=1

∥yt+1 − y∗
t (xt)∥ . (47)

Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods

Here, γ =
3µf

2
α+µf

, and the second inequality follows since
√
1− a ≤ 1− a

2 for any a ≤ 1.

Note that our assumption on ρ in the statement of Lemma 19–H1. satisfies the requirement of Lemma 17–L2..
Hence, we have

T∑
t=1

∥yt+1 − y∗
t (xt)∥ ≤

ρ1
1− ρ1

∥y1 − y∗
1(x1)∥

+
1

1− ρ1

(
2Ly

T∑
t=1

ρt∥xt − x∗
t ∥+

T∑
t=2

ρt∥y∗
t−1(x

∗
t−1)− y∗

t (x
∗
t)∥

)
. (48)

Substituting (48) into (47), we get

T∑
t=1

∥xt+1 − x∗
t ∥ ≤

T∑
t=1

(
1− γ

2
+

MfLy2
√
2

√
µf

√
α

ρt
1− ρ1

)
∥xt − x∗

t ∥

+Mf

√
2α

µf

(
ρ1

1− ρ1
∥y1 − y∗

1(x1)∥+
1

1− ρ1

T∑
t=2

ρt∥y∗
t−1(x

∗
t−1)− y∗

t (x
∗
t)∥

)
. (49)

By setting ρt = ρ ≤ γ
1+γ , we have

MfLy2
√
2

√
µf

√
α

ρ

1− ρ
≤ MfLy2

√
2

√
µf

√
αγ ≤ γ

4
, (50)

where the second inequality holds due to our assumption on the outer stepsize, i.e., α ≤ µf

128M2
fL

2
y
.

Combining the above two inequalities (50) and (49), we conclude that

T∑
t=1

∥xt+1 − x∗
t ∥ ≤

(
1− γ

4

) T∑
t=1

∥xt − x∗
t ∥+Mf

√
2α

µf

(
ρ

1− ρ
∥y1 − y∗

1(x1)∥+
ρ

1− ρ
Y1,T

)

≤
(
1− γ

4

) T∑
t=1

∥xt − x∗
t ∥+

γ

8Ly
(∥y1 − y∗

1(x1)∥+ Y1,T) ,

where the second inequality is by α ≤ µf

128M2
fL

2
y

and ρ ≤ γ
1+γ .

Plugging this into (46) yields

T∑
t=1

∥xt − x∗
t ∥ ≤ ∥x1 − x∗

1∥+
(
1− γ

4

) T∑
t=1

∥xt − x∗
t ∥

+
γ

8Ly
(∥y1 − y∗

1(x1)∥+ Y1,T) + P1,T .

Rearranging terms in the above inequality finishes the proof.

We now show part H2. of the lemma.

First, note that

T∑
t=1

∥xt − x∗
t ∥2 = ∥x1 − x∗

1∥2 +
T∑

t=2

∥xt − x∗
t ∥2

≤ ∥x1 − x∗
1∥2 + (1 +

γ

2
)

T∑
t=2

∥xt − x∗
t−1∥2 + (1 +

2

γ
)

T∑
t=2

∥x∗
t−1 − x∗

t ∥2

≤ ∥x1 − x∗
1∥2 + (1 +

γ

2
)

T∑
t=1

∥xt+1 − x∗
t ∥2 + (1 +

2

γ
)P2,T , (51)

Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, Laura Balzano

where the first inequality follows from Lemma 14.

Similar to the previous case, we provide an upper bound for the second term on the right-hand side of (51).

Since our assumption on α in the statement of Lemma 19 satisfies the requirement of Lemma 18, we have

∥xt+1 − x∗
t ∥2 ≤ (1− γ)∥xt − x∗

t ∥2 +
2M2

fα(
1 +

µf

2 α
)
µf

∥yt+1 − y∗
t (xt)∥2 ,

which implies

(1 +
γ

2
)∥xt+1 − x∗

t ∥2 ≤ (1 +
γ

2
)(1− γ)∥xt − x∗

t ∥2 + (1 +
γ

2
)

2M2
fα(

1 +
µf

2 α
)
µf

∥yt+1 − y∗
t (xt)∥2

≤ (1− γ

2
)∥xt − x∗

t ∥2 + (1 +
γ

2
)
2M2

fα

µf
∥yt+1 − y∗

t (xt)∥2 ,

where the second inequality is due to (1 + a/2)(1− a) ≤ (1− a/2− a2/2) ≤ 1− a/2.

Summing both sides of the above inequality from t = 1 to T , we get

(1 +
γ

2
)

T∑
t=1

∥xt+1 − x∗
t ∥2 ≤ (1− γ

2
)

T∑
t=1

∥xt − x∗
t ∥2 + (1 +

γ

2
)
2M2

fα

µf

T∑
t=1

∥yt+1 − y∗
t (xt)∥2

≤ (1− γ

2
)

T∑
t=1

∥xt − x∗
t ∥2 +

3M2
fα

µf

T∑
t=1

∥yt+1 − y∗
t (xt)∥2 , (52)

where the second inequality follows since γ =
3µf

2
α+µf

≤ 1; see (39).

Since our assumption on ρ in the statement of Lemma 19–H2. satisfies the requirement of Lemma 17–L1. , we
have

T∑
t=1

∥yt+1 − y∗
t (xt)∥2 ≤

ρ21
1− 2ρ21

∥y1 − y∗
1(x1)∥2

+
6

1− 2ρ21

(
2L2

y

T∑
t=1

ρ2t∥xt − x∗
t ∥2 +

T∑
t=2

ρ2t∥y∗
t−1(x

∗
t−1)− y∗

t (x
∗
t)∥2

)
.

This together with (52) gives

(1 +
γ

2
)

T∑
t=1

∥xt+1 − x∗
t ∥2 ≤

(
1− γ

2
+

36M2
fL

2
yα

µf

ρ2t
(1− 2ρ21)

)
T∑

t=1

∥xt − x∗
t ∥2

+
3M2

fα

µf

(
ρ21

1− 2ρ21
∥y1 − y∗

1(x1)∥2 +
6

1− 2ρ21

T∑
t=2

ρ2t∥y∗
t−1(x

∗
t−1)− y∗

t (x
∗
t)∥2

)
. (53)

Since by our setting ρt = ρ ≤
√
γ√

2
√
γ+1

, we have

36M2
fL

2
yα

µf

ρ2

(1− 2ρ2)
≤

36M2
fL

2
yα

µf

γ

2
≤ 9γ

64
,

where the second inequality uses our assumption on the stepsize, i.e., α ≤ µf

128M2
fL

2
y
.

Combining the above inequality with (53), we obtain

(1 +
γ

2
)

T∑
t=1

∥xt+1 − x∗
t ∥2 ≤

(
1− 23γ

64

) T∑
t=1

∥xt − x∗
t ∥2

+
3M2

fα

µf

(
ρ2

1− 2ρ2
∥y1 − y∗

1(x1)∥2 +
6ρ2

1− 2ρ2
Y2,T

)
≤
(
1− 23γ

64

) T∑
t=1

∥xt − x∗
t ∥2 +

3γ

256L2
y

(
∥y1 − y∗

1(x1)∥2 + 6Y2,T

)
, (54)

Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods

where the second inequality follows from α ≤ µf

128M2
fL

2
y

and ρ ≤
√
γ√

2
√
γ+1

.
Further, plugging (54) into (51) yields:

T∑
t=1

∥xt − x∗
t ∥2 ≤ ∥x1 − x∗

1∥2 +
(
1− 23γ

64

) T∑
t=1

∥xt − x∗
t ∥2 + (1 +

2

γ
)P2,T

+
3γ

256L2
y

(
∥y1 − y∗

1(x1)∥2 + 6Y2,T

)
.

Rearranging the inequality gives H2.. ■

C.2.2 Proof of Theorem 4

Proof. Assumption A1. implies that ∥∇ft(x,y(x))∥ ≤ ℓf,0 for any t ∈ [T] and any x ∈ X . Thus, we get

T∑
t=1

(ft(xt,y
∗
t (xt))− ft(x

∗
t ,y

∗
t (x

∗
t))) ≤ ℓf,0

T∑
t=1

∥xt − x∗
t ∥.

Note that our choices of the stepsize αt and Kt in the theorem statement can be rewritten as

αt = α ≤ min

{
1

ℓf,1
,

µf

128M2
fL

2
y

}
, and

Kt ≥
⌈
(κg + 1) log ρ−2

t

4

⌉
, with ρt = ρ ≤ γ

3(1 + γ)
. (55)

These choices satisfy the condition of Lemma 19–H1.. Hence, from Lemma 19–H1., we get

T∑
t=1

∥xt − x∗
t ∥ ≤

4

γ
(∥x1 − x∗

1∥+ P1,T) +
1

2Ly
(∥y1 − y∗

1(x1)∥+ Y1,T) ,

which, in conjunction with Assumption B, implies

T∑
t=1

(ft(xt,y
∗
t (xt))− ft(x

∗
t ,y

∗
t (x

∗
t))) ≤

4ℓf,0
γ

(∥x1 − x∗
1∥+ P1,T) +

ℓf,0
2Ly

(∥y1 − y∗
1(x1)∥+ Y1,T)

≤ 4ℓf,0
γ

(D + P1,T) +
ℓf,0
2Ly

(D′ + Y1,T)

= O (1 + S1,T) . (56)

In the following, we show that the dynamic regret can also be upper bounded by S2,T = P2,T + Y2,T .

It follows from Lemma 3 that

ft(xt,y
∗
t (xt))− ft(x

∗
t ,y

∗
t (x

∗
t)) ≤ ⟨∇ft(x∗

t ,y
∗
t (x

∗
t)),xt − x∗

t ⟩+
Lf

2
∥xt − x∗

t ∥2

≤ 1

2
∥∇ft(x∗

t ,y
∗
t (x

∗
t))∥2 +

1

2
(1 + Lf)∥xt − x∗

t ∥2. (57)

Summing the inequality (57) over t ∈ [T], we get

T∑
t=1

(ft(xt,y
∗
t (xt))− ft(x

∗
t ,y

∗
t (x

∗
t)))

≤ 1

2

T∑
t=1

∥∇ft(x∗
t ,y

∗
t (x

∗
t))∥2 +

1

2
(1 + Lf)

T∑
t=1

∥xt − x∗
t ∥2. (58)

Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, Laura Balzano

The choices of αt and Kt in (55) satisfy the condition of Lemma 19–H2. as well. Hence, from Lemma 19–H2.
and Assumption B, we get

T∑
t=1

∥xt − x∗
t ∥2 ≤

64

23γ

(
∥x1 − x∗

1∥2 + (1 +
2

γ
)P2,T

)
+

3

92L2
y

(
∥y1 − y∗

1(x1)∥2 + 6Y2,T

)
≤ 64

23γ

(
D2 + (1 +

2

γ
)P2,T

)
+

3

92L2
y

(
D′2 + 6Y2,T

)
. (59)

Putting together (59) and (58), we get

T∑
t=1

(ft(xt,y
∗
t (xt))− ft(x

∗
t ,y

∗
t (x

∗
t)))

≤ 1

2

T∑
t=1

∥∇ft(x∗
t ,y

∗
t (x

∗
t))∥2 +

32

23γ
(1 + Lf)

(
D2 + (1 +

2

γ
)P2,T

)
+

3

184L2
y

(1 + Lf)
(
D′2 + 6Y2,T

)
= O

(
1 +

T∑
t=1

∥∇ft(x∗
t ,y

∗
t (x

∗
t))∥

2
+ P2,T + Y2,T

)
. (60)

Now, from (56) and (60), we have

T∑
t=1

(ft(xt,y
∗
t (xt))− ft(x

∗
t ,y

∗
t (x

∗
t)))

≤ O

(
1 + min

{
S1,T ,

T∑
t=1

∥∇ft(x∗
t ,y

∗
t (x

∗
t))∥

2
+ S2,T

})
.

This completes the proof. ■

C.2.3 Proof of Theorem 6

Proof. Recall the update rule of Algorithm 1 (with w = 1): xt+1 = ΠX

[
xt − αt∇̃ft(xt,yt+1)

]
. From the

Pythagorean theorem, we get

∥xt+1 − x∗∥2 ≤
∥∥∥xt − αt∇̃ft(xt,yt+1)− x∗

∥∥∥2
= ∥xt − x∗∥2 − 2αt⟨∇̃ft(xt,yt+1),xt − x∗⟩+ α2

t

∥∥∥∇̃ft(xt,yt+1)
∥∥∥2

≤ ∥xt − x∗∥2 − 2αt⟨∇̃ft(xt,yt+1),xt − x∗⟩

+ 2α2
t ∥∇ft(xt,y

∗
t (xt))∥2 + 2α2

t

∥∥∥∇̃ft(xt,yt+1)−∇ft(xt,y
∗
t (xt))

∥∥∥2 ,
where the second inequality uses Lemma 14 with c = 1.
Rearranging the above inequality yields

⟨∇ft(xt,y
∗
t (xt)),xt − x∗⟩ ≤ 1

2αt
∥xt − x∗∥2 − 1

2αt
∥xt+1 − x∗∥2 + αt ∥∇ft(xt,y

∗
t (xt))∥2

+ αt

∥∥∥∇ft(xt,y
∗
t (xt))− ∇̃ft(xt,yt+1)

∥∥∥2
+
〈
∇ft(xt,y

∗
t (xt))− ∇̃ft(xt,yt+1),xt − x∗

〉
.

(61)

Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods

From Lemma 3, for any c > 0, we have〈
∇ft(xt,y

∗
t (xt))− ∇̃ft(xt,yt+1),xt − x∗

〉
≤ c

2
∥xt − x∗∥2 + 1

2c

∥∥∥∇ft(xt,y
∗
t (xt))− ∇̃ft(xt,yt+1)

∥∥∥2
≤ c

2
∥xt − x∗∥2 +

M2
f

2c
∥yt+1 − y∗

t (xt)∥2 ,∥∥∥∇ft(xt,y
∗
t (xt))− ∇̃ft(xt,yt+1)

∥∥∥2 ≤M2
f ∥yt+1 − y∗

t (xt)∥2 .

(62)

Combining (61) and (62), we get

⟨∇ft(xt,y
∗
t (xt)),xt − x∗⟩ ≤ 1

2

(
1

αt
+ c

)
∥xt − x∗∥2 − 1

2αt
∥xt+1 − x∗∥2

+ αt ∥∇ft(xt,y
∗
t (xt))∥2 +M2

f

(
αt +

1

2c

)
∥yt+1 − y∗

t (xt)∥2 .
(63)

Applying the definition of µf -strong convexity to the pair of points {xt,x∗}, we have

2 (ft(xt,y
∗
t (xt))− ft(x

∗,y∗
t (x

∗))) ≤ 2 ⟨∇ft(xt,y
∗
t (xt)),xt − x∗⟩ − µf ∥xt − x∗∥2 . (64)

From (63) and (64), we get

2 (ft(xt,y
∗
t (xt))− ft(x

∗,y∗
t (x

∗))) ≤ 2⟨∇ft(xt,y
∗
t (xt)),xt − x∗⟩ − µf ∥xt − x∗∥2

≤
(

1

αt
+ c− µf

)
∥xt − x∗∥2 − 1

αt
∥xt+1 − x∗∥2

+ 2αt ∥∇ft(xt,y
∗
t (xt))∥2 + 2M2

f

(
αt +

1

c

)
∥yt+1 − y∗

t (xt)∥2 .

Summing from t = 1 to T , we have

2
T∑

t=1

(ft(xt,y
∗
t (xt))− ft(x

∗,y∗
t (x

∗)))

≤
(

1

α1
+ c− µf

)
∥x1 − x∗∥2 +

T∑
t=2

∥xt − x∗∥2
(

1

αt
− 1

αt−1
+ c− µf

)

+ 2
T∑

t=1

αt ∥∇ft(xt,y
∗
t (xt))∥2 + 2M2

f

T∑
t=1

(
αt +

1

c

)
∥yt+1 − y∗

t (xt)∥2 . (65)

Next, we bound the last term in the right-hand side of (65). To proceed, note that our choice of Kt as

Kt =

⌈
(κg + 1) log ρ−2

t

4

⌉
, with ρt = ρ ≤ 1√

2

√
θ

1 + θ
, and θ :=

c

12L2
yM

2
f (α1 +

1
c)

satisfies the condition required in Lemma 17–L1.. Hence, from Lemma 17–L1., we obtain

2M2
f

T∑
t=1

(
αt +

1

c

)
∥yt+1 − y∗

t (xt)∥2

≤ 2M2
f

(
α1 +

1

c

)
6ρ2

1− 2ρ2

(
1

6
∥y1 − y∗

1(x1)∥2 + 2L2
y

T∑
t=1

∥xt − x∗∥2 + Ȳ2,T

)
. (66)

Since ρ ≤ 1√
2

√
θ

1+θ , we have

4L2
yM

2
f

(
α1 +

1

c

)
6ρ2

1− 2ρ2
≤ c,

Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, Laura Balzano

which, in conjunction with Eq. (66), yields

2M2
f

T∑
t=1

(
αt +

1

c

)
∥yt+1 − y∗

t (xt)∥2

≤ c

12L2
y

∥y1 − y∗
1(x1)∥2 + c

T∑
t=1

∥xt − x∗∥2 + c

2L2
y

Ȳ2,T . (67)

Thus, combining (67) and (65) and using Assumption A1., we obtain

2
T∑

t=1

(ft(xt,y
∗
t (xt))− ft(x

∗,y∗
t (x

∗))) ≤
(

1

α1
+ c− µf

)
∥x1 − x∗∥2

+
T∑

t=2

∥xt − x∗∥2
(

1

αt
− 1

αt−1
+ 2c− µf

)

+ 2ℓ2f,0

T∑
t=1

αt +
c

12L2
y

∥y1 − y∗
1(x1)∥2 +

c

2L2
y

Ȳ2,T . (68)

By setting c = µf/4 and αt = 2/(µf t) and utilizing Assumption B, we have

2
T∑

t=1

(ft(xt,y
∗
t (xt))− ft(x

∗,y∗
t (x

∗))) ≤
4ℓ2f,0
µf

T∑
t=1

1

t
+

µf

48L2
y

D′2 +
µf

8L2
y

Ȳ2,T . (69)

Let

e1 :=
µf

48L2
y

D′2, e2 :=
µf

8L2
y

, e3 :=
4ℓ2f,0
µf

. (70)

Combining Lemma 13–I. and (70) with (69), we obtain

BS-RegT ≤ e3 log T + e2Ȳ2,T + e1.

■

Corollary 20. Under the same setting as Theorem 4,

(I) If function ft is non-negative for each t ∈ [T], then

BD-RegT ≤ O (1 + min{S1,T , FT + S2,T }) , (71)

where FT :=
∑T

t=1 ft(x
∗
t ,y

∗
t (x

∗
t)).

(II) If
∑T

t=1 ∥∇ft(x∗
t ,y

∗
t (x

∗
t))∥ = O(S2,T), then

BD-RegT ≤ O (1 + min{S1,T , S2,T }) . (72)

Proof. (i) If ft ≥ 0 for all t ∈ [T], then it follows from Lemma 10 that ∥∇ft(x∗
t ,y

∗
t (x

∗
t))∥ ≤

√
4ℓf,1ft(x∗

t ,y
∗
t (x

∗
t)).

This together with (10) gives the desired result.

(ii) If x∗
t ∈ argminx∈X ft(x) for all t ∈ [T] and the minimizers {x∗

t }Tt=1 lie in the interior of the domain X , we
have ∥∇ft(x∗

t ,y
∗
t (x

∗
t))∥ = 0 which together with (10) gives the desired result. If

∑T
t=1 ∥∇ft(x∗

t ,y
∗
t (x

∗
t))∥ =

O(S2,T), then (72) follows from (10).

■

Corollary 20 naturally interpolates between single-level and bilevel regret. In the case when Y1,T = Y2,T = 0,
Eq. (71) gives a single-level regret for strongly convex, smooth, and non-negative losses, similar to [Srebro et al.,
2010, Zhao et al., 2020]. We note that if the minimizers {x∗

t }Tt=1 lie in the interior of the domain X , we have
∥∇ft(x∗

t ,y
∗
t (x

∗
t))∥ = 0 for all t ∈ [T], which implies the O (1 + min{S1,T , S2,T }) regret bound.

Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods

C.3 Proof for Convex OBO with Partial Information

C.3.1 Proof of Theorem 7

Proof. From the update rule of Algorithm 1 (with w = 1), we have xt+1 = ΠX

[
xt − α∇̃ft(xt,yt+1)

]
. Now, from

the Pythagorean theorem, we get

1

2
∥xt+1 − x∗

t ∥
2 ≤ 1

2

∥∥∥xt − α∇̃ft(xt,yt+1)− x∗
t

∥∥∥2
=

1

2
∥xt − x∗

t ∥
2 − α⟨∇̃ft(xt,yt+1),xt − x∗

t ⟩+
α2

2

∥∥∥∇̃ft(xt,yt+1)
∥∥∥2

≤ 1

2
∥xt − x∗

t ∥
2 − α⟨∇̃ft(xt,yt+1),xt − x∗

t ⟩+ α2 ∥∇ft(xt,y
∗
t (xt))∥2

+ α2
∥∥∥∇̃ft(xt,yt+1)−∇ft(xt,y

∗
t (xt))

∥∥∥2 . (73)

Here, the second inequality holds because of the Lemma 14 by setting c = 1.
Rearranging the above inequality and summing over t ∈ [T], we obtain

T∑
t=1

⟨∇ft(xt,y
∗
t (xt)),xt − x∗

t ⟩ ≤
T∑

t=1

(
1

2α
∥xt − x∗

t ∥
2 − 1

2α
∥xt+1 − x∗

t ∥
2

)
(74a)

+ α
T∑

t=1

∥∥∥∇ft(xt,y
∗
t (xt))− ∇̃ft(xt,yt+1)

∥∥∥2 (74b)

+
T∑

t=1

〈
∇ft(xt,y

∗
t (xt))− ∇̃ft(xt,yt+1),xt − x∗

t

〉
(74c)

+ α

T∑
t=1

∥∇ft(xt,y
∗
t (xt))∥2 . (74d)

Next, we upper bound each term of (74).
• Bounding (74a): Observe that

(74a) ≤ 1

2α
∥x1 − x∗

1∥2 −
1

2α
∥xT+1 − x∗

T ∥2 +
1

2α

T∑
t=2

(
∥xt − x∗

t ∥2 − ∥xt − x∗
t−1∥2

)
≤ 1

2α
∥x1 − x∗

1∥2 +
1

2α

T∑
t=2

∥x∗
t − xt + x∗

t−1 − xt∥∥x∗
t − x∗

t−1∥

≤ D2

2α
+

D

2α

T∑
t=2

∥x∗
t − x∗

t−1∥, (75a)

where the second inequality follows since

∥x∗
t − xt∥2 − ∥x∗

t−1 − xt∥2 =
〈
x∗
t − xt + x∗

t−1 − xt,x
∗
t − xt − (x∗

t−1 − xt)
〉

≤ ∥x∗
t − xt + x∗

t−1 − xt∥∥x∗
t − x∗

t−1∥,

and the last inequality follows from Assumption B.
• Bounding (74b) and (74c): It follows from Lemma 3 and Assumption B that

T∑
t=1

〈
∇ft(xt,y

∗
t (xt))− ∇̃ft(xt,yt+1),xt − x∗

t

〉
≤

T∑
t=1

∥x∗
t − xt∥∥∇ft(xt,y

∗
t (xt))− ∇̃ft(xt,yt+1)∥

≤ DMf

T∑
t=1

∥yt+1 − y∗
t (xt)∥ ,

T∑
t=1

∥∥∥∇ft(xt,y
∗
t (xt))− ∇̃ft(xt,yt+1)

∥∥∥2 ≤M2
f

T∑
t=1

∥yt+1 − y∗
t (xt)∥2 .

Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, Laura Balzano

Hence,

(74b) + (74c) ≤ DMf

T∑
t=1

∥yt+1 − y∗
t (xt)∥+ αM2

f

T∑
t=1

∥yt+1 − y∗
t (xt)∥2 . (75b)

• Bounding (74d): By the smoothness of ϕt(x) = ft(x,y
∗
t (x)), for any x ∈ Rd1 , we have

ϕt(x)− ϕt(xt) ≤ ⟨∇ϕt(xt),x− xt⟩+
Lf

2
∥x− xt∥2.

Let x = x′
t = xt − 1

Lf
∇ϕt(xt) in the above inequality, we have ϕt(x

′
t)− ϕt(xt) ≤ −∥∇ϕt(xt)∥2

2Lf
.

It follows from the convexity of ft(x, ·) that

ϕt(x
′
t) ≥ ϕt(x

∗
t) + ⟨∇ϕt(x

∗
t),x

′
t − x∗

t ⟩ = ϕt(x
∗
t),

where the equality follows from the vanishing gradient condition (∃(x∗
t ,y

∗
t (x

∗
t)) ∈ X × Rd2 such that

∇ft(x∗
t ,y

∗
t (x

∗
t)) = 0 for all t ∈ [T]).

Hence,

ϕt(x
∗
t)− ϕt(xt) ≤ ϕt(x

′
t)− ϕt(xt) ≤ −

∥∇ϕt(xt)∥2

2Lf
,

which implies that

(74d) ≤ 2αLf

T∑
t=1

(ft(xt,y
∗
t (xt))− ft(x

∗
t ,y

∗
t (x

∗
t))) . (75c)

• Bounding
∑T

t=1 ⟨∇ft(xt,y
∗
t (xt)),xt − x∗

t ⟩: Substituting (75a)–(75c) into (74), we get

T∑
t=1

⟨∇ft(xt,y
∗
t (xt)),xt − x∗

t ⟩ ≤
T∑

t=1

(
αM2

f ∥yt+1 − y∗
t (xt)∥2 +DMf ∥yt+1 − y∗

t (xt)∥

+ 2αLf (ft(xt,y
∗
t (xt))− ft(x

∗
t ,y

∗
t (x

∗
t)))

)
+

D2

2α
+

D

2α

T∑
t=2

∥x∗
t − x∗

t−1∥.

(76)

• Completing the proof of Theorem 7: By the convexity of ft and (76), we obtain

T∑
t=1

(ft(xt,y
∗
t (xt))− ft(x

∗
t ,y

∗
t (x

∗
t)))

≤
T∑

t=1

⟨∇ft(xt,y
∗
t (xt)),xt − x∗

t ⟩

≤
T∑

t=1

(
αM2

f ∥yt+1 − y∗
t (xt)∥2 +DMf ∥yt+1 − y∗

t (xt)∥

+ 2αLf

(
ft(xt,y

∗
t (xt))− ft(x

∗
t ,y

∗
t (x

∗
t))
))

+
D2

2α
+

D

2α
P1,T .

(77)

Note that our choice of Kt in the theorem statement as

Kt =

⌈
(κg + 1) log ρ−2

t

4

⌉
, with ρt =

1

2t2
(78)

satisfies the condition of Lemma 17–L1.. Moreover, using Lemma 13–III., we have

T∑
t=1

ρt =
π2

12
and

T∑
t=1

ρ2t =
π4

360
.

Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods

This, together with Lemma 17–L1. and Assumption B, gives

T∑
t=1

∥yt+1 − y∗
t (xt)∥2 ≤

ρ21
1− 2ρ21

∥y1 − y∗
1(x1)∥2

+
6

1− 2ρ21

(
2L2

y

T∑
t=1

ρ2t∥xt − x∗
t ∥2 +

T∑
t=2

ρ2t∥y∗
t−1(x

∗
t−1)− y∗

t (x
∗
t)∥2

)

≤ 1

2
D′2 +

π4

30
L2
yD

2 +
π4

60
L2
yY2,T .

(79a)

Similarly, we obtain

T∑
t=1

∥yt+1 − y∗
t (xt)∥ ≤

ρ1
1− ρ1

∥y1 − y∗
1(x1)∥

+
1

1− ρ1

(
2Ly

T∑
t=1

ρt∥xt − x∗
t ∥+

T∑
t=2

ρt∥y∗
t−1(x

∗
t−1)− y∗

t (x
∗
t)∥

)

≤ D′ + π2LyD +
π2

2
LyY1,T .

(79b)

Now, let

Ė1(α) := αM2
f

(
1

2
D′2 +

π4

30
L2
yD

2

)
+DMf

(
D′ + π2LyD

)
.

Substituting (79a) and (79b) into (77), we have

(1− 2αLf)
T∑

t=1

(ft(xt,y
∗
t (xt))− ft(x

∗
t ,y

∗
t (x

∗
t)))

≤ Ė1(α) +
D2

2α
+

D

2α
P1,T + αM2

f

π4

60
L2
yY2,T +DMf

π2

2
LyY1,T . (80)

Let α ≤ 1/(4Lf) and

ċ1(α) :=
D

2α(1− 2αLf)
,

ċ2(α) :=
1

1− 2αLf
DMf

π2

2
Ly,

ċ3(α) :=
1

1− 2αLf
αM2

f

π4

60
L2
y,

ċ4(α) :=
Ė1(α)

1− 2αLf
+

D2

2α(1− 2αLf)
.

The above definitions together with (80) implies

BD-RegT ≤ ċ1(α)P1,T + ċ2(α)Y1,T + ċ3(α)Y2,T + ċ4(α).

This gives the desired result in (12). ■

C.3.2 Proof of Theorem 8

Proof. The proof is similar to Theorem 7. From the update rule of Algorithm 1 (with w = 1), we have
xt+1 = ΠX

[
xt − αt∇̃ft(xt,yt+1)

]
. Now, applying the Pythagorean theorem and employing an argument

Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, Laura Balzano

identical to (73) and (74), we obtain
T∑

t=1

⟨∇ft(xt,y
∗
t (xt)),xt − x∗⟩ ≤

T∑
t=1

(
1

2αt
∥xt − x∗∥2 − 1

2αt
∥xt+1 − x∗∥2

)
(81a)

+
T∑

t=1

αt

∥∥∥∇ft(xt,y
∗
t (xt))− ∇̃ft(xt,yt+1)

∥∥∥2 (81b)

+
T∑

t=1

〈
∇ft(xt,y

∗
t (xt))− ∇̃ft(xt,yt+1),xt − x∗

〉
(81c)

+
T∑

t=1

αt ∥∇ft(xt,y
∗
t (xt))∥2 . (81d)

Next, we upper bound each term of (81).

From Assumption B, we have

(81a) =
T∑

t=1

(
1

2αt
∥xt − x∗∥2 − 1

2αt+1
∥xt+1 − x∗∥2

)

+
T∑

t=1

(
1

2αt+1
∥xt+1 − x∗∥2 − 1

2αt
∥xt+1 − x∗∥2

)

≤ D2

2α1
− ∥xT+1 − x∗∥2

2αT+1
+D2

T∑
t=1

(
1

2αt+1
− 1

2αt

)
≤ D2

2αT+1
. (82a)

Using Lemma 3 and Assumption B, and following similar steps as in the derivation of (75b), we obtain

(81b) + (81c) ≤ DMf

T∑
t=1

∥yt+1 − y∗
t (xt)∥+M2

f

T∑
t=1

αt ∥yt+1 − y∗
t (xt)∥2

≤ DMf

T∑
t=1

∥yt+1 − y∗
t (xt)∥+M2

fα1

T∑
t=1

∥yt+1 − y∗
t (xt)∥2 . (82b)

Further, it follows from Assumption A1. that

(81d) =
T∑

t=1

αt∥∇ft(xt,y
∗
t (xt))∥2 ≤ ℓ2f,0

T∑
t=1

αt. (82c)

Substituting (82a)–(82c) into (81) gives
T∑

t=1

(ft(xt,y
∗
t (xt))− ft(x

∗,y∗
t (x

∗)))

≤ D2

2αT+1
+

T∑
t=1

(
M2

fα1 ∥yt+1 − y∗
t (xt)∥2 +DMf ∥yt+1 − y∗

t (xt)∥+ ℓ2f,0αt

)
,

(83)

By Lemma 17–L1., (78) and Assumption B, we have
T∑

t=1

∥yt+1 − y∗
t (xt)∥2 ≤

ρ21
1− 2ρ21

∥y1 − y∗
1(x1)∥2

+
6

1− 2ρ21

(
2L2

y

T∑
t=1

ρ2t∥xt − x∗∥2 +
T∑

t=2

ρ2t∥y∗
t−1(x

∗)− y∗
t (x

∗)∥2
)

≤ 1

2
D′2 +

π4

30
L2
yD

2 +
π4

60
L2
yȲ2,T ,

(84a)

Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods

where Ȳ2,T =
∑T

t=2

∥∥y∗
t−1(x

∗)− y∗
t (x

∗)
∥∥2.

Similarly, we obtain

T∑
t=1

∥yt+1 − y∗
t (xt)∥ ≤

ρ1
1− ρ1

∥y1 − y∗
1(x1)∥

+
1

1− ρ1

(
2Ly

T∑
t=1

ρt∥xt − x∗∥+
T∑

t=2

ρt∥y∗
t−1(x

∗)− y∗
t (x

∗)∥

)

≤ D′ + π2LyD +
π2

2
LyȲ1,T ,

(84b)

where Ȳ1,T =
∑T

t=2

∥∥y∗
t−1(x

∗)− y∗
t (x

∗)
∥∥.

Let

Ė1(α1) := α1M
2
f

(
1

2
D′2 +

π4

30
L2
yD

2

)
+DMf

(
D′ + π2LyD

)
.

By substituting (84a) and (84b) into (83) and using our choice of the stepsize αt = D/(ℓf,0
√
t), we obtain

T∑
t=1

(ft(xt,y
∗
t (xt))− ft(x

∗,y∗
t (x

∗)))

≤ 1

2
Dℓf,0

√
T + Ė1(α1) + α1M

2
f

π4

60
L2
yȲ2,T +DMf

π2

2
LyȲ1,T +Dℓf,0

T∑
t=1

1√
t
,

(85)

Let

ė1 :=
3

2
Dℓf,0, ė2 := DMf

π2

2
Ly, ė3 := α1M

2
f

π4

60
L2
y.

From (85) and using Lemma 13–II., we get

BS-RegT ≤ ė1
√
T + Ė1(α1) + ė3Ȳ2,T + ė2Ȳ1,T .

This completes the proof of the theorem and gives (13). ■

C.3.3 Discussion on the number of inner iterations and the window size

As mentioned before, by using inner gradient descent multiple times, we are able to get more information from
each inner function and obtain a tight bound for the dynamic regret in terms of Yp,T . However, according to
our analysis in Theorems 4 and 7, even for sufficiently large Kt and w > 1, the dynamic regret bound can only
be improved by a constant factor. A related question is whether we can reduce the value of Kt by using, for
example, the smoothness of ∇yt(x), similar to offline bilevel optimization [Chen et al., 2021], or by adopting
more advanced optimization techniques, such as acceleration or momentum-type gradient methods for both inner
and outer updates [Nesterov, 2003]. These are open problems for us and will be investigated as future work.

C.4 Proof for Non-convex OBO with Partial Information

This section gives regret bounds for OBO in the non-convex setting.

C.4.1 Auxiliary Lemmas

Lemma 21. Under Assumption A, for all t ∈ [T] and x ∈ Rd, we have∥∥∥∇̃Ft,u(x,yt+1)−∇Ft,u(x,y
∗
t (x))

∥∥∥2 ≤M2
f ∥yt+1 − y∗

t (x)∥
2
, (86)

where ∇̃Ft,u is defined in (7) and Mf is given in Lemma 3.

Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, Laura Balzano

Proof. From (7), we get ∥∥∥∇̃Ft,u(x,yt+1)−∇Ft,u(x,y
∗
t (x))

∥∥∥2
=

∥∥∥∥∥ 1

W

w−1∑
i=0

ui

(
∇̃ft−i(x,yt+1)−∇ft−i(x,y

∗
t (x))

)∥∥∥∥∥
2

≤ 1

2W 2

w−1∑
i=0

w−1∑
j=0

uiuj

∥∥∥∇̃ft−i(x,yt+1)−∇ft−i(x,y
∗
t (x))

∥∥∥2
+

1

2W 2

w−1∑
i=0

w−1∑
j=0

uiuj

∥∥∥∇̃ft−j(x,yt+1)−∇ft−j(x,y
∗
t (x))

∥∥∥2
=

1

W 2

w−1∑
j=0

uj

w−1∑
i=0

ui

∥∥∥∇̃ft−i(x,yt+1)−∇ft−i(x,y
∗
t (x))

∥∥∥2
≤

M2
f

W 2

w−1∑
j=0

uj

w−1∑
i=0

ui ∥yt+1 − y∗
t (x)∥

2

= M2
f ∥yt+1 − y∗

t (x)∥
2
.

Here, the first inequality uses Lemma 14 with c = 1; the second inequality uses Lemma 3; and the last equality
follows since (1/W)

∑w−1
i=0 ui = 1. ■

Similar to Lemma 17, the following lemma characterizes the inner estimation error ∥yt+1−y∗
t (xt)∥, where yt+1 is

the inner variable update via Algorithm 1. In particular, it shows that by applying inner gradient descent at each
round t, we are able to obtain an error bound in terms of the local regret ∥∇Ft,u(xt,y

∗
t (xt))∥2 and the inner

solution variation H2,T =
∑T

t=2 supx∈Rd1 ∥y∗
t−1(x)− y∗

t (x)∥2.
Lemma 22. Suppose Assumption A holds. If we choose the stepsizes as

βt = β =
2

ℓg,1 + µg
, and αt = α ≤ 1

2
√
2LyMf (κ2

g − 1)1/2
,

for all t ∈ [T], then the sequence {(xt,yt)}Tt=1 generated by Algorithm 1 satisfy

T∑
t=1

∥yt+1 − y∗
t (xt)∥2 ≤

(κg − 1)2

2(κg + 1)
∥y1 − y∗

1(x1)∥2

+
1

2M2
f

(
κg − 1

κg + 1
)

T∑
t=1

∥∇Ft,u(xt,y
∗
t (xt))∥2 + 2(κg − 1)2H2,T .

(87)

Here, H2,T =
∑T

t=2 supx∈Rd1 ∥y∗
t−1(x)− y∗

t (x)∥2.

Proof. Since β = 2/(ℓg,1 + µg), from Lemma 11, we have

∥yt+1 − y∗
t (xt)∥2 ≤

(
1− 2

κg + 1

)2

∥yt − y∗
t (xt)∥2 ,

which implies that

T∑
t=1

∥yt+1 − y∗
t (xt)∥2 ≤

(
1− 2

κg + 1

)2

∥y1 − y∗
1(x1)∥2

+

(
1− 2

κg + 1

)2 T∑
t=2

∥yt − y∗
t (xt)∥2. (88)

Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods

From Lemma 14, we have

T∑
t=2

∥yt − y∗
t (xt)∥2 ≤

(
1 +

1

κg + 1

) T∑
t=2

∥yt − y∗
t−1(xt−1)∥2

+ (1 + κg + 1)
T∑

t=2

∥y∗
t (xt)− y∗

t−1(xt−1)∥2

≤
(
1 +

1

κg + 1

) T∑
t=2

∥yt − y∗
t−1(xt−1)∥2

+ 2(2 + κg)
T∑

t=2

∥y∗
t (xt)− y∗

t (xt−1)∥2

+ 2(2 + κg)
T∑

t=2

∥y∗
t (xt−1)− y∗

t−1(xt−1)∥2

≤
(
1 +

1

κg + 1

) T∑
t=1

∥yt+1 − y∗
t (xt)∥2

+ 2(2 + κg)

T∑
t=1

∥y∗
t+1(xt+1)− y∗

t+1(xt)∥2 + 2(2 + κg)H2,T . (89)

From Lemma 3 and the update rule of xt, we obtain

∥y∗
t+1(xt+1)− y∗

t+1(xt)∥2 ≤ L2
y∥xt − xt+1∥2

= L2
yα

2
∥∥∥∇̃Ft,u(xt,yt+1)

∥∥∥2
≤ 2L2

yα
2 ∥∇Ft,u(xt,y

∗
t (xt))∥2

+ 2L2
yα

2
∥∥∥∇̃Ft,u(xt,yt+1)−∇Ft,u(xt,y

∗
t (xt))

∥∥∥2
≤ 2L2

yα
2
(
∥∇Ft,u(xt,y

∗
t (xt))∥2 +M2

f ∥yt+1 − y∗
t (xt)∥2

)
,

where the second inequality holds due to Lemma 14 and the last inequality follows from Lemma 21.

Now, substituting the above bound into (89), we obtain

T∑
t=2

∥yt − y∗
t (xt)∥2 ≤

(
1 +

1

κg + 1
+ 4(2 + κg)L

2
yα

2M2
f

) T∑
t=1

∥yt+1 − y∗
t (xt)∥2

+ 4 (2 + κg)L
2
yα

2
T∑

t=1

∥∇Ft,u(xt,y
∗
t (xt))∥2 + 2 (2 + κg)H2,T . (90)

Substituting (90) into (88), we get

T∑
t=1

∥yt+1 − y∗
t (xt)∥2 ≤

(
1− 2

κg + 1

)2

∥y1 − y∗
1(x1)∥2 +A(α)

T∑
t=1

∥yt+1 − y∗
t (xt)∥2

+B(α)
T∑

t=1

∥∇Ft,u(xt,y
∗
t (xt))∥2 + 2 (2 + κg)

(
1− 2

κg + 1

)2

H2,T , (91)

where

A(α) :=

(
1 +

1

κg + 1

)(
1− 2

κg + 1

)2

+ 4 (2 + κg)

(
1− 2

κg + 1

)2

L2
yα

2M2
f , and

B(α) := 4 (2 + κg)

(
1− 2

κg + 1

)2

L2
yα

2.

Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, Laura Balzano

We now proceed to bound terms A(α) and B(α), respectively. Let’s bound term A(α) first as

A(α) =

(
1− 2

κg + 1

)(
(1 +

1

κg + 1
)(1− 2

κg + 1
) + 4(2 + κg)(1−

2

κg + 1
)L2

yα
2M2

f

)
≤
(
1− 2

κg + 1

)(
1− 1

κg + 1
+ 8(1 + κg)(1−

2

κg + 1
)L2

yα
2M2

f

)
=

(
1− 2

κg + 1

)(
1− 1

κg + 1
+ 8(κg − 1)L2

yα
2M2

f

)
≤
(
1− 2

κg + 1

)
,

where the first inequality is by the inequality (1 + a/2)(1 − a) ≤ (1 − a/2 − a2/2) ≤ 1 − a/2 and the second
inequality is due to the assumption that α2 ≤ 1

8(κ2
g−1)L2

yM
2
f
.

Next, we bound B(α) as follows

B(α) ≤ 8(1 + κg)

(
1− 2

κg + 1

)2

L2
yα

2 =
8(κg − 1)2

κg + 1
L2
yα

2 ≤ κg − 1

(κg + 1)2M2
f

,

where the last inequality holds because α2 ≤ 1
8(κ2

g−1)L2
yM

2
f
.

Inserting the above two bounds for A(α) and B(α) into (91) gives

T∑
t=1

∥yt+1 − y∗
t (xt)∥2 ≤

(
κg − 1

κg + 1

)2

∥y1 − y∗
1(x1)∥2 +

(
1− 2

κg + 1

) T∑
t=1

∥yt+1 − y∗
t (xt)∥2

+
κg − 1

(κg + 1)2M2
f

T∑
t=1

∥∇Ft,u(xt,y
∗
t (xt))∥2 +

4(κg − 1)2

κg + 1
H2,T .

Rearranging the above terms gives (87) and completes the proof. ■

The following lemma shows that the difference between the time-averaged function Ft,u computed at (xt,y
∗
t (xt))

and (xt+1,y
∗
t (xt+1)) is bounded. This extends the single-level setting to the generic weight sequence {ui}w−1

i=0 ,
and the proof utilizes the ideas from [Aydore et al., 2019, Lemmas 3.2, 3.3] and [Hazan et al., 2017, Theorem 3].

Lemma 23. Let {(ft, gt)}Tt=1 be the sequence of functions presented to Algorithm 1, satisfying Assumption C.
Then, we have

T∑
t=1

(Ft,u(xt,y
∗
t (xt))− Ft,u(xt+1,y

∗
t (xt+1))) ≤

2TM

W
+ 2M + ℓf,0H1,T , (92)

where H1,T =
∑T

t=2 supx∈Rd1 ∥y∗
t (x)− y∗

t−1(x)∥ and M is defined in Assumption C.

Proof. Observe that

T∑
t=1

(Ft,u(xt,y
∗
t (xt))− Ft,u(xt+1,y

∗
t (xt+1)))

=
T∑

t=1

(
Ft,u(xt,y

∗
t (xt))− Ft,u(xt+1,y

∗
t+1(xt+1))

)
(93a)

+
T∑

t=1

(
Ft,u(xt+1,y

∗
t+1(xt+1))− Ft,u(xt+1,y

∗
t (xt+1))

)
. (93b)

In the following, we bound the terms (93a) and (93b) separately.

Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods

For (93b), we have

(93b) =
T∑

t=1

1

W

w−1∑
i=0

ui

(
ft−i(xt+1,y

∗
t+1(xt+1))− ft−i(xt+1,y

∗
t (xt+1))

)
≤ ℓf,0

W

w−1∑
i=0

ui

T∑
t=1

∥y∗
t+1(xt+1)− y∗

t (xt+1)∥

= ℓf,0

T∑
t=1

∥y∗
t+1(xt+1)− y∗

t (xt+1)∥

≤ ℓf,0H1,T , (94)

where the first inequality is due to Assumption A1. and the second equality follows since (1/W)
∑w−1

i=0 ui = 1.

For the term (93a), we have

(93a) =
T∑

t=2

(
Ft,u(xt,y

∗
t (xt))− Ft−1,u(xt,y

∗
t (xt))

)
+ F1,u(x1,y

∗
1(x1))− FT,u(xT+1,y

∗
T+1(xT+1))

=
T∑

t=2

1

W

w−1∑
i=0

ui (ft−i(xt,y
∗
t (xt))− ft−1−i(xt,y

∗
t (xt)))

+ f1(x1,y
∗
1(x1))−

1

W

w−1∑
i=0

uifT−i(xT+1,y
∗
T+1(xT+1)).

Since {ui}w−1
i=0 is the weight sequence with 1 = u0 ≥ u1 . . . uw−1 > 0, given in Definition 1, we have

w−1∑
i=0

ui (ft−i(xt,y
∗
t (xt))− ft−1−i(xt,y

∗
t (xt)))

= u0ft(xt,y
∗
t (xt)) + u1ft−1(xt,y

∗
t (xt)) + · · ·+ uw−1ft−w+1(xt,y

∗
t (xt))

− u0ft−1(xt,y
∗
t (xt))− u1ft−2(xt,y

∗
t (xt))− · · · − uw−1ft−w(xt,y

∗
t (xt))

= u0ft(xt,y
∗
t (xt))− uw−1ft−w(xt,y

∗
t (xt)) +

w−1∑
i=1

(ui − ui−1) ft−i(xt,y
∗
t (xt))

≤ u0ft(xt,y
∗
t (xt))− uw−1ft−w(xt,y

∗
t (xt)) +

w−1∑
i=1

(ui−1 − ui) |ft−i(xt,y
∗
t (xt))|

≤ u0ft(xt,y
∗
t (xt))− uw−1ft−w(xt,y

∗
t (xt)) + max

i
|ft−i(xt,y

∗
t (xt))|(u0 − uw−1),

which implies that

(93a) ≤
T∑

t=2

1

W

(
u0ft(xt,y

∗
t (xt))− uw−1ft−w(xt,y

∗
t (xt)) + max

i
|ft−i(xt,y

∗
t (xt))|(u0 − uw−1)

)
+ f1(x1,y

∗
1(x1))−

1

W

w−1∑
i=0

uifT−i(xT+1,y
∗
T+1(xT+1))

≤ 2TM (u0 − uw−1)

W
+M +M

≤ 2TM

W
+M +M, (95)

where the second inequality is by Assumption C.

Combining (94) with (95), we get (92). ■

Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, Laura Balzano

C.4.2 Proof of Theorem 9

Proof. Lemma 3 implies that (24) still holds by replacing ft with Ft. Hence,

Ft,u(xt+1,y
∗
t (xt+1))− Ft,u(xt,y

∗
t (xt))

≤ ⟨∇Ft,u(xt,y
∗
t (xt)),xt+1 − xt⟩+

Lf

2
∥xt+1 − xt∥2

≤ −α
〈
∇Ft,u(xt,y

∗
t (xt)), ∇̃Ft,u(xt,yt+1)

〉
+

Lfα
2

2
∥∇̃Ft,u(xt,yt+1)∥2. (96)

By Lemma 21, we have

−
〈
∇Ft,u(xt,y

∗
t (xt)), ∇̃Ft,u(xt,yt+1)

〉
= −⟨∇Ft,u(xt,y

∗
t (xt)),∇Ft,u(xt,y

∗
t (xt))⟩

−
〈
∇Ft,u(xt,y

∗
t (xt)), ∇̃Ft,u(xt,yt+1)−∇Ft,u(xt,y

∗
t (xt))

〉
≤ −1

2
∥∇Ft,u(xt,y

∗
t (xt))∥2 +

1

2

∥∥∥∇̃Ft,u(xt,yt+1)−∇Ft,u(xt,y
∗
t (xt))

∥∥∥2
≤ −1

2
∥∇Ft,u(xt,y

∗
t (xt))∥2 +

M2
f

2
∥yt+1 − y∗

t (xt)∥2 ,

(97a)

and

∥∇̃Ft,u(xt,yt+1)∥2 ≤ 2∥∇Ft,u(xt,y
∗
t (xt))∥2 + 2

∥∥∥∇̃Ft,u(xt,yt+1)−∇Ft,u(xt,y
∗
t (xt))

∥∥∥2
≤ 2∥∇Ft,u(xt,y

∗
t (xt))∥2 + 2M2

f ∥yt+1 − y∗
t (xt)∥2 . (97b)

Substituting (97a) and (97b) into (96), rearranging terms and summing up from t = 1 to t = T , we obtain(α
2
− Lfα

2
) T∑

t=1

∥∇Ft,u(xt,y
∗
t (xt))∥2

≤
T∑

t=1

(Ft,u(xt,y
∗
t (xt))− Ft,u(xt+1,y

∗
t (xt+1))) +M2

f

(α
2
+ Lfα

2
) T∑

t=1

∥yt+1 − y∗
t (xt)∥2

≤ 2TM

W
+ 2M + ℓf,0H1,T +M2

f

(α
2
+ Lfα

2
) T∑

t=1

∥yt+1 − y∗
t (xt)∥2 , (98)

where the second inequality follows from Lemma 23.

Note that our choices of the stepsizes αt and βt as

βt = β =
2

ℓg,1 + µg
, and αt = α ≤ min

{
1

8Lf
,

1

2
√
2LyMf (κ2

g − 1)1/2

}
,

satisfy the condition of Lemma 22. Hence, from Lemma 22, we get(α
2
− Lfα

2
) T∑

t=1

∥∇Ft,u(xt,y
∗
t (xt))∥2

≤ 2TM

W
+ 2M + ℓf,0H1,T +

1

2

(α
2
+ Lfα

2
)(κg − 1

κg + 1

) T∑
t=1

∥∇Ft,u(xt,y
∗
t (xt))∥2

+M2
f

(α
2
+ Lfα

2
)
(κg − 1)

2

(
∥y1 − y∗

1(x1)∥2

2(κg + 1)
+ 2H2,T

)
.

Rearranging the terms leads to

1

2(κg + 1)

(
(κg + 3)α

2
− 3(κg +

1

3
)Lfα

2

) T∑
t=1

∥∇Ft,u(xt,y
∗
t (xt))∥2

≤ 2TM

W
+ 2M + ℓf,0H1,T +M2

f

(α
2
+ Lfα

2
)
(κg − 1)2

(
∥y1 − y∗

1(x1)∥2

2(κg + 1)
+ 2H2,T

)
. (99)

Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods

Since α ≤ 1/(8Lf), we have

(κg + 3)α

2
− 3(κg +

1

3
)Lfα

2 ≥ (κg + 1)α

2
− 3(κg + 1)Lfα

2 ≥ α

8
(κg + 1), and

α

2
+ Lfα

2 ≤ 5

8
α.

Substituting the above observations into (99) gives

α

16

T∑
t=1

∥∇Ft,u(xt,y
∗
t (xt))∥2 ≤

2TM

W
+ 2M + ℓf,0H1,T

+
5

8
αM2

f (κg − 1)2
(
∥y1 − y∗

1(x1)∥2

2(κg + 1)
+ 2H2,T

)
.

Therefore, we get the following bound

T∑
t=1

∥∇Ft,u(xt,y
∗
t (xt))∥2 ≤

16

α

(
2TM

W
+ 2M + ℓf,0H1,T

)
+ 10M2

f (κg − 1)2
(
∥y1 − y∗

1(x1)∥2

2(κg + 1)
+ 2H2,T

)
= O

(
T

W
+H1,T +H2,T

)
.

This completes the proof. ■

D Addendum to Section 4: Implementation Details and Additional Experiments

D.1 Details on Online Hyperparameter Learning for Dynamic Regression

The synthetic data are generated as follows: To simulate the distribution changes, we generate the output according
to bt = a⊤t y

∗
s(x

∗
s) + ϵt, where (x∗

s,y
∗
s(x

∗
s)) ∈ Rd1 × Rd2 is the underlying model for s-th stage, and ϵt ∈ [0, 0.1] is

the random noise. We consider two setups for the underlying model: (i) there are three changes (S = 3) in the
minimizers (x∗

s,y
∗
s(x

∗
s)), and (ii) the underlying model is fixed (S = 1), i.e., (x∗,y∗(x∗)) = (x∗

s,y
∗
s(x

∗
s)) for all

t ∈ [T]. The time horizon, the outer and inner dimensions are set to T = 5000, d1 = 1 and d2 = 5, respectively.

We used a grid-search of parameters in our experiments in Subsection 4.1. For the grid-search setting, we select
the best performing parameters Kt, α, β from a grid {5, 10} × {0.001, 0.01, 0.1, 0.5} × {0.001, 0.01, 0.1, 0.5}. The
smoothing (averaging) parameter δ is set to 0.9. All algorithms have been run on a Mac machine equipped with a
1.8 GHz Intel Core i5 processor and 8 GB RAM.

D.2 Details and Additional Experiments on Online Parametric Loss Tuning Implementation

This subsection provides details on implementing online parametric loss tuning tailored for imbalanced data.
Additionally, it includes extra experiments conducted on two other datasets: Tadpole and Adult.

D.2.1 Dataset Specifications and Model Architectures

MNIST The MNIST image dataset [LeCun et al., 2010] comprises 10 classes of human-written numbers ranging
from 0 to 9. The dataset contains a total of 60, 000 training images and 10, 000 testing images, each sized at
28×28. Consequently, there are approximately 6, 000 training images and 1, 000 testing images for each class. To
introduce imbalance into the training and validation data, we randomly selected 5000× 0.6i, i = 0, 1, . . . 9 samples
from the original training data for each class. These samples were then divided into new training and validation
datasets at a 4:1 ratio. We employed a 4-layer convolutional neural network (CNN) for all comparison algorithms.
Each convolutional block in the network consists of a 3× 3 convolution (with padding=1 and stride=1), batch
normalization, ReLU activation, and 2× 2 max pooling. The CNN has 64 filters in every convolutional layer.

Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, Laura Balzano

Tadpole In the Appendix, we conduct additional experiments on the Tadpole dataset [Marinescu et al.,
2019]. The Tadople dataset is introduced in Grand Challenge 2, a platform for end-to-end development of
machine learning solutions in biomedical imaging. Tadpole is an abbreviation for The Alzheimer’s Disease
Prediction Of Longitudinal Evolution (TADPOLE), a subset of the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) 3, which constitutes an extensive data collection for Alzheimer’s disease (AD). Initially, Tadpole
contains 12,741 samples and 1,907 features. Its classes include individuals classified as cognitively normal (CN),
mild cognitive impairment (MCI) or Alzheimer’s disease (AD). We only select 17 commonly-used features,
including ‘CDRSB’, ‘ADAS11’, ‘MMSE’, ‘RAVLT_immediate’, ‘Hippocampus’, ‘WholeBrain’, ‘Entorhinal’,
‘MidTemp’, ‘FDG’, ‘AV45’, ‘ABETA_UPENNBIOMK9_04_19_17’, ‘TAU_UPENNBIOMK9_04_19_17’,
‘PTAU_UPENNBIOMK9_04_19_17’, ‘APOE4’, ‘AGE’, ‘ADAS13’, ‘Ventricles’. We exclusively select classes
MCI and AD to form the two-class classification task. The two classes are already imbalanced, with 2,106 samples
in the AD class and 4,044 in the MCI class. To further imbalance the dataset, we only select half of the samples
from AD. We utilize a 2-layer multilayer perceptron (MLP) with ReLU as the activation function and employ
Dropout for regularization.

Adult We also conduct additional experiments on the Adult dataset [Becker and Kohavi, 1996], aiming to
predict an individual’s annual income based on various factors, including the individual’s education level, age,
gender, occupation and more. The dataset originally comprises 48,842 samples and 15 features. After removing
samples with missing values and duplicated features following the process introduced in Kaggle 4, we have 45,175
samples and 11 features. The two classes are defined as follows: income less than or equal to $50K (class 0) and
income greater than $50K (class 1). The original distribution is already imbalanced (0 vs 1 is 3:1). Thus, we
do not modify it further. We also employ a 2-layer multilayer perceptron (MLP) with ReLU as the activation
function and Dropout for regularization.

D.2.2 Baselines and Setting Details

In our experiments, we compare our method to two baselines: one being AutoBalance [Li et al., 2021], and the
other being Single-Level OGD [Zinkevich, 2003].

AutoBalance AutoBalance [Li et al., 2021] is an offline bilevel gradient descent framework that updates
hyperparameters xt and the model yt to address imbalance issues. We essentially adopt all the settings from
the Autobalance study. Specifically, in all three datasets, the inner-level optimization trains the CNN model
using a learning rate of 0.1, momentum of 0.9, and weight decay of 1e− 4. However, to adapt it to the online
environment and ensure a fair comparison, AutoBalance will, at each timestep, utilize all the observed data until
the current timestep to train the model instead of employing a fixed number of batches, as in the original setting of
AutoBalance. This will allow AutoBalance to run quickly at the beginning but progressively slower as time passes.
At the outer level, AutoBalance does not initiate training from the beginning. Instead, AutoBalance usually
initiates the outer level after the network achieves near-zero loss. For MNIST, AutoBalance starts outer-level
training at the 120th timestep, while it starts at the 80th and 40th timesteps for Tadpole and Adult, respectively.
The learning rate for the outer level is 0.001 on all the three datasets. Our OAGD follows the same setting of
AutoBalance for both the inner- and outer-level training.

Single-Level OGD The Single-Level OGD [Zinkevich, 2003] updates the model, yt, with fixed hyperparam-
eters, x, at each timestep solely based on the newly observed data using gradient descent. Specifically, the
hyperparameters include adjustments in multiplicative and additive logits, along with the inverse class weight.
For Single-Level OGD, the multiplicative logits adjustment is 1, the additive logits adjustment is 0, and the
inverse class weight is 1, resulting in a vanilla cross-entropy loss. The learning rate is 0.1 on all the three datasets.

D.2.3 Additional Experiments

Figure 5 provides a performance comparison (mean±std) for parametric loss tuning on imbalanced Tadpole data
across five runs. We compare our OAGD (w = 5, 10) with AutoBalance and Single-Level OGD. OAGD achieves a
comparable balanced testing accuracy to AutoBalance but with a reduced runtime. AutoBalance outperforms

2https://tadpole.grand-challenge.org/Data/
3https://adni.loni.usc.edu/
4https://www.kaggle.com/code/amirhosseinzinati/adult-income-k-nearest-neighbors-knn

https://tadpole.grand-challenge.org/Data/
https://adni.loni.usc.edu/
https://www.kaggle.com/code/amirhosseinzinati/adult-income-k-nearest-neighbors-knn

Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods

0 50 100 150 200 250 300 350 400
T

0

50

100

150

200

250

300

350

R
un

ti
m

e
(s

ec
on

ds
)

AutoBalance

Single-Level OGD

OAGD (w=5)

OAGD (w=10)

0 50 100 150 200 250 300 350 400
T

0.80

0.85

0.90

0.95

1.00

1.05

B
al

an
ce

d
T

ra
in

in
g

A
cc

ur
ac

y

AutoBalance

Single-Level OGD

OAGD (w=5)

OAGD (w=10)

0 50 100 150 200 250 300 350 400
T

0.80

0.85

0.90

0.95

1.00

1.05

B
al

an
ce

d
T

es
ti

ng
A

cc
ur

ac
y

AutoBalance

Single-Level OGD

OAGD (w=5)

OAGD (w=10)

Figure 5: Performance comparison (mean±std) on parametric loss tuning for imbalanced Tadpole data over five
runs. We compare our OAGD (w = 5, 10) with AutoBalance and Single-Level OGD. OAGD achieves comparable
balanced testing accuracy to AutoBalance but with a reduced runtime.

0 50 100 150 200 250 300 350 400
T

0

250

500

750

1000

1250

1500

1750

R
un

ti
m

e
(s

ec
on

ds
)

AutoBalance

Single-Level OGD

OAGD (w=5)

OAGD (w=10)

0 50 100 150 200 250 300 350 400
T

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
al

an
ce

d
T

ra
in

in
g

A
cc

ur
ac

y

AutoBalance

Single-Level OGD

OAGD (w=5)

OAGD (w=10)

0 50 100 150 200 250 300 350 400
T

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
al

an
ce

d
T

es
ti

ng
A

cc
ur

ac
y

AutoBalance

Single-Level OGD

OAGD (w=5)

OAGD (w=10)

Figure 6: Performance comparison (mean±std) on parametric loss tuning for imbalanced Adult data over five
runs. We compare our OAGD (w = 5, 10) with AutoBalance and Single-Level OGD. OAGD achieves comparable
balanced testing accuracy to AutoBalance but with a reduced runtime.

OAGD and Single-Level OGD in terms of balanced training accuracy. This is because AutoBalance utilizes many
more samples than OAGD and OGD. This allows AutoBalance to have a higher chance of overfitting the training
data, resulting in high training accuracy, while still obtaining similar balanced testing accuracy compared to
other methods.

Figure 6 provides a performance comparison (mean±std) on parametric loss tuning for imbalanced Adult data
over five runs. We compare our OAGD (w = 5, 10) with AutoBalance and Single-Level OGD. OAGD achieves
comparable balanced accuracy to AutoBalance but with a reduced runtime.

D.3 Details and Additional Experiments on Online Meta Learning

This subsection provides the implementation details and additional experiments on miniImageNet of online meta
learning.

D.3.1 Datasets and Model Architectures

FC100 FC100 [Oreshkin et al., 2018] is a dataset derived from CIFAR100, containing 100 classes, with each
class comprising 600 images of size 32. Following [Oreshkin et al., 2018], the 100 classes are divided as follows: 60
classes for meta-training, 20 classes for meta-validation, and 20 classes for meta-testing. There are 36,000, 12,000,
12,000 samples in the original training, validation and testing datasets, respectively. We transform them into
20,000, 600 and 600 training, validation and testing tasks using the TaskDataset tool from learn2learn [Arnold
et al., 2020]. For all comparison algorithms, we employ a 4-layer convolutional neural networks(CNN) comprising
four convolutional blocks. Each block consists of a 3× 3 convolution (padding=1, stride=2), batch normalization,
ReLU activation, and 2× 2 max pooling. Additionally, each convolutional layer contains 64 filters.

MiniImageNet The miniImageNet dataset [Vinyals et al., 2016] is derived from ImageNet and comprises
100 classes, each containing 600 images sized at 84 × 84. Following the repository, we partition these classes
into 64 classes for meta-training, 16 classes for meta-validation, and 20 classes for meta-testing. Following the

Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, Laura Balzano

0 100 200 300 400 500 600
T

0

1000

2000

3000

4000

5000

6000

R
un

ti
m

e
(s

ec
on

ds
)

ANIL

ITD-BiO

OAGD (w=10)

0 100 200 300 400 500 600
T

0.45

0.50

0.55

0.60

0.65

0.70

T
ra

in
in

g
A

cc
ur

ac
y

ANIL

ITD-BiO

OAGD (w=10)

0 100 200 300 400 500 600
T

0.375

0.400

0.425

0.450

0.475

0.500

0.525

0.550

T
es

ti
ng

A
cc

ur
ac

y

ANIL

ITD-BiO

OAGD (w=10)

Figure 7: Performance comparison (mean±std) for online meta-learning on the miniImageNet dataset across
five runs. We compare our OAGD (w = 10) with ANIL and ITD-BiO. OAGD achieves comparable accuracy to
the baselines while significantly reducing runtime.

repository, we use a four-layer CNN with four convolutional blocks, where each block sequentially consists of a
3× 3 convolution, batch normalization, ReLU activation, and 2× 2 max pooling. Each convolutional layer has 64
filters.

D.3.2 Baselines and Setting Details

In our experiments, we compare our method to three baselines: MAML [Finn et al., 2017], ANIL [Raghu
et al., 2019], and ITD-BiO [Ji et al., 2021b]. Notably, these three methods are all implemented using iterative
differentiation within the PyTorch framework. They leverage two modules, the features and the head, albeit in
distinct ways. The features are used to process the raw input, such as the CNN which processes the image in
our case, while the head is responsible for the final classification. To ensure a fair comparison, we set the inner
learning rate β = 0.1, the outer learning rate α=0.001, and inner step K = 20 for all the methods.

MAML MAML stands as the foundational work of meta-learning, in which meta-parameters are learned in the
outer loop, while task-specific models are learned in the inner loop using only a small amount of data from the
current task. In the implementation, MAML combines features and the head into the meta model, which is then
cloned by the local model to perform local adaptation. We update all parameters of the meta model, including
those of the features and head.

ANIL ANIL stands as a widely used meta-learning algorithm that simplifies MAML by eliminating the inner
loop for all parts of the MAML-trained network except the task-specific head. In its implementation, only the
head of the meta model, cloned by the local model, is employed for subsequent local adaptation. Nonetheless,
the features remain utilized for data processing. Ultimately, both the parameters of the features and the head
undergo updates.

ITD-BiO ITD-BiO is a gradient-based stochastic bilevel optimization framework relying on iterative differen-
tiation (ITD). In its implementation, the meta model cloned by the local model comprises solely the head for
subsequent local adaptation. Nevertheless, we continue to utilize the features for data processing. Ultimately,
only the parameters of the features undergo updates.

It is worth noting that we do not adapt all the baselines to the online environment; instead, we directly utilize the
implementation from [Ji et al., 2021b]. In the online environment, data is observed in batches at a time, and the
offline method updates the model by incorporating all the data observed up until the current timestep. This will
initially speed up the training, but it will progressively slow down over time. Eventually, the entire process will
become very time-consuming. Instead, the implementation uses only a fixed number of batches (tasks) randomly
sampled from all available tasks at each timestep, which, in our case, is 32. We only use a specific window-size
number of batches (tasks) and load them sequentially.

D.3.3 Results on Additional Dataset

We conducted our experiments on an additional dataset, miniImageNet. Figure 7 provides a performance
comparison (mean±std) for meta-learning on the miniImageNet dataset across five runs. We compare our OAGD
(w = 10) with ANIL and ITD-BiO. OAGD achieves comparable accuracy but with a shorter runtime.

Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods

D.4 Sensitivity Analysis

0 25 50 75 100 125 150 175 200
T

0

100

200

300

400

500

600

R
un

ti
m

e
(s

ec
on

ds
)

OAGD (w=1)

OAGD (w=5)

OAGD (w=10)

0 25 50 75 100 125 150 175 200
T

0.6

0.7

0.8

0.9

1.0

B
al

an
ce

d
T

ra
in

in
g

A
cc

ur
ac

y

OAGD (w=1)

OAGD (w=5)

OAGD (w=10)

0 25 50 75 100 125 150 175 200
T

0.6

0.7

0.8

0.9

1.0

B
al

an
ce

d
T

es
ti

ng
A

cc
ur

ac
y

OAGD (w=1)

OAGD (w=5)

OAGD (w=10)

Figure 8: Performance comparison (mean±std) for parametric loss tuning on imbalanced MNIST data across
five runs. We compare our OAGD across different window sizes (w = 1, 5, 10). The larger the window size, the
better the accuracy and the longer the runtime.

0 200 400 600 800 1000
T

0

200

400

600

800

1000

1200

1400

R
un

ti
m

e
(s

ec
on

ds
)

OAGD (w=1)

OAGD (w=5)

OAGD (w=10)

0 200 400 600 800 1000
T

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

T
ra

in
in

g
A

cc
ur

ac
y

OAGD (w=1)

OAGD (w=5)

OAGD (w=10)

0 200 400 600 800 1000
T

0.30

0.35

0.40

0.45

0.50

0.55

T
es

ti
ng

A
cc

ur
ac

y

OAGD (w=1)

OAGD (w=5)

OAGD (w=10)

Figure 9: Performance comparison (mean±std) for meta-learning on FC100 data across five runs. We compare
our OAGD with different window sizes (w = 1, 5, 10). The larger the window size, the better the accuracy and
the longer the runtime.

In this section, we perform sensitivity analysis on the window size w, learning rate (both inner β and outer α),
and inner optimization step K to acquire a comprehensive understanding of our method.

D.4.1 Sensitivity Analysis of Window Size w

Figures 8 and 9 illustrate the results of our OAGD on MNIST and FC100 using different window sizes (w = 1, 5, 10).
As observed, the larger the window size, the higher the accuracy and the longer the runtime. This is expected,
as a larger window size allows for the use of more information from previous timesteps. Consequently, the
gradient can be approximated with greater accuracy, leading to improved results. However, this also requires more
computations for gradient calculation. It is important to note that we do not merely record previous gradients.
Instead, we leverage previous data and the current model to compute the gradients, an approach that has been
proven to be more effective.

D.4.2 Sensitivity Analysis of Learning Rates α and β

Figures 10 and 11 display the sensitivity results for the inner and outer learning rates, β and α, on the Tadpole
dataset. Likewise, Figures 12 and 13 exhibit the sensitivity results for the inner and outer learning rates on the
Adult dataset. Specifically, when analyzing the sensitivity to the inner learning rate, we fix the outer learning rate
at 0.001 and experiment with different inner learning rates (β = 0.9, 0.5, 0.1, 0.01). Conversely, when examining
sensitivity to the outer learning rate, we set the inner learning rate to 0.1 and test different outer learning rates
(α = 0.0001, 0.001, 0.01, 0.1). Our observations indicate that our OAGD is not particularly sensitive to changes in
either the inner or outer learning rates, as all cases demonstrate consistently high accuracy.

Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, Laura Balzano

0 50 100 150 200 250 300 350 400
T

0

50

100

150

200

250

300

R
un

ti
m

e
(s

ec
on

ds
)

OAGD (β=0.9)

OAGD (β=0.5)

OAGD (β=0.1)

OAGD (β=0.01)

0 50 100 150 200 250 300 350 400
T

0.6

0.7

0.8

0.9

1.0

B
al

an
ce

d
T

ra
in

in
g

A
cc

ur
ac

y

OAGD (β=0.9)

OAGD (β=0.5)

OAGD (β=0.1)

OAGD (β=0.01)

0 50 100 150 200 250 300 350 400
T

0.6

0.7

0.8

0.9

1.0

B
al

an
ce

d
T

es
ti

ng
A

cc
ur

ac
y

OAGD (β=0.9)

OAGD (β=0.5)

OAGD (β=0.1)

OAGD (β=0.01)

Figure 10: Performance comparison (mean±std) on parametric loss tuning for imbalanced Tadpole data over five
runs. We compare our OAGD (w = 10) using various inner learning rates (β = 0.01, 0.1, 0.5, 0.9) while keeping
the outer learning rate fixed at 0.001. Our OAGD is not significantly affected by changes in the inner learning
rate.

0 50 100 150 200 250 300 350 400
T

0

50

100

150

200

250

300

R
un

ti
m

e
(s

ec
on

ds
)

OAGD (α=0.1)

OAGD (α=0.01)

OAGD (α=0.001)

OAGD (α=0.0001)

0 50 100 150 200 250 300 350 400
T

0.6

0.7

0.8

0.9

1.0

B
al

an
ce

d
T

ra
in

in
g

A
cc

ur
ac

y

OAGD (α=0.1)

OAGD (α=0.01)

OAGD (α=0.001)

OAGD (α=0.0001)

0 50 100 150 200 250 300 350 400
T

0.6

0.7

0.8

0.9

1.0

B
al

an
ce

d
T

es
ti

ng
A

cc
ur

ac
y

OAGD (α=0.1)

OAGD (α=0.01)

OAGD (α=0.001)

OAGD (α=0.0001)

Figure 11: Performance comparison (mean±std) on parametric loss tuning for imbalanced Tadpole data over
five runs. We compare our OAGD (w = 10) using various outer learning rates (α = 0.0001, 0.001, 0.01, 0.1) while
maintaining a fixed inner learning rate of 0.1. Our OAGD is not sensitive to the outer learning rate.

0 50 100 150 200 250 300 350 400
T

0

200

400

600

800

1000

1200

1400

R
un

ti
m

e
(s

ec
on

ds
)

OAGD (β=0.9)

OAGD (β=0.5)

OAGD (β=0.1)

OAGD (β=0.01)

0 50 100 150 200 250 300 350 400
T

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
al

an
ce

d
T

ra
in

in
g

A
cc

ur
ac

y

OAGD (β=0.9)

OAGD (β=0.5)

OAGD (β=0.1)

OAGD (β=0.01)

0 50 100 150 200 250 300 350 400
T

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
al

an
ce

d
T

es
ti

ng
A

cc
ur

ac
y

OAGD (β=0.9)

OAGD (β=0.5)

OAGD (β=0.1)

OAGD (β=0.01)

Figure 12: Performance comparison (mean±std) on parametric loss tuning for imbalanced Adult data over five
runs. We compare our OAGD (w = 10) using various inner learning rates (β = 0.01, 0.1, 0.5, 0.9) while keeping
the outer learning rate fixed at 0.001. Our OAGD is not sensitive to the inner learning rate.

Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods

0 50 100 150 200 250 300 350 400
T

0

200

400

600

800

1000

1200

1400

R
un

ti
m

e
(s

ec
on

ds
)

OAGD (α=0.1)

OAGD (α=0.01)

OAGD (α=0.001)

OAGD (α=0.0001)

0 50 100 150 200 250 300 350 400
T

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
al

an
ce

d
T

ra
in

in
g

A
cc

ur
ac

y

OAGD (α=0.1)

OAGD (α=0.01)

OAGD (α=0.001)

OAGD (α=0.0001)

0 50 100 150 200 250 300 350 400
T

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
al

an
ce

d
T

es
ti

ng
A

cc
ur

ac
y

OAGD (α=0.1)

OAGD (α=0.01)

OAGD (α=0.001)

OAGD (α=0.0001)

Figure 13: Performance comparison (mean±std) on parametric loss tuning for imbalanced Adult data across five
runs. We compare our OAGD (w = 10) using different outer learning rates (α = 0.0001, 0.001, 0.01, 0.1) while
keeping the inner learning rate fixed at 0.1. Our OAGD is not sensitive to the outer learning rate.

0 50 100 150 200 250 300
T

0

200

400

600

800

1000

1200

R
un

ti
m

e
(s

ec
on

ds
)

OAGD (K=5)

OAGD (K=10)

OAGD (K=15)

OAGD (K=20)

0 50 100 150 200 250 300
T

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

T
ra

in
in

g
A

cc
ur

ac
y

OAGD (K=5)

OAGD (K=10)

OAGD (K=15)

OAGD (K=20)

0 50 100 150 200 250 300
T

0.34

0.36

0.38

0.40

0.42

0.44

0.46

T
es

ti
ng

A
cc

ur
ac

y

OAGD (K=5)

OAGD (K=10)

OAGD (K=15)

OAGD (K=20)

Figure 14: Performance comparison (mean±std) on online meta-learning for miniImageNet data across five
runs. We compare our OAGD (w = 10) with varying inner steps for inner optimization. A larger inner step may
yield improved and more stable accuracy but leads to longer runtime.

D.4.3 Sensitivity Analysis to Inner Step K

Figure 14 provides the sensitivity analysis results to different numbers of inner optimization steps Kt = K for
each round t. We can see that a larger number of inner optimization steps can make the accuracy better and
more stable. However, this will take longer runtime.

